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Abstract

We consider the problem of analyzing multivariate time series collected on multiple subjects,
with the goal of identifying groups of subjects exhibiting similar trends in their recorded measure-
ments over time as well as time-varying groups of associated measurements. To this end, we propose a
Bayesian model for temporal biclustering featuring nested partitions, where a time-invariant partition
of subjects induces a time-varying partition of measurements. Our approach allows for data-driven
determination of the number of subject and measurement clusters as well as estimation of the number
and location of changepoints in measurement partitions. To efficiently perform model fitting and
posterior estimation with Markov Chain Monte Carlo, we derive a blocked update of measurements’
cluster-assignment sequences. We illustrate the performance of our model in two applications to
functional magnetic resonance imaging data and to an electroencephalogram dataset. The results
indicate that the proposed model can combine information from potentially many subjects to discover
a set of interpretable, dynamic patterns. Experiments on simulated data compare the estimation
performance of the proposed model against ground-truth values and other statistical methods, show-
ing that it performs well at identifying ground-truth subject and measurement clusters even when
no subject or time dependence is present.
Keywords: probabilistic clustering, nested partitions, separate exchangeability, sparse finite mix-
tures, fMRI, event related potentials

1 Introduction

Many scientific studies follow multiple units over time, systematically collecting a range of measurements
on each unit at set intervals. This process generates multivariate time series data for each unit. For
example, in climate studies, meteorological and environmental variables are recorded at multiple locations
(units), recurrently over a period of time (Levy et al., 2012). Similarly, in economics, it is common to
analyze the evolution of multiple financial indicators across different countries (units) (Lakštutienė,
2008). Here, we consider applications in neuroscience where multiple brain signals, e.g. functional
magnetic resonance imaging (fMRI) data measured at several brain regions, or electroencephalogram
(EEG) data measured at several electrodes, are recorded on multiple subjects (units) during the course
of an experiment (Bowman, 2014; Luck, 2014). In these applications, the data can be represented as
a three-dimensional array, with rows corresponding to time points, columns corresponding to vectors
of measurements and slices indicating different units; see Figure 1 (left). Analyzing such data requires
addressing the heterogeneity that stems from its dimensions. In neuroscience applications, subgroups of
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subjects may display similar patterns of brain activity over time. Measurements of brain activity can
reveal patterns of associations across brain regions that vary over time and between subjects.

In this paper, we introduce a temporal biclustering framework for modeling the heterogeneity in
multivariate time-series data collected over multiple units. This framework simultaneously identifies
clusters of subjects (profiles) and clusters of measurements (e.g., brain signals) over time (states). A
profile characterizes a specific sequence of states shared by a group of subjects, capturing their common
temporal dynamics. States reflect probabilistic features of the data, for example the expected signal
strength at a particular brain region and time point. While the actual observations may differ across
subjects at each time point, subjects in a profile share the same underlying pattern of transitioning
between states; see Figure 1 (right). Existing Bayesian models for clustering time-series have typically
focused on temporal clustering of multivariate time series for single units. For example, Fox et al. (2011)
combined hidden Markov Models and the hierarchical Dirichlet Process (Teh et al., 2006) to analyze audio
sequences recorded during a meeting and infer a single cluster per time point, indicative of the speaker
at that moment. Recently, Page et al. (2022) proposed a temporal random partition model designed for
analyzing time series data with multivariate measurements. Their model associates a sequence of cluster
assignments to each measurement. A multi-unit model was proposed by Ren et al. (2020) to cluster
individuals based on their diastolic blood pressure collected over time. In addition to being limited to a
single measurement, their approach directly models the number of changepoints, necessitating the use of
a computationally costly reversible-jump Markov Chain Monte Carlo (MCMC) algorithm for posterior
inference.

Our focus is on multivariate time-series data collected from multiple units, with the aim of clus-
tering patterns across both subjects and time. Our approach achieves bi-clustering through two key
assumptions. First, we assume nested partitions, whereby a time-varying partition of measurements
is associated to a time-invariant partition of subjects. Secondly, we employ an assumption of separate
exchangeability (Lin et al., 2021), which states that for subjects within the same profiles, observations of
measurements at the same time points are considered exchangeable. This assumption is reasonable for
measurements collected at different locations in the brain. Consequently, at each time point, the multiple
measurements within each profile share the same state, allowing for borrowing of strength both within
subjects’ profiles and across time points. Similar to the approach in Page et al. (2022), we account for
temporal dependence by encouraging measurements to persist in the same state over consecutive time
steps while learning the number and position of changepoints from the data. For static bi-clustering,
Lee et al. (2013) proposed the use of nested partitions. In their framework, a partition of samples is
nested within a partition of proteins, and two proteins are assigned to the same cluster whenever they
induce the same partition of samples. This idea was later formalized and connected to the principle of
separate exchangeability by Lin et al. (2021), providing a general framework for this modeling approach.
Building upon the plaid model of Lazzeroni and Owen (2002), Murua and Quintana (2022) proposed
a method for estimating overlapping biclusters in gene expression and histone modification data. In a
more recent development, Yan et al. (2022) proposed Bayesian biclustering models specifically designed
for categorical data, with applications to genetic datasets. One of the few methods for biclustering of
three dimensional arrays was developed by Mankad and Michailidis (2014) as a non-Bayesian extension
of the plaid model by Lazzeroni and Owen (2002). When applied to time series data, their model can
find potentially overlapping biclusters with time-varying effects, similar to a bicluster-specific functional
ANOVA. However, this flexibility can lead to hard-to-interpret results and impact the optimization of
the model parameters, as we show in our simulation study.

Our approach employs a robust location-scale t-distribution as the likelihood model, which accom-
modates heterogeneity between observations assigned to the same state while preserving interpretability
and attenuating the influence of outliers. To capture the temporal evolution of states, we adapt the
temporal random partition model (tRPM) proposed by Page et al. (2022) to the multivariate measure-
ment and multi-subject case. The approach allows for temporal persistence of measurements in the same
state, promoting stability and continuity over time. Moreover, it enables flexible resampling of states
from a profile-specific categorical distribution, accommodating potential changes and transitions in the
underlying patterns. We leverage sparse finite mixture priors (Malsiner-Walli et al., 2016) to determine
the number of subject and measurement clusters — that is, profiles and states — in a data-driven
manner. The number and location of changepoints in measurement partitions are also automatically
estimated. Our framework yields interpretable results summarizing information from multivariate multi-
subject time-series data into a smaller set of dynamic patterns that capture their underlying structure
and temporal evolution.

We also develop a novel and efficient algorithm for posterior inference. Unlike previous approaches
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using marginal updates (Page et al., 2022), which can lead to slow and ineffective posterior exploration,
we derive a variant of the forward-backward algorithm (Rabiner, 1989) for blocked variable updates.
This allows for updating the entire sequence of state assignments altogether, conditioning only on the
previous state assignment, enabling the MCMC sampler to efficiently transition between state sequences
over consecutive iterations.

