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Abstract
Recently, deep reinforcement learning has shown
promising results for learning fast heuristics to
solve routing problems. Meanwhile, most of the
solvers suffer from generalizing to an unseen dis-
tribution or distributions with different scales. To
address this issue, we propose a novel architec-
ture, called Invariant Nested View Transformer
(INViT), which is designed to enforce a nested
design together with invariant views inside the
encoders to promote the generalizability of the
learned solver. It applies a modified policy gra-
dient algorithm enhanced with data augmenta-
tions. We demonstrate that the proposed INViT
achieves a dominant generalization performance
on both TSP and CVRP problems with various
distributions and different problem scales. Code
is avaiable at https://github.com/Kasumigaoka-
Utaha/INViT.

1. Introduction
Among all combinatorial optimization problems, routing
problems, such as traveling salesman problem (TSP) or ve-
hicle routing problem (VRP), are arguably among the most
studied thanks to their wide application range, such as lo-
gistics (Madani et al., 2021), electronic design automation
(Alkaya & Duman, 2013), or bioinformatics (Matai et al.,
2010). Due to their NP-hard nature, exact algorithms are
impracticable for solving large-scale instances, which has
motivated the active development of approximate heuristic
methods. Although state-of-the-art (SOTA) heuristic meth-
ods, such as LKH3 (Helsgaun, 2009; 2017) or HGS (Vidal,
2022), have been designed to provide high-quality solutions
for large routing problem instances with higher efficiency,
the computational costs remain prohibitively high.
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Figure 1. Our method INViT aggregates node information from
multiple nested local views (marked as colored discs). Trained on
small instances following uniform distributions, INViT can gener-
alize to instances with larger sizes or/and different distributions.

To obtain faster heuristics, researchers have started to ac-
tively explore the exploitation of deep learning, and espe-
cially deep reinforcement learning (DRL), either (1) to learn
to construct (Kool et al., 2019; Jin et al., 2023), in which
case the learned solver generates a solution step by step, or
(2) to learn to search (da Costa et al., 2021; Fu et al., 2021;
Min et al., 2023; Falkner & Schmidt-Thieme, 2023), in
which case the learned solver guides a local search method.
In this paper, we focus on neural constructive methods,
which usually enjoy faster inference while still reaching
good performance compared with learn-to-search methods.

While constructive solvers demonstrate promising results,
the existing DRL-based models generally lack robust gen-
eralization abilities, as also previously noted by Joshi et al.
(2022). Indeed, those models are usually trained on fixed-
scale (e.g., small) instances drawn from a fixed (e.g., uni-
form) probability distribution, but, once trained, they are
incapable of generating satisfactory solutions on new in-
stances of larger scales (i.e., cross-size generalization) or
drawn from a different distribution (i.e., cross-distribution
generalization). While one may think of training on more
diverse instances (larger scales or drawn from more diverse
distributions) to address this generalization issue, this comes
with an increased computational cost, which may be com-
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pletely impractical for huge instances. Moreover, after de-
ployment, new instances with larger scales or drawn from
unseen distributions may always happen.

In this paper, our objective is to develop a constructive
(a.k.a. autoregressive) solver with strong generalization
capabilities, ensuring stable performance irrespective of
distribution or scale, while also maintaining low time and
memory complexity. To that aim, we analyze previous mod-
els and identify two main sources for the generalization
issue: embedding aliasing and interference from irrelevant
nodes. The first source describes the situation where trained
neural models fail to distinguish nodes in higher-density
regions of a routing problem instance, as this usually hap-
pens when increasing instance sizes or when drawing from a
non-uniform distribution. The second source happens in par-
ticular in Transformer-based models where the self-attention
weights take into account all the nodes, even the farthest
ones, which are usually not relevant when constructing a so-
lution. As a countermeasure against these two phenomena,
we propose the removal of nodes far from the last visited
one in both the action and state spaces, which we justify by
careful statistical analyses of optimal solutions in routing
problems.

Motivated by our previous observations, we propose
Invariant Nested View Transformer (INViT), which com-
bines graph sparsification and invariance, to address the gen-
eralization issue (see Figure 1). More specifically, INViT
is a Transformer-based architecture that processes multiple
nested local views centered around the last visited node,
where the smallest view only includes the most promising
candidate actions, while the other larger views provide the
most relevant state information for action selection.

Our contributions can be summarized as follows:

• We identify two factors explaining the generalization
issue observed in most previous DRL-based methods:
embedding aliasing and interference from irrelevant
nodes. By analyzing some statistical properties of
optimal solutions of routing problems, we motivate
the reduction of the state and action spaces.

• We design a novel Transformer-based architecture that
takes invariant nested views of a routing problem in-
stance. Its architecture is justified by our previous
observations and statistical analyses.

• We demonstrate on different datasets that the proposed
architecture outperforms the current SOTA methods in
terms of generalization on both TSP and CVRP.

2. Related Work
Recently, research investigating the application of deep
learning and DRL to solve combinatorial optimization prob-

lems has become very active, exploring both local search
and constructive methods. For space reasons, we focus our
discussion on the most related work for neural constructive
methods. In this literature, both novel architectures and
novel DRL training algorithms have been proposed. Our
work mainly contributes in the first direction.

Architectures. Initial work in this direction proposed
and studied various architectures, such as Pointer Network
(Vinyals et al., 2015), Attention Model (Kool et al., 2019),
and Graph Neural Network (GNN) (Joshi et al., 2019).
Apart from the latter one based on supervised learning, most
studies consider reinforcement learning (RL), usually re-
sorting to the simple REINFORCE algorithm (Williams,
1992). To the best of our knowledge, S2V-DQN (Khalil
et al., 2017), a sequence-to-vector architecture, trained by
DQN (Mnih et al., 2013), is the first method to explicitly
consider cross-size generalization.

The Attention Model (Kool et al., 2019) is based on the
Transformer architecture (Vaswani et al., 2017). Given its
generic nature and its promising performance, recent work
has focused on improving its architecture. For instance,
PointerFormer (Jin et al., 2023) develops a multi-pointer net-
work to achieve better performance. MVGCL (Jiang et al.,
2023) combines a GNN encoder followed by an attention-
based encoder, where the former is trained by contrastive
learning to leverage graph information for cross-distribution
generalization. LEHD (Luo et al., 2023) designs a heavy
decoder to dynamically capture node features of varying
input sizes for cross-size generalization. ELG1 proposed
very recently (Gao et al., 2023), is an ensemble model com-
prised of a global policy and local policies, whose outputs
are aggregated with a pre-fixed rule. The local policies,
utilizing k-nearest neighbors (k-NN) promote cross-size
generalizability.

