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Abstract

Multi-modal large language models (MLLMs)001
have recently achieved great success in process-002
ing and understanding information from diverse003
modalities (e.g., text, audio, and visual signals).004
Despite their growing popularity, there remains005
a lack of comprehensive evaluation measuring006
the audio-visual capabilities of these models,007
especially in diverse scenarios (e.g., distribu-008
tion shifts and adversarial attacks). In this pa-009
per, we present a multifaceted evaluation of the010
audio-visual capability of MLLMs, focusing on011
four key dimensions: effectiveness, efficiency,012
generalizability, and robustness. Through ex-013
tensive experiments, we find that MLLMs ex-014
hibit strong zero-shot and few-shot generaliza-015
tion abilities, enabling them to achieve great016
performance with limited data. However, their017
success relies heavily on the vision modality,018
which impairs performance when visual input019
is corrupted or missing. Additionally, while020
MLLMs are susceptible to adversarial samples,021
they demonstrate greater robustness compared022
to traditional models. The experimental results023
and our observations provide new insights into024
the audio-visual capabilities of MLLMs, high-025
lighting areas for improvement and offering026
guidance for future research.027

1 Introduction028

Multi-modal large language models (MLLMs) (Lin029

et al., 2023; Zhang et al., 2023; Cheng et al., 2024;030

Fu et al., 2024; Wu et al., 2024; Jin et al., 2024;031

Zhang et al., 2024a) have shown impressive perfor-032

mance in processing and understanding informa-033

tion from multiple modalities, such as text, image,034

and audio. The prevalent paradigm of MLLMs in-035

volves using modality-specific encoders (Tan and036

Bansal, 2019; Ando et al., 2023) to process indi-037

vidual modalities (e.g., image, video, and audio)038

into tokens, which are then fed into a large lan-039

guage model (LLM). Attention is computed across040

modalities, fusing information (Cheng et al., 2024;041

Fu et al., 2024). The success of these models en- 042

ables a wide range of applications, including image 043

captioning (Bucciarelli et al., 2024; Zhang et al., 044

2024c), visual question answering (Kuang et al., 045

2024; Xu et al., 2024a; Zhao et al., 2025a), and 046

multi-modal scene understanding (Luo et al., 2024; 047

Fan et al., 2024a; Xiong et al., 2025). 048

Among the modalities in the real world, text, vi- 049

sion, and audio are particularly important due to 050

their prevalence and richness of information (Qi 051

et al., 2000; Li et al., 2018). Therefore, evaluating 052

the audio-visual capability of MLLMs is crucial 053

for understanding their overall performance and po- 054

tential applications in real-world scenarios (Geng 055

et al., 2023; Chen et al., 2024b). However, previous 056

evaluation efforts (Bai et al., 2023; Xu et al., 2024b; 057

Chen et al., 2024a; Kahng et al., 2024) have mostly 058

focused on vision and language modalities, often 059

ignoring the audio modality. This oversight limits 060

our understanding of the full potential and limi- 061

tations of MLLMs, especially in scenarios where 062

audio information plays a critical role (Lyu et al., 063

2023; Ye et al., 2024). For example, in autonomous 064

driving, audio signals such as sirens and horns are 065

crucial for safety (Sun et al., 2021; Furletov et al., 066

2021). In multimedia content analysis, audio cues 067

are essential for understanding context and emo- 068

tions (Liu et al., 2024; Qi, 2024). 069

Compared to previous efforts involving only vi- 070

sual and linguistic modalities (Hu et al., 2024; Pi 071

et al., 2024; Li et al., 2024), the inclusion of the 072

audio modalities poses several challenges. Firstly, 073

there are differences in the informativeness of dif- 074

ferent modalities (Evangelopoulos et al., 2009; 075

Wang et al., 2014; Fan et al., 2023). Visual clues are 076

often more informative (e.g., recognizing human 077

actions or understanding locations), while audio 078

signals can be more informative in rarer situations 079

(e.g., detecting fire alarms or musical instruments). 080

The multi-modal learning system may rely on the 081

dominant modality (i.e., vision) while disregard- 082
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ing information from the other (i.e., audio) (Fan083