Although our temporal biclustering framework is widely applicable to studies where multiple subjects
undergo the same experiment with multiple measurements recorded at the same time intervals, in this
paper we particularly focus on its application to data from fMRI and EEG experiments. For multi-
subject fMRI data, common approaches include two-stage analyses. Although approaches may vary, in
these methods, estimates of model parameters are typically first summarized at the individual level (e.g.
by fitting a generalized linear model (GLM) separately to each subject) and then plugged into a model
for the population level analysis (e.g. performing analysis of variance on the aggregated GLM results,
see Bowman et al., 2008). Few multi-subject approaches have been developed in the last decade that
do not rely on a two-stage approach but analyze multiple subjects jointly. For example, Zhang et al.
(2016) propose a Bayesian model for the detection of sets of brain regions that activate in response to
a stimulus and are possibly different across subjects. Kundu et al. (2023) propose a Bayesian tensor
response regression approach to compare brain activity between a control and an intervention group
while accounting for subject-level effects. Another approach can be found in Zhao and Prado (2023),
who propose a hierarchical Bayesian model working with partial autocorrelations rather than in the
time or frequency domains, to achieve faster computational inference. In our application to fMRI data,
changepoints in measurement partitions identified by our model largely coincide with the transitions
between resting and activation (or task) blocks, with groups of subjects characterized by varying degrees
of BOLD signal strength. For EEG modeling, event-related potentials (ERPs), measuring neural activity
in response to specific events (e.g. motor or cognitive stimula), are typically collected on multiple subjects
and often analyzed by focusing on single subjects (Kallionpää et al., 2019), or averaging observations
across subjects (Yu et al., 2023). Statistical models for the analysis of multi-subject data include Yu
et al. (2024), who propose a semiparametric latent ANOVA model to estimate the association between
ERP characteristics and subject-level covariates, and Kang et al. (2018), who develop a scalar-on-image
regression model and use soft-thresholded Gaussian processes to study the relationship between a scalar-
valued outcome and observed ERP signals; these approaches do not address clustering. Our results on
EEG data further demonstrate the ability of our model to handle heterogeneous data by identifying
dynamic patterns shared by many subjects. We also compare the performance of our method across
various simulation scenarios with existing methodologies.

The reminder of the article is structured as follows. In Section 2 we describe the proposed multi-
subject multivariate temporal biclustering (MMTB) model. Section 3 explains how our model can be
fit to data via MCMC, and how posterior samples from multiple MCMC chains can be combined into
summaries of subject and measurement clusters. Results obtained by fitting our temporal biclustering
model to two neuroscience studies, an fMRI and an EEG experiment, are illustrated in Section 4. In
Section 5 our model is validated and compared to some alternative methods on simulated data with
known ground-truth clusters and likelihood parameters. We conclude in Section 6 by outlining the
limitations of our model and discussing future research directions.

2 Bayesian temporal biclustering

Let Yi,r,t be the signal recorded for subject i = 1, . . . , N , measurement (e.g. location) r = 1, . . . , R, and
time t = 1, . . . , T . Our applications will consider brain signals measured on N subjects at R locations
in the brain (fMRI) or on the scalp (EEG) and T equally-spaced time steps throughout an experiment.
We assume that Yi,r,t is sampled from a probability distribution Fθi,r,t

identified by parameters θi,r,t.
To emphasize the generality of our framework, we first define our temporal biclustering model for θi,r,t,
across i and r, then motivate the choice of a flexible but interpretable likelihood Fθi,r,t .

2.1 Biclustering via separate exchangeability

We wish to cluster signals measured at different locations and subjects over the experimental conditions
(see Figure 1). For this purpose, we propose a model that enforces separate exchangeability (Kallenberg,
1988; Lin et al., 2021) across the different dimensions of the data via the use of Bayesian nonparametric
modeling. We refer to clusters of subjects as profiles and clusters of measurements as states. We assume
that a subject i has a single profile assignment for the entire experiment, as determined by a profile
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Figure 1: Illustration of proposed biclustering model for an idealized scenario with 11 subjects, 5 mea-
surements and 6 time steps. (Left) Data displayed as a three-dimensional array. A cell represents an
observation for a specific subject, measurement and time step. (Right) The proposed model clusters sub-
jects into profiles and measurements into states. A profile is a specific configuration of state sequences
over time shared by a group of subjects. The state assigned to an observation determines its likelihood
parameters. In this example, there are 3 profiles and 6 states. As suggested by the figure, multiple
subjects may be associated with the same profile, states can be shared across profiles, states are likely
to persist over time and the probability of state changes is shared across measurements, within a profile.

assignment variable si = z ∈ {1, . . . , Z}. The value Z is an upper bound to the number of profiles Z∗

that are active, or present in the data. In the applications of this paper we set Z = N so as to allow for
any number of active subject clusters while choosing a prior that encourages Z∗ < Z, as detailed in Sec.
2.4.

We assume that subjects with the same profile share the same partition of measurements at every
time step. Figure 1 (right) provides an illustration of these modeling assumptions, separating slices of
data according to the profile of their corresponding subject, and associating to each profile distinctive
sequences of states for their measurements. We assume separate exchangeability among observations
collected at the same time step of subjects with the same profile. Separate exchangeability preserves
the known structure of the data by implying that observations of the same measurement are as or more
highly correlated than observations of different measurements. Formally, we adapt the framework of
separate exchangeability through nested partitions proposed by Lin et al. (2021) to time series data.
Letting Iz = {i ∈ {1, . . . , N} : si = z} be the collection of subjects with profile z, we assume

(Yi,r,t : i ∈ Iz; r = 1, . . . , R)
d
= (Y

ρ
(z)
1 (i),ρ2(r),t

: i ∈ Iz; r = 1, . . . , R) (1)

for each t = 1, . . . , T , where ρ
(z)
1 is any permutation of indices in Iz and ρ2 is any permutation of

measurement indices. In terms of the time series data for subject i at location r, which we denote by
Yi,r = (Yi,r,1, . . . , Yi,r,T ), Eq. (1) implies that

Yi,r
d
= Yj,r ∀j ∈ {1, . . . , N} : sj = si, (2)

or, in words, the distribution of the time series recorded at measurement r for subject i is the same as
that recorded at the same measurement for any other subject j with si = sj . This is achieved by defining

a sequence of state assignment variables
(
c
(z)
r,1 , . . . , c

(z)
r,T

)
for each profile z, where c

(z)
r,t = k ∈ {1, . . . ,K}

and, similar to Z, K is a specified upper bound to the number of states or measurement clusters. The
number K∗ of states actually present in the data at least once is inferred from data, as explained in
Sec. 2.4. In turn, the state of an observation identifies its sampling distribution, so that there exists a set
of parameters {θ∗

1, . . . ,θ
∗
K} such that θi,r,t = θ∗

k whenever measurement r at time t is in state k. These
assumptions satisfy Eq. (2) because, for any given measurement r, subjects with the same profile z have
the same sequence of likelihood parameters (θ∗

c
(z)
r,1

, . . . ,θ∗
c
(z)
r,T

). In Figure 1 (right) this is illustrated by

letting each cell of the data take a color corresponding to its latent sampling distribution, as determined
by its state assignment. While seemingly restrictive, when paired with a robust likelihood distribution
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Fθi,r,t
that allows for considerable variability among its samples, our modeling assumptions enable us

to combine information from many subjects to identify potentially interesting relationships among the
measurements that evolve during the experiment, as demonstrated by our neuroscience applications.

2.2 Dynamic evolution of measurements’ clusters

We wish to model the relationships between the multiple measurements collected on each subject and
how these vary over the course of an experiment. In our framework, this is equivalent to modeling the

evolution of c
(z)
r,t over time. In doing so, we wish to simultaneously account for temporal dependences by

encouraging measurements to persist in the same state over consecutive time-steps, while also allowing
for measurement clusters to change and for learning the number and position of changepoints from
the data. We adapt the temporal random partition model (tRPM) of Page et al. (2022), proposed for
modeling changes in the partition of multivariate time series, to our multi-subject case. In particular,

letting c
(z)
t = (c

(z)
1,t , . . . , c

(z)
R,t) be the state assignment of all measurements at time t for subjects in profile

z, we assume that (c
(z)
1 , . . . c

(z)
T ) follows a tRPM. This implies that the state assignment c

(z)
r,t ∈ {1, . . . ,K}

of measurement r at time t is either equal to the state assignment c
(z)
r,t−1 of the same measurement at the

previous time step, or it is resampled from a categorical distribution ω(z) =
(
ω
(z)
1 , . . . , ω

(z)
K

)
over the K

states that is specific to profile z. For the first time step,

c
(z)
r,1 | ω(z) ind∼ Categorical

(
ω
(z)
1 , . . . , ω

(z)
K

)
, (3)

and for t = 2, . . . , T we assume the following dynamics:

c
(z)
r,t | ω(z), γ

(z)
r,t

ind∼ γ
(z)
r,t δ

c
(z)
r,t−1

+
(
1− γ

(z)
r,t

)
Categorical(ω

(z)
1 , . . . , ω

(z)
K ), (4)

γ
(z)
r,t | a

(z)
t

ind∼ Bernoulli
(
a
(z)
t

)
, (5)

a
(z)
t

iid∼ Beta(α, β). (6)

In Eqs. (4) to (6), δk is the Dirac measure on the singleton set {k}, γ(z)
r,t is a persistence indicator variable

that equals 1 when measurement r stays at time t in the same state as it was at time t− 1 and value 0

if its state is resampled (fixing γ
(z)
r,1 = 0), a

(z)
t is a profile-z specific state-persistence probability shared

by all measurements at time t, and α and β are hyperparameters controlling the desired degree of time
stability.