While ELG and our architecture share some superficial sim-
ilarities (e.g., use of k-NN to create local views), there are
some key differences, which make our proposition supe-
rior in terms of generalization performance. For instance,
our method learns to aggregate the local views in the em-
bedding space. This directly tackles embedding aliasing,
which is further reduced by considering nested local views
in our method. In addition, our architecture does not include
a global view, since the use of a global encoder may be
detrimental to the overall performance, as suggested by our
statistical analysis (see Section 3.2).

Training Algorithms. Most work applies standard RL
algorithms, but some recent propositions specifically aim
at improving the training (and also inference) algorithm.

1As a preprint on arXiv at the time of our submission, ELG
refers to ELG-v1.
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Figure 2. Preliminary findings. (a) The histogram of attention
score for farther nodes in attention-based encoders (trained on
TSP/CVRP 100). (b) The histogram of the optimal solution in k-th
nearest neighbors for different k. (c) The percentage overlap of
optimal solutions between the original and augmented instances.

For instance, POMO (Kwon et al., 2020) includes a generic
technique, which can significantly enhance the performance
of neural solvers with minimal additional costs: it generates
multiple solutions by considering shifted starting nodes or
by applying invariant transformations to input instances.
Like other recent works (Jin et al., 2023; Gao et al., 2023),
we also apply this simple but effective idea.

Regarding the generalization issue, some works aim at
improving cross-size generalization, e.g., using meta RL
(Qiu et al., 2022), exploiting equivariance and local search
(Ouyang et al., 2021a;b), or developing combinatorial prob-
lems as bisimulation quotiented Markov Decision Process
(Drakulic et al., 2023). Others focus on cross-distribution
generalization, e.g., using a specifically-designed new loss
(Jiang et al., 2022) or via knowledge distillation (Bi et al.,
2022). Recently, Omni-TSP/VRP (Zhou et al., 2023), in-
spired by the meta-RL approach proposed by Qiu et al.
(2022), tackles both cross-size and cross-distribution gener-
alization, as we do in our work. The latter work is therefore
a good SOTA baseline to compare with our proposition.

3. Background and Motivation
Before introducing the motivation of INViT, we first recall
the basic formulation of routing problems and the common
mechanism of autoregressive solvers. Then based on our
preliminary experiments, we point out the potential prob-
lems on generalization of the autoregressive solvers and
propose some initial ideas to address those problems.

3.1. Autoregressive Solvers for Routing Problems

Euclidean Routing Problem. Assume we are given a
Euclidean Routing Problem instance x with a graph G

and a set of constraints. The graph G is composed of
a node set C = {c1, c2, . . . , cn} and an edge set E con-
tains all connections between nodes. A feasible solu-
tion Fx is an index sequence (f1, · · · , fℓ) of length ℓ that
satisfies all the constraints. Basically, each node ci has
a coordinate (c1i , c

2
i ) ∈ [0, 1]2. The cost is defined by

Dx(Fx) = d(cfℓ , cf1) +
∑ℓ−1

t=1 d(cft , cft+1) , where d is
the Euclidean distance. Our goal is to find a feasible solu-
tion that minimizes the cost function. The constraints vary
according to the specific Routing Problem. For TSP, the
only constraint is that the agent has to visit all the nodes
exactly once. For VRP, an extra set of variable, demands,
is introduced to constrain the behavior of the agent. Each
node ci has a demand zi to fulfill and the agent has a fixed
capacity R. A depot node c0 is introduced for the agent to
replenish when it runs out of its capacity. In Capacitated
VRP (CVRP), the agent is constrained to visit nodes except
depot strictly once.

Autoregressive Solvers. Such a solver starts from an ini-
tial node, and repeatedly selects the next node to visit, until
it outputs a feasible solution. Regarding this process as a
Markov decision process (MDP), at time step t, a state st
consists of a partial solution (cf1 , · · · , cft) and a remaining
graph Gt = (Ct, Et). As noticed by Kool et al. (2019), the
stateful partial solution can be reduced to the first visited
node/depot and the last visited node (cf1 , cft). A solver
calculates a probability pθ(at|st) for each action at (i.e.,
node to be visited at time t) given the observable state st.
By the chain rule, the joint probability of a feasible solution
is given by:

pθ (Fx|x) =
ℓ∏

t=1

pθ(at|st). (1)

The REINFORCE (Williams, 1992) algorithm can train an
autoregressive solver using gradient ∇θL(πθ) defined by:

Epθ

[
(Dx (Fx)− b(x))∇θ log

ℓ∏
t=1

pθ(at|st)

]
, (2)

where b(x) represents a baseline performance.

3.2. Generalization Issue in Embedding Space

To design an autoregressive solver that can generalize well
both in the cross-size and cross-distribution settings, we first
identify two shortcomings of current neural solvers trained
on small scale and uniform distributed instances: embedding
aliasing and interference from irrelevant nodes.

Embedding Aliasing. Recall that (deep) neural networks
are simply Lipschitz functions (Virmaux & Scaman, 2018).
Let h denotes the encoder layer of a neural solver trained
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on uniformly-distributed instances in the unit square, with
size bounded by n. Then, h would satisfy the following
Lipschitz inequality:

∥h(ci)− h(cj)∥ ≤ L ∥ci − cj∥ , ∀ci, cj ∈ C (3)

where L > 0 is the Lipschitz constant.

After training, encoder h should be able to usually distin-
guish nodes whose expected minimum pairwise distance in
the unit square is O(1/n). However, when considering a
new uniformly-distributed instance whose size N is larger
than n, encoder h would have to distinguish nodes whose
expected minimum pairwise distance is O(1/N) < O(1/n).
Because of the Lipschitz inequality, there will be necessarily
a size N such that the embeddings produced by encoder h
will be mixed up, leading to incorrect action choices by the
neural solver.

We call this phenomenon embedding aliasing, which pro-
vides one partial explanation to the generalization issues
observed in existing neural solvers. Note that embedding
aliasing can also occur when considering different distribu-
tions. Indeed, a non-uniform distribution will necessarily
generate some regions that contain densely packed nodes.

Interference from Irrelevant Nodes. The second issue
mostly impacts attention-based solvers that process the com-
plete graph directly. Recall that one attention layer computes
the following embeddings:

E = Softmax

(
QK⊤
√
dK

)
V. (4)

where Q,K, V correspond to query, key and value. For
node cj , its impact on the embedding of node ci is given
by the attention score between Qi and Kj . After training,
the encoder may learn to assign lower attention scores to
irrelevant nodes (i.e., far away nodes in routing problems),
however, the cumulative impact of those irrelevant nodes
becomes non-negligible as the instance size increases, as
illustrated in Figure 2 (a), which shows the empirical dis-
tribution of the sum of attention scores after excluding the
100 closest neighbors for a given model trained on instance
size 100. Mechanically, the contribution of those irrelevant
nodes may impact the new embeddings, further amplifying
the embedding aliasing issue.

