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Abstract

Causal reasoning capability is critical in advancing large language models (LLMs)
toward strong artificial intelligence. While versatile LLMs appear to have demon-
strated capabilities in understanding contextual causality and providing responses
that obey the laws of causality, it remains unclear whether they perform genuine
causal reasoning akin to humans. However, current evidence indicates the con-
trary. Specifically, LLMs are only capable of performing shallow (level-1) causal
reasoning, primarily attributed to the causal knowledge embedded in their parame-
ters, but they lack the capacity for genuine human-like (level-2) causal reasoning.
To support this hypothesis, methodologically, we delve into the autoregression
mechanism of transformer-based LLMs, revealing that it is not inherently causal.
Empirically, we introduce a new causal Q&A benchmark called CausalProbe-2024,
whose corpora are fresh and nearly unseen for the studied LLMs. The LLMs
exhibit a significant performance drop on CausalProbe-2024 compared to earlier
benchmarks, indicating the fact that they primarily engage in level-1 causal rea-
soning. To bridge the gap towards level-2 causal reasoning, we draw inspiration
from the fact that human reasoning is usually facilitated by general knowledge
and intended goals. We propose G2-Reasoner, a method that incorporates general
knowledge and goal-oriented prompts into LLMs’ causal reasoning processes.
Experiments demonstrate that G2-Reasoner significantly enhances LLMs’ causal
reasoning capability, particularly in fresh and counterfactual contexts. This work
sheds light on a new path for LLMs to advance towards genuine causal reasoning,
going beyond level-1 and making strides towards level-2.

1 Introduction

The emergent of large language models (LLMs), such as GPT 4 [45], Gemini 1.5 [16], and Claude 3
[2], have significantly changed the paradigm of how people work and do research in recent years,
demonstrating competitive abilities (LLMs) in instruction following [1, 7, 45, 60], in-context learning
[8, 12, 67], reasoning [63, 70], coding [10, 18, 51] and etc. LLMs have demonstrated remarkable
abilities in processing and generating human-like text, leading to a belief that they may possess the
intelligence akin to human cognition. Reasoning is an essential component of human intelligence and
a prominent characteristic that distinguishes humans from other species [47]. Many recent works
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Q: A remote village with limited internet access recently 
had a new road constructed nearby. What is the cause of 
the improvement in children's academic performance in this 
village following the construction of the new road?

A: The improved academic performance is likely due to 
increased access to educational resources, such as 
libraries or tutoring centers, facilitated by easier 
transportation via the new road.

Q: What is the result of developing railway stations as 
social hubs and providing a range of public services 
alongside tickets? 

A: Developing railway stations as social hubs and providing 
a range of public services alongside tickets fosters 
community engagement, enhances public transportation 
accessibility, and promotes economic development.

CausalProbe 2024    "id": xxx, 
    "context": "Peterborough mayor Nick Sandford has admitted to 
using AI to help write his speeches, specifically utilizing ChatGPT. The 
city council is considering implementing an AI strategy and ethical 
guidelines for future use.", 
    "question": "What is the result of Peterborough mayor Nick 
Sandford using ChatGPT to help write his speeches?",
    "choice_1": "Increased public engagement with civic events.",
    "choice_2": "Improved efficiency in speechwriting for the mayor.",
    "choice_3": "Implementation of an AI strategy by the city council.",
    "choice_4": "Development of ethical guidelines for AI use in the 
council.",
    "answer": 2

common case

imagined case

(a) (c)

(d)(b)

Figure 1: The motivation of this work. (a) LLMs work well on common causal reasoning tasks,
whose topics usually are widely discussed. (b) LLMs struggle to tackle rare tasks, whose corpora
are possibly brand new for them. (c) Here is an example of the CausalProbe 2024 benchmark
that is introduced to examine the true level of causal reasoning in LLMs, including an easy one-
choice version (CausalProbe-E), a hard one-choice version (CausalProbe-H), and an uncertain
multiple-choice version (CausalProbe-M). They have analogous formats but different construction
strategies. (d) Compared to previous causal Q&A benchmarks, the studied LLMs exhibit a significant
performance drop on CausalProbe 2024. (*) represents our benchmarks.

have dived into evaluating and improving LLMs’ general reasoning capabilities, such as logical
reasoning [11, 20] and mathematical reasoning [22, 57].

In this work, we focus on causal reasoning, an advanced reasoning form [31]. In the context of
LLMs, causal reasoning is to discern the cause-and-effect relationships that govern the physical
world from a text [43, 54]. Current LLMs appear to have demonstrated some degree of causal
reasoning capabilities [73]. Sometimes, when asked about the cause or effect of a given text, LLMs
can accurately provide responses satisfying the laws of causality that originate from the physical
world. For example, in Figure 1(a), the LLM can work out reasonable causes (i.e., “increased access
to educational resources”) for academic performance improvement. Faced with such encouraging
performances, we have to pose a question:

Does this reflect LLMs’ genuine causal reasoning capability or only a “mirage”?

The answer leans more towards the latter. We find that LLMs are adept at qualitatively solving causal
reasoning tasks related to common knowledge (e.g., Figure 1 (a)), but they struggle to tackle more
advanced task types (e.g., Figure 1 (b)), such as discovering new causal knowledge and estimating
specific causal quantities. For example, in Figure 1(b), when asked about the effect of an imagined,
unusual case (“developing railway stations as social hubs...”), the LLM’s answer (“enhance public
transportation accessibility”) is clearly irrelevant with such an action. Recent works [64, 72, 73] also
came to a similar conclusion. Given the performance differences on tasks of varying difficulty, we
propose a hypothesis: the apparent (level-1) causal reasoning capabilities of LLMs can be primarily
attributed to associated knowledge from their training corpora, rather than engaging in genuine,
human-like (level-2) reasoning. We will justify this hypothesis from two aspects.

From a methodological perspective, the widely-used transformer-based LLMs essentially perform
next-token prediction [35, 61], which is realized in an autoregressive manner. Autoregressive
model [71] originates from time-series analysis with an important assumption: the current value
is determined by past values, not related to future values. For texts, however, the fact that the
current token depends on the past tokens does not necessarily mean that there is a causal relationship
between them. In addition, philosopher David Hume raised a viewpoint that sequential causality is
not equivalent to logical causality [21]. Therefore, this mechanism makes LLMs good at reusing
the causal knowledge in their training corpora but often makes them struggle to comprehend and
generate texts that capture genuine causal knowledge. We also use structural causal models (SCMs)
to formally account for this intuitive conclusion (see Section 4.1).

From an empirical perspective, to validate the hypothesis that LLMs only possess level-1 causal
reasoning capabilities, we introduce a new causal question & answer (Q&A) benchmark (Figure
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1(c)), named CausalProbe 2024, whose corpora was made public later than the release of the studied
LLMs.3 Given that the training data is rarely disclosed, we can, at a minimum, guarantee that the
corpora of CausalProbe 2024 is not included verbatim in the training data of the studied LLMs.
Compared to earlier causal Q&A benchmarks, such as COPA [48], e-CARE [14] and CausalNet [4],
all the studied LLMs (e.g., LLaMA 2 7B, LLaMA 3 8B, GPT 3.5 turbo, Claude 3 Opus) exhibit
a significant performance drop on CausalProbe 2024 (Figure 1(d)). As the earlier benchmarks are
potentially part of the training data, these longitudinal comparisons largely support our hypothesis.

Existing studies about LLMs’ causal reasoning mainly focused on only assessments [15, 26, 49]
and designing prompt-based approaches [4, 25]. These studies have taken a significant step forward
in advancing LLMs’ causal reasoning. However, they overlooked two basic principles of human
reasoning: general knowledge and intention. For example, when we reason about a mathematical
problem, we always take the basic axioms as a reference, with the ultimate goal as guidance.
Inspired by this fact, we propose a causal reasoning framework for LLMs called G2-Reasoner, which
incorporates general knowledge and goal-oriented prompts during reasoning. Specifically, we use the
retrieval-augmented generation (RAG) to incorporate external knowledge bases. Then we stimulate
the LLMs to consistently discern correct causal relationships in contexts to reach the final responses.
Experiments show that G2-Reasoner significantly enhances LLMs’ causal reasoning capabilities
towards level-2, especially on fresh even fictitious tasks (e.g., CausalProbe 2024), which is consistent
for both open-source and closed-source LLMs.