We choose to use the tRPM because, as is clear from Eqs. (4) to (6), it models the sequence
of random partitions and changepoints explicitly. Let P

c
(z)
r,t ,k

be the probability that measurement r

is assigned at time t to state k for subjects with profile z. Many alternatives to the tRPM model the

evolution of c
(z)
r,t indirectly by encouraging similarity between P

c
(z)
r,t ,k

at consecutive time steps (e.g. Caron

et al., 2017; Nieto-Barajas et al., 2012). In comparison, partitions produced the tRPM can exhibit a
stronger correlation and evolve smoothly over time, which is preferable when estimating the partition is
of direct interest (Page et al., 2022). Unlike the original formulation of the tRPM, that at each time step
resamples the likelihood parameters corresponding to partition sets, we let states be potentially shared
both across profiles and time steps. This choice helps with their estimation, as demonstrated in our
simulations, and allows us to learn highly interpretable measurement clusters that capture associations
between measurements at the same as well as at different time steps.

2.3 Robust likelihood model

In our temporal biclustering model, all observations from measurements assigned to state k share the
same likelihood model:

Yi,r,t | c(si)r,t = k, θ∗k
iid∼ Fθ∗

k
. (7)

While this greatly benefits the interpretability of states and their posterior estimation, to make this
assumption realistic we want to choose a likelihood model that is diffuse enough to allow for some degree
of heterogeneity between observations assigned to the same state. In our applications, we let Fθ∗

k
be

a location-scale t-distribution with small degrees of freedom ν, and we let θ∗
k = (µk, σ

2
k). The appeal

of this choice of likelihood becomes especially clear in light of its interpretation as a mixture of normal
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distributions with common location and variances distributed according to a scaled inverse chi-squared
distribution:

Yi,r,t | c(si)r,t = k, µk, Vi,r,t
ind∼ Normal(µk, Vi,r,t), (8)

Vi,r,t | c(si)r,t = k, σ2
k
iid∼ Inv-χ2(ν, σ2

k). (9)

Eqs. (8) and (9) imply that observations from measurements assigned to the same state have the same
expected value, the departure from which can occasionally be substantial depending on the level of noise
specific to an observation. We complete this choice of likelihood by assuming that the location and scale
parameters are a-priori independently and identically distributed from, respectively, a Normal and a
Gamma hyperprior.

2.4 Priors on cluster assignments

We are left to assign a prior distribution for the assignment variables and the probabilities of profiles and
states (that is, respectively, subject and measurement clusters). In both cases, we opt for the sparse finite
mixture approach by Malsiner-Walli et al. (2016), which is a tractable yet flexible prior that allows us to
estimate the number of active clusters from data. In particular, we let the prior on profile assignments
and their probabilities π = (π1, . . . , πZ) be

si | π
iid∼ Categorical (π1, . . . , πZ) , (10)

π | ζ ∼ Dirichlet

(
ζ

Z
, . . . ,

ζ

Z

)
, (11)

where we let Z = N , and place a hyperprior ζ ∼ Gamma(b1, b2) with b1 and b2 favoring small values
of ζ. When supported by the data, the posterior of π can concentrate on vectors assigning all but
negligible probability to a subset of the Z profile indices. Further, we place a hierarchical Dirichlet prior
on profile-specific categorical distributions over the K states:

ω(z) | ω0
iid∼Dirichlet(ϕω01, . . . , ϕ ω0K), z = 1, . . . , Z (12)

ω0 | η ∼ Dirichlet
( η

K
, . . . ,

η

K

)
, (13)

where similar to profile probabilities, we let ω0 = (ω01, . . . , ω0K) and η ∼ Gamma(d1, d2). When K
is large and η ≪ K, this prior distribution approximates the hierarchical Dirichlet Process (Ishwaran
and Zarepour, 2002; Green and Richardson, 2001; Teh et al., 2006), whose predictive distributions are
described via the so-called Chinese restaurant franchise (CRF). The posteriors of ω0 and ω(z) can assign
all but negligible mass to a subset of the K available states, and therefore we can learn a number of active
states smaller than K from the data (Malsiner-Walli et al., 2016). The proposed model is summarized
in Figure 2 via a graphical model encoding the conditional dependencies between variables.

3 Posterior inference

We propose a method for efficiently fitting our model to data to obtain the posterior distribution of the
variables of interest, devoting special attention to the derivation of our efficient blocked update of state
sequences. Then, we describe how MCMC samples can be aggregated to summarize posterior estimates
of profiles and changepoints.

3.1 MCMC overview

The marginal posterior distribution of the variables of main interest — dynamic connectivity profiles and
corresponding state sequences for each measurement, state-specific likelihood parameters and assignment
of subjects to profiles — cannot be derived in closed form. Hence, we fit the model by exploiting the
conditional independencies illustrated in Figure 2, using conjugate priors where appropriate to devise a
simple-to-implement and efficient Gibbs sampling algorithm structured as follows:

1. Update variables related to the clustering of subjects into profiles:
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R

Z

N

K

Yi,r,1 Yi,r,2 . . . Yi,r,T

siπ

ζ

Z

b1

b2

θkθ0

c
(z)
r,1 c

(z)
r,2

. . .
c
(z)
r,T

ω0

ω(z)η

K

ϕd1

d2

γ
(z)
r,2

. . .
γ
(z)
r,T

a
(z)
2

. . .
a
(z)
T

α β

Figure 2: Directed graphical representation of our MMTB model. The likelihood of observations Yi,r,t at time

t = 1, . . . , T depends on the profile si of subject i = 1, . . . , N . When si = z and the state c
(z)
r,t of measurement r

equals k, then Yi,r,t has a distribution Fθk , for r ∈ 1, . . . , R and k ∈ {1, . . . ,K}. θ0 parameterize the hyperprior
on θk. Profiles si are sampled from a categorical distribution with probabilities π = (π1, . . . , πZ). For subjects
with profile si = z, the state of measurement r at time t is the same as at t − 1 when the persistence indicator
γ
(z)
r,t equals 1, which has probability a

(z)
t . Otherwise, the state is re-sampled from a categorical distribution with

probabilities ω(z) = (ω
(z)
1 , . . . , ω

(z)
K ). Yellow, diamond-shaped nodes denote hyperparameters with pre-specified

values.

- Sample profile probabilities π conditional on subject assignments and resample their con-
centration hyperparameter ζ using a Metropolis-Hastings (MH) update as in Algorithm 2 in
Frühwirth-Schnatter and Malsiner-Walli (2019);

- Sample subjects’ assignment to profiles (s1, . . . , sN ) conditional on π.

2. Update variables related to the temporal clustering of measurements into states:

- Sample the vector of global state probabilities ω0 using auxiliary-variable methods developed
for the CRF (Teh et al., 2006), and its concentration hyperparameter η using a Metropolis
Hastings (MH) as in Step 1;

- For each profile z, sample the profile-specific vector of state probabilities ωz conditional on
ω0;

- For each profile z, measurement r, and time step t, sample the state persistence indicator γ
(z)
r,t

and the state assignment c
(z)
r,t as detailed is Section 3.2;

- For each profile z and time step t, sample the probability of state persistence a
(z)
t conditional

on all state persistence indicators.

3. Update likelihood parameters:

- For each state k, sample its associated likelihood parameters θk conditional on state assign-
ment sequences for all observations.