et al., 2024b; Wu et al., 2025). Secondly, the au-084

dio and visual modalities are complementary (Ma085

et al., 2022; Gungor and Kovashka, 2023). When086

one modality is corrupted or missing, the other can087

provide supplementary information to aid scene088

understanding. The audio-visual LLMs should be089

able to leverage the complementary information090

from both modalities effectively. Thirdly, the au-091

dio modality is noisier and less structured than092

the visual modality (Gao and Grauman, 2021; Liu093

et al., 2022), as audio signals are often affected094

by background noise (Moncrieff et al., 2007), re-095

verberation (Usher and Benesty, 2007), and other096

distortions (Preis, 1982). Although there are some097

related works of audio-visual evaluation (Tseng098

et al., 2024; Wang et al., 2024; Sung-Bin et al.,099

2024), they have mostly focused on effectiveness,100

whereas this work is more comprehensive, focusing101

on various aspects of MLLMs’ ability.102

In this paper, we focus on evaluating the audio-103

visual capability of MLLMs. Specifically, we aim104

to provide a comprehensive evaluation of their105

audio-visual capability across four key dimensions:106

❶ Effectiveness, measured by performance using107

audio and/or visual inputs. ❷ Efficiency, which108

includes both data efficiency (how the models per-109

form under limited data) and computational effi-110

ciency (e.g., model size, memory consumption, and111

inference speed). ❸ Generalizability, focusing on112

performance under test-time distribution shifts. ❹113

Robustness, which measures resilience against ad-114

versarial perturbations.115

We conduct extensive experiments around the116

four aforementioned aspects with several observa-117

tions. Firstly, MLLMs are generally competitive in118

understanding audio-visual information, although119

they rely heavily on the visual modality. Secondly,120

their over-reliance on the visual modality leads to121

poor performance when the video inputs are under122

test-time distribution shifts. Thirdly, the MLLMs123

exhibit high data efficiency, achieving superior per-124

formance under limited data. However, they lag be-125

hind traditional models in terms of computational126

efficiency. Fourthly, the complexity of language127

models in MLLMs makes them more robust under128

adversarial perturbations. We also provide addi-129

tional case studies to validate our observations.130

The contribution of this work is summarized131

as follows: (1) We establish a thorough evalu-132

ation framework of the audio-visual capability133

of MLLMs by considering four crucial dimen-134

sions: effectiveness, efficiency, generalizability, 135

and robustness. (2) Extensive experiments reveal 136

that MLLMs exhibit strong zero-shot and few- 137

shot audio-visual capabilities, despite their over- 138

reliance on the visual modality, which hinders 139

their performance under test-time distribution shifts 140

in vision. (3) The experiments also reveals that 141

MLLMs are more robust against adversarial pertur- 142

bations compared to traditional models. 143

2 Related Works 144

2.1 Multi-modal Large Language Models 145

Multi-modal large language models (MLLMs) (Hu 146

et al., 2024; Fei et al., 2024; Zhan et al., 2024; Fu 147

et al., 2025) integrate information from multiple 148

modalities, such as text, images, and audio, to im- 149

prove understanding and generation capabilities. 150

These models leverage the strengths of each modal- 151

ity by encoding the knowledge with modality- 152

specific encoders (Gong et al., 2021; Arnab et al., 153

2021; Han et al., 2022) and fusing the multi-modal 154

tokens with large language models (Touvron et al., 155

2023; Yang et al., 2024a). Recent advancements in 156

MLLMs have shown significant improvements in 157

their visual and linguistic abilities, allowing large 158

language models to recognize visual inputs such 159

as images and videos (Lin et al., 2024; Pi et al., 160

2024). Nevertheless, in real-world scenarios, audio 161

signals are sometimes crucial for understanding 162

the context of the input, with several works focus- 163

ing on audio-visual large language models (Zhang 164

et al., 2023; Cheng et al., 2024; Fu et al., 2025). 165

In this work, we provide a comprehensive evalua- 166

tion of these models, measuring their effectiveness, 167

efficiency, generalizability and robustness. 168

2.2 Test-time Distribution Shift 169

Test-time distribution shift is a common challenge 170

in real-world applications, where the test data dis- 171

tribution differs from the training distribution, lead- 172

ing to a significant drop in model performance 173

(Darestani et al., 2022; Sinha et al., 2023; Liang 174

et al., 2025; Dong et al., 2025). To mitigate the 175

problem during test time, test-time adaptation meth- 176

ods have been proposed to adapt the model dur- 177

ing test time without accessing the training data 178

(Boudiaf et al., 2022; Chen et al., 2022; Yuan et al., 179

2023). However, these methods are often com- 180

putationally expensive and assume simple classi- 181

fication tasks (Niu et al., 2022; Lee et al., 2023, 182

2024), limiting their applicability to multi-modal 183
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Audio Inputs

Video Inputs

Instructions: Identify the event in the video
according to both visual signals and audio signals.
Here are some possible options:
...
After watching the video and listening to the
audio, answer with the best option listed above
that describes the event in the video according to
both visual and audio signals.

Textual Prompt

Output: Child playing in the garden.

Answer

Figure 1: The framework of our evaluation of audio-visual capabilities of MLLMs. The MLLM takes audio signals,
video frames and textual instructions as inputs and generates the corresponding output.