2 Related Work

In this section, we review the related works, including LLMs’ reasoning, LLMs’ causal reasoning,
and LLMs’ causal reasoning benchmarks. In Appendix D, we discuss the related works in detail.

2.1 Reasoning in Large Language Models

Reasoning ability is crucial to LLMs’ performance on tasks such as theorem proving, problem-
solving, and robotics [41, 58]. [58] propose a comprehensive review of the foundation models’
reasoning, they discuss reasoning tasks including commonsense reasoning, mathematical reasoning,
logical reasoning, and causal reasoning. Commonsense reasoning refers to the reasoning process
that utilizes commonsense and daily life experiences [9]. Several commonsense question-answering
datasets have been proposed to test LLMs’ commonsense reasoning ability [19, 29, 74, 75]. Causal
reasoning is the process of identifying and understanding the cause-and-effect relationships between
variables or events, which involves identifying potential causes and effects within a system or context
[58]. One distinctive feature of causal reasoning is that it involves counterfactual reasoning, which
means reasoning within a hypothetical scenario. Our work focuses on the LLMs’ causal reasoning,
particularly counterfactual reasoning.

2.2 Causal Reasoning in Large Language Models

Causal Reasoning tasks include causal discovery, cause attribution, and causal effect estimation
[30, 58, 65]. Causal discovery aims to recover the latent causal structure of variables. Cause
attribution refers to uncovering potential causes behind a process, while causal effect estimation aims
to investigate the effect of cause variables [26, 76]. While LLMs already show the ability to uncover
causal relationships from context, their abilities have some limitations [37, 4, 39, 77]. Counterfactual
reasoning is an essential task of causal reasoning. The difference between counterfactual reasoning
and other causal tasks is counterfactual reasoning involves reasoning in hypothetical scenarios [28, 58].
Several studies conclude that LLMs have limitations when encountering hypothetical scenarios in
counterfactual reasoning [33, 66].

3To double ensure the freshness of the corpora in CausalProbe 2024, we use a membership inference attack
approach (i.e., determining whether an arbitrary sample is part of a given LLM’s training data), Min-K% Prob
[53], to evaluate it and earlier benchmarks. The results are shown in Section 6.1.
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Jack learned the new programming language at home because he was not able to 
go to school, which was closed because of the rain.

rain

school closure

cannot go to school

learn...at home rain

school closure

cannot go to school

learn...at home

(a) ground truth causal relationship (b) sequential causal relationship

Figure 2: An diagram of illustrating how autoregression fails to capture the correct causal knowledge.

2.3 Causal Reasoning Benchmarks in Large Language Models

There have been extensive studies on causal reasoning benchmarks. Existing causal reasoning
benchmarks are mainly causal question-answering datasets. [6] employs language rules to extract
causal questions from ten large question-answering datasets to form the CausalQA. CRAB [50] is a
dataset that aims to assess LLMs’ abilities to understand causal relationships among real-world events.
FCR [69] is a human-labeled dataset that includes 24K question-answering pairs. Cladder [57] is
a dataset that involves symbolic questions and corresponding ground truth answers, [57] employs
causal graphs and structural causal models to generate the dataset. CausalProbe 2024 is different
from the above benchmarks, as its contents are based on the latest and authoritative information,
which is unlikely to be encompassed by the pre-training corpora of LLMs.

3 Problem Formalization

In this section, we introduce and clarify the necessary definitions used in this work. First, we provide
a formal definition for causal reasoning in the context of LLMs. Then, we introduce two levels of
causal reasoning capability to reveal the limitations of LLMs in this aspect. Last, we use causal
language to depict the causal reasoning of LLMs.

In this work, the scope of causal reasoning of LLMs we study is reasoning about causal knowledge in
textual form, distinguish from the numerical form in statistical causal inference [23].
Definition 1 (causal reasoning in LLMs). In the context of large language models, the causal
reasoning consists of two aspects:

• comprehend the given contexts and discern the causal relationship within them;
• responds to the causality-related queries, obeying the contexts and objective laws of causality.

To reach the major conclusions of this work, we first categorize LLMs’causal reasoning capability
into two levels, motivated by the results of cognition science [56] and causality science [17].
Definition 2 (level-1 causal reasoning). Level-1 causal reasoning involves retrieving causal knowl-
edge embedded in model parameters and contextual information. This form of reasoning is typically
fast and well-suited for handling simple cause-and-effect relationships.
Definition 3 (level-2 causal reasoning). Level-2 causal reasoning leverages sophisticated reasoning
mechanisms and internal parametric knowledge and contexts to deduce causal knowledge, including
new/unseen causal knowledge. This form of reasoning is typically slow and capable of deriving new
causal knowledge.

The above two definitions are inspired by ‘Thinking, Fast and Slow’ [27]. Level-2 causal reasoning is
not necessarily always better than level-1. Ideally, the interplay and adaptive switching and of these
two levels of causal reasoning are crucial for LLMs to work both rapidly and reliably. In this work,
we aim to explore the causal reasoning capabilities of current LLMs in terms of these two levels and
dig into the underlying reasons.
Remark 1. In this work, we only consider a simple type of causal reasoning tasks that contain a
single cause-effect pair. The cases of multiple cause-effect pairs and mediators are excluded. In
addition, we primarily consider qualitative causal reasoning tasks (e.g., causal discovery [4]), rather
than quantitative ones (e.g., treatment effect estimation [25]). In summary, the causal reasoning tasks
that we focus on can be categorized into two type: 1) what is the reason · · · ; 2) what is the result · · · .
Due to the complexity of natural language, there are many different sentence patterns to express it.
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"id": 1,
"question": "What is the result of 
the surge in interest in artificial 
intelligence (AI) in terms of media 
coverage?",
"choice_1": "Increased 
scrutiny...",
"choice_2": "...",
"answer": 2

causal question

Large language model

goal-oriented prompt

You are an intelligent causal reasoner. To arrive at the correct 
answer, keep carefully analyzing the available information and 
logically inferring the most probable causal relationship during 
reasoning. Related general knowledge can be a reference if useful.
General knowledge: [retrieved information]
Context (if available): [background of the question]

Question: …
Choices: 1. xxx 2. xxx 3. xxx
Pick one choice. Answer: [choice ID]

general 
knowledge base

vector
database

retriever

embedding
model

Knowledge
ID

embedding model

RAG

Figure 3: The diagram of G2-Reasoner. This framework consists of
two modules. One module is a retrieval-augmented generation (RAG)
system to retrieve general knowledge that is related to the causal question.
Another is a goal-oriented prompt to steer LLMs to race toward the
ultimate goal of causal reasoning.

C

X Y

T

C
world 

knowledge
X cause Y effect T

natural 
language

Figure 4: The causal graph
that depicts the data generation
mechanism of causal reasoning in
LLMs.

4 LLMs cannot Perform Genuine Causal Reasoning

In this section, we aim to explore the real causal reasoning capability of current LLMs, in terms of
our pre-defined two capability levels: level-1 (Definition 2) and level-2 (Definition 3). We study this
problem from both a methodological perspective and an empirical perspective.