3.2 Block-update of measurement partition and changepoints

While most steps of our MCMC can efficiently be performed combining existing techniques, we derive
a novel blocked sample update of state assignments and persistence indicators’ sequences to implement
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Figure 3: Performance of MCMC with blocked versus marginal updates of state and persistence indicator
sequences. Subplots show average and 90% credible intervals across 30 simulated datasets featuring both
time and subject dependence. Simulation details are detailed in Sec. 5 (third simulation scenario). Lower
values of binder loss (BL) and mean absolute error (MAE) are preferred; higher values of log-likelihood
and f-measure are preferred.

step 2. For this step in the single-subject scenario, Page et al. (2022) devise marginal updates, where
a state assignment is resampled conditional on the sequence of state persistence indicators and on both
previous and subsequent state assignments. With this method, at each MCMC iteration, changes in a
state assignment can only be considered if they are compatible with all current values of state assignments
and persistence indicators. This can lead to very slow exploration of the posterior, as is easily seen from
a concrete example. Let t and r be a given time step and measurement, and suppose that the sequence
of state assignments and state persistence indicators in a small window around time t at iteration m are,

respectively, (c
(m)
r,t−2, c

(m)
r,t−1, c

(m)
r,t , c

(m)
r,t+1) = (1, 2, 2, 2) and (γ

(m)
r,t−2, γ

(m)
r,t−1, γ

(m)
r,t , γ

(m)
r,t+1) = (1, 0, 1, 1). If the

sequence of state assignments (cr,t−2, cr,t−2, cr,t, cr,t+1) = (1, 1, 1, 1) had higher posterior probability, it

would take several MCMC iterations to reach this configuration. Indeed, even though γ
(m)
r,t−1 = 0, directly

changing c
(m)
r,t−1 from 2 to 1 is not possible because γ

(m)
r,t = 1 imposes that the state at time t − 1 must

equal the state at time t which currently is c
(m)
r,t = 2. As suggested by this simple example, the marginal

sampler can struggle to explore the posterior, especially for long sequences with substantial temporal
dependence.

In an experiment on 30 simulated datasets, the marginal sampler systematically failed to reach
most-likely configurations of posterior parameters even after 10,000 iterations, as shown in Figure 3.
Posterior samples visited by the blocked sampler, that was initialized at the same random parameter
configuration as the marginal sampler, consistently achieved lower binder loss (BL) between sampled and
true measurement partitions, and lower mean absolute error (MAE) between sampled and true state-
specific location parameters. Further, larger f-measures indicate more accurate recovery of changepoints
in the state sequences, and larger log-likelihoods suggest that the posterior samples from the blocked
sampler better fit the data. Details on computation of posterior summaries and BL are provided in
Sec. 3.3.

Potential issues with marginal samplers were previously noted by Scott (2002) and by Fox et al.
(2011), who derived a blocked sampler for the Hierarchical Dirichlet Process Hidden Markov Model and
empirically verified its superior performance to the marginal sampler. Likewise, we derive a variant of the
forward-backward algorithm (Rabiner, 1989) for a blocked update of state assignment and persistence
indicator sequences in the tRPM. Conditional on subjects’ profile assignments (s1, . . . , sN ), for each

profile z and measurement r, we wish to update the sequence of state assignments
(
c
(z)
r,1 , . . . , c

(z)
r,T

)
in

block, that is by updating the sequence altogether from time 1 to time T . In practice, we can achieve
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this by updating both c
(z)
r,t and γ

(z)
r,t conditionally only on c

(z)
r,t−1, rather than also on c

(z)
r,t+1 and γ

(z)
r,t+1,

as in a marginal sampler. To do so, we need to first compute messages backward, which will allow us
to marginalize over future state assignments by directly accounting for the likelihood of observations
at later times when sampling the sequence in block forward. This adds some computational cost but
enables the sampler to make substantial changes to state sequences over consecutive iterations. For a

given profile z and measurement r, let m
(z,r)
k,t be the backward message for state k at time t representing

how likely observations after time t are if at time t we were in state k. To compute messages, we start by
computing a K × T matrix of likelihoods, an element of which represents the likelihood of observations
of measurement r from subjects with profile z if the state of measurement r at time t was k:

L(z,r)
k,t (Y ) =

∏
i:si=z

F (Yi,r,t | θk).

Then, to compute the messages, we start from the last time step by settingm
(z,r)
k,T = 1 for all k = 1, . . . ,K,

since there are no observations after time T and so all possible states are equally likely from the future’s
perspective. We compute the remaining messages backward for t = T − 1, . . . , 1, recalling that at time

t + 1 we stay in the state assigned at time t with probability a
(z)
t+1 or otherwise we sample a state

h ∈ {1, . . . ,K} with probability ω
(z)
h . Thus,

m
(z,r)
k,t = a

(z)
t+1L

(z,r)
k,t+1(Y )m

(z,r)
k,t+1 +

(
1− a

(z)
t+1

) K∑
h=1

ω
(z)
h L

(z,r)
h,t+1(Y )m

(z,r)
h,t+1. (14)

Intuitively, Eq. (14) establishes that, when computing the message to state k, we weight the likelihood
of future observations — given by the likelihood of the next time step and the message from later time
steps — by the probability of staying in state k or of sampling a state h ∈ {1, . . . ,K}. Once all messages

have been computed, we assign time 1 to state k according to P (c
(z)
r,1 = k) ∝ ωkL(z,r)

k,1 (Y )m
(z,r)
k,1 and, for

t = 2, . . . , T , we recursively simulate the sequence of state assignment and state persistence indicators
as follows:

P
(
c
(z)
r,t = c

(z)
r,t−1 = k, γ

(z)
r,t = 1

)
∝ a

(z)
t L

(z,r)
k,t (Y )m

(z,r)
k,t , (15)

P
(
c
(z)
r,t = h, γ

(z)
r,t = 0

)
∝

(
1− a

(z)
t

)
ω
(z)
h L

(z,r)
h,t (Y )m

(z,r)
h,t , h = 1, . . . ,K. (16)

Note that via Eq. (16), we simultaneously sample whether to stay in the same state as at the previous

time step (γ
(z)
r,t = 1), or whether to resample a state (γ

(z)
r,t = 0) according to ω

(z)
h , as well as the state

resampled. For each of the Z profiles and R locations, the block update of states for all times requires
O(KT ) computations, faster than the O(K2T ) cost of blocked resampling for general hidden Markov
models (Scott, 2002; Fox et al., 2011). We can reduce time substantially by resampling the Z profiles
and R locations in parallel.

3.3 Posterior summaries

Posterior samples obtained via MCMC chain(s) can be combined into estimates of subjects’ profiles and
measurements’ state sequences. With respect to profiles, we compute the pairwise posterior probability
of co-clustering P (si = sj) for any pair of subjects i and j as the proportion of posterior samples where i
and j had the same profile assignment. We also derive a point estimate of profile assignments based on the
Binder loss (BL) function (Binder, 1978). The BL of estimating partition s∗ = (s∗1, . . . , s

∗
N ) with partition

s = (s1, . . . , sN ) is defined as B(s∗, s) =
∑

i<j a1(s
∗
i = s∗j )1(si ̸= sj) + b1(s∗i ̸= s∗j )1(si = sj), where

a and b are two positive parameters that represent the cost of, respectively, failing to cluster together
items that should in fact be together versus clustering together items that should in fact be separated.
We use the R package salso (Dahl et al., 2022) to find the partition s̃ that minimizes the expected Binder

loss E[B(s∗, s)] ≈ 1
M argmins

∑M
m=1 B(s(m), s) estimated from M posterior samples of state assignment

vectors (s(1), . . . , s(M)). By combining estimated pairwise subject co-clustering probabilities in a N ×N
symmetric association matrix, sorting subjects according to their estimated profile, we can visualize the
estimated subject partition, highlighted by diagonal blocks of high co-clustering probabilities, as well as
uncertainty in profile assignments. To summarize results with respect to state sequences, we consider
the estimated partition of subjects into profiles and, for each estimated profile, obtain profile-specific
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Figure 4: fMRI data after pre-processing for two subjects and all selected brain regions of interest (ROIs).
The vertical axis plots BOLD signal averaged across voxels in a ROI over a 10-second window. Vertical
dashed lines demark five activation blocks where subjects squeeze a ball.

sequences of location parameters by averaging the state-specific location parameter sampled at any given
time step across all subjects assigned to that profile and across all samples and MCMC chains. In a
similar way, we can derive estimated, profile-specific sequences of changepoint probabilities by averaging
state-persistence indicator sequences of all subjects assigned to a profile.