3.3. Preliminary Findings

The previous observations suggest to control the number of
nodes given as inputs of a neural solver. Interestingly, both
the action and state spaces could be reduced.

Action Space. While theoretically, the action space should
contain all nodes that satisfy the constraints of a problem

(e.g., unvisited node in TSP or unvisited node whose de-
mand is less than the current capacity in CVRP). In practice,
only the closest nodes need to be considered, as justified
by Figure 2 (b), which shows the distribution of the rank in
terms of neareast neighbors for any node in an optimal solu-
tion both in random TSP and CVRP with different scales.
This observation, which is quite natural since an optimal
solution minimizes a sum of distances, indicates that we can
reduce our action space to a smaller subset, composed of
the closest neighbors of the last visited node within the orig-
inal action space (e.g., 8-NN can include >98% of optimal
choices).

State Space. While the action space can be narrowed
down, the action choice can still depend on eliminated nodes.
Indeed, they could provide useful information regarding the
future impact. To simulate node elimination, we instead
add randomly-distributed nodes outside the unit square for
different random instances. Figure 2 (c) measures the per-
centage of edges that appear both in the optimal solutions of
the initial random instances and in those of the augmented
instances. These results indicate that the eliminated actions
have a relatively limited impact on the optimal choices for
TSP. In CVRP, the impact is larger, due to the capacity con-
straint, which can result in larger changes of the optimal
solution. However, since the effects are not as pronounced
as for the action space and because of the two issues de-
scribed in Section 3.2, a state space reduction with several
nested sets may be beneficial.

4. Method
We present Invariant Nested View Transformer (INViT).
We address the problems in Section 3.2 by implementing
the observations in Section 3.3 into the model design.

4.1. Invariant Nested View Transformer

The overall architecture and the autoregressive workflow
are shown in Figure 3. INViT incorporates a collection
of nested-view encoders to embed the node features and
maintains invariant views irrespective of the distribution and
scale. According to Section 3.2, we define a set of neighbors
of the last visited node as potential candidate set Ap, which
corresponds to the smallest view in Figure 3. It’s noteworthy
that in VRP, the depot is typically considered as a candidate,
since the agent is only prohibited from revisiting the depot
when it is currently located there.

Nested View Encoders. As illustrated in Section 3.2, the
complete graph assumption allows farther nodes to have
an exaggerated impact on the embeddings. To tackle this
issue, one simple approach is to perform sparsification on
the graph. Calculating a sparse graph for a static graph is
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Figure 3. The overall architecture of INViT. The input state is extracted into multiple nested views, consisting of neighborhood nodes
around the last visited node. Nodes located in the smallest view are potential candidates, and other nodes located in the view are called
normal nodes. Each nested view is processed by a single-view encoder to obtain the embeddings for each node. Embeddings are then
concatenated channel-wisely across different views. The decoder takes the embeddings of the last visited node and the first visited node
(or depot) as the query, and the embeddings of the potential candidates as the key and the value. Lastly, the model samples a node to visit
by the output probabilities. It updates the partial tour in an autoregressive manner until a complete tour is constructed.

a feasible task. However, taking into account the dynamic
nature of the routing problem, computing a dynamically
sparse graph during the inference procedure becomes a com-
putationally expensive task. Hence, we present a nested
view encoder design to tackle this issue by sparsifying the
graph into subgraphs, each composed of different numbers
of neighbors. As the k-nearest neighbor (k-NN) algorithm
can offer stable neighbors and operate in a batch manner,
we employ it to perform graph sparsification. By eliminat-
ing the nodes which are not in neighbors with different k,
multiple subgraphs are produced. After proceeding with
the invariant layer, each parallel single-view encoder would
receive a distinct invariant subgraph and output the em-
beddings under different graph-contexts. The nested view
design enables INViT to integrate the embedding with dif-
ferent correlations, emphasizing the correlations between
highly related nodes while preserving some correlations
between less related nodes.

Invariant Layer. As shown in Section 3.2, most of the en-
coders struggle to distinguish close nodes when the distance
between nodes becomes sufficiently small. It is another key
factor that hurts the generalization capability of attention-
based encoders. Therefore, to overcome the problem, we
designed a layer called Invariant Layer. The Invariant Layer
consists of two steps: normalization and projection. The
normalization could be formulated as follows:

ĉmi =

cmi −min
j∈N

cmj

max
m∈{1,2}

max
i,j∈N

|cmi − cmj |
. (5)

As shown in Figure 3, in addition to the potential candidate
set Ap and the last visited node, the subgraph also includes
the first visited node (or depot), the impact of which cannot
be neglected. However, it is possible the first visited node
(or depot) falls outside the region of the potential candidate
set Ap and the last visited node, potentially compromising
the effectiveness of the normalization process. In cases
where the first visited node (or depot) cannot be visited, we
incorporate a projection step, which could be formulated as

ĉm0 = clip

 cm0 −min
j∈N

cmj

max
m∈{1,2}

max
i,j∈N

|cmi − cmj |
, 0, 1

 , (6)

where clip(u, v, w) = max(v,min(u,w)) projects the
out-of-region first visited node (or depot) to the boundary,
ensuring an invariant boundary for its coordinate.

Single-view Encoder. Following the nested view design,
multiple independent encoders are constructed to embed
node features for different subgraphs. Once processed by
the invariant layer, the subgraph is then input to the respec-
tive single-view encoder. The single-view encoder is com-
posed of an initial linear layer and several encoder blocks
consisting of Multi-Head Attention modules and Feed For-
ward layers (Vaswani et al., 2017). To note that, the encoder
does not use the positional encoding module, as the order of
the input sequence is irrelevant to the Routing Problem. In
alignment with the design of the invariant layer, which en-
compasses normalization and projection on different nodes,
distinct initial linear layers are applied to capture node fea-
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tures. For each input subgraph, its node embeddings are
produced by the corresponding single-view encoder.

Multi-view Decoder. INViT aggregates multiple single-
view embeddings by a channel-wise concatenation then in-
puts to a multi-view decoder after processing subgraphs
by parallel single-view encoders. As mentioned previ-
ously, each subgraph shares a common intersection of nodes,
which is the potential candidate set Ap, the last visited nodes,
and the first visited nodes (or depot). Discarding all the em-
beddings for those nodes outside this intersection, we can
construct multi-view embeddings by channel-wisely con-
catenating single-view embeddings. The embeddings of the
last visited node and the first visited node (or depot) are
input as the query for the decoder, while the other embed-
dings of potential candidates serve as the key and the value
in the decoder. The final output probability is the attention
weight of the last layer, which could be formulated as

πt(a) =

{
Softmax

(
C · tanh

(
Q·KT

√
dK

))
, a ∈ Ap

0, Otherwise
(7)

where C is a positive constant. With the probability map, the
next node could be sampled, and the entire model operates
in an autoregressive manner.