4.1 Autoregressive LLMs are not Necessarily Causal

Although autoregressive LLMs have achieved great successes, recently, they began to be doubted
by this community [34, 42]. We aim to study why the autoregressive mechanism prevents LLMs
from acquiring level-2 causal reasoning capabilities. Essentially, the decoder-only transformer-based
LLMs that are widely used today to perform next-token prediction, are trained with an autoregressive
loss [35]. In statistics, autoregression model is based on a fundamental assumption: in a sequence, the
current value is determined by past values, not related to future values. However, causal knowledge
expressed through natural languages does not necessarily satisfy this assumption. This is because
sequential causality is not equivalent to logical causality [21]. For example, due to the variability of
natural language, sentence patterns may lead to false sequential causal relationships, and Figure 2
shows a toy instance. This sentence consists of four concepts, i.e., “rain”, “school closure”, “cannot go
to school”, and “learn the new programming language at home”. However, we can easily find that the
sequential causal relationship in this sentence is totally incorrect. Thus, autoregressive LLMs suffer
from capturing logical causal knowledge in complex texts, restricting their generalization abilities
on unseen tasks. Note that due to the vast training corpus of LLMs, they may have encountered
different textual expressions with the same semantic meaning, thus still being able to infer correct
causal relationships in some complex tasks.

Assume that c = (c1, c2, . . . , ck) is a tokenized context and (w1, w2, . . . , wt) are already generated
tokens, LLMs can obtain a distribution of the next token wt+1: P (wt+1|c, w1, w2, . . . , wt), which is
usually obtained by a softmax function. Then, LLMs predict the next token from this distribution
in a sampling method, such as greedy sampling and beam search. Autoregressive training makes
LLMs memorize common causal knowledge expressions. Based on the above discussion, there
are two major issues: 1) If the context c is not sequentially causal and unfamiliar for LLMs, they
tend to misunderstand the causal knowledge in c; 2) If P (w∗

t+1|c, w1, w2, . . . , wt) is large4 but the
text represented by (. . . , wt−1, wt, w

∗
t+1) is inconsistent with the laws of causality or the context

c, LLMs tend to respond an incorrect causal reasoning result. In contrast, if the context c and
generated (. . . , wt−1, wt, w

∗
t+1) express correct causal knowledge and are familiar for LLMs, LLMs

will perfectly address this task. Thus, the autoregression mechanism makes LLMs’ causal reasoning
primarily rely on correct causal knowledge in a large number of training corpora, i.e., the level-1
causal reasoning. In the following, we will validate this hypothesis from an empirical perspective.

4Probably because the token sequence (. . . , wt−1, wt, w
∗
t+1) appears frequently in the training corpora.
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Table 1: The data cut-off time comparison of the studied LLMs and CausalProbe 2024 benchmark.
LLaMA 2 7B chat LLaMA 3 8B instruct GPT 3.5 turbo Claude 3 opus CausalProbe 2024

Sep 2022 Mar 2023 Sep 2021 Aug 2023 Jan 2024

4.2 Empirical Study on Causal Reasoning Capabilities of LLMs

In this section, we study the capability boundary of LLMs’ causal reasoning for causal reasoning.
Recall the hypothesis that LLMs are only capable of performing level-1 reasoning, primarily attributed
to the causal knowledge embedded in their parameters during training, but struggle to perform genuine
causal reasoning in complex or uncommon cases. Therefore, in order to physically avoid LLMs
seeing the same corpora as the training data, we introduce a new causal question & answer (Q&A)
benchmark, named CausalProbe 2024 (Figure 1(c)). The corpora used to construct CausalProbe
2024 are published later than January 1, 2024, which is later than the training data cut-off times
of all the studied LLMs (Table 1). Thus, the studied LLMs should not have seen corpora that is
the same or very similar to CausalProbe 2024. The construction details of CausalProbe 2024 are
presented in Section 6.1. CausalProbe 2024 consists of three datasets: CausalProbe 2024 Easy
(abbr., CausalProbe-E), CausalProbe 2024 Hard (abbr., CausalProbe-H), and CausalProbe 2024
Multiple-choice (abbr., CausalProbe-M). These three datasets progressively probe whether LLMs can
solve novel causal reasoning tasks, whether they can distinguish misleading false causal relationships,
and whether they can reason about multiple causal relationships within a scenario.

To validate whether LLMs heavily rely on the causal knowledge embedded in their parameters, we
employ three earlier causal Q&A benchmarks as a comparison, i.e., COPA [48], e-CARE [14], and
CausalNet [4]. The corpora of COPA is released earlier than 2011. An example of their comparison
is shown in Figure 9. The corpora of e-CARE (i.e., GenericsKB [5]) is released earlier than 2020.
CausalNet is also a fresh causal Q&A benchmark and its corpora are generated by ChatGPT, serving
as an intermediate comparison. The corpora of COPA and e-CARE are likely to exactly be the
training data of the studied models. For CausalNet, we have reason to speculate that its corpora
may be similar to the training data of ChatGPT, although a large temperature hyperparameter can
bring some creativity. Their detailed introduction in presented in Appendix F. In terms of the format,
CausalProbe 2024 is consistent with them, including ID, question, choices, and answer. In addition,
CausalProbe 2024 additionally provides contexts as the background knowledge of questions. In
Section 6.1, we discuss the reasonability of providing contexts rather than only providing questions.5
To doubly guarantee the freshness of CausalProbe 2024, we employ a LLM’s membership inference
attack method, Min-K% Prob [53], to detect how much the corpora of a benchmark potentially
comes from a LLM’s training data. The results are shown in Table 3, showing that the corpora of
CausalProbe 2024 are fresher for the studied LLMs than other benchmarks.

From Figure 1(d), we can observe significant performance drops on CausalProbe-E and CausalProbe-
H for all four studied LLMs. Especially for CausalProbe-H, Claude 3 opus, a current SOTA LLM,
only achieves the average exact match less than 70%. The popular and competitive open-source LLM,
LLaMA 2 7B chat, just get it half right. As the corpora of CausalProbe 2024 comes from news, it is
close to everyday life and hardly consists of professional concepts and unfamiliar words. Thus, the
main cause of performance degradation is the freshness of corpora, indicating the fact that LLMs
only are capable of doing level-1 causal reasoning, instead of genuine level-2 causal reasoning. The
empirical result is in perfect agreement with the analysis derived from the autoregressive mechanism.

5 G2-Reasoner: A General-Knowledge-Assisted and Goal-Driven Reasoner

Until now, we have discovered of the limitation of LLMs’ causal reasoning capabilities from both
methodological and empirical perspectives. To move towards level-2 causal reasoning, we seek
inspiration from human beings. Human reasoning processes, including causal reasoning, are driven
by specific reasoning tasks and supported by extensive foundational knowledge acquired throughout
life, following established reasoning patterns such as deductive and inductive reasoning [44]. When

5In COPA, e-ECARE, and CausalNet, their data also contain “context” or “premise”. However, they are
not real background knowledge, but a part of the questions themselves. In CausalProbe 2024, the “question” is
equivalent to “context” plus “question” in the other three benchmarks.
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solving plane geometry proof problems, students apply three basic axioms as criteria while working
toward the target proposition. Unlike humans, LLMs perform causal reasoning through next-token
predictions based solely on patterns learned during training, without necessary knowledge to guide
their reasoning. Drawing inspiration from causal inference, we formalize textual causal reasoning
tasks6 using a causal graph, as shown below.

Causal model for causal reasoning in LLMs. Based on Definition 1, we use a causal graph
(Figure 4) to formally depict the textual causal reasoning task of LLMs. Based on this formalization,
we can identify the key factors for LLMs to perform causal reasoning well. Given a cause semantic
variable X and an effect semantic variable Y , naturally, we have X → Y . The fact that X causing
Y is driven by the laws of the physical world or imagined/virtual worlds C. Then, the semantic
variables X and Y are transformed into a variable T that represents the natural language, through a
mapping h, i.e., h(X,Y, ϵ) = T , where ϵ is a random exogenous variable. In this formalization, h
can be viewed as a language system to transform two causal concepts into a paragraph of text. The
variable ϵ represents various factors in generating readable text from causal concepts X and Y , such
as language type, context, and mode of expression (e.g., active or passive voice). While linguistic
variability (ϵ) enriches the diversity and flexibility of natural language, it poses challenges for LLMs’
causal reasoning. Consider the causal relationship between "smoking" (X) and "lung cancer" (Y ).
This relationship can be expressed in various ways, such as: 1) "A history of smoking is a common
risk factor for lung cancer," and 2) "Knowing that smoking greatly increases the risk of lung cancer,
why take the risk?" Although these sentences convey the same underlying causal relationship, they
differ significantly in their linguistic structure and expression (i.e., different ϵ). The natural language
expression T encapsulates both the fundamental causal relationship between X and Y , as well as the
contextual nuances and linguistic style represented by ϵ.