4 Application to neuroscience studies

The temporal clustering framework we propose in this work can be employed in a variety of studies
where multiple subjects undergo the same experiment and multiple measurements are recorded for each
subject at the same time steps. To illustrate the versatility of the proposed approach, we analyze data
collected in two different studies of brain activity: an fMRI and an EEG experiment. When analyzing
data from multi-subject neuroscience experiments, it is expected that different subjects may exhibit
different patterns of neural responses to the same stimuli or task instructions. Current knowledge about
the source and mechanisms underlying such individual differences varies widely depending on context
or task, psychological or neurological condition, or even sociocultural factors. It is therefore of great
interest to develop methods to understand the landscape of such multidimensional individual differences,
as is common in fields such as personalized medicine or computational psychiatry. Our MMTB model is
specifically designed to identify potential sub-populations within a given cohort based on neural profiles.

4.1 Parameter settings

Before delving into each application, we describe the choice of hyperparameters for clustering-related
variables and the MCMC settings, which were common across the two applications. For the analyses of
fMRI and EEG data, we let the maximum number of profiles Z match the number of subjects N in the
data. We favor coarser partitions of subjects by setting b1 = 50 and b2 = 100. To encourage using a
subset of the available states, we let c1 = 50, c2 = 100 and set ϕ = 0.5. We encourage smooth changes

of states over time by letting α
(z)
t

iid∼ Beta(10, 2) be the hyperprior on state-persistence probabilities. In
the fMRI application, we initialize state location parameters to equally-spaced numbers between -1.5

and 1.5 with increments of .25, resulting in a maximum of K = 13 states. We let µk
iid∼Normal(0, 3)

and σ2
k
iid∼Gamma(5, 10). To define likelihood hyperparameters for the EEG data, we let K = 20, ini-

tialize location parameters from a prior µk
iid∼Normal(0, 5), and assume σ2

k
iid∼Gamma(1, 1). We combine

posterior samples from 3 MCMC chains of 10,000 iterations, after discarding the first 5,000 samples as
burn-in. Traceplots suggested fast convergence and indicated that the 3 chains visited configurations of
the model with similar posterior probabilities, in both applications (see supplementary material).
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Figure 5: fMRI data: Estimated probability that any pair of subjects be assigned to the same profile.
Subjects are sorted by estimated profile memberships, as marked with orange blocks.

4.2 Estimating brain activity profiles based on fMRI data

Functional magnetic resonance imaging provides an indirect measure of brain activity through Blood
Oxygenation Level Dependent (BOLD) contrasts, a signal measured at volumetric pixels (voxels) that
span the brain. We analyze data from a fMRI study conducted at the Center for Advanced Neuroimaging
of the University of California Riverside (Hussain et al., 2023). Subjects in this study underwent an
experiment in which they alternated between 6 resting-state blocks (of 5, 2, 2, 5, 1 and 1 minute,
respectively) and 5 squeeze blocks (each lasting 18 seconds) when they were instructed to bring their
dominant hand to their chest while compressing a squeeze-ball at maximum grip strength. The fMRI
data was collected using a 2D echo planar imaging sequence with echo time 32 ms and repetition time of
2 sec. The dataset that we analyze includes 23 subjects. Data for the analysis were restricted to a time
window starting 40 sec before the first active session, and lasting 40 sec after the last session, therefore
covering 12 min 54 sec of experiment. To minimize the potential impact of slight misalignments between
observations on the identification of profiles, we average 5 consecutive observations over a 10 sec window,
resulting in T = 78 time steps.

For our analysis, we focused on 11 brain regions (regions of interest, or ROIs), identified following
the anatomical definition in Hussain et al. (2023). These were chosen due to having a role in either the
Default Mode Network (DMN) or the Salience Network (SN). The DMN has often been associated with
resting and inattentiveness, and was chosen due to the resting state nature of sections of the experiment
(Greicius and Menon, 2004). For the DMN, we considered Posterior Cingulate Cortex (PCC), left and
right posterior Inferior Parietal Lobule (L pIPL and R pIPL), left and right Dorsolateral Prefrontal Cortex
(L DLPFC and R DLPFC), left Parahippocampal Gyrus (L PHG) and left Inferolateral Temporal Cortex
(L ITC). The SN regions left and right Insula (L Insula and R Insula) and left and right Lateral Parietal
(L LP and R LP) were selected due to being implicated in allocating response to stimuli, like the squeeze
instructions (Menon and Uddin, 2010). Figure 4 displays data for two subjects after pre-processing.

Figure 5 displays estimated pairwise posterior probabilities of co-clustering among subjects, along
with estimated profile assignments. Using the BL to estimate the most likely profile configuration from
all posterior samples as detailed in Section 3.3, we estimate the presence of 3 profiles of subjects (activity
profiles). Estimated co-clustering probabilities suggest likely overlapping between profiles, particularly
between profiles 1 and 3 (enumerating blocks from left to right). For each estimated profile, Figure 6
plots the estimated sequence of location parameters for all ROIs considered, with vertical dashed lines
marking the five squeeze blocks during the experiment. We notice that, for all profiles, state changes
are more likely detected in proximity of or during squeeze blocks. Most notably, there is a clustering
(co-activation) of R LP and L ITC during the beginning and ending of the squeeze block. Subjects in
profile 2 seem to exhibit more extreme relative brain signal reactions to the beginning and ending of the
squeeze block. This appears as a unique increase BOLD signal among the LP, Insula, ITC, and DLPFC
at the conclusion of the squeeze block. These ROIs align with the receiving and decoding of the visual
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Figure 6: fMRI data: Estimated state-specific location parameters for all selected ROIs and for each of
the estimated activity profiles. Vertical dashed lines mark the five squeeze blocks.

cue to put the arm back at rest, switching to the task, and then performing the action. Interestingly,
subjects in profile 1 and 3 show similar clustering behavior, but do not exhibit the magnitude of BOLD
response as subjects in profile 2. Right after a squeeze block, profile 1 undergoes a short drop in BOLD
signal in L PHG and R LP. Profiles 1 and 3 appear to experience a drop in BOLD signal in almost all
ROIs at the end of the fourth squeeze block, which is the first active portion after 5 minutes of inactivity.
Overall, albeit in lower magnitude, Profile 3 appears to display state-changes in the same direction as
Profile 1 and this similarity is reflected by the higher co-clustering probability between subjects with
these two profiles displayed in Figure 5.