large language models. This paper investigates184

the generalization capability of multi-modal large185

language models under test-time distribution shift.186

2.3 Adversarial Robustness187

Adversarial robustness is a critical aspect of deep188

neural networks, ensuring that models are robust to189

adversarial samples (Szegedy et al., 2013; Moosavi-190

Dezfooli et al., 2016; Chakraborty et al., 2018).191

Adversarial samples are specially designed inputs192

to fool the model into making wrong predictions.193

The robustness of multi-modal large language mod-194

els against adversarial samples is important for195

safety-related real-world applications, including196

autonomous driving (Cui et al., 2024), robotics (El-197

Mallah et al., 2024), and finance (Gan et al., 2024;198

Xue et al., 2024). In this paper, we evaluate the199

robustness of audio-visual MLLMs against adver-200

sarial perturbations, providing insight about the201

reliability of these models.202

3 The Evaluation203

3.1 Problem Definition204

In the evaluation of the audio-visual capabilities205

of MLLMs, we denote the visual input (i.e. the206

video) as XV , consisting a sequence of frames207

{XV
1 ,XV

2 , · · · ,XV
T }, and the audio input as XA.208

Given the textual instruction of I , the MLLM209

model M is expected to generate the output string210

denoted as O = M(XV ,XA, I). The generated211

output is then compared with the ground truth out-212

put O∗ to evaluate the performance of the model.213

3.2 Compared Methods214

We adopt two popular MLLMs, i.e. VideoLLaMA215

2 (Cheng et al., 2024) and VITA 1.5 (Fu et al.,216

2025). VideoLLaMA 2 is a state-of-the-art MLLM217

for video understanding, with video, audio and text 218

as its inputs. VITA 1.5 is another multi-modal LLM 219

designed for video understanding, which has good 220

audio-visual capabilities. For these MLLMs, we 221

also train a fine-tuned version on the dataset for the 222

evaluation. For comparison with traditional audio- 223

visual approaches, we also include a SOTA audio- 224

visual classification model, CAV-MAE (Gong et al., 225

2023), which is fine-tuned on the adopted datasets. 226

When measuring the performance under test-time 227

distribution shifts, we also include several test-time 228

adaptation methods, including Tent (Wang et al., 229

2020), MMT (Shin et al., 2022), EATA (Niu et al., 230

2022), SAR (Niu et al., 2023), READ (Yang et al., 231

2024b), and ABPEM (Zhao et al., 2025b). 232

3.3 Datasets 233

We adopt two basic datasets, i.e. Kinetics50 (Kay 234

et al., 2017; Yang et al., 2024b) and VGGSound 235

(Chen et al., 2020). Based on these datasets, we 236

adopt corrupted versions under test-time distribu- 237

tion shifts (i.e. Kinetics50-C and VGGSound-C) 238

to evaluate the generalizability of MLLMs. More- 239

over, we also construct the adversarial versions of 240

these datasets, i.e. Kinetics50-A and VGGSound- 241

A, to evaluate the robustness of MLLMs against 242

adversarial perturbations. The datasets used in the 243

evaluation are described as follows. 244

Kinetics50 (Kay et al., 2017; Yang et al., 2024b) is 245

a subset of the Kinetics dataset (Kay et al., 2017), 246

which contains 400 classes of human actions. The 247

subset contains 50 randomly selected classes (Yang 248

et al., 2024b), composing of 29k training samples 249

and 2.5k test samples. In this dataset, visual clues 250

play a more important role than audio signals. 251

VGGSound (Chen et al., 2020) is a dataset for 252

audio-visual classification, which contains 309 253
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Kinetics50 VGGSound
Models

Overall Video-Only Audio-Only Overall Video-Only Audio-Only
CAV-MAE 82.3 67.0 46.0 65.5 26.4 51.9
VideoLLaMA (Zero-Shot) 73.2↓9.1 76.5↑9.5 14.3↓31.7 59.3↓6.2 49.1↑22.7 35.3↓16.6
VideoLLaMA (SFT) 78.9↓3.4 76.6↑9.6 17.1↓28.9 63.1↓2.4 49.1↑22.7 44.1↓7.8
VITA (Zero-Shot) 70.5↓11.8 77.5↑10.5 7.6↓38.4 29.8↓35.7 32.6↑6.2 2.5↓49.4
VITA (SFT) 83.6↑1.3 84.3↑17.3 9.9↓36.1 32.0↓33.5 43.0↑16.6 13.0↓38.9

Table 1: Overall effectiveness of visual-audio models. We bold the best results and underline the second-best.