4.2. Algorithm

Training Stage. To train INViT, we apply a REINFORCE-
based algorithm integrated with data augmentation. Initially,
two identical models are initialized with training parameter
θ and baseline parameter θBL. At the training stage, random
instances are generated for training. For each training in-
stance xi, a set of augmented instances Xi = {xi,j}ωj=1 is
generated using the augmentation function, which includes
rotation, reflection, and normalization. Leveraging the idea
of Kwon et al. (2020), we also introduce variation in the
starting point for each augmented instance. According to
Equation (2), the loss is computed based on the model per-
formance and baseline performance. Following Kool et al.
(2019), the baseline tour is determined using the baseline
model with a greedy rollout, while the model tour is com-
puted using the training model with a random sampling
strategy. The performance is then calculated as follows:

b(xi) = Ex∈Xi [Dx (Fx(µθBL))] ,

Dxi(Fxi) = Ex∈Xi [Dx (Fx(πθ))] ,
(8)

where Fx(π) denotes the tour of instance x under policy π,
and µ is the deterministic policy induced by π.

Test Stage. At the test stage, we also employ data aug-
mentation to enhance the overall performance. In contrast to
the training stage, where we aim to use the average perfor-
mance to increase generalizability on augmented instances,

we only seek the best solution at the test stage. A com-
parison between the baseline model and training model is
conducted at the end of each training epoch. If the training
model outperforms the baseline model, its parameters θBL

are substituted using the training parameter θ.

5. Experimental Results
To validate the generalizability of the proposed INViT, we
use a series of datasets across various scales and distribu-
tions. We also include a comprehensive evaluation of our
method, with several SOTA baselines, on our generated
datasets and well-known public datasets.

5.1. Experimental Setups

MSVDRP Dataset. We have produced a dataset called
Multi-Scale Various-Distribution Routing Problem (MSV-
DRP) dataset. The dataset contains multiple subsets featur-
ing both cross-distribution and cross-size instances for TSP
and CVRP. The data generation process follows Bossek et al.
(2019), yielding 16 subsets for TSP, encompassing 4 distri-
butions (uniform, clustered, explosion, and implosion) and
4 scales (TSP-100, TSP-1000, TSP-5000 and TSP-10000).
Additionally, 12 subsets for CVRP are generated under the
same distributions but at three scales (CVRP-50, CVRP-500,
and CVRP-5000). The number of instances for each subset
varies according to the scale, with 2000 instances for TSP-
100/CVRP-50, 200 instances for TSP-1000/CVRP-500, and
20 instances for TSP-5000/TSP-10000/CVRP-5000.

Public Datasets. Furthermore, we also use public datasets:
TSPLIB and CVRPLIB to validate the performance. These
instances have diverse problem scales and adhere to real-
world distributions. For TSP, we include all symmetric
instances in TSPLIB95 (Reinelt, 1991) with nodes repre-
sented as Euclidean 2D coordinates, containing 77 instances
varying in scale from 51 to 18512. For CVRP, we include
all instances in CVRPLIB Set-X by Uchoa et al. (2017),
containing 100 instances varying in scale from 100 to 1000.

Evaluation Metrics. For each comparison method, we re-
port the average gap to the (near-)optimal solutions, solved
by Gurobi (Gurobi Optimization, LLC, 2023) (for TSP-100),
LKH3 (Helsgaun, 2009; 2017) (for TSP-1000, TSP-5000
and TSP-10000), HGS (Vidal, 2022) (for CVRP), or given
optimality (for TSPLIB and CVRPLIB). Each gap corre-
sponding to a problem instance x is calculated as follows:

gap =
Dx(F

model)−Dx(F
opt)

Dx(F opt)
× 100%, (9)

where Dx(F
model) represents the length of the model so-

lution, and Dx(F
opt) represents the length of the (near-

)optimal solutions. Note that LKH3 and HGS may not pro-
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Table 1. Performance on TSP problems with different distributions and problem scales. (* denotes imitation learning based methods and
the rest are REINFORCE-based methods.)

Distribution Uniform Clustered

Category TSP-100 TSP-1000 TSP-5000 TSP-10000 TSP-100 TSP-1000 TSP-5000 TSP-10000
Measurements gap(%) time(s) gap(%) time(s) gap(%) time(s) gap(%) time(s) gap(%) time(s) gap(%) time(s) gap(%) time(s) gap(%) time(s)

(Near-)Optimality 0.00 23.8m 0.00 16.3h 0.00 2.1h 0.00 1.4d 0.00 34.4m 0.00 16.9h 0.00 4.6h 0.00 1.7d

POMO(NeurIPS-20) 1.29 2.0m 49.57 1.6m 61.81 1.2m 84.99 3.8m 3.89 1.7m 50.36 1.6m 83.46 1.2m 102.50 3.9m
PointerFormer(AAAI-23) 0.43 1.7m 34.29 1.6m 39.61 1.1m 71.85 3.9m 3.96 1.7m 43.89 1.6m 60.18 1.1m 103.70 3.9m

Omni-TSP(ICML-23) 2.55 2.0m 20.25 1.9m 50.30 1.4m 62.56 4.2m 3.62 2.0m 23.13 1.9m 57.74 1.3m 71.47 4.2m
ELG-v1 0.51 3.2m 11.81 3.4m 19.53 1.9m 20.83 10.1m 3.69 3.2m 17.67 3.0m 32.00 1.9m 38.94 10.2m

*LEHD(NeurIPS-23) 0.57 11.5m 2.76 12.0m 15.80 23.6m 24.10 2.7h 4.51 14.9m 13.74 11.8m 35.70 23.9m 54.50 2.7h
*BQ-NCO(NeurIPS-23) 5.90 16.6m 3.91 23.6m 12.70 2.0h 18.78 14.1h 8.86 17.4m 19.17 23.6m 53.72 2.0h 89.40 14.1h

INViT-2V 1.65 3.0m 6.15 3.5m 6.88 1.7m 6.18 7.7m 3.12 2.9m 9.32 3.3m 9.07 1.7m 9.02 7.6m
INViT-3V 0.95 4.2m 5.99 4.8m 6.46 2.2m 6.01 10.3m 2.47 4.0m 8.63 4.8m 8.57 2.2m 8.79 10.5m

Distribution Explosion Implosion

Category TSP-100 TSP-1000 TSP-5000 TSP-10000 TSP-100 TSP-1000 TSP-5000 TSP-10000
Measurements gap(%) time(s) gap(%) time(s) gap(%) time(s) gap(%) time(s) gap (%) times(s) gap(%) time(s) gap(%) time(s) gap(%) time(s)