4.3 Neural profiles based on electrophysiological data

ERP signals, measuring neural activity in response to specific events (e.g. motor or cognitive stimuli),
are regarded as a powerful, noninvasive way to explore human brain activity (Luck, 2014). Here we
consider a dataset publicly available on the UCI Machine Learning Repository (Begleiter, 1999) and first
analyzed by Zhang et al. (1995) and Ingber (1998). The data was collected during an experiment in
which subjects experienced two visual stimuli from the picture set of Snodgrass and Vanderwart (1980).
In particular, during a trial, a subject was shown a first picture (S1) for 300 ms and, after 1.6 s, a second
picture identical to the first (S2 match) or semantically different (S2 nomatch) for 300 ms. Each subject
completed multiple trials for each condition. The data includes alcoholic and control subjects, since
assessing EEG correlates of genetic predisposition to alcoholism was one of the original purposes of data
collection. More details on experiment and data pre-processing can be found in Zhang et al. (1995). The
available dataset contains ERP measurements in microvolts for 64 electrodes sampled at 256 Hz (3.9-ms
epoch). We analyze data from all 121 subjects included in the dataset. For these subjects, we consider all
available trials, and we restrict to the first 200 ms recorded during S2 match and S2 nomatch conditions.
To reduce noise, as commonly done with ERP data (Luck, 2014), we average the data recorded across
trials so as to obtain a single ERP measurement per subject, electrode position and time step, after
stimulus onset, for each of the two conditions. We then take the difference between the ERP for the S2
match and the S2 nomatch conditions, so as to remove the effect of subject-specific variability (e.g. due
to scalp sebum) on the recorded ERP values and we average the values obtained over a 20-ms window,
so as to reduce the effect of minimal misalignments between subjects on the identification of subject
profiles. Finally, we averaged data from the electrodes located in the left temporal region, those in the
right temporal region and those in the occipital region, obtaining single ERP signals for each subject in
these three areas. These are known to, respectively, affect memory (Balderas et al., 2008) and be more
receptive to visual stimuli (Dupont et al., 1997). An illustration of selected brain regions and an example
of data after pre-processing is shown in Figure 7.

Figure 8 displays posterior probabilities of co-clustering among subjects’ pairs and estimated profile
assignment for each subject. Given the large number of subjects, we consider values for a larger than
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Figure 8: EEG data: Estimated probability that any pair of subjects be assigned to the same profile.
Subjects are sorted by estimated profile memberships, as marked with orange blocks.

b in the Binder Loss from Section 3.3. Specifically, for a fixed value b = 1, we consider nine equally-
spaced values for a ∈ [1.1, 1.9]. Since this determination does not involve re-running the sampler with
different hyperparameters, it was simple and only took a few seconds thanks to the function provided
in the salso package (Dahl et al., 2022). We observed that the estimated partition was fairly robust, as
increasing a from 1.1 to 1.9 resulted in similar profiles being progressively merged rather than in subjects
being moved to different clusters. By visual inspection of pairwise co-clustering probabilities and state
sequences corresponding to the resulting partition of subjects, we found a = 1.85 to achieve a good
trade-off between interpretability and flexibility, aggregating similar clusters without forcing together
subjects with low co-clustering probability (see Figure 8).

A feature of the proposed temporal biclustering model that emerges from the analysis of the EEG
data is the ability to identify temporal patterns shared by several subjects (Profiles 1-5) while identifying
subjects that exhibit unique behaviors (Profile 6, again enumerating blocks from left to right in Figure 8).
This behavior appears desirable, especially in studies involving many subjects, due to the likely presence
of a few outliers. Recall that the measurements represent the differences in ERP signal under the S2
match and S2 nomatch stimuli. Figure 9 shows the observations averaged across subjects within the
same estimated profile, for each region and presented separately for alcoholic and control individuals.
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Figure 9: EEG data: Differences in ERP between match and nomatch conditions averaged across subjects
with same estimated profile and alcoholic status, for profiles with at least two assigned subjects. The
number of subjects assigned to a profile is shown in subplot titles.

Overall, subjects with the same estimated profiles are characterized by average ERP differences that
mostly exhibit similar trajectories throughout the experiment in both the alcoholic and control groups.
This suggests that the estimated profiles may capture similarities among subjects beyond the observed
alcoholic and non-alcoholic characteristics. Subjects in profiles 1 and 4, on average, exhibited higher ERP
signals in the S2 match condition than in the S2 no match condition for the entire 200ms time window.
Conversely, subjects with the estimated profile 2 displayed the opposite pattern. Furthermore, subjects
with profile 3 displayed, on average, small and mostly negative differences between the S2 match and S2
nomatch ERP for the first 125 ms after stimulus onset, followed by relatively large and positive differences
from 125 to 200 ms. Overall, the signals in the TL and TR regions appear more frequently coupled (in
terms of exhibiting similar averages across subjects) compared to the occipital region. Additionally, the
occipital region is more likely to show average ERP differences between the two experimental conditions
that are larger in magnitude.

5 Simulation Studies

We assess the proposed model and inference methods on simulated data, and also compare the estimation
performance against ground-truth values and other methods.

5.1 Model comparisons

To distinguish it from alternative methods, in this section we refer to our model with the acronym
MMTB, which stands for multi-subject multivariate temporal biclustering. To illustrate the advantages
of simultaneously modeling subjects, measurements and time-point dependencies with our approach, we
compare to the following alternative approaches. First, we compare with a procedure where our model
is applied separately to each subject (single-subject multivariate temporal clustering, SMTC), or to each
time step (multi-subject multivariate biclustering, MMB) or to the mean or median across time for
each subject and measurement (respectively, mean-MMB and median-MMB). We also compare with the
tRPM approach by Page et al. (2022) (similar to SMTC), that we fit using the MCMC implementation
provided by the authors, and with the three-dimensional plaid model by Mankad and Michailidis (2014)
(3d plaid), using the authors’ code.
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Figure 10: (Left) Simulated data Yi,r,t for subjects i = 1, . . . , 6, measurements r = 1, . . . , 5, time t =
1, . . . , 30, with time or/and subject dependence in state sequences. (Right) Simulated state sequences
and corresponding mean parameters for subject 1 under each simulation scenario.

5.2 Experimental settings

We consider three simulation scenarios with data for N = 6 subjects, R = 5 measurements and T =
30 time steps. In all scenarios, measurements are partitioned into clusters and their partition can
change over time. At every time step, a cluster of measurements is associated with one of K = 10
states, corresponding to the parameters used for simulating observations. The scenarios differ in whether
measurement partition and states persist over time, whether measurement partitions are shared across
subjects and whether both time and subject dependence are present. Details for each scenario are as
follows:

1. Time dependence: Measurements persist in a state for 5 consecutive time steps before their
state is resampled, and the partition of measurements changes once during the time series. Each
subject has different state sequences, i.e. the number of profiles Z is equal to N . Simulated data
is shown in Figure 10 (Top Left) and sequences of states for subject 1 are illustrated in Figure 10
(Top Right).

2. Subject dependence: The partition of measurements can change at every time step, along with
measurements’ states. There are two subject profiles: state sequences are shared among subjects
1, 2, 3 and 4 (Subject 1), and among subjects 5 and 6 (Subject 2). All simulated data and state
sequences for Subject 1 in this scenario are displayed, respectively, in Figure 10 (Middle Left) and
(Middle Right).

3. Time and subject dependence: Measurements persist in a state for 3 consecutive time steps be-
fore their state is resampled. The partition of measurements changes twice. Subjects are grouped in
the same profiles as in Scenario 2. Figure 10 (Bottom Left) and (Bottom Right) show, respectively,
all simulated data and state sequences for Subject 1.

As the tRPM is implemented with a Normal likelihood, to facilitate comparison we use Normal like-
lihoods for all simulations and for model fitting; therefore, the 10 states correspond to the mean and
variance parameters of the Normal distributions used for simulation. The 10 means are equally spaced
between −9 and 9, and the variances are either 1.52 or 1.252. We simulate 30 datasets for each scenario,
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and report average and standard deviation across simulated datasets for all metrics used in our quan-
titative comparisons. Hyperparameters and other model-fitting settings are described in detail in the
supplementary material.

5.3 Evaluation of subjects’ clusters

Multi-subject models, that is all except SSTC and tRPM, estimate a partition of subjects into clusters
(referred to as profiles in this article). Table 1 displays the average BL of estimated versus true subject
partitions. MMTB, mean-MMB, and median-MMB yield a single partition of subjects at every MCMC
iteration; we estimate a single partition of subjects from all iterations using the BL (see Sec. 3.3). For
the MMB model, that estimates a partition of subjects at each time step, we estimate a single partition
for each time step combining all MCMC samples and report the average BL across time steps, chains and
simulated datasets. Also for the 3d plaid model, that estimates possibly multiple partitions of subjects,
we compute the partition that minimizes the average BL.

