
Published in Transactions on Machine Learning Research (04/2023)

FASTRAIN-GNN: Fast and Accurate Self-Training for
Graph Neural Networks

Amrit Nagarajan nagaraj9@purdue.edu
School of Electrical and Computer Engineering
Purdue University

Anand Raghunathan raghunathan@purdue.edu
School of Electrical and Computer Engineering
Purdue University

Reviewed on OpenReview: https: // openreview. net/ forum? id= 1IYJfwJtjQ

Abstract

Few-shot learning with Graph Neural Networks (GNNs) is an important challenge in ex-
panding the remarkable success that GNNs have achieved. In the transductive node clas-
sification scenario, conventional supervised training methods for GNNs fail when only few
labeled nodes are available. Self-training, wherein the GNN is trained in stages by aug-
menting the training data with a subset of the unlabeled data and the predictions of the
GNN on this data (pseudolabels), has emerged as a promising approach to few-shot trans-
ductive learning. However, multi-stage self-training significantly increases the computa-
tional demands of GNN training. In addition, while the training set evolves considerably
across the stages of self-training, the GNN architecture, graph topology and training hy-
perparameters are kept constant, adversely affecting the accuracy of the resulting model
as well as the computational efficiency of training. To address this challenge, we propose
FASTRAIN-GNN, a framework for efficient and accurate self-training of GNNs with few
labeled nodes. FASTRAIN-GNN performs four main optimizations in each stage of self-
training: (1) Sampling-based Pseudolabel Filtering removes nodes whose pseudolabels are
likely to be incorrect from the enlarged training set. (2,3) Dynamic Sizing and Dynamic
Regularization find the optimal network architecture and amount of training regularization
in each stage of self-training, respectively, and (4) Progressive Graph Pruning removes se-
lected edges between nodes in the training set to reduce the impact of over-smoothing. On
few-shot node classification tasks using different GNN architectures, FASTRAIN-GNN pro-
duces models that are consistently more accurate (by up to 4.4%), while also substantially
reducing the self-training time (by up to 2.1×) over the current state-of-the-art methods.
Code is available at https://github.com/amrnag/FASTRAIN-GNN.

1 Introduction

Advances in supervised training of Graph Neural Networks (GNNs) have revolutionized the field of graph-
based learning. As a result, GNNs find wide-spread applications in several fields, ranging from friend and
product recommendations in social media networks to molecular property prediction for drug discovery.
However, real world graphs are often sparsely-labeled, and training GNNs in a few-shot setting remains
challenging. While conventional supervised training methods for GNNs (Kipf & Welling, 2017; Velickovic
et al., 2018; Hamilton et al., 2017) work well in the presence of large amounts of labeled training data,
their performance drops rapidly as training data becomes more scarce due to insufficient propagation of
information from labeled data.

1

https://openreview.net/forum?id=1IYJfwJtjQ
https://github.com/amrnag/FASTRAIN-GNN


Published in Transactions on Machine Learning Research (04/2023)

Two main classes of semi-supervised training algorithms have been proposed to address this challenge in
the context of node classification using GNNs: pre-training and self-training. Pre-training is effective in the
inductive node classification setting (where new, unseen graphs are presented at testing time; the goal is to
label the unlabeled nodes in the new graphs). Since training GNNs with good generalization performance
is the key for effective inductive node classification, large amounts of non-targeted labeled data can be used
to pre-train the GNN, followed by a few iterations of fine-tuning on the limited task-specific data. As a
result, prior works on pre-training GNNs (Hu et al., 2020; Lu et al., 2021) have demonstrated significant
improvements on few-shot inductive node classification. On the other hand, the transductive node classifica-
tion setting (a small number of nodes in a large graph are labeled; the goal is to label the unlabeled nodes in
the graph) benefits more from self-training. In particular, since the entire graph (consisting of both labeled
and unlabeled nodes) is available at training time, effective transductive node classification is achieved by
targeted training on the input graph (learning from the topology and vast amounts of unlabeled data in
the graph). Consequently, prior works on self-training (Li et al., 2018; Sun et al.) have demonstrated good
performance on few-shot transductive node classification.

Figure 1: An overview of self-training for GNNs.

In this work, we focus on self-
training GNNs for few-shot
transductive node classifica-
tion, which is outlined in Fig.
1. Self-training is performed
in multiple stages, where a
GNN model is trained in each
stage using the current train-
ing set. At the end of each
stage, the training set is en-
larged by adding nodes that
are likely to be predicted cor-
rectly by the trained GNN along with their associated pseudolabels. Typically, confidence is used as the
metric to assess correctness of predictions — if the confidence of the GNN in predicting a node is above a
threshold (Tc), the node is added to the training set for the next stage. The enlarged training set results
in a greater fraction of nodes in the graph participating in the training process (through message passing),
leading to better node representations, and hence, better classification accuracy. While the conventional self-
training framework has led to substantial accuracy improvements over single-stage supervised training (Li
et al. (2018); Sun et al.), it presents significant computational overheads during training. For example, on
{Cora, Citeseer and Pubmed} datasets with 4 labeled nodes/class, 4-stage self-training takes {4.6×, 5.2×
and 5.4×} longer than single-stage fully-supervised training (not exactly 4× longer, since the training set is
also enlarged in each stage, see Appendix A). In addition, while prior efforts have led to significant improve-
ments in the accuracy of pseudolabels added to the training set in each stage, the GNN architecture, graph
topology and training hyperparameters (such as strength of regularization) have been kept constant through-
out self-training, adversely impacting both the accuracy of the model and the efficiency of the self-training
process.

We present FASTRAIN-GNN, a framework for fast and accurate self-training of GNNs. FASTRAIN-GNN
adds four main optimizations to the conventional self-training loop. First, we observe that incorrect training
labels have a large detrimental effect on the accuracy of the trained model, and propose Sampling-based
Pseudolabel Filtering (SPF) to improve the accuracy of pseudolabels added to the training set. We also
propose Dynamic Regularization (DR) to reduce the impact of residual errors in training labels (after SPF)
during self-training. Second, we note that the "layer effect" in GNNs (Sun et al.) plays a major role during the
different stages of self-training. Deep GNNs outperform shallow GNNs when training on few labeled nodes
due to larger message passing coverage (leading to better propagation of information from labeled nodes) in
deep GNNs. However, as the number of labeled nodes increases, the larger message passing coverage leads to
oversmoothing in deep GNNs, where nodes belonging to different classes acquire similar representations and
become less discernible from each other. As a result, shallow GNNs outperform deep GNNs when training
on large numbers of labeled nodes. Based on this observation, we propose Dynamic Sizing (DS) to adapt the
network architecture across the stages of self-training. Finally, we observe that inter-class edges in the graph

2



Published in Transactions on Machine Learning Research (04/2023)

add noise during message passing, and propose Progressive Graph Pruning (PGP) to incrementally prune
inter-class edges between nodes in the training set. While different pruning techniques such as the Lottery
Ticket Hypothesis (Chen et al., 2021) and sampling (Zhang et al., 2023) have been proposed for improving
the training and inference efficiency of GNNs, SPF and PGP use pruning for achieving gains beyond just
efficiency. SPF randomly prunes a small subset of edges in the graph to test the robustness of predictions
to perturbations in the graph structure, thereby filtering out incorrect training labels. On the other hand,
PGP prunes inter-class edges to reduce over-smoothing from noisy message passing, thereby leading to better
generalization performance. In addition to producing more accurate self-trained models, the four proposed
optimizations also considerably improve the efficiency of the self-training process. SPF reduces the size of
the training set, while DS, DR and PGP result in smaller GNNs being trained on sparser graphs.

We summarize our main contributions as follows:

• We introduce FASTRAIN-GNN, a framework for fast and accurate self-training of GNNs. In particular,
FASTRAIN-GNN focuses on optimizing the GNN architecture, training data, training parameters, and
the graph topology during self-training.

• We propose Sampling-based Pseudolabel Filtering to generate smaller training sets with more accurate
pseudolabels in each stage.

• We propose Dynamic Sizing and Dynamic Regularization to overcome the layer effect in GNNs and reduce
the impact of incorrect training labels, respectively.

• We propose Progressive Graph Pruning to improve the information-to-noise ratio during message passing
and reduce the impact of over-smoothing in GNNs.

• Across four different transductive node classification datasets using different GNN architectures and with
varying numbers of labeled nodes, we demonstrate that FASTRAIN-GNN simultaneously improves both
the accuracy of the self-trained models and the efficiency of self-training over the previous state-of-the-art.