(Near-)Optimality 0.00 28.3m 0.00 17.5h 0.00 2.0h 0.00 1.4d 0.00 28.7m 0.00 17.5h 0.00 3.5h 0.00 1.4d

POMO(NeurIPS-20) 1.42 1.7m 50.00 1.6m 89.43 1.2m 92.66 3.8m 1.44 1.7m 50.01 1.6m 64.12 1.2m 88.02 3.8m
PointerFormer(AAAI-23) 0.87 1.7m 40.99 1.6m 61.42 1.1m 104.85 3.8m 0.71 1.7m 35.21 1.6m 39.97 1.1m 74.57 3.9m

Omni-TSP(ICML-23) 3.21 2.0m 21.97 1.9m 54.45 1.4m 66.72 4.2m 2.67 2.0m 20.29 1.9m 52.01 1.4m 63.85 4.2m
ELG-v1 0.93 3.5m 15.32 3.0m 33.80 1.9m 35.03 9.8m 0.85 3.2m 12.10 3.1m 19.59 1.9m 21.69 9.8m

*LEHD(NeurIPS-23) 0.68 11.1m 5.99 11.9m 21.34 23.9m 30.66 2.7h 1.17 18.3m 4.25 12.4m 17.67 23.6m 26.46 2.7h
*BQ-NCO(NeurIPS-23) 6.41 18.0m 7.21 23.4m 29.48 2.0h 51.67 14.1h 6.40 16.8m 5.43 23.8m 16.63 2.0h 25.50 14.1h

INViT-2V 1.85 3.1m 9.11 3.5m 9.92 1.7m 9.32 7.6m 1.95 2.9m 6.63 3.4m 7.63 1.7m 6.78 7.6m
INViT-3V 1.12 4.3m 8.57 4.7m 9.43 2.2m 9.05 10.2m 1.21 4.0m 6.35 4.8m 7.41 2.2m 6.21 10.4m

duce exactly optimal solutions, but the comparison between
reported gaps can still be guaranteed to be fair due to utiliz-
ing the same evaluation instances. We also report the total
inference time on each dataset for each neural constructive
method.

Comparison Methods. As mentioned in related work,
numerous neural constructive works share similar objec-
tives with ours. We choose to compare with representative
baseline methods including SOTA methods delineated in
Section 2: REINFORCE-based neural constructive meth-
ods, including POMO (Kwon et al., 2020), Omni-TSP/VRP
(Zhou et al., 2023), PointerFormer (Jin et al., 2023), ELG-
v1 (Gao et al., 2023) and imitation learning based neural
constructive methods, including LEHD (Luo et al., 2023),
BQ-NCO (Drakulic et al., 2023). The selected comparison
methods can show the results in the following aspects: 1)
demonstrating the occurrence of generalization issues for
neural attention-based solvers and 2) illustrating the impacts
of different methods on generalizability improvements.

Experimental Settings. During training, all the models
including POMO, PointerFormer, LEHD, BQ-NCO, ELG-
v1, and the proposed INViT were trained on TSP/CVRP of
size 100 and with uniform distribution, except for Omni-
TSP/VRP, which is trained on sizes from 50 to 200 and
diverse distributions. For the comparison methods, we use
the pre-trained models provided by the authors. For the
proposed INViT, the initial learning rate is set to 10−4, with

a weight decay of 0.01. The model is trained for 1.5 ×
105 steps, with a batch size of 128, taking about 5 days
on both TSP and CVRP. To specify the variants of our
model, we use INViT-2V (resp. INViT-3V) to denote the
INViT model comprised of two (resp. three) single-view
encoders, with k-NN size of 35, 15 (resp. 50, 35, 15). To
make the total number of trainable parameters comparable
to other baselines, each encoder is designed to have 2 layers.
Therefore, INViT-2V (resp. INViT-3V) contains 4 (resp. 6)
layers of encoders in total, similar to most of the included
baselines.

Evaluations are performed on our MSVDRP dataset and
the public datasets. Following Kwon et al. (2020), each
method generates multiple solutions for an input instance
using greedy rollout. The number of solutions (pomo-size)
is limited to 100, in case of memory issues for large-scale
datasets. During the evaluation, parallelization is not ex-
plored, i.e., each iteration only contains one test instance.
All the experiments are performed on the same machine,
equipped with a single Intel Core i7-12700 CPU and a sin-
gle RTX 4090 GPU. More detailed experimental settings
can be found in Appendix A.2.

5.2. Performance Analysis

Performances on the MSVDRP Datasets. Table 1 and
Table 2 demonstrates the performance on the MSVDRP
datasets. It can be observed that POMO and PointerFormer
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Table 2. Performance on CVRP problems with different distributions and problem scales. (* denotes imitation learning based methods
and the rest are REINFORCE-based methods.)

Distribution Uniform Clustered

Category CVRP-50 CVRP-500 CVRP-5000 CVRP-50 CVRP-500 CVRP-5000
Measurements gap(%) time(s) gap(%) time(s) gap(%) time(s) gap(%) time(s) gap(%) time(s) gap(%) time(s)

(Near-)Optimality 0.00 5.1h 0.00 1.1d 0.00 3.3d 0.00 5.7h 0.00 2.3d 0.00 3.3d

POMO(NeurIPS-20) 6.01 1.5m 32.85 1.4m 277.63 1.8m 6.68 1.5m 26.80 1.4m 182.90 1.9m
Omni-VRP(ICML-23) 5.15 1.8m 7.06 1.6m 36.17 2.0m 3.84 1.8m 5.08 1.6m 13.52 1.9m

ELG-v1 3.74 2.5m 7.07 2.4m 11.80 3.4m 4.98 2.9m 6.28 2.4m 15.46 3.5m

*LEHD(NeurIPS-23) 6.72 11.1m 5.84 7.5m 10.59 25.0m 6.52 7.2m 7.29 7.4m 23.65 25.1m
*BQ-NCO(NeurIPS-23) 12.64 10.0m 4.72 10.5m 5.37 2.0h 13.93 10.4m 5.93 11.2m 14.44 2.0h

INViT-2V 3.82 2.6m 8.75 1.9m 6.05 2.8m 3.98 2.3m 8.28 1.8m 6.93 2.8m
INViT-3V 3.04 3.7m 7.89 2.6m 5.32 4.0m 3.12 3.2m 7.68 2.6m 6.09 4.1m

Distribution Explosion Implosion

Category CVRP-50 CVRP-500 CVRP-5000 CVRP-50 CVRP-500 CVRP-5000
Measurements gap(%) time(s) gap(%) time(s) gap(%) time(s) gap(%) time(s) gap(%) time(s) gap(%) time(s)