The results shown in Table 1 indicate a good performance of the proposed MMTB model at recovering
the ground-truth subject partition. MMTB performed very well even if no subject dependence was
present, when it correctly identified a different profile for each subject (column 1 in Table 1). MMB
estimates of subject partitions were on average better when this model was fitted independently to each
time step than when fitting to the mean or median of observations across time. The performance of
the 3d plaid model at recovering subject partitions was generally lower than the other methods, and we
observed a tendency to identify only some of the ground-truth subject clusters. Increasing the maximum
number of biclusters that the search algorithm was allowed to find did not improve the estimation of
bicluster effects for clusters that had not been previously identified.

5.4 Evaluation of measurements’ clusters

Table 2 reports summaries of models’ performance at recovering ground-truth measurement partitions,
state-specific location parameters, and changepoints. Results on measurement partitions are evaluated by
computing the average BL (defined in Sec. 3) between estimated and true measurement partition for each
subject and time step. For the 3d plaid model, we consider all biclusters to which a subject is assigned
and estimate a single measurement partition using the BL; as this model does not admit a different
partition of measurements per time step, a single one is estimated for the entire time series. Recovery of
likelihood location parameters is assessed with the average absolute mean difference between estimated
and true location parameter for each subject and time step; this is available in the output of the 3d
plaid model as the combination of base and biclusters effects. For methods that model the persistence of
measurements’ partition over time (the MMTB, SMTC and tRPM) we estimate changepoint probabilities
by averaging state persistence indicators across samples and computing the harmonic mean of precision
and recall based on those probabilities (f-measure), averaging across subjects and time steps.

As shown in Table 2, the performance of the MMTB model was consistently good across all metrics
and simulation scenarios considered. Noticeably, MMTB performed well at estimating the sequence of
measurement partition, state-specific location parameters and changepoints even when no time depen-
dence was featured in the data (column 6 in Table 2). Not surprisingly, treating each subject separately
but modeling time dependence with the SSTC or with the tRPM yielded good results when time but
not subject dependence was present (first group of columns in Table 2). Similarly, when no time depen-
dence was present, estimating likelihood parameters independently for each time step with the MMB
let to higher accuracy than all other methods (second group of columns in Table 2). Overall, as ex-
pected, the tRPM model yielded competitive results for measurement partitions when time-dependence
was featured (first and third groups in Table 2), but proved worse than our model fitted separately to
each subject (SSTC) at recovering state parameters and changepoints. In particular, the tRPM model
exhibited a tendency to overestimate the number of changepoints when state persisted for 5 as well as
for 3 consecutive times (respectively, first and third group of columns in Table 2. This is why, perhaps
surprisingly, its results appeared relatively better when simulated state sequences featured subject de-
pendence but low-to-no time dependence (second group of columns in Table 2). Finally, the 3d plaid
model yielded reasonable results but its performance was generally worse than other methods. While
worse results on measurement partitions can be attributed to the fact that partition changes over time
are not explicitly modeled, the relatively low performance of the 3d plaid model at recovering sequences
of mean parameters is more surprising. Even though this model can in principle, through appropriate
time-varying bicluster effects, perfectly fit the sequence of means used for simulation, we observed a
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Table 1: Binder loss of true vs. estimated subject partition. Displayed are averages (standard deviation)
over 30 datasets in simulation scenarios with time and/or subject dependence in state sequences. Lower
values are preferred.

Time
dependence

Subject
dependence

Subject and time
dependence

MMTB 0 (0) 0 (0) 0.03 (0.06)
MMB 0.09 (0.03) 0.15 (0.01) 0.04 (0.03)
mean-MMB 0.22 (0.12) 0.44 (0) 0.44 (0)
median-MMB 0.18 (0.13) 0.44 (0) 0.44 (0)
3d plaid 0.44 (0.08) 0.42 (0.1) 0.39 (0.13)

Table 2: Recovery of states sequences, mean parameters and changepoints. Displayed are averages
(standard deviation) over 30 datasets in simulation scenarios with time and/or subject dependence in
state sequences. Preferred are: lower values of binder loss (BL) and mean absolute error (MAE); f-
measure values closer to 1.

Time dependence Subject dependence Subject and time dependence
measurement
partitions

(BL)

state
parameters
(MAE)

changepoints
(f-measure)

measurement
partitions

(BL)

state
parameters
(MAE)

changepoints
(f-measure)

measurement
partitions

(BL)

state
parameters
(MAE)

changepoints
(f-measure)

MMTB 0.08 (0.02) 0.73 (0.11) 0.73 (0.03) 0.09 (0.02) 1 (0.08) 0.89 (0.02) 0.04 (0.02) 0.48 (0.11) 0.88 (0.04)
SSTC 0.09 (0.02) 0.79 (0.07) 0.63 (0.03) 0.21 (0.1) 1.89 (0.52) 0.84 (0.04) 0.1 (0.02) 1.01 (0.09) 0.74 (0.04)
tRPM 0.12 (0.03) 2.77 (0.34) 0.22 (0.02) 0.37 (0.05) 3.31 (0.2) 0.59 (0.02) 0.2 (0.04) 2.99 (0.35) 0.34 (0.03)
MMB 0.12 (0.02) 1.23 (0.06) - 0.12 (0.01) 0.88 (0.03) - 0.09 (0.03) 0.69 (0.06) -
3d plaid 0.31 (0.06) 3.52 (1.07) - 0.6 (0.05) 4.07 (0.6) - 0.45 (0.06) 3.23 (0.85) -

tendency to identify only a subset of measurement clusters present in the data. We speculate that this
performance may partly be due to a combination of the model’s flexibility and the greedy approach used
by the search algorithm for model fitting.

6 Discussion

Motivated by the goal of learning multiple neurological profiles exhibited by subjects in electrophysiology
and neuroimaging studies, we have proposed a Bayesian framework for temporal biclustering. The
proposed methodology defines time-varying partitions of measurements nested within time-invariant
partitions of subjects, thereby discovering a set of dynamic patterns common to multiple subjects.
We built on the framework of separate exchangeability, originally defined by Kallenberg (1989) and
recently discussed by Lin et al. (2021). We adapted ideas from the temporal random partition model
of Page et al. (2022) to the multi-subject setting. We additionally developed and illustrated a blocked-
sampling update of measurement partitions to efficiently explore the space of nested partitions and
perform posterior inference via MCMC. In our motivating application to fMRI data, changepoints in
measurement partitions identified by our model largely coincided with the alternation of resting and
activation blocks, and three groups of subjects were estimated with varying degrees of BOLD signal
strength. Our results on EEG data with 121 subjects further demonstrated the ability of our model
to handle heterogeneity by identifying dynamic patterns shared by many subjects. Our experiments
indicated good and consistent performance across simulated scenarios as well as improved estimation
over existing methodologies.

Future work could consider extending the proposed model to allow for incorporating time-invariant
covariates, such as subjects’ characteristics, in the estimation of subject and measurement clusters.
Moreover, in this paper we focused on the case where measurements are observed for all subjects at
the same time intervals. While this kind of data arises in many experimental settings, our framework
could be adapted to model more general cases of longitudinal multivariate data. We envision that such
a development could prove insightful in a number of real-world applications, e.g. in clinical studies
monitoring disease progression among multiple patients. The assumption that subjects with the same
profile must share the same temporal partition for all measurements allows our model to obtain easy-
to-interpret results, but it implies that the analysis must be restricted to the measurements which are
relevant to the identification of subject profiles. Endowing the model with more flexibility would be
necessary if one wished to utilize a large number of measurements that may or may not be meaningful
for estimating clusters of subjects. Random effects could be introduced to allow for more variability
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between subjects and/or measurements assigned to the same cluster, a strategy previously employed by
Kim and Smyth (2006). One could also consider using ideas from Lee et al. (2013) for excluding sets of
irrelevant measurements, or borrowing from the literature on variable selection (Tadesse and Vannucci,
2021) to allow measurements to contribute differently to the identification of subjects’ partition.