2 Related Work

Prior work on self-training GNNs has almost exclusively focused on the problem of generating more accurate
training labels (pseudolables) in each stage of self-training. Li et al. (2018) proposed four different techniques
for generating more accurate training labels. Co-training trains a random walk model along with the GNN
to explore the graph structure, and adds the most confident predictions of the random walk model to the
training set. Self-training adds the most confident predictions from the GNN to the training set. Union
adds a union of the most confident nodes found by the GNN and the random walk model, while Intersection
adds the common subset of most confident predictions of both models to the training set. Recent works
have proposed improvements to these original baselines. Some notable examples include DSGCN (Zhou
et al., 2019), which uses negative sampling and confidence-based weighting of samples to reduce the impact
of incorrect training labels. M3S (Sun et al.) introduces a checker based on DeepCluster (Caron et al., 2018)
that verifies the correctness of the most confident predictions before adding them to the training set. IFC-
GCN (Hu et al., 2021) rectifies incorrect pseudolabels based on feature clustering. GraphMix (Verma et al.)
trains a fully-connected neural network along with the GNN to improve the accuracy of GNN predictions.
CGCN (Hui et al., 2020) validates pseudolabels based on predictions from a graph clustering network that
combines variational graph auto-encoders with Gaussian mixture models. Self-enhanced GNN (Yang et al.,
2021) enlarges the training set using the most confident predictions from an ensemble of GNNs. Finally,
the current state-of-the-art method (see Appendix C) for self-training is CaGCN (Wang et al., 2021), which
uses confidence calibration (Guo et al., 2017) to improve the accuracy of the most confident predictions.
Complementary to these works, we focus on the problem of how the enlarged training set can be used to
efficiently self-train GNNs to high accuracies, with a specific focus on optimizing the GNN architecture,
training parameters and graph topology during self-training. In addition, we also propose a simple filtering
method based on robustness to sampling that quickly identifies and removes nodes that are likely to be
incorrectly labeled from the enlarged training set. While sampling has been demonstrated to be an effective
regularizer for improving both the training efficiency (Chen et al., 2018; Ramezani et al., 2020; Zhang et al.,

3



Published in Transactions on Machine Learning Research (04/2023)

2023) and generalization ability (Hamilton et al., 2017; Li et al., 2022) of GNNs, we show that sampling can
also be used to test the robustness of GNN predictions to small perturbations in the graph structure.

3 The FASTRAIN-GNN framework

Figure 2: An overview of the FASTRAIN-GNN framework.

We present FASTRAIN-GNN, a framework for efficient and accurate self-supervised training of GNNs. Fig 2
presents an overview of the FASTRAIN-GNN framework. First, the appropriate GNN architecture is chosen
based on the current size of the training set (DS), and the model weights are randomly initialized. This
random initialization is different from the majority of previous works (such as Zhou et al. (2019); Li et al.
(2018) etc.) that initialize the model using the trained weights from the previous stage (see Appendix B).
Then, the GNN model is trained on the current training set, and the amount of regularization during training
is chosen based on the stage of self-training (DR). The training set is subsequently enlarged by predicting
the unlabeled nodes with the trained GNN, and adding nodes that are likely to be predicted correctly to the
training set. Here, we use confidence-based pseudolabeling, where nodes that are predicted with confidence
above a threshold (Tc) are added to the training set along with their pseudolabels. The enlarged training set
is then filtered based on the robustness of predictions to small perturbations in the graph topology (SPF),
to produce a smaller training set with more accurate labels. Finally, inter-class edges between nodes in the
training set are progressively pruned (PGP) to improve information-to-noise ratio during message passing
(when the pruned graph is used to train the GNN model in the next stage). This process is repeated K
times, where each iteration of this loop constitutes one stage of self-training.

Figure 3: Impact of incorrect training labels on GCN training. Results are reported based on
fully-supervised training of a 2-layer GCN model, following the settings described in (Rong et al., 2020). A
random subset of training labels are changed to an incorrect (random) class for this study, and results are
averaged across 100 runs (error bars indicate standard deviation).

4



Published in Transactions on Machine Learning Research (04/2023)

In summary, FASTRAIN-GNN adds four main optimizations to the conventional self-training loop – SPF, DS,
DR and PGP. We describe these optimizations in the following subsections, with more detailed explanations
in Appendix D.

3.1 Sampling-based Pseudolabel Filtering (SPF)

Figure 4: Accuracy of consistent
predictions with different sampling
rates. Results are reported based on
full-supervised training of a 2-layer GCN
model. Here, ”consistent predictions” indi-
cates that node predictions do not change
when predicted from 10 different randomly
sampled graphs.

SPF is performed immediately after the training set is enlarged
by adding nodes with highly confident predictions and their
pseudolabels. Since the accuracy of the self-trained model de-
grades rapidly with decrease in accuracy of the training labels
(Fig. 3), it is vital to ensure that the pseudolabels are highly
accurate. While confidence is the current state-of-the-art met-
ric for quantifying the correctness of predictions, we observe
that the labels generated by confidence-based pseudolabeling
still contain substantial noise that has a detrimental impact
on the final model accuracy. SPF takes advantage of the fact
that correct predictions are significantly more robust to small
perturbations in the graph topology compared to incorrect pre-
dictions (Fig. 4) to filter out nodes that are likely to have in-
correct labels from the training set. Algorithm 1 describes the
procedure used to perform SPF. We randomly sample the input
graphs with a sampling rate of spf_sampling_rate (denoting
the fraction of edges that are retained). This is repeated across
spf_iterations, with each iteration testing on a different sam-
pled graph. Only those nodes whose predictions are invariant
under sampling are included in the filtered training set. As a
result, SPF produces a smaller training set with more accurate training labels, leading to improvements in
both the efficiency of self-training and the accuracy of the self-trained model.

Algorithm 1: Sampling-based Pseudolabel Filtering (SPF)
Input : Enlarged training set after confidence-based pseudolabel generation (Tinit), graph (G)
Output: Filtered training set (Tfiltered)

1 spf_sampling_rate : sampling rate to test prediction consistency
2 spf_iterations: number of sampling iterations to test prediction consistency
3 Tfiltered = Tinit

4 Initial_predictions = predict(nodes(G))
5 for sampling iteration in range(spf_iterations) do
6 Gsampled = Sample(G, spf_sampling_rate)
7 Sampled_predictions = predict(nodes(Gsampled))
8 for each node in Tfiltered do
9 if Sampled_predictions[node] != Initial_predictions[node] then

10 Tfiltered = Tfiltered - node

11 return Tfiltered

3.2 Dynamic Regularization (DR)

While SPF significantly improves the accuracy of training pseudolabels, incorrect labels are inevitable when
they are generated from the predictions of a neural network. DR aims to reduce the impact of residual errors
in pseudolabels, since even a small number of incorrect labels can lead to large deterioration in accuracy of
the trained model (Fig. 3). While overfitting to incorrect labels is problematic for all classes of deep neural
networks, we find that it is especially true for GNNs due to the effects of error propagation (Nagarajan
et al., 2022). Nodes that acquire representations that cause them to be incorrectly classified during training
adversely impact the classification of all their neighbors due to message passing. Therefore, it is vital to

5



Published in Transactions on Machine Learning Research (04/2023)

Algorithm 2: Dynamic Regularization (DR) and Dynamic Sizing (DS)
Input : Stage of self-training (stage), Training set (T )
Output: GNN model (gnn) and sampling rate (sampling_rate) to be used in stage

1 sampling_rate_init : sampling rate used in the first stage of self-training when only nodes with golden labels
are used for training

2 sampling_rate_final : sampling rate used in the later stage of self-training when nodes with both golden- and
pseudo-labels are used for training

3 deep_gnn : architecture of the deep GNN used in the initial stages of self-training when only few nodes are
used for training

4 shallow_gnn : architecture of the shallow GNN used in the later stages of self-training when large numbers of
nodes are used for training

5 DS_T hreshold : the size of the training set at which the deep_gnn is to be replaced by the shallow_gnn
6 if stage == 1 then
7 sampling_rate = sampling_rate_init

8 else
9 sampling_rate = sampling_rate_final

10 if cardinality(T ) < DS_T hreshold then
11 gnn = deep_gnn

12 else
13 gnn = deep_gnn

14 return gnn, sampling_rate

incorporate techniques that minimize the impact of incorrect labels in the self-training loop to prevent error
propagation. Increased regularization has been shown to improve training in the presence of noisy labels (Liu
et al., 2020), and we find that sampling (Hamilton et al., 2017; Chen et al., 2018) is an effective regularizer
that prevents overfitting to incorrect labels (Fig. 3). We propose DR to dynamically alter the sampling rate
during self-training to account for noisy labels in the enlarged training set. The procedure for performing
DR is depicted in Algorithm 2. In the first stage of self-training, training labels are golden (100% accurate),
and hence, we use high sampling rates (most edges are retained in the graph). We then dynamically reduce
the sampling rate as pseudolabeled nodes are added to the training set to account for the reduced accuracy of
training labels. In effect, DR provides the dual benefit of resilience to noisy pseudolabels during self-training,
and improved efficiency from training on sparser graphs in the later stages of self-training.

3.3 Dynamic Sizing (DS)

DS overcomes the layer effect (Sun et al.) in GNNs during the different stages of self-training. Deep GNN
models perform better than shallow GNN models when only a small number of labeled nodes are available

Figure 5: Demonstration of the layer-effect in GNNs. Results are averaged across 100 random train-
test splits, and error bars indicate the standard deviation.