We can easily find that the causal graph (Figure 4) is exactly a causal model with a confounding
variable and a conditioned collider [46]. T is conditioned because the observed natural language
descriptions in textual causal reasoning tasks are inherently deterministic. Following a fundamental
principle of causal inference, when the collider T is conditioned (T = T0), it creates an association
between X and Y . Thus, natural language descriptions of causal reasoning tasks provide valuable
information for determining causal relationships.7 For cause-to-effect tasks, given PY (the distribution
of possible effects Y generated by LLMs), our objective is as follows:

arg max
Y∼PY

P[Y |X = X0, T = T0, C] (1)

where X0 is the cause described in a causal reasoning question. However, to account for the
confounding variable C, we can apply the total probability formula, i.e.,

arg max
Y∼PY

EC∼PC
P[Y |X = X0, T = T0, C] = arg max

Y∼PY

P[Y |X = X0, T = T0], (2)

where PC is the general knowledge base. While strictly ensuring the validity of Eq. (2) would require
a complete general knowledge base, which is impractical, Eq. (2) nonetheless provides an insightful
approach to addressing causal reasoning problems in LLMs and is helpful in practice (Section 6.3).

Goal-driven prompt. As discussed in Section 4.1, the autoregressive nature of LLMs hinders their
understanding of correct causal relationships. As generated sequences lengthen, LLMs tend to lose
coherence and deviate from their initial targets [40]. To maintain focused generation, we design a
goal-driven prompt that guides LLMs in identifying correct causal relationships during the decoding
process, as shown in Figure 3.

Motivated by human reasoning mechanism and causal graph theory, we propose a novel causal
reasoning framework (Figure 3), named G2-Reasoner, which involves general knowledge as a basis
and intended goals as a guide. Specifically, G2-Reasoner leverages a small (∼16 Mb) general
knowledge Q&A dataset8 as the knowledge base, enabling the model to draw upon related knowledge

6In this work, we focus on textual causal reasoning tasks, instead of the numerical ones like classical causal
inference/discovery.

7Note that collider T is useful in our problem, although common causal inference tasks treat it as a bias.
8General knowledge dataset: https://huggingface.co/datasets/MuskumPillerum/General-Knowledge. We only

use its answers as the retrieval document, because the answers are declarative sentences that are more suitable to
construct a knowledge base. In addition, the answers have contained the entity information in the questions.
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Table 2: Results of the studied LLMs on four causal
Q&A benchmarks. The metric is exact match (EM).
“Vanilla” denotes doing inference directly. “C-E”, “C-
H” represnt CausalProbe-E and CausalProbe-H. The
standard deviations are presented in Appendix G.

LLaMA 2LLaMA 3GPT 3.5Claude 3

COPA

Vanilla 0.752 0.937 0.948 0.991
CoT 0.812 0.944 0.951 0.991
RAG 0.757 0.912 0.936 0.990

G2-Reasoner 0.813 0.948 0.953 0.990

e-CARE

Vanilla 0.684 0.778 0.814 0.861
CoT 0.697 0.770 0.802 0.864
RAG 0.687 0.760 0.809 0.836

G2-Reasoner 0.701 0.779 0.821 0.849

CausalNet

Vanilla 0.673 0.857 0.897 0.933
CoT 0.666 0.767 0.874 0.910
RAG 0.650 0.860 0.898 0.922

G2-Reasoner 0.681 0.855 0.898 0.929

C-E (*)

Vanilla 0.616 0.715 0.732 0.758
CoT 0.636 0.720 0.737 0.753
RAG 0.621 0.704 0.741 0.756

G2-Reasoner 0.642 0.718 0.746 0.758

C-H (*)

Vanilla 0.565 0.652 0.671 0.692
CoT 0.573 0.644 0.667 0.701
RAG 0.575 0.655 0.678 0.685

G2-Reasoner 0.582 0.658 0.693 0.696

Table 3: Results of training data detection using Min-
K% Prob [53]. We conduct this evaluation on LLaMA
2 7B and LLaMA 3 8B. The metric is the average neg-
ative log-likelihood on a dataset. A smaller value
indicates better freshness. “C-E”, “C-H” represnt
CausalProbe-E and CausalProbe-H.

LLaMA 2 LLaMA 3

COPA
Min-10% Prob 13.27 16.64
Min-20% Prob 10.57 12.21
Min-30% Prob 8.97 10.32

e-CARE
Min-10% Prob 13.08 14.48
Min-20% Prob 11.20 12.98
Min-30% Prob 9.92 10.89

CausalNet
Min-10% Prob 10.84 11.3
Min-20% Prob 8.84 9.45
Min-30% Prob 7.51 8.00

C-E (*)
Min-10% Prob 9.34 9.03
Min-20% Prob 7.27 7.29
Min-30% Prob 5.90 5.69

C-H (*)
Min-10% Prob 9.93 9.70
Min-20% Prob 7.86 7.77
Min-30% Prob 6.65 6.49

as a reference when performing causal reasoning tasks. Specifically, when querying LLMs a causal
reasoning question, we first retrieve related general knowledge from a vector database constructed
with the general knowledge dataset, through the pipeline of retrieval-augmented generation (RAG).
Using the retrieved general knowledge as a basis, we employ the proposed goal-oriented prompt
to steer LLMs to perform causal reasoning in a targeted manner, rather than aimlessly generating
answers. This is the first step taken to advance LLMs towards level-2 causal reasoning.

6 Experiments

In this section, we will discuss two points: 1) the construction of the CausalProbe 2024 benchmark
and its superiority; 2) the main implementation details ; 3) the result analysis of G2-Reasoner and
baseline methods. The CausalProbe 2024 benchmark and the source codes are presented in this URL:
https://github.com/Haoang97/CausalProbe-2024.

6.1 Construction of CausalProbe 2024 and its superiority

We will introduce the construction procedure of the CausalProbe 2024 benchmark and provide a brief
analysis. In general, the procedure contains two stages: 1) collecting the latest web articles to form a
corpora; 2) employing an LLM to generate the question-answer pairs from the corpora.

Corpora collection. To ensure the quality of the collected corpora, we choose two well-known
media: British Broadcasting Corporation (BBC) and the Guardian.9 BBC [Link] is a British public
service broadcaster founded in 1922, one of the oldest and largest broadcasting companies in the
world. The Guardian [Link] is a national newspaper in the UK, established in 1821, with its online
edition being particularly influential. We downloaded the latest articles from BBC and the Guardian.
Specifically, the downloaded articles are from January 1, 2024, to April 29, 2024, later than
the releases of the studied LLMs (Figure 1). The articles cover categories such as technology,
environment, business, health, world news, culture, and climate, statistics of the downloaded articles
are shown in Table 10.

9NOTICE: According to the licenses from the BBC and The Guardian, CausalProbe 2024 can only be used
for non-profit purposes. All rights to the corpora used in CausalProbe 2024, including copyrights, are owned
by the BBC and The Guardian.
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Bechmark construction. We generated two sub-datasets from the same corpora using two different
strategies. Since it’s expensive to create them manually, we employ GPT 3.5 turbo as an assistant to
automatically generate them. The overall pipeline diagram is shown in Figure 8.