classes of the events. The dataset consists of 160k254

training video clips and 14k test video clips from255

YouTube. For this dataset, audio signals are rela-256

tively more informative than the visual modality.257

Kinetics50-C and VGGSound-C (Yang et al.,258

2024b) are corrupted versions of Kinetics50 and259

VGGSound, respectively. The corrupted versions260

are constructed by adding different types of cor-261

ruptions to the audio or visual inputs in the test262

set, making the test distributions different from the263

training ones. We adopt 15 types of corruptions264

for the visual modality and 6 types of corruptions265

for the audio modality following Hendrycks and266

Dietterich (2019) and Yang et al. (2024b).267

Kinetics50-A and VGGSound-A are adversarial268

versions of Kinetics50 and VGGSound, respec-269

tively. They are constructed by adding adversar-270

ial perturbations to the visual inputs in the test271

set, making them adversarial samples. We adopt272

two commonly used adversarial attack methods, i.e.273

Fast Gradient Sign Method (FGSM, proposed by274

Goodfellow et al. (2014)) and Projected Gradient275

Descent (PGD, proposed by Madry et al. (2017))276

to introduce the adversarial perturbations.277

4 Experiments and Analysis278

4.1 Experimental Settings279

We adopt two state-of-the-art MLLM models, i.e.280

VideoLLaMA (Cheng et al., 2024) and VITA (Fu281

et al., 2025). For VideoLLaMA, we use version282

2.1, with Qwen 2 (7B) (Yang et al., 2024a) as its283

language processor. For VITA, we use version 1.5.284

We also use supervised fine-tuning to obtain the285

fine-tuned versions of these models. All experi-286

ments are performed on NVIDIA A100 GPUs. In287

the evaluation, the results are reported in terms of288

percentage accuracy, unless otherwise specified.289

4.2 Effectiveness290

▶ Overall Effectiveness We first show the overall291

effectiveness of MLLMs in terms of their audio-292

visual capability. We evaluate the models’ perfor-293

mance on Kinetics50 and VGGSound datasets, and294

the results are shown in Table 1. From the results, 295

we have the following observations. 296

Observation 1: MLLMs demonstrate competi- 297

tive audio-visual capability. For Kinetics50, the 298

MLLMs show performance comparable to the 299

SOTA traditional model (i.e. CAV-MAE), with the 300

SFT version outperforming the zero-shot version. 301

For VGGSound, VideoLLaMA still achieves com- 302

parable results with CAV-MAE, while VITA fails 303

to reach the same level of performance. This dis- 304

crepancy is due to the fact that, for the VGGSound 305

dataset, the audio modality is more informative 306

than the visual modality, and VITA relies heavily 307

on the visual modality. Another reason (which we 308

will elaborate on later in Section 4.6, Case 2) is the 309

confusion between speech and textual instructions. 310

Observation 2: MLLMs rely heavily on the vi- 311

sual modality, which is demonstrated by the results 312

when the visual signals are removed, as shown in 313

Table 1 (Audio-Only). During training, the two 314

modalities are imbalanced, with vision being the 315

dominant modality, a phenomenon observed in pre- 316

vious literature (Zhang et al., 2024b; Wu et al., 317

2025). This causes the model to rely heavily on 318

vision during inference, while the audio is not fully 319

utilized. This over-reliance on vision can be prob- 320

lematic when the audio modality carries important 321

information (e.g., Case 3 in Section 4.6). 322

▶ Synergy of Visual and Audio Modalities We 323

then provide an analysis of the synergy of visual 324

and audio modalities. We evaluate the models with 325

only one modality, and the results are shown in 326

Table 1 (Video/Audio-Only columns). From the 327

results, we have the following observation. 328

Observation 3: When the MLLM cannot obtain 329

enough information from one modality, there is 330

little or no synergy between the modalities, and 331

the model’s performance suffers as a result. In this 332

case, when the MLLM cannot obtain enough infor- 333

mation from the audio inputs, there is no synergy 334

between the audio and video. This explains why, 335

in some cases, the MLLM performs better when 336

the audio input is removed (e.g., VITA on both 337
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(a) Kinetics50 (b) VGGSound

Figure 2: Data efficiency comparison of various models. We compare the models’ performance under limited
fine-tuning data, and show the results on the Kinetics50 (a) and VGGSound (b) datasets.

Inference
Models Size Training Time

Time GPUMem
CAV-MAE 0.16B 1.8h 0.045s 2.5GB
VideoLLaMA 7B 17h 0.53s 19GB
VITA 7B 16h 0.58s 19GB

Table 2: Models’ computation efficiency comparison.
Training time is measured in terms of GPU hours. Infer-
ence time is measured in terms of the time of processing
one input sample. GPUMem is the GPU memory usage
during inference. All experiments are conducted on the
Kinetics50 dataset with NVIDIA A100 GPUs.

datasets). On the other hand, when the MLLM338

can obtain sufficient information from both modal-339

ities, the synergy between the modalities can be340

observed, and the model’s performance improves341

as a result (e.g. VideoLLaMA on VGGSound).342

4.3 Efficiency343

▶ Computational Efficiency Next, we show the344

differences in computational resources of MLLMs345

compared to the traditional model, and the results346

are shown in Table 2. Specifically, we report the347

model size (measured by the number of model pa-348

rameters), the training time, the inference time,349

and the GPU memory usage during inference. The350

training and inference experiments are performed351

on the Kinetics50 dataset.352

Observation 4: MLLMs are less efficient in terms353

of computation. As shown by the results, although354

MLLMs have larger model sizes, longer training355

times, and more inference computation compared356

to the traditional model, they can still achieve real-357

time inference on a single GPU, making them ap-358

plicable in real-world scenarios.359

▶ Data Efficiency We then measure the models’360

data efficiency by evaluating their performance un-361

der limited fine-tuning data. We show the results on362

the Kinetics50 and VGGSound datasets in Figure363

2, where we use few-shot training data to fine-tune364

the models and measure their accuracy.365

(a) clean video frames

(b) glass blur

(c) JPEG compression

(d) clean audio (e) thunder  noise

Figure 3: Visualization of input video frames and audio
signals. The clean video frames and audio signals are
shown in subfigures (a) and (d), while the corrupted
versions are shown in subfigures (b), (c), and (e).

Observation 5: MLLMs have high data efficiency. 366

As shown by the results, MLLMs are generally 367

data-efficient, and their performance drops only 368

marginally when the amount of fine-tuning data is 369

reduced (as demonstrated by a mild decrease from 370

the full dataset to few-shot cases). In contrast, the 371

traditional model (even with pretraining) suffers 372

more from the lack of data. This demonstrates the 373

superior audio-visual capability of MLLMs when 374

the audio-visual data is scarce. 375

4.4 Generalizability 376

We then investigate how MLLMs generalize under 377

test-time distribution shifts. Specifically, we adopt 378
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Noise Weather Noise Weather
Models

Gauss. Traff. Crowd. Rain Thund. Wind
Avg.

Gauss. Traff. Crowd. Rain Thund. Wind
Avg.

CAV-MAE 73.7 65.5 67.9 70.3 67.9 70.3 69.3 37.0 25.5 16.8 21.6 27.3 25.5 25.6
+MMT 70.8 69.2 68.5 69.0 69.8 68.5 69.4 14.1 5.2 6.4 9.8 8.6 4.5 7.6
+Tent 73.9 67.4 68.5 70.4 66.5 70.4 69.6 10.6 2.6 1.8 2.3 3.3 4.1 4.5
+EATA 73.7 66.1 68.5 69.5 70.6 69.4 69.4 39.2 26.1 22.9 26.0 31.7 30.4 29.4
+SAR 73.7 65.4 68.2 69.9 67.2 70.2 69.1 37.4 9.5 11.0 12.1 26.8 23.7 20.1
+READ 74.1 69.0 69.7 71.1 71.8 70.7 71.1 40.4 28.9 26.6 30.9 36.7 30.6 32.4
+ABPEM 74.8 71.3 71.5 71.9 73.8 71.6 72.5 40.6 33.7 34.8 32.2 41.1 34.4 36.1

VideoLLaMA (ZS) 75.8 74.0 73.8 76.1 75.8 75.5 75.2 49.7 49.6 47.1 50.5 48.1 49.8 49.1
VideoLLaMA (SFT) 76.2 73.4 73.6 76.0 76.7 76.3 75.4 47.1 46.6 45.6 46.9 35.0 45.9 44.5
VITA (ZS) 73.2 76.6 76.8 76.9 76.7 76.7 76.1 29.6 31.3 31.9 31.4 31.8 31.8 31.3
VITA (SFT) 82.0 83.4 83.6 83.6 83.6 83.6 83.3 37.7 41.1 41.8 41.1 44.4 42.2 41.4

Table 3: Prediction accuracies (in %) on Kinetics50-C (left) and VGGSound-C (right) datasets (with distribution
shifts on the audio modality). We bold the best results and underline the second-best.