6



Published in Transactions on Machine Learning Research (04/2023)

due to better propagation of label information. In particular, since all L-hop neighbors participate in the
prediction of a node through message passing in a L-layer GNN, more nodes participate in the training
process in deeper GNNs, leading to better node representations. As the number of training nodes increases,
there is greater supervision during training, and hence, shallow GNN architectures start performing better
due to greater message passing coverage (Fig. 5). Eventually, under sufficient supervision, shallow GNNs
start outperforming deeper GNNs due to the oversmoothing problem in deeper GNNs (Chen et al., 2020a).
Due to the smoothing effect of GNN layers, the representations of nodes belonging to different classes become
less distinguishable from each other when a large number of labeled nodes are used to train deep GNNs.
During self-training, as the training set is progressively enlarged, we observe that the layer effect plays a
major role. Initially, when the training set is small, deeper GNNs are more accurate. As the training
set is enlarged by generating more and more pseudolabels, shallow GNNs perform better. DS varies the
model architecture used in each stage of self-training based on the size of the training set. The procedure
for performing DS is also depicted in Algorithm 2. When the size of the training set exceeds a threshold
(DS_Threshold), a shallow GNN is used for all further stages.

3.4 Progressive Graph Pruning (PGP)

Figure 6: Impact of pruning inter-class
edges between training nodes on ac-
curacy. Results are reported based on full-
supervised training of a 2-layer GCN model.
A random subset of inter-class edges are
pruned, and results are averaged across 10
runs (error bars indicate standard devia-
tion).

Pruning edges from graphs used for transductive node classifi-
cation can have a significant impact on training (and inference)
efficiency of GNNs due to the exponential complexity of mes-
sage passing (Chen et al., 2021; Nagarajan et al., 2022). In
addition, it has been proven that pruning inter-class edges in
homophilous graphs (where connected nodes are likely to have
similar labels) improves the information-to-noise ratio during
message passing and helps alleviate the over-smoothing prob-
lem to an extent (Chen et al., 2020a). In particular, mes-
sage passing between nodes of different classes causes all nodes
in the graph to acquire similar representations (making them
indistinguishable). When inter-class edges are pruned, nodes
belonging to different classes acquire distinct representations,
thereby leading to better class separation, and hence, better
classification performance (Fig. 6). When only few labeled
nodes are available for training, identifying inter-class edges
is challenging. Hence, we propose progressively pruning inter-
class edges in each stage based on the pseudolabels of nodes
added to the training set. Since nodes added to the training
set are significantly more likely to be predicted correctly com-
pared to other nodes, restricting PGP to operate only on nodes in the training set minimizes the risk of
accidentally pruning intra-class edges.

Algorithm 3: Progressive Graph Pruning (PGP)
Input : Enlarged training set after SPF (Tfiltered), graph (G)
Output: Pruned graph Gpruned

1 P redictions = predict(nodes(G))
2 Gpruned = G
3 for each node in Tfiltered do
4 for each neighbor of node do
5 if neighbor in Tfiltered then
6 if Predictions[node] != Predictions[neighbor] then
7 Gpruned = Gpruned - edge(node, neighbor)

8 return Gpruned

7



Published in Transactions on Machine Learning Research (04/2023)

Algorithm 3 demonstrates PGP. After SPF generates an enlarged training set with pseudolabels, PGP then
prunes inter-class edges between nodes in the training set. Since the training set is progressively enlarged in
each stage of self-training, PGP progressively prunes inter-class edges during self-training, thereby making
each iteration of the self-training loop faster than the previous iteration. When GNNs are self-trained on
heterophilous graphs (where connected nodes are likely to have dissimilar labels), we modify PGP to prune
intra-class edges instead of inter class edges (see Appendix F).

4 Experiments and Results

Table 1: Dataset characteristics.
Dataset Classes Nodes Edges Feature size

Cora 7 2708 5429 1433
Citeseer 6 3327 4732 3703
Pubmed 3 19717 44338 500
CoraFull 70 19793 126842 8710

We implement FASTRAIN-GNN using DGL in PyTorch, and
evaluate it on a GeForce RTX 2080 Ti GPU with 11GB mem-
ory. We randomly select (labels/class) nodes of each class as
training nodes, and report results on the rest of the nodes in
the graph (we do not require a separate held-out validation
set for any of the FASTRAIN-GNN optimizations). We repeat
this process 100 times for each value of (labels/class), and all results reported in this section are averaged
across 100 different training splits (with error bars indicating accuracy range), unless otherwise specified.
The datasets used for testing are summarized in Table 1. Since some classes contain too few nodes to get
a meaningful train-test split in CoraFull, we do not present results with 16 labels/class. The details of the
hyperparameters used in all experiments are presented in Appendix D.

Table 2: Results of training GCN with different label rates. The most accurate model without
confidence calibration is underlined, while the most accurate model overall is displayed in bold. Subscripts
denote standard deviation.

Dataset Labels/ GCN Co-train Union Intersection Self-train FASTRAIN Self-train FASTRAIN
Class -GCN -CaGCN -CaGCN

Cora

1 48.92.4 53.32.0 53.62.2 51.81.6 52.72.2 56.91.9 57.21.9 61.62.1
2 64.31.8 66.51.9 66.32.2 64.21.7 66.11.9 68.81.9 69.51.4 73.01.5
4 69.12.1 71.11.6 71.21.5 69.71.3 70.81.7 72.71.5 71.91.3 74.11.2
8 74.80.9 75.00.8 75.70.9 74.70.9 75.50.7 77.40.8 79.40.6 81.60.5
16 78.81.1 78.90.8 78.80.7 78.20.7 79.10.8 80.60.8 82.20.6 83.40.6

Citeseer

1 38.13.6 39.83.3 39.53.1 38.22.9 39.33.4 43.13.5 46.22.9 53.13.1
2 49.93.2 52.42.5 52.62.9 52.62.6 52.92.6 54.82.8 53.92.4 57.12.4
4 58.12.3 60.42.2 60.32.5 60.72.2 60.12.5 63.82.6 64.71.9 68.21.7
8 64.41.4 66.21.6 65.91.7 66.01.6 66.81.5 68.91.3 70.61.1 72.81.1
16 69.11.5 70.21.1 70.10.9 70.31.1 70.01.1 71.61.1 72.10.8 73.10.6

Pubmed

1 42.82.5 58.22.7 57.92.5 56.82.8 57.72.7 60.42.9 66.52.3 71.42.1
2 56.12.2 68.22.1 68.62.8 67.92.2 68.42.7 70.62.6 69.62.5 73.92.1
4 63.31.7 69.42.1 69.62.4 69.62.1 69.71.9 71.12.1 70.91.6 74.31.9
8 69.91.6 71.41.1 71.30.8 71.01.1 71.71.4 72.91.3 74.30.7 76.21.0
16 76.70.6 77.21.1 77.40.9 77.50.4 77.40.4 78.60.6 78.10.7 79.40.5

CoraFull

1 26.43.8 30.42.9 30.14.1 27.33.3 29.13.5 31.13.8 30.63.7 31.83.9
2 29.64.1 32.83.8 33.13.9 29.73.2 33.04.3 35.14.0 33.82.9 35.63.3
4 43.22.4 44.82.0 44.93.1 43.92.6 44.72.1 46.62.8 45.93.0 47.22.8
8 53.22.6 55.01.9 55.22.2 54.62.0 55.62.2 56.41.9 56.31.6 57.21.8

4.1 Primary Results

We present results on the Cora, Citeseer, Pubmed and CoraFull datasets with different label rates using
different GNN architectures – GCN in Table 2 and GAT in Table 3. To provide a fair comparison of
FASTRAIN-GNN with other methods (except CaGCN), we ensure the following – (1) the same set of nodes
are labeled for all training methods. (2) The confidence threshold Tc is fixed at 0.8. (3) 4 stages of self-
training are performed, with 500 epochs of training in each stage in all methods. For all experiments on
CaGCN, we follow the best hyperparameter settings described by the authors (Wang et al., 2021). We
note that our implementation of the baseline self-training methods (Co-training, Union, Intersection, Self-
training) achieves significantly higher accuracy (by up to 10%) than previously reported (Li et al., 2018;
Zhou et al., 2019). This is because we optimize the baselines (see Appendix B) by choosing the optimal

8



Published in Transactions on Machine Learning Research (04/2023)

number of GNN layers for different label rates, and by randomly initializing the GNN model at the start
of each stage of self-training (rather than initializing with the trained weights from the previous stage).
We find that FASTRAIN-GNN consistently outperforms conventional self-training methods under different
label rates (Tables 2, 3, 7). In addition to producing models that are up to 4.2% more accurate
than these optimized baselines, FASTRAIN-GNN also accelerates the self-training process,
reducing the wall-clock self-training time by {1.7×, 1.9×, 2.1× and 1.7×} on {Cora, Citeseer,
Pubmed and CoraFull} respectively compared to conventional self-training. In addition, we
demonstrate that FASTRAIN-GNN can be used in conjunction with the current state-of-the-art method
(to the best of our knowledge) for self-training – CaGCN (Wang et al., 2021). This combination, which
we call FASTRAIN-CaGCN and FASTRAIN-CaGAT, uses confidence calibration to improve the quality
of pseudolabels generated in each stage to achieve further accuracy gains of up to 4.4% using the same
hyperparameters and initial set of labeled nodes.