• CausalProbe-E. We construct this dataset following the format of the CausalQA [6]. In detail,
we first query the GPT 3.5 turbo to analyze an example data in CausalQA, then we offer GPT
3.5 turbo articles and ask it to generate Q&A pairs similar to the example data. Finally, the
highest-quality Q&A pairs are selected as the reference, which is adopted in the prompt template
of generating Q&A data. The related prompt templates are shown in Figure 14a, 14d.

• CausalProbe-H. We construct CausalProbe-H with another strategy. Specifically, first, we
provide GPT 3.5 turbo an example article and ask it to summarize this article; second, we ask it to
extract several cause-effect pairs based on the summary; third, we ask it to create some incorrect
cause-effect pairs regarding this summary; finally, multiple multi-choice questions are generated
according to these correct and incorrect cause-effect pairs. The highest-quality multi-choice
Q&A data is selected as the reference, which is adopted in the prompt template of generating
Q&A data. The related prompt templates are shown in Figure 14. The made-up fake cause-effect
pairs can be used to examine the LLMs’ genuine causal reasoning capability when encountering
counterfactual disturbance term.

• CausalProbe-M. We construct an uncertain multiple-choice version, with the number of correct
answers for each question ranging from 1 to 4. LLMs are required to distinguish the correctness or
incorrectness of each causal proposition, avoiding LLMs relying on random guess to get correct
answers. We provided GPT-4o mini10 the prompt templates of CausalProbe-H and additional
prompt to realize varying number of answers, shown in Figure 14. To ensure each question really
has at least one correct answer, we manually checked the correctness of the provided answers.

Due to the broad range of topics in the corpus, it may contain ethically questionable content such as
conflicts. Therefore, we used LLMs to filter the unethical questions from the preliminary generated
data. Moreover, to comply with the context length limit of GPT 3.5 turbo, we removed articles
exceeding 15,000 characters. After filtering, our dataset contains 3,461 unique Q&A data. We also
provide statistical analysis and more details of CausalProbe 2024 in Appendix I.

Superiority of CausalProbe 2024. 1) Contextual information. As we have simply mentioned,
earlier three causal Q&A benchmarks lack the necessary background knowledge for each question.
Although these benchmarks greatly promote the development of LLMs’ causal reasoning, their
formats are a little bit unreasonable. Even for humans, when we perform reading comprehension
tests, we also need full context as a reference. Although we find that many of these questions
can be answered by us, this heavily relies on our knowledge reserve, which is similar to LLMs.
The knowledge reserve contributes their level-1 causal reasoning capability. Thus, we involve the
contexts into CausalProbe 2024 as briefly as possible, which is more realistic, and they significantly
improves the performance (Figure 5 and 6). 2) Hierarchical capability assessment. Three datasets
of CausalProbe 2024 hierarchically assess causal reasoning ability levels. CausalProbe-E assesses
the genuine causal reasoning ability on novel problems. Furthermore, CausalProbe-H assesses the
ability to identify misleading or deceptive causal propositions in new tasks. Last, CausalProbe-M
assesses the ability to identify multiple valid causal statements in novel tasks, greatly ensuring that
LLMa cannot obtain right answers through random guessing. By evaluating LLMs on these three
datasets in sequence, we can determine their actual level of causal reasoning ability.

Guarantee the freshness of CausalProbe 2024. To doubly guarantee the freshness of CausalProbe
2024 than earlier benchmarks, we use an LLM’s training data detection method, Min-K% Prob [53],
to evaluate them as mentioned before. The detailed introduction for this method is in Appendix E. As
the APIs of GPT and Claude no longer provide the logarithmic likelihood input texts, we only make
this evaluation on open-source LLMs. The results in Table 3 show that CausalProbe 2024 is fresher.
Here K denotes the tokens in the bottom K percent of log-likelihood.

We employ several measures to control the data quality of CausalProbe 2024. The detailed information
is shown in Appendix H.

10During the contrustion of CausalProbe-M, OpenAI released the GPT-4o series models, which were more
powerful and cheaper than GPT-3.5 turbo, so we adopted GPT-4o mini.
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6.2 Implementation Details

All the experiments are conducted on the Ubuntu 20.04 system and NVIDIA RTX A6000 GPUs.
For closed-source LLMs, i.e., GPT 3.5 turbo and Claude 3 opus, we call the API provided by their
officials. We provide more implementation details in Appendix C.

6.3 Result Analysis

To evaluate G2-Reasoner, we compare it with three common LLM reasoning methods, i.e., vanilla,
chain-of-thought (CoT) [63], and retrieval-augmented generation (RAG) [32]. The “vanilla” refers to
directly perform zero-shot inference. We evaluate four LLMs on CausalProbe 2024 and other three
causal Q&A benchmarks, whose detailed introduction is presented in Appendix F. The full results are
shown in Table 2. First, the LLMs’ performance decreases monotonically as the benchmark corpora
become more fresh. A counterintuitive phenomenon is that CoT usually perform a little worse than
vanilla on three earlier benchmarks. This may indicate that CoT cannot improve reasoning on simple
or common tasks for LLMs. For G2-Reasoner, it mostly can outperform the vanilla method. However,
limited by the scale of the general knowledge base and the power of vector databases, G2-Reasoner
cannot significantly outperform the baselines, which is the direction of our future efforts. In fact,
RAG is just the ablated G2-Reasoner, and it usually cannot reach the vanilla method, indicating the
effectiveness of our goal-oriented prompt.

We evaluate the four LLMs on CausalProbe-M, where they showed a more significant performance
decline compared to their results on CausalProbe-E and -H. Under exact match, which required
all correct answers to be precisely identified, all models struggled. However, when using partial
match, where missing some correct options was acceptable but selecting incorrect options was not,
GPT and Claude performed relatively well, achieving accuracy rates of approximately 75% and 85%
respectively. While these results demonstrate that current LLMs cannot fully comprehend each causal
proposition, revealing limitations in their causal reasoning abilities, there is an encouraging finding:
the models rarely make false positive errors when identifying causal relationships.

Note that G2-Reasoner’s performance relies on general knowledge bases. The reported results were
obtained using a very small knowledge base (around 16 MB), yet G2-Reasoner generally achieved
non-marginal improvements. If we use a significantly larger one, such as Wikipedia API, performance
can be boosted a lot. However, due to resource constraints, we couldn’t repeat all experiments with it.

7 Conclusion and Future Outlook

This work investigates the causal reasoning capabilities of LLMs and argues that current LLMs
are limited to level-1 causal reasoning. To verify this hypothesis, we introduce a new causal Q&A
benchmark, CausalProbe 2024, revealing that LLMs struggle with causal reasoning in unseen contexts
and primarily rely on the causal knowledge in training data . To fill this gap, we proposes G2-Reasoner,
a method that incorporates general knowledge and goal-oriented prompts into causal reasoning of
LLMs. Experiments demonstrate that G2-Reasoner can enhance the causal reasoning capability,
particularly in fresh and counterfactual contexts. This work provides valuable insights into the current
state of LLMs’ causal reasoning and offers a promising attempt to move towards level-2 causal
reasoning, bringing LLMs closer to reaching genuine causal reasoning capabilities. While this work
takes an important step forward, it still does not enable LLMs to achieve level-2 causal reasoning.
Further research in this field could potentially lead to significant advancements towards stronger
artificial intelligence.
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A Limitations

In this section, we discuss the limitations of our work, which include two parts. The first limitation is
that the proposed causal reasoning method for LLMs is only a step forward, but cannot realize the
genuine causal reasoning. On the other hand, enabling LLMs to perform causal reasoning like humans
is challenging and requires further research. The second limitation is that we can not fully confirm
the CausalProbe 2024 is unseen for LLMs. Specifically, the contents of CausalProbe 2024 are still
part of human knowledge, and LLMs may have seen comparable information. For example, LLMs
may not know one latest event, but their pre-training data may include a similar event. Thus, fully
excluding the pre-training data from datasets is challenging, and we already ensure the CausalProbe
2024 is unseen for LLMs to a large extent.
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B Broader Impacts

In this section, we discuss both the potential positive societal impacts and negative societal impacts of
our work. The positive societal impacts include that our work facilitates understanding LLMs’ current
causal reasoning abilities. Besides, our work is a step forward for improving LLMs’ causal reasoning.
The potential negative societal include that our work cannot promote LLMs’ causal reasoning abilities
to the human level, thus, LLMs’ causal reasoning results may still have errors.