Noise Blur Weather Digital
Models

Gauss. Shot Impul. Defoc. Glass Mot. Zoom Snow Frost Fog Brit. Contr. Elas. Pix. JPEG
Avg.

CAV-MAE 46.8 48.0 46.9 67.5 62.2 70.6 67.7 61.6 60.3 46.7 75.2 52.1 65.7 66.5 61.9 59.9
+MMT 46.2 46.6 46.1 58.8 55.7 62.4 61.7 52.6 54.4 48.5 69.3 49.3 57.6 56.4 54.5 54.5
+Tent 46.3 47.0 46.3 67.4 62.5 70.4 67.7 63.1 61.1 34.9 75.4 51.6 66.7 66.5 62.0 59.4
+EATA 46.8 47.6 47.1 67.2 61.8 70.2 67.7 61.6 60.6 46.0 75.2 52.4 65.9 66.4 62.7 60.1
+SAR 46.7 47.4 46.6 67.0 61.7 70.0 66.4 61.8 60.6 46.0 75.2 52.1 65.7 66.0 62.0 59.8
+READ 49.4 49.7 49.0 68.0 65.1 71.2 69.0 64.5 64.4 57.4 75.5 53.6 68.3 68.0 65.1 62.5
+ABPEM 50.3 51.1 50.4 70.0 69.6 72.5 71.2 65.2 66.2 65.6 75.7 56.6 71.9 70.5 67.8 65.0

VideoLLaMA (ZS) 23.8 25.0 25.8 39.6 32.7 39.3 42.9 40.8 35.2 47.9 60.7 34.6 37.9 57.7 49.4 39.5
VideoLLaMA (SFT) 26.6 27.9 29.6 46.4 36.9 45.1 48.4 45.6 38.8 53.0 67.0 39.4 42.1 64.9 55.1 44.4
VITA (ZS) 14.3 14.7 16.1 30.7 33.0 39.7 43.5 36.5 41.4 44.3 60.2 14.1 30.7 40.7 49.8 34.0
VITA (SFT) 20.5 21.1 23.0 41.6 45.1 48.9 54.3 47.2 51.1 54.8 72.1 17.6 41.5 54.0 59.9 43.5

Table 4: Prediction accuracies (in %) on Kinetics50-C dataset (with distribution shifts on the visual modality). We
bold the best results and underline the second-best.

15 types of distribution shifts on the visual modal-379

ity (i.e., "Gaussian Noise", "Impulse Noise", "Shot380

Noise", "Glass Blur", "Defocus Blur", "Zoom381

Blur", "Motion Blur", "Snow", "Fog", "Frost",382

"Brightness", "Contrast", "Pixelate", "Elastic", and383

"JPEG Compression") and 6 types of distribution384

shifts on the audio modality (i.e., "Gaussian Noise",385

"Crowd Noise", "Traffic Noise", "Rain Noise",386

"Wind Noise" and "Thunder Noise") (Hendrycks387

and Dietterich, 2019; Yang et al., 2024b). Exam-388

ples of the distribution shifts are shown in Figure 3.389

We evaluate the models’ performance under these390

distribution shifts at test time, comparing various391

test-time distribution methods (e.g., MMT, Tent,392

READ, etc.) that are designed for traditional mod-393

els to mitigate test-time distribution shifts, and the394

results are shown in Table 3, Table 4, and Table 5,395

from which we have the following observation.396

Observation 6: MLLMs are prone to test-time dis-397

tribution shifts in the visual modality. As can be398

seen from the results, test-time distribution shifts399

on the visual modality generally lead to a signifi-400

cant performance degradation for MLLMs, while401

the performance degradation on the audio modal-402

ity is less severe. This can be attributed to the403

MLLMs’ over-reliance on the visual modality (as404

discussed in Section 4.2), which makes them vul-405

nerable to distribution shifts on the input video. 406

We also find that when the audio modality is cor- 407

rupted at test time, there is an increase in the VITA’s 408

performance, which is consistent with the observa- 409

tion of the negative synergistic effect between the 410

modalities (as discussed in Section 4.2). Moreover, 411

we find that previous test-time adaptation solutions 412

are problem-specific (specially designed for the 413

classification problem with entropy-based objec- 414

tives) and architecture-specific (specially designed 415

for models with certain architectures). The perfor- 416

mance degradation of MLLMs, especially under 417

visual distribution shifts, calls for new solutions to 418

improve their generalizability. 419

4.5 Robustness Against Adversarial 420

Perturbations 421

We then evaluate the robustness of MLLMs’ audio- 422

visual capabilities against adversarial perturbations. 423

We adopt two commonly used adversarial attack 424

methods, i.e., FGSM (Goodfellow et al., 2014) and 425

PGD (Madry et al., 2017), to generate adversarial 426

examples. Specifically, as the audio signals are pro- 427

cessed with non-differentiable operations, we only 428

attack the visual modality. For fast gradient sign 429

method (FGSM), we use the following equation: 430

X̃V = XV + ϵ · sign(∇XV LCE), (1) 431
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Noise Blur Weather Digital
Models

Gauss. Shot Impul. Defoc. Glass Mot. Zoom Snow Frost Fog Brit. Contr. Elas. Pix. JPEG
Avg.