Table 3: Results of training GAT with different label rates. The most accurate model without
confidence calibration is underlined, while the most accurate model overall is displayed in bold. Subscripts
denote standard deviation.

Dataset Labels/ GAT Co-train Union Intersection Self-train FASTRAIN Self-train FASTRAIN
Class -GAT -CaGAT -CaGAT

Cora

1 49.72.7 54.82.9 54.52.3 53.62.5 53.92.6 57.12.6 59.32.5 63.32.4
2 65.12.9 67.62.3 67.71.9 66.41.7 66.31.9 69.62.0 70.42.2 74.11.8
4 70.21.7 71.81.6 71.62.3 70.62.1 71.91.5 73.21.9 72.91.4 75.81.4
8 75.41.8 76.21.4 76.71.4 75.01.0 76.31.3 78.41.6 79.81.6 81.71.0
16 79.10.9 79.41.5 79.81.3 78.80.7 80.00.8 82.10.6 83.01.0 84.20.7

Citeseer

1 36.94.1 38.74.3 38.84.7 37.73.9 38.34.4 40.24.6 44.84.2 48.93.9
2 49.03.8 51.63.7 51.73.7 51.94.3 51.73.5 53.63.7 52.53.9 55.83.7
4 56.42.9 58.83.1 58.23.3 59.12.7 59.23.0 61.93.4 62.33.4 65.72.9
8 62.81.8 64.92.6 64.32.7 65.22.2 65.22.2 66.61.9 67.42.1 69.52.1
16 66.82.1 68.71.7 68.82.0 69.31.5 69.01.8 70.21.5 70.81.5 72.01.7

Pubmed

1 40.72.8 55.42.6 55.92.7 54.82.7 54.52.4 57.22.8 59.92.4 63.72.6
2 52.62.1 64.72.9 64.62.3 63.82.6 65.12.7 68.42.2 68.62.1 72.42.7
4 62.12.3 68.41.9 68.12.1 68.61.8 68.51.8 70.32.1 70.12.3 73.61.8
8 69.01.7 70.91.7 71.21.5 71.11.6 71.41.8 72.51.6 73.71.4 75.61.7
16 76.30.7 76.91.1 77.01.0 77.10.7 77.20.7 78.40.7 77.90.4 79.00.7

CoraFull

1 28.64.4 31.84.7 32.13.9 29.74.3 31.63.9 32.74.2 33.13.7 34.64.2
2 31.23.7 33.74.5 34.24.7 32.93.7 33.84.6 35.54.7 34.23.9 36.73.6
4 45.43.2 47.23.3 47.44.2 46.62.9 46.92.9 48.33.3 47.73.5 49.03.7
8 53.42.7 55.62.1 55.72.9 55.02.2 55.72.5 56.52.2 56.22.1 57.42.3

4.2 Ablation Study: Breakdown of benefits from different FASTRAIN-GNN optimizations

We perform an ablation study to evaluate the impact of each optimization performed by the FASTRAIN-
GNN framework. The results are presented in Table 4. SPF improves accuracy by removing nodes whose
pseudolabels are likely to be incorrect from the training set in each stage, and it improves efficiency by
reducing the number of training samples in each stage. DS and DR improve accuracy by taking advantage of
the layer effect in GNNs (Sun et al.), and by reducing the impact of incorrectly labeled nodes in the training
set, respectively. In addition, they improve efficiency by training smaller GNNs on sparser graphs in later
stages. Finally, PGP improves accuracy by reducing noise from inter-class edges (Chen et al., 2020a), and
it improves efficiency by making the graphs more sparse. We also note that the different optimizations add
minimal overheads (Appendix E). In the following subsections, we discuss and analyze the contribution of
each FASTRAIN-GNN optimization in improving the accuracy and efficiency of the previous state-of-the-art
self-training method (CaGCN).

4.2.1 SPF improves the quality of generated pseudolabels.

Confidence-based pseudolabeling can lead to noisy labels, even when the models are confidence-calibrated, as
seen in Fig. 7. By adding a second layer of filtering based on robustness to small perturbations in the graph
structure, SPF consistently generates more accurate pseudolabels than confidence-based pseudolabeling.

9



Published in Transactions on Machine Learning Research (04/2023)

Table 4: Accuracy and efficiency gains from the different FASTRAIN-GNN optimizations on
Cora. Speedup is computed over self-training of the more accurate among 2/3-layer models, and averaged
across different train/test splits and label rates.

Labels/Class Self-Training-CaGCN with SPF and DR with SPF, with SPF, DR,
(2-layer/ 3-layer CaGCN) (2-layer/ 3-layer CaGCN) DR and DS DS and PGP

1 55.82.1 / 57.21.9 57.12.3 / 58.31.8 60.41.9 61.62.1
2 64.41.1 / 69.51.4 66.11.7 / 70.91.6 72.21.7 73.01.5
4 68.21.7 / 71.91.3 69.11.8 / 72.61.6 73.41.1 74.11.2
8 79.40.6 / 77.61.1 80.31.1 / 78.90.9 80.90.8 81.60.5
16 82.20.6 / 80.30.6 82.70.4 / 81.50.5 82.70.5 83.40.6

Average Speedup 1X 1.3X 1.6X 1.7X

While the quality of confidence-based pseudolabels can be improved by increasing the confidence threshold,
we demonstrate that SPF produces (1) more accurate pseudolabels when both methods add the same number
of nodes to the training set, and (2) a smaller set of training nodes with more accurate pseudolabels for
different confidence thresholds in Fig. 7. In fact, with a confidence threshold of 0.99, SPF generates training
sets that are 1.2× smaller with 5.3% more accurate labels on Cora (4 labeled nodes per class) during self-
training. Similarly, with 8 labeled nodes per class, SPF generates training sets that are 1.2× smaller with
4.8% more accurate labels compared to training sets generated solely based on confidence. We find that
using 10 spf_iterations with a spf_sampling_rate of 0.9 works well in all our experiments. While the
accuracy of training labels can be marginally improved by using smaller values of spf_sampling_rate (Fig
4), the number of nodes added to the training set in each stage decreases greatly. For instance, on Cora
with 4 labels per class, 1801 nodes are added to the training set (label accuracy = 85.1%) over the course of
self-training with a spf_sampling_rate of 0.9. When a spf_sampling_rate of 0.8 is used, only 1206 nodes
are added to the training set (label accuracy = 85.4%). As a result, the accuracy gains from multi-stage
self-training are diminished when spf_sampling_rate is too small.

Figure 7: Accuracy of pseudolabels generated for different confidence thresholds with and with-
out SPF. Results shown are based on all the nodes added to the training set during self-training of a 3-layer
CaGCN model. The different points on the curves are obtained by varying the confidence threshold from
0.2 (far-right) to 0.99 (far-left). For SPF, 10 spf_iterations are used with a spf_sampling_rate of 0.9 to
test consistency of predictions.

4.2.2 DR reduces the impact of noisy training labels.

While SPF helps reduce noise in training labels by filtering out nodes that are likely to be incorrectly
classified, DR minimizes the impact of residual errors in training labels after SPF. We demonstrate that
dynamically altering the sampling rate is effective at reducing the impact of label noise in Fig. 8. During
the first stage of self-training (when golden labels are used), higher sampling rates provide better accuracy.
As label accuracy decreases, lower sampling rates prevent overfitting to noisy labels. Therefore, we find that
reducing the sampling rate after the first stage of self-training leads to significant improvement in accuracy
of the final self-trained model (Fig. 8), and we empirically find that reducing the sampling rate from 0.9
(10% of incident edges of node are randomly pruned in each training epoch) in the first stage to 0.8 after
the first stage provides highest accuracy across datasets and GNN architectures.

10



Published in Transactions on Machine Learning Research (04/2023)

Figure 8: CaGCN accuracy across self-training stages with different sampling rates. Results are
obtained from self-training a 3-layer CaGCN model with confidence threshold 0.8.