C Full Implementation Details

All the experiments are conducted on the Ubuntu 20.04 system and NVIDIA RTX A6000 GPUs.
For closed-source LLMs, i.e., GPT 3.5 turbo and Claude 3 opus, we call the API provided by their
officials.

Hyper-parameters. For LLM inference, we set the temperature parameter as 1.0 for closed-source
LLMs all the time, and set it as 0 for open-source LLMs all the time. For CoT reasoning, we set the
maximal new tokens as 128, and we set it as 50 for all other cases.

Benchmark. All the used benchmarks are the .json or .jsonl format. If their original versions are
not such formats, we convert them to .json or .jsonl format. For CausalNet, there exist a few missing
values, and we have manually remove the invalid data. The filtered version of CausalNet will be
uploaded in our anonymous link.

G2-Reasoner. G2-Reasoner uses the RAG system to involve external general knowledge. We use
the Faiss package [13] to construct the vector database. We use the Meta’s Contriever [24] as the
information retriever to perform vector database retrieval. For the construction of RAG system, we
refer to the realization of self-RAG [3]. For the external general knowledge base, we use the an-
swers of a general knowledge dataset (https://huggingface.co/datasets/MuskumPillerum/
General-Knowledge) to form a document. We use Contriever and Faiss to embed and retrieve this
general knowledge base.

Training data detection. We follow the official repository of Min-K Prob to perform detection,
without any modification. However, as the Text-DaVinci-003 seems to be deprecated and current GPT
3.5 and GPT 4 are no longer support returning the input’s log likelihood, we have to only perform
this detection on open-source LLMs. We will continue to explore how to perform on OpenAI’s
alternative.

D Related Work

In this section, we review the related works in detail, including LLMs’ reasoning, LLMs’ causal
reasoning, and LLMs’ causal reasoning benchmarks.

D.1 Reasoning in Large Language Models

Reasoning ability is crucial to LLMs’ performance on tasks such as theorem proving, problem-solving,
and robotics [41, 58]. Increasing interest in strong artificial intelligence has triggered debates on
whether LLMs master reasoning abilities. [58] propose a comprehensive review of the foundation
models’ reasoning, they discuss reasoning tasks including commonsense reasoning, mathematical
reasoning, logical reasoning, and causal reasoning. Commonsense reasoning refers to the reasoning
process that utilizes commonsense and daily life experiences [9]. Rather than specialized knowledge,
commonsense reasoning relies more on universally accepted knowledge. Commonsense question
answering is an important method of commonsense reasoning test. Several commonsense question-
answering datasets have been proposed to test LLMs’ commonsense reasoning ability [19, 29, 74, 75].
Different from commonsense reasoning, mathematical reasoning requires the ability to master
symbolic forms and formal definitions. Automated theorem proving is a commonly used task to test
LLMs’ mathematical reasoning ability [58]. [55] propose a framework for LLMs’ theorem proving,
which helps humans to prove theorems. LeanDojo [68] is a mathematical reasoning benchmark
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consisting of theorems and proofs. Logical reasoning refers the process of using formal logic
principles and rules to make deductions, draw conclusions, and solve problems [36, 58]. It involves
applying logical rules and syllogistic reasoning to evaluate the validity of arguments and propositions.
[62] propose an automatic evaluation framework for LLMs’ logical reasoning ability, and find LLMs
have difficulty in performing logical reasoning well. [59] shows that LLMs can learn from mistakes
in logical reasoning. Causal reasoning is the process of identifying and understanding the cause-
and-effect relationships between variables or events, which involves identifying potential causes and
effects within a system or context [58]. One distinctive feature of causal reasoning is that it involves
counterfactual reasoning, which means reasoning within a hypothetical scenario. [33] inspect LLMs’
ability to distinguish between hypothetical and real-world scenarios. Our work focuses on the LLMs’
causal reasoning, particularly counterfactual reasoning.

D.2 Causal Reasoning in Large Language Models

Causal Reasoning tasks include causal discovery, cause attribution, and causal effect estimation
[30, 58]. Causal discovery aims to recover the latent causal structure of variables, which could be
a structural causal model (SCM). Cause attribution refers to uncovering potential causes behind
a process, while causal effect estimation aims to investigate the effect of cause variables [26, 76].
While LLMs already show the ability to uncover causal relationships from context, their abilities
have some limitations [37]. [4] suggests that LLMs are struggling to perform causal discovery tasks
in hypothetical scenarios. [39] find GPT-3 has limitations in uncovering the causal structure among
medical context. [77] illustrate the boundaries of LLMs’ performance on causal discovery. Moreover,
[38] indicates that LLMs’ expertise may contain errors, which could undermine causal reasoning.
Therefore, it’s essential to incorporate external expert knowledge into LLMs to enhance LLMs’ causal
reasoning abilities. Counterfactual reasoning is an essential task of causal reasoning. LLMs with high
counterfactual reasoning abilities have the strength to make predictions under various circumstances.
The difference between counterfactual reasoning and other causal tasks is counterfactual reasoning
involves reasoning in hypothetical scenarios [28, 58]. For example, “If cats were vegetarians, what
results would happen?” is a counterfactual reasoning question [33]. Several studies conclude that
LLMs have limitations when encountering hypothetical scenarios in counterfactual reasoning [33, 66].

D.3 Causal Reasoning Benchmarks in Large Language Models

There have been extensive studies on causal reasoning benchmarks. Existing causal reasoning
benchmarks are mainly causal question-answering datasets. CausalQA [6] is a dataset containing
1.1 million causal questions and answers. [6] employs language rules to extract causal questions
from ten large question-answering datasets to form the CausalQA. CRAB [50] is a dataset that aims
to assess LLMs’ abilities to understand causal relationships among real-world events. [50] extract
real-world stories during the past ten years and create CRAB based on these real-world stories. FCR
[69] is a human-labeled dataset that includes 24K question-answering pairs. [69] collect data from
Yahoo and employ crowd workers to generate the causal questions. However, the data they collected
are between December 2020 and July 2021, which may be included in the pre-training corpora of
the latest LLMs (e.g. LLaMA 3). Cladder [57] is a dataset that involves symbolic questions and
corresponding ground truth answers, [57] employs causal graphs and structural causal models to
generate the dataset. CausalProbe 2024 is different from the above benchmarks, as its contents
are based on the latest and authoritative information, which is unlikely to be encompassed by the
pre-training corpora of LLMs.

E LLMs’ Training Data Detection: Membership Inference Attack

In our work, we employ a pre-training data detection method [53] to confirm further that LLMs’
pre-training data do not include our datasets to a large extent. MIN-K % PROB [53] is a pre-training
data detection method. This method is based on a simple assumption: “When encountering an
unseen example, the large language model (LLM) is likely to find a few words with low probabilities,
while words in a familiar example are less likely to be assigned such low probabilities." Let x =
x1, x2, . . . , xn be a token sequence, and for one token xi ∈ x, the log-like probability given its
preceding tokens can be calculated as:

log p(xi|x1, x2, . . . , xi−1).

18



Then, each token’s log-like probability can be computed. Let MIN-K%(x) represent the set composed
of the %K tokens with the lowest log probabilities among all tokens in sequence x. The average
log-like probability of this set is:

Min-K% Prob(x) =
1

N

∑
xi∈MIN-K%(x)

log p(xi|x1, x2, . . . , xi−1),

where N is the number of elements in MIN-K%(x). In the end, conditions on a threshold ϵ, if
Min-K% Prob(x) > ϵ, then this sequence of text x is determined not in pre-training data, otherwise
x is determined in pre-training data. One advantage of this method is that it does not need any
information about the pre-training data nor does it need to train a reference model in advance.