CAV-MAE 52.8 52.7 52.7 57.2 57.2 58.7 56.8 56.4 56.6 55.6 58.9 53.7 56.9 55.8 56.9 56.0
+MMT 7.1 7.3 7.3 44.8 41.5 48.0 45.5 27.4 23.5 30.5 46.3 24.0 43.0 40.7 45.7 32.0
+Tent 52.7 52.7 52.7 56.7 56.5 58.0 56.5 55.0 57.0 56.3 58.7 54.0 57.4 56.7 57.4 55.8
+EATA 53.0 52.8 53.0 57.2 57.1 58.6 57.8 56.3 56.8 56.4 59.0 54.1 57.4 56.1 57.0 56.2
+SAR 52.9 52.8 52.9 57.0 57.1 58.5 56.8 56.3 56.7 55.9 58.9 54.0 57.6 57.1 57.2 56.1
+READ 53.6 53.6 53.5 57.9 57.7 59.4 58.8 57.2 57.8 55.0 59.9 55.2 58.6 57.1 57.9 56.9
+ABPEM 54.0 53.9 54.0 58.2 58.1 59.6 59.3 57.5 58.2 58.2 60.2 56.2 59.1 57.5 58.3 57.5

VideoLLaMA (ZS) 39.1 39.5 39.6 48.0 44.1 47.4 47.4 36.6 39.9 48.4 54.0 45.8 43.3 53.3 50.8 45.1
VideoLLaMA (SFT) 46.8 47.2 47.5 52.8 49.6 52.9 53.6 46.7 49.3 54.6 59.7 52.6 50.3 56.9 56.3 51.8
VITA (ZS) 5.9 6.4 6.4 11.6 11.4 13.9 14.3 13.9 17.5 19.2 23.3 5.3 10.9 14.5 17.4 12.8
VITA (SFT) 13.1 13.0 14.4 16.7 16.5 18.7 17.4 16.1 18.1 20.6 25.6 12.9 14.3 21.6 21.6 17.4

Table 5: Prediction accuracies (in %) on VGGSound-C dataset (with distribution shifts on the visual modality). We
bold the best results and underline the second-best.

Kinetics50 VGGSound
Models

Clean FGSM ASR PGD ASR Clean FGSM ASR PGD ASR
CAV-MAE 82.3 43.2 47.5% 31.4 61.8% 65.5 39.1 40.2% 36.3 44.6%
Video-LLaMA2 (Zero-Shot) 73.2 72.8 0.6% 72.5 0.9% 59.3 59.2 0.2% 58.6 1.2%
Video-LLaMA2 (SFT) 78.9 77.4 1.8% 77.3 1.9% 63.1 61.0 3.3% 61.8 2.1%
VITA (Zero-Shot) 70.5 70.1 0.6% 70.2 0.4% 29.8 29.3 1.8% 29.2 2.0%
VITA (SFT) 84.3 83.6 0.9% 84.1 0.3% 32.0 31.6 1.4% 31.3 2.1%

Table 6: Models’ performance under adversarial attacks. We bold the best results and underline the second-best.

where ϵ is the perturbation magnitude, and LCE is432

the cross-entropy loss function. We set ϵ to 0.01.433

For projected gradient descent (PGD), we use the434

following equation:435

X̃V = Πϵ(X
V + α · ∇XV LCE), (2)436

where α is the step size. Eq. 2 is computed itera-437

tively (we perform 10 iterations in this paper). We438

set α to 0.5, and ϵ to 0.01. We evaluate the models’439

performance under adversarial examples, and the440

results are shown in Table 6, where we also report441

the attack success rate (ASR, Eykholt et al. (2018)).442

Observation 7: MLLMs are robust against ad-443

versarial attacks. As can be seen from the re-444

sults, MLLMs are generally robust against adver-445

sarial perturbations compared to traditional mod-446

els, with the attack success rate being much lower447

than that of CAV-MAE. This may be attributed448

to the MLLMs’ audio-visual capability and their449

integration with LLMs. The complexity of the450

language model makes it difficult for attackers to451

perform black-box attacks against MLLMs. Thus,452

for closed-source MLLMs, performing effective453

adversarial attacks is challenging.454

4.6 Case Study455

In this section, we provide specific cases of the456

models’ outputs given specific inputs.457

Case 1: Correct Answer Prediction. We first show458

an example where the model correctly predicts the459

answer in Figure 4. In this case, the correct output460

can be directly inferred from the input video frames,461

(a) Input Video Frames (b) Input Audio

Input: Identify the event in the video according to both visual 
signals and audio signals. Here are some possible options:
pumping fist
petting cat
diving cliff
dribbling basketball
snowboarding
krumping
…
After watching the video and listening to the audio, answer with 
the best option listed above that describes the event in the video 
according to both visual and audio signals.