4.2.3 DS overcomes the layer effect across different self-training stages to improve final accuracy.

Prior research has demonstrated the "layer effect" in GNNs, where deeper GNNs are required for effective
information propagation in the presence of very few training nodes (Sun et al.). As the number of training
nodes increases, GNNs with less layers tend to achieve higher accuracy due to the over-smoothing problem
(Chen et al., 2020a) in deeper GNNs. Here, we demonstrate that the "layer effect" plays a significant role
during the different stages of self-training (Fig. 9). With 4 labeled nodes per class on Cora, the 3-layer
CaGCN outperforms the 2-layer CaGCN due to better propagation of label information. However, we
demonstrate that substantial accuracy gains can be achieved by switching to a 2-layer CaGCN model after
the first stage of self-training when more nodes are added to the training set (approximately 300 nodes per
class in this case). When starting with 8 labeled nodes per class, the 2-layer CaGCN model achieves higher
accuracy at the end of self-training, even though a 3-layer CaGCN model is more accurate (and hence,
generates more accurate pseudolabels) after the first stage. Since the accuracy gap between the models
at the end of the first stage is small, we find that the over-smoothing issue outweighs the advantages of a
more accurate training set in the 3-layer CaGCN model. Therefore, we find that using a 3-layer CaGCN
model in the first stage of self-training and a 2-layer CaGCN model in all subsequent stages enables reaping
the benefits of a more accurate training set without encountering the over-smoothing problem, leading to
the most accurate predictions on unlabeled nodes. Across different datasets and GNN architectures, we
empirically observe that when approximately 2.5% of all nodes in the graph are labeled, there is sufficient
supervision for 2-layer models to outperform 3-layer (and deeper) models in all stages of self-training. As a
result, when number of labeled nodes per class increases, the accuracy gains from DS diminish, since there
is sufficient supervision to cause over-smoothing in deep GNNs even in the first self-training stage (Table 4).

Figure 9: Stage-wise accuracy during self-training of CaGCN with confidence threshold of 0.8.

11



Published in Transactions on Machine Learning Research (04/2023)

4.2.4 PGP significantly outperforms single-shot pruning of inter-class edges.

Figure 10: CaGCN accuracy with dif-
ferent pruning methods. Results are ob-
tained from self-training a 3-layer CaGCN
model with confidence threshold of 0.8.

PGP only prunes inter-class edges between nodes in the train-
ing set in each stage. PGP improves accuracy over methods
that do not prune inter-class edges, since inter-class edges add
noise and exacerbate the over-smoothing problem (Fig. 10).
When only few training nodes are available, PGP also signifi-
cantly outperforms one-shot pruning (edges are pruned based
on predictions of all nodes after the first stage of self-training;
if the prediction of a node does not match the prediction of its
neighbor, then the edge between the node and its neighbor is
pruned). In fact, the difference in accuracy between PGP and
one-shot pruning can be as high as 15%, and this difference is
highest when the number of labeled nodes/class is minimum
(Fig. 10). In fact, we find that with 4 labels/class, one-shot
pruning prunes 54% of all inter-class edges in the graph, while
also incorrectly pruning 21% of all intra-class edges, thereby
leading to a large drop in accuracy. In contrast, PGP prunes
62% of all inter-class edges, while pruning only 7% of all intra-class edges at the end of self-training.

5 Discussion

In this section, we describe some limitations of the proposed framework and identify directions for future
research.

While SPF, DR and DS work well on homophilous and heterophilous graphs, pruning inter-class edges
through PGP is applicable only to homophilous graphs, where connected nodes are expected to have similar
labels (for example, citation networks, where authors are likely to cite authors working in similar fields).
In the case of heterophilous graphs, connected nodes have dissimilar labels, and hence, pruning inter-class
edges is highly undesirable. In graphs that rely on the heterophily assumption, a slightly modified version
of PGP – pruning intra-class edges instead of inter-class edges – leads to accuracy gains by reducing the
effect of over-smoothing (see Appendix F). However, PGP cannot be trivially modified to work with graphs
where both inter-class and intra-class edges are prominent (for example, molecular graphs, where atoms are
connected to both other atoms of the same kind, and to atoms of different kinds).

In FASTRAIN-GNN, we only consider optimizations that simultaneously improve both accuracy and com-
putational efficiency. Future work can use insights from FASTRAIN-GNN to maximize either the accuracy
or training efficiency of self-training but not both. For instance, adding virtual intra-class edges (in addition
to pruning inter-class edges with PGP) can further improve the information-to-noise during message passing,
and hence, further increase accuracy at the cost of training efficiency. Similarly, pruning less-important edges
also during PGP (using methods such as Lottery Ticket Hypothesis (Chen et al., 2021)) can lead to further
efficiency gains at a small accuracy cost.

6 Conclusion

In this work, we presented FASTRAIN-GNN, a framework for fast and accurate self-supervised training
of GNNs. The framework introduced four major optimizations to conventional multi-stage self-training.
Sampling-based Pseudolabel Filtering was proposed to obtain smaller training sets with more accurate train-
ing labels. Dynamic Regularization was proposed to reduce the impact of residual errors in training labels
after SPF. Dynamic Sizing was introduced to overcome the layer effect during self-training. Finally, Progres-
sive Graph Pruning incrementally removed inter-class edges from the graph to improve the information-to-
noise ratio during message passing. We demonstrated that FASTRAIN-GNN simultaneously accelerates the
self-training process and improves the accuracy of the self-trained models over the current state-of-the-art
methods.

12



Published in Transactions on Machine Learning Research (04/2023)

7 Acknowledgement

This work was supported in part by the Center for the Co-Design of Cognitive Systems (CoCoSys), a
JUMP2.0 center sponsored by the Semiconductor Research Corporation (SRC) and DARPA, and in part by
SRC under the AIHW program.

References
Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering for unsupervised

learning of visual features. In Computer Vision - ECCV 2018 - 15th European Conference, Munich,
Germany, September 8-14, 2018, Proceedings, Part XIV, volume 11218 of Lecture Notes in Computer
Science, pp. 139–156. Springer, 2018. URL https://doi.org/10.1007/978-3-030-01264-9_9.

Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the over-smoothing
problem for graph neural networks from the topological view. In The Thirty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2020, pp. 3438–3445. AAAI Press, 2020a. URL https://ojs.aaai.org/
index.php/AAAI/article/view/5747.

Jie Chen, Tengfei Ma, and Cao Xiao. FastGCN: Fast Learning with Graph Convolutional Networks via
Importance Sampling. In 6th International Conference on Learning Representations, ICLR 2018, Van-
couver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018. URL
https://openreview.net/forum?id=rytstxWAW.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph convolutional
networks. In Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18
July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pp. 1725–1735. PMLR,
2020b. URL http://proceedings.mlr.press/v119/chen20v.html.

Tianlong Chen, Yongduo Sui, Xuxi Chen, Aston Zhang, and Zhangyang Wang. A unified lottery ticket
hypothesis for graph neural networks. In Proceedings of the 38th International Conference on Machine
Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning
Research, pp. 1695–1706. PMLR, 2021. URL http://proceedings.mlr.press/v139/chen21p.html.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural networks.
In Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW,
Australia, 6-11 August 2017, volume 70 of Proceedings of Machine Learning Research, pp. 1321–1330.
PMLR, 2017. URL http://proceedings.mlr.press/v70/guo17a.html.

William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 1024–1034, 2017. URL https://
proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay S. Pande, and Jure Leskovec.
Strategies for pre-training graph neural networks. In 8th International Conference on Learning Rep-
resentations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL
https://openreview.net/forum?id=HJlWWJSFDH.

Zhihui Hu, Guang Kou, Haoyu Zhang, Na Li, Ke Yang, and Lin Liu. Rectifying pseudo labels: Iterative
feature clustering for graph representation learning. In CIKM ’21: The 30th ACM International Conference
on Information and Knowledge Management, Virtual Event, Queensland, Australia, November 1 - 5, 2021,
pp. 720–729. ACM, 2021. URL https://doi.org/10.1145/3459637.3482469.

Binyuan Hui, Pengfei Zhu, and Qinghua Hu. Collaborative graph convolutional networks: Unsupervised
learning meets semi-supervised learning. In The Thirty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020,
The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York,

13

https://doi.org/10.1007/978-3-030-01264-9_9
https://ojs.aaai.org/index.php/AAAI/article/view/5747
https://ojs.aaai.org/index.php/AAAI/article/view/5747
https://openreview.net/forum?id=rytstxWAW
http://proceedings.mlr.press/v119/chen20v.html
http://proceedings.mlr.press/v139/chen21p.html
http://proceedings.mlr.press/v70/guo17a.html
https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
https://openreview.net/forum?id=HJlWWJSFDH
https://doi.org/10.1145/3459637.3482469


Published in Transactions on Machine Learning Research (04/2023)

NY, USA, February 7-12, 2020, pp. 4215–4222. AAAI Press, 2020. URL https://ojs.aaai.org/index.
php/AAAI/article/view/5843.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In
5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net, 2017. URL https://openreview.net/forum?id=
SJU4ayYgl.

Hongkang Li, Meng Wang, Sijia Liu, Pin-Yu Chen, and Jinjun Xiong. Generalization guarantee of training
graph convolutional networks with graph topology sampling. In International Conference on Machine
Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine
Learning Research, pp. 13014–13051. PMLR, 2022. URL https://proceedings.mlr.press/v162/li22u.
html.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for semi-
supervised learning. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,
(AAAI-18), pp. 3538–3545. AAAI Press, 2018. URL https://www.aaai.org/ocs/index.php/AAAI/
AAAI18/paper/view/16098.

Sheng Liu, Jonathan Niles-Weed, Narges Razavian, and Carlos Fernandez-Granda. Early-learning reg-
ularization prevents memorization of noisy labels. In Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
ea89621bee7c88b2c5be6681c8ef4906-Abstract.html.