F A Detailed Introduction of Used Benchmarks

F.1 CausalNet

The CausalNet [4] is an LLM-generated dataset designed to support studies in causal reasoning
and counterfactual analysis. With 1000 meticulously selected scenarios, CausalNet offers a wide
range of causal and counterfactual inquiries, helping researchers delve into the complexities of
cause-and-effect dynamics across different contexts. Each question-answering pair in the CausalNet
contains a background context, a causal-effect question, or a counterfactual question, and the choices
and answers of the question. However, compared with CausalProbe 2024, the background context of
the CausalNet is limited, which may not provide sufficient basic information for LLMs to answer the
questions better.

F.2 COPA

The Choice Of Plausible Alternatives (COPA) evaluation [48] is a dataset including 1000 causal
questions. The COPA aims to test LLMs’ commonsense causal reasoning abilities. [48] employs an
authoring methodology to secure broad topics, correct language, and high consensus among human
evaluators. To be specific, they utilize several regulations to secure language clarity. Besides, they
choose two different sources of questions that are confirmed broad to ensure the breadth. However,
the articles they selected are mainly from August and September of 2008, which may be encompassed
by LLMs’ pre-training corpus.

F.3 e-CARE

The CAusal REasoning dataset (e-CARE) [14] is a crowding-sourcing-based dataset, which contains
21K multi-choice causal reasoning questions. This dataset not only tests LLMs’ ability to choose
the correct causal statements but also examines the LLMs’ ability to explain their choice. The e-
CARE includes 21324 question-answering pairs and 13048 corresponding explanations. [14] collect
statements of world knowledge and ask crowd workers to generate the causal facts according to the
instructions. Then, the causal questions are generated by crowd workers based on these causal facts.
However, LLMs’ pre-training corpus may contain the collected statements about world knowledge.

G Additional Results

G.1 Standard Deviations of Main Results

Due to the space limitation, we present the standard deviations of the results in Table 2 here. For two
closed-source LLMs, i.e., GPT 3.5 turbo and Claude 3 opus, we find that setting the temperature value
to 1.0 can achieve slightly better results than 0. We repeat these experiments three times, and the
average results together with their standard deviations are shown in Table 6. The standard deviations
are generally small.

H Quality Control

We have employed several measures to control the quality of CausalProbe 2024.
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Figure 8: The pipeline of constructing CausalProbe 2024. CausalProbe 2024 consists of three
datasets: CausalProbe-E, CausalProbe-H, and CausalProbe-M. They follow different strategies. In
particular, CausalProbe-H introduces made-up fake cause-effect pairs, and can be used to examine
the LLMs’ genuine causal reasoning capability when encountering counterfactual disturbance term.
CausalProbe-M features questions with varying numbers of correct options, preventing LLMs from
providing right responses through random guessing.

• Preparation: Our corpus is sourced from two famous media with high quality. We further
performed an initial cleaning of the corpus using regular expressions. Subsequently, we used the
Google DLP API to detect sensitive information (such as pornography, violence, advertisements,
etc.) in the corpus and removed any violating content.

• Production: We use GPT 3.5 Turbo, one of the best LLMs at the time, to construct the benchmark
from the prepared corpus. To improve its quality, we experimented with different prompt templates
and adopted the best.

• Verification: We write Python scripts to exclude incomplete/garbled items. Then we re-organize
them to Json format for ease of reading. Finally we went through all items manually to find out
problematic ones and excluded them.

We have made additional efforts to enhance the quality following a crowdsourcing pipeline. We
recruited 17 volunteers, all of whom hold a master’s degree or higher and are currently engaged in
frontline research. Additionally, all volunteers are fluent in English. In the preliminary tests, we
randomly sampled 20 questions from CausalProbe-H and asked each volunteer to answer them. We
then recorded each volunteer’s answer and their perceived difficulty level about this task (on a scale
of 1-10, with 10 being the most difficult). The selection criteria required the perceived difficulty
level to be no more than 7 and the accuracy rate to be no less than 80%. Ultimately, 13 out of the 17
volunteers met these criteria and were selected as qualified, and the test results are shown in Table 4.

Given the limited time and human resource, we performed quality control on a subset of CausalProbe
2024. Specifically, we randomly sampled 260 questions from CausalProbe-H and assigned each
question to 3 volunteers randomly, using the Algorithm 1. Each volunteer received a total of 60
questions. After receiving their feedback, we treated those questions correctly answered by no
less than two volunteers as high-quality data. Finally, 232 out of 260 questions were filtered out
(temporarily called CausalProbe-HQ), achieving the qualification rate of 89.2%. Next, we use
CausalProbe-HQ to evaluate four LLMs used in our paper again, whose results are shown in Table 5.
The results show that all four LLMs still perform poorly on this subset, suggesting that their failure is
primarily due to limited causal reasoning abilities rather than the errors in the benchmark. We will
continuously perform quality control on all data through the aforementioned crowdsourcing pipeline
and update the quality-controlled data on our GitHub repository.
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Algorithm 1 Question assignment algorithm

Require: List of all question IDs Q, List of volunteers P
1: Shuffle Q randomly
2: Create S[p] for each volunteer p ∈ P to store their assigned questions
3: for all question q ∈ Q do
4: Peligible ← {p ∈ P | |S[p]| < 60}
5: while |Peligible| < 3 do
6: Shuffle P randomly
7: Peligible ← {p ∈ P | |S[p]| < 60}
8: end while
9: Assign question q to the first 3 volunteers in Peligible

10: for i = 1 to 3 do
11: S[Peligible[i]]← S[Peligible[i]] ∪ {q}
12: end for
13: end for

Table 4: Statistical results of volunteer selection.
ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Diff level 5 6 4 5 8 6 5 5 4 6 5 7 4 5 5 4 6
Acc (%) 80 75 90 100 80 90 70 100 85 90 70 95 90 85 95 100 85
Qualified ✓ × ✓ ✓ × ✓ × ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓ ✓

Table 5: Results on a subset of high-quality data.
Dataset LLaMA 2 LLaMA 3 GPT Claude

CausalProbe-H 0.565 0.652 0.671 0.692
CausalProbe-HQ 0.547 0.660 0.698 0.733

I Additional Introduction and Analysis of CausalProbe 2024

I.1 Statistic of CausalProbe 2024

CausalProbe 2024 consists of 6,922 Q&A data, including two sub-datasets, each containing 3,461
Q&A data. Each sub-dataset covers topics such as technology, culture, business, climate, and world
news. The statistic of CausalProbe 2024 in terms of the topics is shown in Figure 11. Moreover,
all questions can be categorized into ’asking for cause’ and ’asking for effect,’ thus examining the
LLMs’ ability to reason about causes and effects in questions, respectively.

For CausalProbe-M, we visualize the distribution of the number of correct options in its Q&A
data, shown in Figure 12. We find that two and three correct options occupy the majority and the
distribution is simialr to be Gaussian distribution. We also visualize the distribution of query types
(i.e., asking for cause or effect) in Figure 13.

I.2 Addition Analysis

In this subsection, we discuss how the CausalProbe dataset tests the causal reasoning ability of LLMs.
As discussed in Section 6.1, we collect the latest and authoritative web articles and utilize them to
generate the dataset. To be specific, the downloaded articles are from January 1, 2024, to April
29, 2024, later than the releases of many LLMs. Consequently, these latest articles are unlikely
to be directly incorporated into the pre-training corpus of some open-source LLMs (e.g. LLaMA
2 and LLaMA). Afterward, the questions generated by these articles are probably not included in
the pre-training corpus of many LLMs. Therefore, LLMs are less likely to provide correct answers
using their pre-training knowledge directly, which forces them to utilize their causal reasoning ability.
Moreover, the questions cover a wide range of categories and encompass many real-world events that
are highly discussable, which tests the causal reasoning ability of LLMs from multiple perspectives.