(c) Textual Prompt

Output: dribbling basketball

(d) Model’s Response

Figure 4: An example where the model generates the
correct answer. The input video frames and the visual-
ization of audio signals are shown in subfigures (a) and
(b), the textual prompt is shown in subfigure (c), and the
model’s output is shown in subfigure (d).

where we can see a man dribbling a basketball 462

(Figure 4a). The audio signal is also informative, as 463

we hear the sound of a basketball bouncing (Figure 464

4b, although it is not clear from the visualization 465

of audio signals). The model’s output is consistent 466

with the input, demonstrating the model’s ability to 467

understand the audio-visual information. 468

Case 2: Confusion Between Speech and Textual 469

Instructions. We then show an example where 470
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(a) Input Video Frames

(b) Input Audio and its Transcript

Transcript: Says, ‘Great work on—’ 
and then there are some options. 
You can tick ‘Being a moron.’ 
(Opening and closing drawers) 
This step is…

Prompt: Identify the event in the video according to both 
visual signals and audio signals. Here are some possible 
options:
ambulance siren
basketball bounce
opening or closing car doors
opening or closing drawers
…
After watching the video and listening to the audio, answer 
with the best option listed above that describes the event in 
the video according to both visual and audio signals.

(c) Textual Prompt

(d) Model’s Response

Output: OK, how can I help you?

Figure 5: An example of the model’s confusion between
speech and textual instructions. We also show the tran-
script of the audio signals in subfigure (b).

the model is confused between speech and textual471

instructions in Figure 5. In this case, the input472

video frames (Figure 5a) show a man sitting at an473

office desk with papers and a computer screen. The474

input audio contains both speech and other sounds475

(Figure 5b). The man seems to be filling out a table476

while speaking, during which he opens and closes477

the drawer. The textual prompt (Figure 5c) asks478

the MLLM to identify the event based on the video479

and audio. However, the model seems to ignore480

these textual instructions, and instead asks what it481

can do for the man in the video (Figure 5d). This482

suggests that the model is confused with the speech483

and textual instructions. The audio signals, while484

from a different modality, carry the information485

that plays a similar role as the text (i.e., providing486

instructions), and the model takes the instructions487

from the audio, ignoring initial textual instructions.488

Case 3: Over-Reliance on the Visual Modality.489

We have previously mentioned that current MLLMs490

tend to over-rely on the visual modality while ignor-491

ing the audio modality, which can be problematic492

when the audio modality carries important informa-493

tion. We provide an example of this over-reliance494

in Figure 6. In this case, the input video frames495

(a) Input Video Frames (b) Input Audio

Input: Identify the event in the video according to both visual 
signals and audio signals. Here are some possible options:
cuckoo bird calling
baltimore oriole calling
magpie calling
mynah bird singing
bird wings flapping
eagle screaming
…
After watching the video and listening to the audio, answer with 
the best option listed above that describes the event in the video 
according to both visual and audio signals.

(c) Textual Prompt

Output: cuckoo bird calling

(d) Model’s Response

Figure 6: An example of the model’s over-reliance on
the visual modality. This example shows that visually
similar birds may have different sounds.

(Figure 6a) show a little bird jumping around on a 496

cardboard box. The audio signal (Figure 6b) con- 497

tains the sound of this bird. The textual instruction 498

(Figure 6c) requires the MLLM to differentiate the 499

type of this bird. Some birds are visually simi- 500

lar (e.g. cuckoo bird and mynah bird), but their 501

sounds are different. The model’s output (Figure 502

6d) is incorrect, as it fails to match the sound of 503

the bird in the input audio (in this case, the sound 504

of a mynah bird) with the visual information. This 505

demonstrates the model’s over-reliance on the dom- 506

inant modality (vision) can lead to problems when 507

the other modality (audio) is critical. 508

5 Conclusion 509

This paper evaluates the audio-visual capabilities 510

of MLLMs across four key dimensions: effective- 511

ness, efficiency, generalizability, and robustness. 512

The results show that MLLMs are generally ef- 513

fective in understanding audio-visual information, 514

although they rely heavily on the visual modality, 515

which leads to poor performance when video inputs 516

undergo test-time distribution shifts. In addition, 517

MLLMs exhibit high data efficiency with superior 518

performance under limited data, but they lag behind 519

in terms of computational efficiency. Furthermore, 520

MLLMs are more robust compared to traditional 521

models against adversarial attacks. These findings 522

highlight the strengths and limitations of current 523

MLLMs in handling audio-visual information, of- 524

fering guidance for future research. 525
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Limitations526

Despite extensive evaluations, we should note that527

this paper does not involve solutions to the prob-528

lems presented, including over-reliance on the vi-529

sual modality, weak generalizability when the vi-530

sual modality is under distribution shifts, and the531

high computational cost of MLLMs. Future work532

should focus on addressing these limitations to im-533

prove the audio-visual capabilities of MLLMs.534
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A More Details about the Compared982