For cases where several subjects undergo multiple experiments, it would be interesting to extend our
model to study whether groups of subjects sharing the same dynamic patterns tend to be consistent
across experiments, akin to the multi-view clustering problem recently considered by Franzolini et al.
(2023) and Dombowsky and Dunson (2023). While assuming that clusters of subjects are invariant over
time is a plausible assumption for the kind of short, single-task experiments that we considered in this
paper, one may need to allow subject partitions to vary over time when performing temporal biclustering
over longer time periods, or for experiments with multiple heterogeneous tasks.
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A Supplementary material on posterior inference

We provide details on all steps of the MCMC sampler that was outlined in Section 3.1 of the manuscript.

A.1 Profile assignments

Conditional on the data Yi observed for subject i, on state-assignment sequences and on state-specific
distributions, we can compute the likelihood of observations Yi under each possible profile assignment.
Denoting the likelihood of subject i’s observations under profile z by Lz(Yi), we have

Lz(Yi) =

R∏
r=1

T∏
t=1

F
(
Yi,r,t | θc(z)r,t

)
.

Then, the probability of assigning subject i to profile z can be derived by combining the likelihood
of subject i’s observations under profile z and the overall probability of profile z:

P (si = z) ∝ πzLz(Yi).

The update of profile assignments has then a computational cost of O(R · T · Z), but this cost can

substantially be reduced to O(Z) by computing F
(
Yi,r,t | θc(z)r,t

)
in parallel across R and T .

A.2 Profile probabilities

Conditional on each subject’s profile assignment and on ζ, the posterior distribution of profile proba-

bilities is π ∼ Dirichlet

(
ζ

Z
+ S1, . . . ,

ζ

Z
+ SZ

)
, where Sz =

∑N
i=1 1(si = z) is the number of subjects

currently assigned to profile z.

A.3 State probabilities

Conditional on states assignments, we can resample overall state probabilities ω0 and profile-specific
probabilities over states ω(z) using auxiliary-variable methods developed for the HDP (Teh et al., 2006).

Specifically, let M
(z)
k =

∑R
r=1

∑T
t=1 1(c

(z)
r,t = k)1(γ

(z)
r,t = 0) be the number of times that state k was

sampled for each active profile z, that is a profile with at least one subject assigned (and set Mz,k = 0
for all k whenever profile z is inactive). Given active profile z, each time state k was sampled from ω(z)

it may have been sampled from the states available (i.e. already sampled) to profile z or from ω0 (i.e.
from an existing or a new table, in the framework of the CRP representation of the HDP). To update

ω0, we need to sample the auxiliary variables T
(z)
k , that is the number of times that state k was sampled

from ω0, across all profiles. We set T
(z)
k = 0 whenever Mz,k = 0, otherwise we set T

(z)
k = 1 and, for

m = 2, . . . ,Mz,k we do

T
(z)
k ←

T
(z)
k + 1 with probability

αωω0k

αωω0k +m− 1
T

(z)
k o. w.

Then, for each inner cluster k ∈ {1, . . . ,K}, we set

T̄k =

Z∑
z=1

Tz,k

and we resample the expected frequencies of inner clusters from ω0 ∼ Dirichlet
( η

K
+ T̄1, . . . ,

η

K
+ T̄K

)
.

For each outer cluster z ∈ {1, . . . , Z}, we can then resample its inner-cluster probabilities using ωz ∼
Dirichlet (ϕω01 +Mz,1, . . . , ϕω0K +Mz,K).

A.4 State persistence probabilities

For each profile z with at least one associated subject, for t = 2, . . . , T let G
(z)
t =

∑R
r=1 γ

(z)
r,t be the

number of measurements that persisted in the same state from time t − 1 to time t. By conjugacy, we

can resample state persistence probabilities from a Beta posterior: a
(z)
t ∼ Beta

(
α+G

(z)
t , β +R−G

(z)
t

)
.
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A.5 Hyper-parameters of profile and subject probabilities

To learn the posterior distribution of the variables controlling profiles and state probabilities (that is,
respectively, ε and υ) we use a Metropolis Hastings (MH) step as in Algorithm 2, step (d-1) in Frühwirth-
Schnatter and Malsiner-Walli (2019), sampling proposals from the prior distribution. To encourage
mixing, at each iteration we make a number of proposals equal to the expected number of proposals
needed to achieve at least one acceptance.

A.6 States-specific likelihood variables

The update of state-specific likelihood variables depends on the form of F (θk). Conditional on subjects’
profiles and on the state assignments of all measurements and time points for each profile, unless ad-
ditional dependency is assumed by F (θk), the update will normally treat all observations assigned to
state k as exchangeable and will depend on a summary statistics of these observations. In our sim-
ulations, we let F (θk) be a Normal distribution, place a conjugate Normal-Inverse-Gamma prior on
θk = (µk, σ

2
k) so that the conditional posterior can be sampled from directly. In our real-data ap-

plications we let F (θk) be a more robust likelihood, the location-scale t-distribution (ν, µk, σk) with
fixed degrees of freedom ν = 3 and with location µk and scale σk. This is equivalent to assuming

that Yi,r,t | si = z, c
(z)
r,t = k

ind∼ Normal(µk, Vi,r,t) and Vi,r,t | σk
iid∼ Inv-χ(ν, σ2), with the latter being

the scaled inverse-chi-square distribution. We sample from the posterior distribution of µk and σ2
k

using the auxiliary-variable method detailed in Gelman et al. (2013) and assuming conjugate priors

µk
ind∼ Normal(µ0, σ

2
0) and σ2

k ∼ Gamma(ar, br). For other choices of likelihoods, a Metropolis Hastings
step may be needed when the conditional posterior cannot directly be sampled from.

B Supplementary material on application to neuroscience stud-
ies

We show MCMC diagnostics of the temporal biclustering model applied to the experiments on neuro-
science datasets in Section 4 of the manuscript.

The traceplots in Figure 11 indicate that the three MCMC chains that were ran on the fMRI datasets
converged to an area of the posterior with similar joint probability. Note that a different random
initialization was used for each chain. The same holds for the MCMC chains ran on the EEG dataset,
as shown in Figure 12.
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Figure 11: Joint log-posterior (up to a proportionality constant) of samples during the last 5000 iterations
of our dynamic biclustering model on the fMRI dataset of Section 5.

C Supplementary material on simulation

We detail the choice of hyperparameters and other model-fitting settings used in our experiments on
simulated data in Section 5 of the manuscript.
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Figure 12: Joint log-posterior (up to proportionality constant) of samples during the last 5000 iterations
of our dynamic biclustering model on the ERP dataset of Section 5.

When fitting the MMTB, SMTC and MMB models, in the notation defined in Section 2 and
summarized in Figure 2 in the manuscript, we set K = 20, d1 = 50, d2 = 100, ϕ = 0.5 and we let

µk
iid∼ Normal(0, 5) and σ2

k
iid∼ Inv-Gamma(30, 30). Further, for the MMTB and MMB, we let Z = 6, b1 =

50, b2 = 100. For the MMTB model we set α = 10, β = 2, while for the SMTC, that is fitted separately
to each subject, we find that α = 3 and β = 2 encourage smoothness in state sequences without over-
weighing the data. For the tRPM, we set α and β to the values giving best results, among the default
and the values used for MMTB and SMTC. The tRPM does not require a maximum number of states
(i.e. measurement clusters) and uses a CRP model with base measure 1 for states’ probabilities. In
the 3d plaid model (Mankad and Michailidis, 2014), a bicluster corresponds to a subset of subjects and
a subset of measurements. We set the maximum number of biclusters to the total number of possible
subsets of subjects and measurements, that is 2N × 2R. The 3d plaid model was also fitted with fewer
biclusters, with similar results. For our models and the tRPM, we ran three MCMC chains for 20,000
iterations on each simulated dataset, discarding the first half as burn-in; we then combine samples from
all chains to form approximate posterior distributions. Other settings of the tRPM and 3d plaid model
were set to their default values. A single estimate for each parameter of the 3d plaid model was obtained
by running its optimization algorithm.
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