21



Table 6: Results with standard deviations of the studied LLMs on four causal Q&A benchmarks.
The metric is exact match (EM). “Vanilla” denotes doing inference directly. “C-E”, “C-H” represnt
CausalProbe-E and CausalProbe-H. For GPT 3.5 turbo and Claude 3 opus, the temperature value is
set to 1.0.

LLaMA 2 LLaMA 3 GPT 3.5 turbo Claude 3 opus

COPA

Vanilla 0.752 0.937 0.943±0.002 0.992±0.002
CoT 0.812 0.944 0.951±0.001 0.991±0.000
RAG 0.757 0.912 0.939±0.005 0.988±0.003

G2-Reasoner 0.813 0.948 0.953±0.002 0.993±0.001

e-CARE

Vanilla 0.684 0.778 0.811±0.003 0.857±0.005
CoT 0.697 0.770 0.807±0.006 0.863±0.002
RAG 0.687 0.760 0.806±0.004 0.842±0.005

G2-Reasoner 0.701 0.779 0.821±0.001 0.854±0.003

CausalNet

Vanilla 0.673 0.857 0.895±0.003 0.930±0.002
CoT 0.666 0.767 0.872±0.003 0.907±0.003
RAG 0.650 0.860 0.894±0.007 0.910±0.004

G2-Reasoner 0.681 0.855 0.904±0.005 0.929±0.002

C-E (*)

Vanilla 0.616 0.715 0.730±0.002 0.755±0.002
CoT 0.636 0.720 0.740±0.002 0.751±0.001
RAG 0.621 0.704 0.743±0.001 0.756±0.001

G2-Reasoner 0.642 0.718 0.747±0.003 0.762±0.002

C-H (*)

Vanilla 0.565 0.652 0.670±0.001 0.688±0.003
CoT 0.573 0.644 0.662±0.004 0.700±0.002
RAG 0.575 0.655 0.678±0.001 0.687±0.001

G2-Reasoner 0.582 0.658 0.690±0.003 0.701±0.004

I.3 Potential bias

As known for us, any machine model has its own inductive bias [52]. Similarly, using GPT 3.5 turbo
to build CausalProbe 2024 introduces potential biases. They mainly consist of the following types of
bias:

• Model bias: GPT-3.5 turbo may inherit biases and limitations from its own training data.
• Generation bias: GPT-3.5 turbo may frequently produce certain types of questions or answers.
• Language and cultural bias: Both CausalProbe 2024’s English news corpus and GPT-3.5

Turbo’s predominantly English training data may introduce Western or Anglophone biases.

To mitigate these potential biases, we propose the following measures:

• Diversification of data sources: We can incorporate diverse corpus sources and more methods,
such as manually created Q&A pairs or data generated by different LLMs.

• Manual check: We can conduct a thorough human review and curation for CausalProbe 2024’s
biases.
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COPA

"id": "1",
"asks-for": "cause",
"context": "My body cast a shadow 
over the grass.",
"choice_0": "The sun was 
rising.",
"choice_1": "The grass was cut.",
"answer": 0

e-CARE

"index": "train-0", 
"premise": "There is a light rain 
today.", 
"ask-for": "effect", 
"hypothesis1": "The roots of many 
plants are not moistened by 
rain.", 
"hypothesis2": "Tourists have seen 
many ripples.", 
"label": 1

CausalNet
"index": "cause-effect-0",
"context": "A new policy in a country led to the unexpected decline in tobacco use among 
teenagers. At the same time, there was an increase in online educational content about 
health, and a popular celebrity spoke against smoking.",
"ask-for": "cause",
"label": 1,
"choice_id0": "The policy change had a minimal impact compared to other factors.",
"choice_id1": "The celebrity's influence changed teenagers' perceptions more significantly 
than expected.",
"choice_id2": "Online educational content was the sole reason for this decline."

CausalProbe 2024

"id": 1,
"context": "Journalists are facing criticism for contributing to the hype surrounding 
artificial intelligence (AI) and not accurately reporting on its capabilities and 
limitations. The surge in interest in AI has led to increased media coverage, with some 
experts calling for more balanced reporting that highlights both the positive and negative 
aspects of AI.",
"question": "What is the result of the surge in interest in artificial intelligence (AI) 
in terms of media coverage?",
"choice_1": "Increased scrutiny on AI by journalists.",
"choice_2": "More balanced reporting on the positive and negative aspects of AI.",
"choice_3": "Greater responsibility on the media to report on AI accurately.",
"choice_4": "Improved understanding of AI technologies by journalists.",
"answer": 3

Figure 9: Examples of four Causal Q&A benchmarks used in this work. These four benchmarks
come from different corpora, and exhibit the similar format and difficulty. In particular, CausalProbe
2024 additionally provides the context for each question, which describes the question’s background
knowledge. Note that other three datasets also have “context” or “premise”, but actually, this is a part
of the question itself, not the background knowledge.

Figure 10: Statistics of the down-
loaded articles in terms of their top-
ics.

Categories BBC The Guardian
Science 220 251
Culture 381 -
Climate 121 -
Technology - 340
Health - 204
Environment - 329
Business 101 352
World News 69 934
Others 75 -

Total 967 2702

Figure 11: The statistic of the number of each
topic’s data in CausalProbe 2024.

Figure 12: The statistic of the number
of correct options in each Q&A data of
CausalProbe-M.

Figure 13: The statis-
tic of query types in
each Q&A data of
CausalProbe-M.
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(a) The prompt of summarizing articles. (b) The prompt of extracting cause-effect pairs.

(c) The prompt of generating incorrect cause-effect
pairs. (d) The prompt of generating causal Q&A data.

Figure 14: The prompt templates used in constructing CausalProbe 2024.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction accurately and roundly
reflect the paper’s contributions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss two limitations: 1) our proposed causal reasoning method for
LLMs is only a step forward, but cannot realize the genuine causal reasoning; 2) we cannot
strictly guarantee that our proposed CausalProbe 2024 benchmark is absolutely unseen for
LLMs.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We clearly list the implementation details and provide the main codes and
datasets through a anonymous github link.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide codes and data to reproduce the main results in this paper through
an anonymous github link.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify all the test details necessary to understand the results. However,
our paper does not include model training.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: This paper does not involve model training, and only invovle LLMs inference.
We set the temperature to a very small value to ensure the preciseness of causal reasoning,
and thus the inference results are stable.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes. We provide the compute workers, memory, time of execution in Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We strictly obey the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We specially discuss the broader impacts in a section. The positive societal
impacts include that our paper help this community to correctly understand current LLMs’
causal reasoning capability. The negative societal impacts include that we still cannot
improve LLMs’ causal reasoning capability to reach the human level, thus the reasoning
results may still be incorrect.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: To mitigate risks of unsafe content, the dataset was filtered to only include
articles from reputable news sources, specifically the BBC and The Guardian. These news
organizations have their own strict editorial standards and content moderation practices to
avoid publishing explicit, harmful or illegal content.
However, as an added safeguard, the scraped text was automatically scanned for profane,
explicit, or offensive language, and any articles containing such content were removed from
the dataset. The dataset was also manually spot-checked to verify the automated filtering
was effective at identifying and removing unsafe text.
While these measures significantly reduce the risk of unsafe content, it is still possible that
some inappropriate text evaded detection. The dataset is intended only for research purposes
by responsible parties. We emphasize that the dataset may still contain offensive language
or content, and should be used with caution. By publishing this dataset, we do not endorse
or take responsibility for any inappropriate content that may be present.
We believe making this dataset available to the research community, with these caveats and
safeguards, provides benefits that outweigh the risks. However, we are open to feedback
on additional steps we could take to further reduce the potential for misuse of this data.
Responsible use and deployment of models trained on this data is crucial.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.
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12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We list the copyright and the license and terms of use in our paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide a document in the anonymize link.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing and crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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