Yuanfu Lu, Xunqiang Jiang, Yuan Fang, and Chuan Shi. Learning to pre-train graph neural networks. In
Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innova-
tive Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances
in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021, pp. 4276–4284. AAAI Press,
2021. URL https://ojs.aaai.org/index.php/AAAI/article/view/16552.

Amrit Nagarajan, Jacob R. Stevens, and Anand Raghunathan. Efficient ensembles of graph neural networks.
In DAC ’22: 59th ACM/IEEE Design Automation Conference, San Francisco, California, USA, July 10
- 14, 2022, pp. 187–192. ACM, 2022. URL https://doi.org/10.1145/3489517.3530416.

Morteza Ramezani, Weilin Cong, Mehrdad Mahdavi, Anand Sivasubramaniam, and Mahmut T. Kandemir.
GCN meets GPU: Decoupling "When to Sample" from "How to Sample". In Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
d714d2c5a796d5814c565d78dd16188d-Abstract.html.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph convolutional
networks on node classification. In 8th International Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.net/forum?
id=Hkx1qkrKPr.

Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout:
a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15(1):1929–1958, 2014.
URL https://dl.acm.org/doi/10.5555/2627435.2670313.

Ke Sun, Zhouchen Lin, and Zhanxing Zhu. Multi-stage self-supervised learning for graph convolu-
tional networks on graphs with few labeled nodes. In The Thirty-Fourth AAAI Conference on Ar-
tificial Intelligence, AAAI 2020, pages = 5892–5899, publisher = AAAI Press, year = 2020, url =
https://ojs.aaai.org/index.php/AAAI/article/view/6048,.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio.
Graph attention networks. In 6th International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018.
URL https://openreview.net/forum?id=rJXMpikCZ.

14

https://ojs.aaai.org/index.php/AAAI/article/view/5843
https://ojs.aaai.org/index.php/AAAI/article/view/5843
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://proceedings.mlr.press/v162/li22u.html
https://proceedings.mlr.press/v162/li22u.html
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16098
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16098
https://proceedings.neurips.cc/paper/2020/hash/ea89621bee7c88b2c5be6681c8ef4906-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/ea89621bee7c88b2c5be6681c8ef4906-Abstract.html
https://ojs.aaai.org/index.php/AAAI/article/view/16552
https://doi.org/10.1145/3489517.3530416
https://proceedings.neurips.cc/paper/2020/hash/d714d2c5a796d5814c565d78dd16188d-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/d714d2c5a796d5814c565d78dd16188d-Abstract.html
https://openreview.net/forum?id=Hkx1qkrKPr
https://openreview.net/forum?id=Hkx1qkrKPr
https://dl.acm.org/doi/10.5555/2627435.2670313
https://openreview.net/forum?id=rJXMpikCZ


Published in Transactions on Machine Learning Research (04/2023)

Vikas Verma, Meng Qu, Kenji Kawaguchi, Alex Lamb, Yoshua Bengio, Juho Kannala, and Jian Tang.
Graphmix: Improved training of gnns for semi-supervised learning. In Thirty-Fifth AAAI Conference on
Artificial Intelligence, AAAI 2021.

Xiao Wang, Hongrui Liu, Chuan Shi, and Cheng Yang. Be confident! towards trustworthy graph neu-
ral networks via confidence calibration. In Advances in Neural Information Processing Systems 34:
Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14,
2021, virtual, pp. 23768–23779, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
c7a9f13a6c0940277d46706c7ca32601-Abstract.html.

Han Yang, Xiao Yan, Xinyan Dai, Yongqiang Chen, and James Cheng. Self-enhanced GNN: improving graph
neural networks using model outputs. In International Joint Conference on Neural Networks, IJCNN 2021,
Shenzhen, China, July 18-22, 2021, pp. 1–8. IEEE, 2021. URL https://doi.org/10.1109/IJCNN52387.
2021.9533748.

Shuai Zhang, Meng Wang, Pin-Yu Chen, Sijia Liu, Songtao Lu, and Miao Liu. Joint edge-model sparse
learning is provably efficient for graph neural networks. In The Eleventh International Conference on
Learning Representations, 2023. URL https://openreview.net/forum?id=4UldFtZ_CVF.

Ziang Zhou, Shenzhong Zhang, and Zengfeng Huang. Dynamic self-training framework for graph convolu-
tional networks. CoRR, abs/1910.02684, 2019. URL http://arxiv.org/abs/1910.02684.

A Computational demands of conventional self-training

Figure 11: Impact of number of stages of self-
training. Gains in accuracy (wall-clock training time)
are reported over (normalized to) training using only
the labeled nodes (4 labeled nodes/class).

Conventional self-training can lead to substantial ac-
curacy gains (up to 14.9% absolute gain) over super-
vised training, but it comes at a large computational
cost (Table 5). We find that 4-stage self-training al-
ways takes > 4× longer than single-stage supervised
training on only the labeled nodes for two reasons:
(1) each stage of self-training is performed on a pro-
gressively larger training set, and (2) training set
augmentation also adds some overheads, since all
unlabeled nodes need to be predicted (see Appendix
E). As the number of labeled nodes increases, the ac-
curacy gain from self-training decreases, since there
is sufficient supervision to learn effectively from only
the labeled nodes. We also analyze the impact of the
number of stages of self-training on both accuracy
and wall-clock training time (Fig. 11). Initially,
as the number of self-training stages, the accuracy
of the self-trained model also increases. However,
when the number of stages is increased beyond a
certain number, the accuracy gain saturates, while the wall-clock training time continues to increase. We
observe that this accuracy saturation happens because very few nodes are added to the training set in the
later stages of self-training.

B Optimized Baselines

We present two simple optimizations to the conventional self-training loop that improves the accuracy of
previously reported baselines by up to 10%.

15

https://proceedings.neurips.cc/paper/2021/hash/c7a9f13a6c0940277d46706c7ca32601-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/c7a9f13a6c0940277d46706c7ca32601-Abstract.html
https://doi.org/10.1109/IJCNN52387.2021.9533748
https://doi.org/10.1109/IJCNN52387.2021.9533748
https://openreview.net/forum?id=4UldFtZ_CVF
http://arxiv.org/abs/1910.02684


Published in Transactions on Machine Learning Research (04/2023)

Table 5: Benefits and overheads of conventional self-training. Results are obtained from 4-stage self-
training of a GCN model with all hyperparameters set to their optimal value. Gains in accuracy (absolute
points)/ wall-clock training time are reported over/ normalized to supervised training using only the labeled
nodes, and averaged across 100 random train-test splits.

Dataset Labeled nodes/class Accuracy gain Normalized training time

Cora

1 3.8 4.9
2 1.8 4.7
4 1.7 4.6
8 0.7 4.4
16 0.3 4.1

Citeseer

1 1.2 5.7
2 3.0 5.4
4 2.0 5.2
8 2.4 4.9
16 0.9 4.8

Pubmed

1 14.9 5.5
2 12.4 5.5
4 6.4 5.4
8 1.8 5.2
16 0.8 5.0

B.1 GNN model architecture selection for different label rates

At low label rates, deeper GNNs are more accurate due to better propagation of label information. At higher
label rates, deeper GNNs suffer from the over-smoothing problem, where nodes belonging to different classes
acquire very similar representations. As a result, shallow GNNs outperform deeper GNNs at higher label
rates. Therefore, choosing the appropriate GNN architecture for the given label rate is vital, and leads to
substantial accuracy improvements over previously reported baselines that always use 2-layer GNNs (Table
6).

Table 6: Results of training GCN with different label rates. GCN-opt chooses the appropriate GCN
architecture for the given label rate. Self-training initializes the GCN model in each stage using the trained
weights from the previous stage (random in stage 1), while Self-training-opt randomly initializes the GCN
model in all stages. Both versions of self-training train the GCN-opt model.

Dataset Labels/Class 2-layer GCN GCN-opt Self-training Self-training-opt

Cora

1 41.1 48.9 51.3 52.7
2 60.7 64.3 65.0 66.1
4 67.2 69.1 69.6 70.8
8 74.6 74.8 75.1 75.5
16 78.8 78.8 78.9 79.1

Citeseer

1 34.8 38.1 38.6 39.3
2 40.7 49.9 50.7 52.9
4 51.1 58.1 58.8 60.1
8 64.2 64.4 65.6 66.8
16 69.1 69.1 69.4 70.0

Pubmed

1 40.7 42.8 49.8 57.7
2 54.5 56.1 60.3 68.4
4 62.1 63.3 66.2 69.7
8 69.4 69.9 70.5 71.7
16 76.7 76.7 77.1 77.4

CoraFull

1 25.8 26.4 28.2 29.1
2 27.4 29.6 31.8 33.0
4 41.1 43.2 43.7 44.7
8 53.0 53.2 54.8 55.6

16



Published in Transactions on Machine Learning Research (04/2023)

B.2 Random initialization of the GNN model in each stage

The majority of previous works (such as Zhou et al. (2019); Li et al. (2018) etc.) initialize the model using
the trained weights from the previous stage (when stage > 1), and randomly initialize the weights only in
stage 1. However, we find that randomly initializing the weights in all stages leads to more accurate models
at the end of self-training (Fig. 12). In particular, we find that the total training loss is very small when
weights are initialized from the trained model in the previous stage (even after the training set is enlarged),
since only nodes with highly confident predictions are added to the training set. As a result, multi-stage
self-training only leads to a small improvement in accuracy over single-stage training. In contrast, randomly
initializing the model in each stage enables the model to make the best use of the enlarged training set (by
effectively forgetting everything learnt in the previous stage, and learning on the enlarged training set from
scratch, leading to better node representations). However, we also note that random initialization in all
stages requires a larger number of training epochs in each stage for convergence, and hence, incurs larger
training overheads. In our experiments, we find that the number of training epochs needed for convergence in
each stage is approximately 50-100 with random initialization, and 25-50 when initializing from the previous
stage.