(Near-)Optimality 0.00 5.0h 0.00 2.8d 0.00 3.3d 0.00 5.0h 0.00 2.0d 0.00 3.3d

POMO(NeurIPS-20) 6.39 1.5m 33.91 1.4m 226.27 1.8m 6.30 1.5m 31.45 1.3m 253.96 1.8m
Omni-VRP(ICML-23) 4.95 1.7m 7.02 1.6m 20.58 1.9m 5.09 1.8m 6.56 1.6m 30.62 1.9m

ELG-v1 3.94 2.5m 7.06 2.4m 12.56 3.4m 3.82 2.5m 6.93 2.4m 11.68 3.4m

*LEHD(NeurIPS-23) 6.65 7.0m 6.64 11.4m 18.05 25.3m 7.03 7.1m 7.16 7.4m 19.79 25.0m
*BQ-NCO(NeurIPS-23) 12.96 10.0m 5.79 10.7m 15.06 2.0h 13.41 10.4m 5.28 10.9m 6.60 2.0h

INViT-2V 4.05 2.8m 8.99 1.9m 7.11 2.9m 4.41 2.3m 8.73 1.8m 6.12 2.9m
INViT-3V 3.78 3.8m 8.26 2.7m 6.03 4.2m 3.82 3.5m 7.33 2.6m 5.09 4.2m

have huge gap increases both from TSP-100 (resp. CVRP-
100) to TSP-1000/TSP-5000/TSP10000 (resp. CVRP-
500/CVRP5000), and from uniform distribution to other
distributions, especially to the clustered distributions. This
illustrates the existence of generalization issues in the
attention-based models.

Following the tables, INViT-3V achieves the best results on
all large-scale datasets (TSP-5000 with average gap 7.97%,
TSP-10000 with average gap 7.52% and CVRP-5000 with
average gap 5.63%), showing its great cross-size generaliz-
ability. Except for BQ-NCO on CVRP-5000 instances, other
baselines fail to achieve satisfactory performance (average
gap > 10%) on these large-scale datasets.

According to the result table, the relative gap increase from
uniform distribution to other distributions for INViT-3V for
TSP-5000 and TSP-10000 (resp. CVRP-5000) is 31% and
33% (resp. 8%), only worse than 9% and 8% (resp. −40%)
by Omni-TSP/VRP. Importantly, our method is only trained
on uniform distributions, different from Omni-TSP/VRP.
As indicated by the results of POMO, cross-size imposes
more generalization difficulties on the model than cross-
distribution. We observe that our model also outperforms
Omni-TSP/VRP on all large-scale datasets. This indicates
that our proposed method enjoys good cross-distribution
generalizability while being cross-size generalizable.

It can also be observed that INViT-2V has a similar general-
ization performance on TSP and CVRP with less inference
time. Having an additional single-view encoder, INViT-3V

has a slight improvement in all experiments.

Nevertheless, our method does not outperform the compari-
son methods on some small-scale datasets (e.g. TSP-100)
and most of the medium-scale datasets (e.g. TSP-1000,
CVRP-500) while the difference between the performance
of INViT-3V and the best baseline on these two datasets
are subtle. One possible explanation is that such scales are
close to size of training instances. In such cases, embedding
aliasing does not fully take effect and interference from ir-
relevant nodes does not have much negative influence on the
embedding. This explanation also corresponds to the fact
that our method performs much closer to the best baseline
on TSP-1000 (relative gap 10%) than on CVRP-500 (rela-
tive gap 43%), since embedding aliasing has a strong effect
on size 1000.

Performances on Public Dataset. We group the results
of TSPLIB and CVRPLIB Set-X by size in Table 3. A
marked star (*) represents the occurrence of out-of-memory
issues. Detailed results are displayed in Appendix A.4. As
a supplement to the MSVDRP dataset, the conclusion that
our method INViT has a strong generalization ability still
holds in these public datasets. Meanwhile, our method
INViT achieves a comparable performance with comparison
methods on small-scale and medium-scale instances, which
is better than the comparison on MSVDRP Datasets. This
potentially benefits from our strong generalization ability
on unseen distributions.
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Table 3. Performances on TSPLIB and CVRPLIB problems.
TSPLIB 1 ∼ 100 101 ∼ 1000 1001 ∼ 10000 > 10000

POMO 1.92% 13.49% 60.05% 94.27%
PointerFormer 1.36% 10.63% 30.38% 52.46%

Omni-TSP 1.98% 5.06% 31.53% 82.92%
LEHD 0.64% 3.42% 12.46% 43.61%∗

BQ-NCO 8.66% 8.35% 14.50% 45.21%∗

ELG-v1 1.15% 7.72% 16.80% 26.73%

INViT-2V 1.84% 4.77% 8.81% 9.54%
INViT-3V 1.14% 4.26% 8.61% 9.11%

CVRPLIB Set-X 100 ∼ 200 201 ∼ 500 > 500

POMO 9.43% 19.76% 58.82%
Omni-VRP 7.80% 8.18% 11.21%

LEHD 11.75% 9.45% 17.60%
BQ-NCO 13.35% 10.11% 11.18%
ELG-v1 6.77% 8.95% 12.21%

INViT-2V 7.23% 9.58% 10.39%
INViT-3V 6.52% 9.11% 10.21%

5.3. Ablation Study

Table 4. Ablation study on architecture variants.
Variants TSP-1000 TSP-10000 CVRP-500 CVRP-5000

INViT-2V (Global) 10.90% 15.58% 12.95% 13.45%
INViT-2V (w/o Inv) 26.32% 66.38% 17.32% 20.48%

INViT-2V (nhead = 4) 8.10% 8.41% 9.45% 7.35%
INViT-2V (naug = 4) 8.05% 8.13% 9.12% 7.01%
INViT-2V (w/o Aug) 8.83% 8.93% 9.77% 7.55%
INViT-3V (w/o Aug) 8.05% 8.28% 9.23% 6.76%
INViT-2V (Model-50) 8.95% 9.47% 10.18% 9.00%
INViT-3V (Model-50) 8.34% 8.85% 9.92% 8.55%

INViT-1V 14.87% 15.14% 13.21% 12.10%
INViT-4V 7.35% 7.64% 8.77% 5.87%

INViT-2V 7.80% 8.01% 9.01% 6.76%
INViT-3V 7.69% 7.86% 9.06% 6.01%

We have conducted several ablation experiments to demon-
strate the impacts of different model designs. INViT-2V
(Global), consists of two single-view encoders, but one
of the encoders process the global information without
graph sparsification. INViT 2V (w/o Invariance) excludes
the invariant layers from INViT. INViT-2V (nhead = 4)
changes the number of MHA heads to 4 (originally 8).
INViT-2V (naug = 4) changes the number of generated
augmented instances to 4 (originally 8). INViT-2V/3V
(w/o Aug) removes data augmentation during training pro-
cedures. INViT-2V (Model-50) and INViT-3V (Model-50)
are trained on TSP-50/CVRP-50 instances. INViT-1V only
includes one single-view encoder, and we record the best
result for each evaluation from multiple models trained by
different k-NN sizes, i.e., 50, 35, 15 included in our INViT-
3V. INViT-4V is the extended model composed of four
single-view encoders, each with k-NN size of 75, 50, 35,
and 15. The results on partial MSVDRP datasets are pre-
sented in Table 4. Each reported gap is averaged among all
four distributions, so the data can represent performance for
both cross-size and cross-distribution.