Methods983

The following methods are used for comparison in984

this paper, and we provide more details about them985

in this section.986

• VideoLLaMA (Cheng et al., 2024): A multi-987

modal LLM for audio and video understand-988

ing, with video, audio, and text as its inputs.989

It proposes a novel Spatial-Temporal Con-990

volution (STC) connector to capture spatio-991

temporal dynamics in the video.992

• VITA (Fu et al., 2025): Another multi-modal993

LLM designed understanding the video and994

interacting with human users. VITA adopts995

a multi-stage training method, progressively996

training LLM to understand both visual and997

audio information.998

• CAV-MAE (Gong et al., 2023): An audio-999

visual classification model that uses masked1000

auto-encoder and contrastive learning for1001

learning joint audio-visual features, facilitat-1002

ing various downstream tasks. This paper uses1003

this model as a traditional model baseline for1004

comparison with MLLMs.1005

• Tent (Wang et al., 2020): An early proposed1006

test-time adaptation method on images that1007

minimizes the test-data entropy during test1008

time to adapt the model against test-time dis-1009

tribution shifts.1010

• MMT (Shin et al., 2022): A multi-modal test-1011

time adaptation method designed for a specific1012

problem of 2D-3D joint segmentation. This1013

paper adopts the results provided by (Yang1014

et al., 2024b) on Kinetics50 and VGGSound1015

datasets under distribution shifts.1016

• EATA (Niu et al., 2022): A test-time adapta-1017

tion method on images that proposes a sample-1018

efficient entropy minimization to exclude un-1019

informative samples out of gradient backward,1020

and a regularization loss to avoid forgetting1021

the training knowledge.1022

• SAR (Niu et al., 2023): A method proposed1023

for stable single-modal test-time adaptation in1024

dynamic scenarios, which proposes sharpness-1025

aware and reliable entropy minimization to1026

stablize the adaptation process.1027

• READ (Yang et al., 2024b): A multi-modal 1028

test-time adaptation proposed to adjust model 1029

against multi-modal reliability bias. This 1030

method modulates the attention between 1031

modalities self-adaptively during test time. 1032

• ABPEM (Zhao et al., 2025b): A multi-modal 1033

test-time adaptation method, which proposes 1034

to use attention bootstrapping to mitigate the 1035

problem of attention gap during test-time dis- 1036

tribution shifts. 1037

B More Details about the Datasets 1038

We then provide more details about the datasets 1039

used in this paper as follows. 1040

• Kinetics50 (Kay et al., 2017; Yang et al., 1041

2024b): A subset of the Kinetics dataset (Kay 1042

et al., 2017), consisting of 29k training sam- 1043

ples and 2.5k test samples, categorized into 1044

50 classes randomly selected from 400 classes 1045

in the original dataset. The raw data is in the 1046

form of videos, and we extract 10 frames from 1047

the video as the visual inputs, plus the sound- 1048

track as the audio inputs. In this dataset, the 1049

visual information is comparatively more im- 1050

portant than the audio information. 1051

• VGGSound (Chen et al., 2020): This dataset 1052

contains 309 different classes from YouTube. 1053

As some of the YouTube videos are missing, 1054

we collect about 160k training video clips and 1055

about 14k test video clips. The video clips are 1056

processed in the same way as the Kinetics50 1057

dataset, in which 10 frames are extracted. For 1058

this dataset, the audio inputs are relatively 1059

more informative than the visual modality. 1060

• Kinetics50-C and VGGSound-C (Yang 1061

et al., 2024b; Hendrycks and Dietterich, 1062

2019): These datasets are corrupted versions 1063

of the original Kinetics50 and VGGSound 1064

datasets. We adopt the corruptions from 1065

Yang et al. (2024b); Hendrycks and Dietterich 1066

(2019) to the test samples, making distribu- 1067

tion shifts in the test data. The corruptions 1068

in the visual modality includes 15 types of 1069

common corruptions (i.e. "Gaussian Noise", 1070

"Shot Noise", "Impulse Noise", "Defocus 1071

Blur", "Glass Blur", "Motion Blur", "Zoom 1072

Blur", "Snow", "Frost", "Fog", "Brightness", 1073

"Contrast", "Elastic", "Pixelate", and "JPEG 1074
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You are a helpful assistant. You are asked to identify the event in the video.

Identify the event in the video according to both visual signals and audio signals. Here
are some possible options:
<Event Choice 1>
<Event Choice 2>
<Event Choice 3>
...
<Event Choice N>
After watching the video and listening to the audio, answer with the best option listed
above that describes the event in the video according to both visual and audio signals.

System Prompt:

User Prompt:

MLLM Output:

<Predicted Choice>

Figure 7: An example of the prompt.

Compression"), whereas for the audio modal-1075

ity, 6 corruptions are adopted (i.e. "Gaus-1076

sian Noise", "Traffic Noise", "Crowd Noise",1077

"Rain Noise", "Thunder Noise" and "Wind1078

Noise").1079

• Kinetics50-A and VGGSound-A: We con-1080

struct these two datasets by adding adversarial1081

perturbations to the original dataset. The ad-1082

versarial perturbations are set to be invisible1083

to the human eyes (i.e. with a small ϵ in Eq.1084

1 and Eq. 2), and generated by performing1085

adversarial attacks against a white-box model,1086

CAV-MAE (Gong et al., 2023), using Eq. 11087

and Eq. 2 with the cross-entropy loss.1088

C Prompt Examples1089

In this section, we provide an example of the1090

prompt template, shown in Figure 7.1091

D Additional Details about the1092

Experiments1093

In the experiments, we use accuracy as the default1094

evaluation metric, which is measured by the num-1095

ber of samples the MLLM correctly answered di-1096

vided by the total number of samples. Due to the1097

computation costs, all results related to MLLMs1098

are based on single runs, while the results related to1099

smaller models (e.g. test-time adaptation methods)1100

are based on 5 run averages. The MLLMs are fine- 1101

tuned on two NVIDIA A100 GPUs, while the in- 1102

ference takes one A100 GPU per model. For other 1103

models, we use one A100 GPU for fine-tuning and 1104

inference, although smaller GPUs could also be 1105

used. 1106

In the experiments, we use VideoLLaMA 1107

(Cheng et al., 2024) and VITA (Fu et al., 2025) 1108

among a variety of baseline methods, all of which 1109

can be used for research purposes. The datasets are 1110

derived from two commonly used data sources, i.e. 1111

Kinetics (Kay et al., 2017) and VGGSound (Chen 1112

et al., 2020), both of which are publicly available, 1113

and videos that contain personally identifying info 1114

or offensive content are not included in the version 1115

we use. 1116
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