Figure 12: Accuracy with and without random initialization in all stages. Accuracy is measured on
all unlabeled nodes in the graph (3-layer GCN model, 4-stage self-training, 500 training epochs per stage,
confidence threshold = 0.8).

C Comparison of previously proposed self-training methods

Table 7: Results of training GCN with different self-training methods on Cora. The most accurate
model without using our FASTRAIN-GNN framework is underlined, while the most accurate model overall
is displayed in bold.

Self-training method Accuracy of self-trained model
2 Labels/Class 4 Labels/Class 8 Labels/Class

Co-train (Li et al., 2018) 66.5 71.1 75.0
Union (Li et al., 2018) 66.3 71.2 75.7

Intersection (Li et al., 2018) 64.2 69.7 74.7
Self-train (Li et al., 2018) 66.1 70.8 75.5

M3S (Sun et al.) 61.5 67.2 75.6
DSGCN (Zhou et al., 2019) 68.9 72.6 77.6

CGCN (Hui et al., 2020) 64.3 72.4 76.8
Self-train-CaGCN (Wang et al., 2021) 69.5 71.9 79.4

FASTRAIN-CaGCN (Ours) 73.0 74.1 81.6

While the the optimizations proposed in FASTRAIN-GNN can be used in conjunction with different pseu-
dolabeling methods, we demonstrate that FASTRAIN-CaGCN produces more accurate models compared to
previously proposed self-training methods (Table 7). For M3S and CGCN, we report results directly from

17



Published in Transactions on Machine Learning Research (04/2023)

the respective papers. For all other methods, we report the average accuracy across 100 different random
train-test splits.

D Hyperparameter Tuning

We describe how the different hyperparameters introduced in the FASTRAIN-GNN framework can be tuned
to maximize the accuracy of the self-trained models. We note that PGP does not involve any hyperparam-
eters. While the exact hyperparameters used in our experiments are listed in Table 8, we describe insights
from our hyperparameter-tuning experiments in the following subsections to enable faster hyperparameter
optimization in future works.

Table 8: Hyperparameters used in our experiments. The exact same hyperparameters are used in all
our experiments spanning different datasets, GNN architectures and label rates.

Hyperparameter Description Value

spf_sampling_rate (SPF) Fraction of edges retained in the graph 0.9in each sampled configuration

spf_iterations (SPF) Number of sampled configurations generated 10for testing robustness of predictions

sampling_rate_init (DR) Sampling rate used in the 0.9first stage of self-training

sampling_rate_final (DR) Sampling rate used from the 0.8second stage of self-training onward

deep_gnn (DS) Architecture of the deep GNN used in the 3-layer GCN/ GATinitial stages of self-training

shallow_gnn (DS) Architecture of the shallow GNN used in the 2-layer GCN/ GATlater stages of self-training

DS_Threshold (DS) The size of the training set at which the deep_gnn >=2.5% of nodes in the graph
is to be replaced by the shallow_gnn are labeled or pseudolabeled

D.1 SPF hyperparameters

SPF uses two hyperparameters. (1) spf_sampling_rate denotes the fraction of edges that are retained in
the graph in each sampled configuration used to test the robustness of predictions, and (2) spf_iterations
denotes the number of sampled configurations that are used to test the robustness of predictions (only those
nodes whose predictions remain constant across all sampled configurations are added to the training set).

Table 9: Impact of spf_sampling_rate on accuracy of the self-trained model. Results are obtained
from self-training a CaGCN model using different spf_sampling_rates (all other hyperparameters are set
to their optimal value).

Dataset spf_sampling_rate
Number of nodes Accuracy of nodes Accuracy of

added to training set added to training set self-trained model

Cora (4 labels/class)

0.95 2194 83.9 73.2
0.9 1801 85.1 74.1
0.85 1745 85.3 73.9
0.8 1206 85.4 73.5
0.7 917 85.6 73.3

Cora (16 labels/class)

0.95 2421 83.1 82.7
0.9 2168 87.3 83.4
0.85 1947 87.8 83.4
0.8 1601 88.1 82.9
0.7 1105 88.4 82.7

When spf_sampling_rate is too large (>=0.95), we find that there is insufficient perturbation to the graph
structure to distinguish between robust and non-robust predictions. As a result, the predictions of the vast

18



Published in Transactions on Machine Learning Research (04/2023)

majority of candidate nodes remain constant across sampled configurations, and SPF becomes ineffective
(Table 9). On the other hand, when spf_sampling_rate is too small (<=0.8), the number of nodes with
consistent predictions decreases drastically. The primary reason for the high effectiveness of self-training for
few-shot transductive node classification is the increased number of nodes taking part in the training process
through training set augmentation (either because they are added to the training set, or because they are
neighbors of nodes added to the training set). As a result, the decreased coverage of nodes taking part in
training with a small spf_sampling_rate outweighs the benefits of more accurate training labels (Table 9).
In our experiments, we find that spf_sampling_rate = 0.9 provides the best trade-off between coverage of
nodes seen during training and the accuracy of training labels (across all datasets and label rates).

Since sampling randomly prunes edges from the graph, some sampled configurations will not have any impact
on a given node. As a result, spf_iterations should be sufficiently high to ensure that perturbations affect the
computation graphs of all candidate nodes (Table 10). In our experiments, we find that spf_iterations = 10
is sufficient to distinguish between robust and non-robust predictions (across all datasets and label rates). We
note that the computational complexity of SPF is directly proportional to spf_iterations, and statistically
significant accuracy gains are not obtained with increasing spf_iterations beyond 10.

Table 10: Impact of spf_iterations on accuracy of the self-trained model. Results are obtained
from self-training a CaGCN model using different spf_iterations (all other hyperparameters are set to their
optimal value).

Dataset spf_iterations
Number of nodes Accuracy of nodes Accuracy of

added to training set added to training set self-trained model

Cora (4 labels/class)

2 2068 84.2 73.4
5 2008 84.6 73.8
10 1801 85.1 74.1
20 1797 85.3 74.2
50 1796 85.3 74.2

Cora (16 labels/class)

2 2378 85.7 82.9
5 2182 86.9 83.1
10 2168 87.3 83.4
20 2167 87.3 83.4
50 2164 87.4 83.4

D.2 DR hyperparameters

DR uses two hyperparameters. (1) sampling_rate_init denotes the sampling rate in the first stage of self
training (when only nodes with golden labels are used for training), and (2) sampling_rate_final denotes
the sampling rate used when pseudolabeled nodes are added to the training set. We use sampling_rate_init
in the first stage of self-training, and sampling_rate_final in all subsequent stages. Sampling in GNNs is
analogous to dropout (Srivastava et al., 2014) in other classes of neural networks. Dropout (a commonly used
regularizer for training DNNs) prunes a random subset of neurons in the model in each training iteration.
Similarly, sampling prunes a random subset of edges in the graph in each training iteration. As a result,
sampling provides a regularization effect that prevents overfitting to training labels, thereby improving
generalization performance (Li et al., 2022). The benefits of sampling can also be seen in Fig. 3. A dropout
rate of p indicates that the probability of a neuron being pruned in a given training iteration is (1-p).
Similarly, a sampling rate of s also indicates that the probability of an edge in the graph being pruned in a
given training iteration is (1-s).

In the first stage of self-training, the labels are 100% accurate. In addition, only a small number of training
nodes are available. Therefore, we use a high value for sampling_rate_init to maximize the number of
nodes taking part in the training process, thereby enabling better propagation of information from labeled
nodes. We find that sampling_rate_init = 0.9 works well across datasets and label rates in our experiments
(Fig. 3). In fact, we observe that even in the presence of only golden labels, the regularization effect from
sampling is important (when sampling_rate_init >= 0.95, there is an accuracy drop due to overfitting to
the limited training data).

19



Published in Transactions on Machine Learning Research (04/2023)

While sampling is an effective regularizer for preventing overfitting to noisy training labels, we find that
under-sampling the graph adversely affects convergence during training, thereby preventing learning from
correct labels also. We empirically find that sampling_rate_final = 0.8 works well across datasets and label
rates in our experiments, since it provides the best balance between preventing overfitting and convergence.
This can be seen in Fig. 3, where a sampling rate of 0.8 typically leads to the most accurate trained models
when the accuracy of training labels is between 80% and 100%.