The experiments show that key components in the proposed
architecture: the graph sparsification of all encoders (ex-
cluded by INViT-2V (Global)), the invariant transformation
(excluded by INViT-2V (w/o Inv)), and the nested view de-
sign (excluded by INViT-1V), all impose a positive effect
on cross-size generalization. The change of hyperparame-
ters and the removal of data augmentation do not impose
significant changes on the performance. It can be concluded
that the proposed INViT architecture is robust against dif-
ferent training parameters. Increasing the scale of training
instances (from size 50 to size 100) does improve the overall
performance, meanwhile, our model still achieves a good
performance by training on smaller-scale instances on TSP-
50/CVRP-50, which again demonstrates the generalization
capability of our model. We observe a marginal improve-
ment led by accumulating single-view encoders, but the
simplest implementation (INViT-2V) already enjoys great
cross-size and cross-distribution generalizability.

6. Conclusion
We present Invariant Nested View Transformer (INViT),
an autoregressive routing problem solver that has strong
generalization capabilities on instances with larger scales
and different distributions, which only requires training on
small-scale uniform instances. Experiments demonstrate
that INViT outperforms SOTA autoregressive solvers on
large-scale and cross-distribution instances.
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A. Appendix
A.1. Detailed Analysis

Figure 4. Impact of the nodes outside neighbor groups for the encoder.

Farther Node Impact for Encoder. To plot Figure 4, we train two standard attention-based solvers by uniform instances
with scale-50/100, following POMO Kwon et al. (2020). Then we collect its attention scores between each node and
calculate the cumulative sum of attention score outside 100 nearest neighbors. Figure 4 demonstrates the cumulative impact
of farther nodes on the embedding. It could be seen that with the increasing of scale, the peak of the distribution comes
close to 1. This means that neighbors actually have very limited effect on the embedding when encoding the whole graph
simultaneously, which is opposite to our other observation.

Figure 5. Statistics on the action choice of the optimal solution. It represents the distribution of the rank of the next node to visit from a
node in a solution tour among the nearest neighbors of the latter. Best viewed in colors.

K-NN Statistics. According to the cost function of TSP and CVRP, there is a natural tendency that the agent tend to
select from the neighbors of the last visited node as its next visited node. However, choosing from the neighbors is not
always the best choice, there are cases such that the agent choose the node beyond the neighbors. Therefore, we conduct a
statistical analysis on the choice of the optimal tour for both TSP and CVRP under a constructive view. The constructive
view represents we emulate the inference procedure of auto-regressive solvers, which travels the tour step by step and only
consider feasible actions. As illustrated in Figure 5, for both TSP and CVRP, there is a relatively low probability that the
agent would select nodes outside the k-th (i.e., 15) neighbor irrespective of scale and distribution.
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Figure 6. Optimal solution change curve. It represents the empirical solution change from small instances with a size of 100 to a larger
size. Best viewed in colors.

Farther Node Impact for Optimal Solution. Though farther nodes might not be chosen as the next visited node, it might
still have impact on the choice of the next visited node. Therefore, to further investigate the real impact brought by farther
nodes, we have done another statistical analysis on the optimal solutions. We first generate TSP/CVRP instances with
different distributions on the unit board and then calculate the optimal tours. Then by adding nodes outside unit board, we
get larger perturbed instances and also calculate the optimal tours. Therefore, by calculating the percent of the edges remain
from original solutions to the perturbed solutions, we are able to see whether the local behavior of the agent is dramatically
changed by the additional nodes outside the unit board, which represents the farther nodes. Figure 6 demonstrates that for
TSP, the impact of the farther nodes is quite limited, while the change mainly results from the nodes on the margin of the
unit board. For CVRP, the remaining solution percent decreases mainly because the change of the solution on the margin
would result in the change of remaining capacity in the tour, which further leads to the change of whole subtour. However,
during the inference procedure of autoregressive solvers, since the agent could observe the change of remaining capacity
and dynamically adjust the subtour, the farther nodes would have a lower impact than demonstrated in Figure 6.

A.2. Detailed Experimental Settings

The MSVDRP Datasets. In our MSVDRP datasets, we include four different node distributions.

Nodes for uniform distribution are uniformly generated from a [0, 1]2 board.

Nodes for clustered distribution are generated as follows. We first generate N clusters on a [0, L] following a uniform
distribution. Each node first selects its center uniformly, with additional Gaussian noise on coordinates with mean µ = 1
and standard deviation σ = 0. Our datasets include a balanced mixture of data with N = 3, L = 10 and N = 7, L = 50.
For CVRP, the depot is generated uniformly together with the cluster.

Nodes for explosion distribution are first generated as uniform distribution. Then a disc is determined by uniformly selecting
a center on the board with a random radius uniformly selected from [rmin, rmax]. All nodes inside this disc are mutated
outside, following an exponential distribution with rate λ. We choose rmin = 0.1, rmax = 0.5, λ = 10.

Nodes for implosion distribution are first generated as uniform distribution. Then a disc is determined by uniformly selecting
a center on the board with a random radius uniformly selected from [rmin, rmax]. All nodes inside this disc are mutated
closer to the center, following a multiplier λ ∈ [1,+∞). The multiplier is determined by a truncated normal distribution
with mean µ = 1 and standard deviation σ = 0. We choose rmin = 0.1, rmax = 0.5.

For CVRP following uniform, explosion, and implosion distributions, the depot is generated uniformly together with the
nodes; for CVRP following clustered distribution, the depot is generated together with the cluster centers. Additionally,
capacity is set to 50, and demands for each node is an integer randomly selected from 1 to 10. All instances are scaled to
[0, 1]2 board after generation, which is shown in Figure 7. We refer to Bossek et al. (2019) for more technical details.
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Figure 7. Sample Instances of the MSVDRP Dataset. Each sub-figure represents an instance in the dataset following its specified
distribution from TSP1000/CVRP500.

Solutions for Gap Calculation. Noted in Section 5.1, the (near-)optimal solutions for gap calculation are generated by
various heuristic algorithms. Their parameters are presented here.