D.3 DS hyperparameters

DS uses three hyperparameters. (1) deep_gnn denotes the architecture of the deep GNN used in the initial
stages of self training. (2) shallow_gnn denotes the architecture of the shallow GNN used in the later stages
of self training. (3) DS_Threshold determines the stage of self-training at which the deep_gnn is replaced
by the shallow_gnn.

The choice of architecture for both deep_gnn and shallow_gnn depends on the GNN model that is used
for self-training, since different GNN variants require different numbers of layers for best accuracy. On the
widely studied GCN and GAT models used in our experiments, 2-layer models have been reported to be the
most accurate for supervised training on a large number of labeled nodes. We observe that 3-layer models
are most accurate for few-shot learning. Therefore, we choose 3-layer GCN/ GAT models as deep_gnn, and
2-layer GCN/ GAT models as shallow_gnn.

When training with few labeled nodes, deep GNNs outperform shallow GNNs due to larger message passing
coverage (enabling more unlabeled nodes to be "seen" during training). On the other hand, the increased
message passing coverage leads to oversmoothing in deep GNNs when training on a large number of labeled
nodes, resulting in shallow GNNs outperforming deep GNNs. The DS_Threshold is used to indicate the
point at which oversmoothing outweighs the benefits of increased message passing coverage as the training
set is augmented during self-training. We empirically observe that when approximately 2.5% of all nodes in
the graph are labeled, there is sufficient coverage for shallow_gnns to outperform deep_gnns (Fig. 5), since
>75% of all nodes in the graph take part in training using shallow GNNs (either because they are added to
the training set, or they are neighbors of nodes in the training set). This holds across the different datasets,
label rates and GNN architectures used in our experiments. We also find that this holds irrespective of the
choice of initial training nodes. For instance, on Cora with 4 labeled nodes/class, the 3-layer GCN model
achieves higher accuracy than the 2-layer GCN model at the end of the first stage of self-training in all 100
out of 100 trials with random train-test splits. Similarly, on Cora with 16 labeled nodes/class, the 2-layer
GCN model achieves higher accuracy than the 3-layer GCN model at the end of the first stage of self-training
in 98 out of 100 trials.

E Overheads of the FASTRAIN-GNN optimizations

Figure 13: Fraction of wall-clock self-
training time spent in each step. Re-
sults are obtained from self-training a 3-
layer GCN model with confidence threshold
of 0.8.

We find that the different FASTRAIN-GNN optimizations
add minimal overheads (Fig. 13). SPF involves generating
spf_iterations different sampled configurations (which takes
only a few milliseconds), and predicting the high-confidence
candidate nodes with different sampled configurations. We find
that the fraction of runtime spent in SPF (8-10% of the total
runtime) is similar to the fraction of runtime spent in comput-
ing the prediction confidence of all unlabeled nodes. This is
because the additional computational complexity of predicting
candidate nodes multiple times is amortized by two factors: (1)
the set of candidate nodes is typically a small subset of all unla-
beled nodes in the graph, and (2) each prediction is faster, since
edges in the graph are pruned through sampling. DS and DR
together account for <0.01% of the total runtime, since they
only involve modifying hyperparameters. PGP involves identi-
fying and pruning inter-class edges between labeled nodes. At

20



Published in Transactions on Machine Learning Research (04/2023)

the end of each stage of self-training, PGP analyzes the labeled
neighbors of nodes that were added to the training set in that stage to identify inter-class edges. Since 1-
hop neighbors of labeled nodes can be quickly identified from the adjacency matrix, PGP only adds small
overheads, typically accounting for <2% of the total runtime.

F Results on heterophilous graphs

Table 11: Dataset characteristics. Homophily ratio is the ratio
of edges connecting nodes of the same class to the total number
of edges.
Dataset Classes Nodes Edges Feature size Homophily Ratio

Chameleon 4 2277 36101 2325 0.23
Texas 5 183 309 1703 0.11

Wisconsin 5 251 499 1703 0.21
Cornell 5 183 295 1703 0.3

In this section, we present results on
heterophilous graphs, where connected
nodes are likely to have dissimilar labels.
We follow the procedure described in GC-
NII (Chen et al., 2020b) for processing
the datasets. Similar to the experimen-
tal setup for homophilous graphs, we ran-
domly select (labels/class) nodes of each
class as training nodes, and report results
on the rest of the nodes in the graph. We repeat this process 100 times for each value of (labels/class), and
all results reported in this section are averaged across 100 different training splits. The datasets used for
testing are summarized in Table 11. Since some classes contain too few nodes to get a meaningful train-test
split in the Texas, Wisconsin and Cornell datasets, we do not present results with 16 labels/class. We use
the same hyperparameters for these experiments as those used for homophilous graphs (listed in Table 8).

Table 12: Results of training GCN with different label rates on heterophilous graphs. Results
are averaged across 100 runs with random train-test splits (subscripts indicate standard deviation).

Dataset Labels/Class GCN Self-train-GCN FASTRAIN-GCN

Chameleon

1 22.74.9 26.24.9 28.84.5
2 28.43.8 31.94.5 35.64.4
4 33.84.1 35.13.6 38.43.9
8 35.03.2 36.94.1 39.33.7
16 40.52.9 41.42.2 42.83.1

Texas

1 28.33.6 32.44.1 35.33.9
2 38.24.8 41.44.4 44.74.7
4 45.52.5 47.23.1 49.42.8
8 50.61.7 51.51.4 52.71.5

Wisconsin

1 31.73.4 33.33.2 36.43.8
2 36.04.4 37.93.8 40.24.2
4 44.83.3 46.42.4 48.93.1
8 49.21.3 50.61.8 51.71.9

Cornell

1 33.54.4 36.43.9 38.74.4
2 40.14.6 43.04.0 45.93.5
4 47.83.1 49.14.2 52.23.6
8 53.92.5 54.82.1 56.12.1

We present results on the Chameleon, Texas, Wisconsin and Cornell datasets with different label rates in
Table 12. While SPF, DR and DS are used without any modifications, PGP is modified to prune intra-
class edges instead of inter-class edges for heterophilous graphs. If we have no prior knowledge about
whether the graph is homophilous or heterophilous, we can decipher this from the training set (containing
nodes with actual labels and pseudolabels) at the end of the first stage of self-training. The homophily
ratio (ratio of edges connecting nodes of the same class to the total number of edges) of edges connecting
nodes in the training set indicates whether the graph is homophilious or heterophilious. For instance, Cora
(a homophilous graph) has an average homophily ratio of 0.83 among nodes in the training set after the
first stage of self-training, while Chameleon (a heterophilous graph) has a homophily ratio of 0.2. We

21



Published in Transactions on Machine Learning Research (04/2023)

find that FASTRAIN-GNN consistently outperforms conventional self-training under different label rates on
heterophilous graphs also. In addition to producing models that are more accurate, FASTRAIN-GNN also
accelerates the self-training process (Table 13).

Table 13: Accuracy and efficiency gains from the different FASTRAIN-GNN optimizations on
Chameleon. Speedup is computed over self-training of the more accurate among 2/3-layer models, and
averaged across different train/test splits and label rates. +Intra-class edges are pruned in PGP instead of
inter-class edges.

Labels/Class Self-Training-GCN with SPF and DR with SPF, with SPF, DR,
(2-layer/ 3-layer GCN) (2-layer/ 3-layer GCN) DR and DS DS and PGP+

1 23.43.6 / 26.24.9 24.03.2 / 26.83.8 27.73.9 28.84.5
2 28.72.9 / 31.94.5 30.03.3 / 33.24.1 34.54.6 35.64.4
4 33.93.1 / 35.13.6 35.03.0 / 36.22.9 37.14.1 38.43.9
8 36.94.1 / 36.13.9 38.03.8 / 37.53.6 38.63.5 39.33.7
16 41.42.2 / 38.71.9 41.92.4 / 39.91.1 41.92.4 42.83.1

Average Speedup 1X 1.2X 1.7X 1.9X

22


	Introduction
	Related Work
	The FASTRAIN-GNN framework
	Sampling-based Pseudolabel Filtering (SPF)
	Dynamic Regularization (DR)
	Dynamic Sizing (DS)
	Progressive Graph Pruning (PGP)

	Experiments and Results
	Primary Results
	Ablation Study: Breakdown of benefits from different FASTRAIN-GNN optimizations
	SPF improves the quality of generated pseudolabels.
	DR reduces the impact of noisy training labels.
	DS overcomes the layer effect across different self-training stages to improve final accuracy.
	PGP significantly outperforms single-shot pruning of inter-class edges.


	Discussion
	Conclusion
	Acknowledgement
	Computational demands of conventional self-training
	Optimized Baselines
	GNN model architecture selection for different label rates
	Random initialization of the GNN model in each stage

	Comparison of previously proposed self-training methods
	Hyperparameter Tuning
	SPF hyperparameters
	DR hyperparameters
	DS hyperparameters

	Overheads of the FASTRAIN-GNN optimizations
	Results on heterophilous graphs