TSP-100 is solved by Gurobi (Gurobi Optimization, LLC, 2023), an exact solver, so the solutions are guaranteed to be
truly optimal. However, it fails on the other two large datasets due to unacceptable time consumption. Instead, we use a
SOTA heuristic algorithm LKH3 (Helsgaun, 2009; 2017) for TSP-1000 and TSP-10000. By controlling a reasonable time
consumption, TSP-1000 is solved by LKH3 with 20000 iterations over 10 runs, whereas TSP-10000 is solved by LKH3
with 20000 iterations over 1 run.

For CVRP, we use a recently developed heuristic algorithm called HGS (Vidal, 2022). CVRP-50 and CVRP-500 are solved
by HGS following the default parameters: 20000 iterations. For CVRP-5000 solved by HGS, a 4-hour time limit is set for
each instance, tolerating far fewer iterations than 20000. This can partially explain why our method achieves better average
gaps on CVRP-5000 datasets than on CVRP-500 datasets. Again, we remark that comparisons among neural constructive
methods are practically not affected by the quality of these solutions, so the sub-optimality of these heuristic algorithms is
acceptable.

Implementation Settings Details in implementation are presented here, if not included in the main article.

For INViT, each single-view encoder contains 2 attention layers and the decoder contains 3 attention layers. The number of
dimensions for features is 128 and the number of dimensions for feed forward layers is 512. The number of heads for each
multi-head attention layer is 8. The default augmentation size is 8 and the default batch size is 64. For the whole training
procedure, we train 500 epochs with 300 steps for each epoch. The default learning rate is 10−4.

For all evaluated methods, we keep the Pytorch version 1.12 on Python 3.9. From our evaluations, the changes on Pytorch
and Python versions do not cause any incompatibility issues for baseline methods. In addition, the maximum split size of
Pytorch GPU memory fragmentation is set to 512MB, to deal with potential memory issues. In a few cases where those
baseline methods still face CUDA out-of-memory issues, we reduce the pomo-size (i.e. number of generated solutions) to fit
the memory budget of our machine.
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As previously mentioned, the pre-trained models from baseline methods are selected according to training size (small
size around 100), but there are some more specifications. For ELG-v1 on CVRP, there is no model trained on small-scale
instances, so we re-train their model using their source code under a training size of 100, with local size k set to 50, borrowed
from their TSP Model-100. For Omni-TSP/CVRP, several models trained by variants of the algorithm are given. We choose
the FOMAML (First-Order Model-Agnostic Meta-Learning) version, which gives the best results compared with others in
most of the cases.

Each instance, including TSPLIB and CVRPLIB, is scaled to [0, 1]2 before model inference except for PointerFormer. For
PointerFormer, the instance is further scaled to [0.05, 0.95]2 (for the MSVDRP dataset) or to [0.1, 0.9]2 (for TSPLIB and
CVRPLIB dataset) following their source code. Using the unified input scale in PointerFormer reports unexpected runtime
errors due to unknown reasons.

A.3. Additional Discussion on Related Work

This section supplements more discussions on routing problem solvers in the realm of neural constructive methods. We do
not include a detailed discussion of these papers in our main article, in that they work in different but compatible directions
from ours, and most of them are not considering similar generalization settings to ours.

Advanced Decoding Strategy. Inspired by POMO (Kwon et al., 2020), which generates multiple solutions in decoding
steps to improve the model performance, many papers are devoted to exploring advanced decoding strategies to generate
improved solutions by previous decoded solutions. This includes papers like AS (Bello et al., 2017), MDAM (Xin et al.,
2021), SGBS (Choo et al., 2022), EAS (Hottung et al., 2022), LEHD (Luo et al., 2023), etc. However, these methods make
the decoding procedures no longer constructive, but iterative instead, resulting in much longer inference time to have enough
solution improvements.

Divide and Conquer. Some papers partition the routing problem instance into multiple small instances and merge the
partial solutions. An upper-level model is learned to partition the instance, and a lower-level model/solver is developed to
construct partial solutions. This includes papers like H-TSP (Pan et al., 2023), TAM (Hou et al., 2023), GLOP (Ye et al.,
2023), etc. However, due to the existence of an upper-level model to segment the full instance, their methods need to include
much larger training instances.

Local Search Combination. For TSP, many papers explore a direct combination between neural constructive models
and local search algorithms. A popular local search algorithm is the MCTS-framework algorithm (Fu et al., 2021). This
includes papers like GPN (Ma et al., 2019) with 2-opt, Att-GCRN (Fu et al., 2021) with MCTS, DIMES (Qiu et al., 2022)
with MCTS, DIFFUSCO (Sun & Yang, 2023) with MCTS, etc. Different from learn-to-search methods which interleave the
neural network models and the search algorithms, these papers develop constructive models instead and apply local search
at the end.

A.4. TSPLIB and CVRPLIB Results

The results for each TSPLIB and CVRPLIB instance of baseline methods and our method are displayed in Table 5 and
Table 6 respectively.

Table 5: Detailed Results for all included TSPLIB instances.

Instance INViT-2 INViT-3 BQ-NCO LEHD ELG Omni-TSP POMO PointerFormer

eil51 1.64% 1.17% 2.82% 1.64% 0.94% 1.17% 1.41% 0.94%
berlin52 1.41% 0.04% 17.09% 0.04% 0.11% 6.15% 0.04% 0.04%

st70 1.63% 0.89% 2.07% 0.44% 0.44% 1.63% 0.44% 0.44%
pr76 1.28% 1.28% 0.11% 0.22% 0.82% 0.82% 0.00% 0.14%
eil76 2.79% 0.74% 5.02% 2.60% 2.23% 4.28% 1.30% 2.79%
rat99 3.39% 1.82% 18.50% 1.16% 2.40% 2.48% 7.18% 4.87%

kroA100 0.84% 1.15% 12.15% 0.12% 1.72% 0.12% 3.27% 1.95%
kroE100 1.75% 1.68% 13.63% 0.43% 1.01% 0.79% 3.17% 0.95%

Continued on next page
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Table 5 – continued from previous page
Instance INViT-2 INViT-3 BQ-NCO LEHD ELG Omni-TSP POMO PointerFormer

kroB100 1.53% 0.79% 4.35% 0.26% 1.35% 2.43% 2.81% 1.87%
rd100 2.93% 1.30% 9.51% 0.01% 0.06% 0.63% 0.01% 0.13%

kroD100 2.34% 1.53% 11.13% 0.39% 1.53% 2.52% 2.00% 1.10%
kroC100 0.55% 1.27% 7.50% 0.33% 1.15% 0.74% 1.39% 1.16%

eil101 5.88% 2.70% 4.77% 2.38% 2.70% 3.02% 2.07% 2.07%
lin105 2.23% 1.79% 12.35% 0.35% 3.00% 3.32% 1.43% 2.87%
pr107 0.57% 1.54% 13.74% 11.82% 2.61% 1.14% 2.99% 3.37%
pr124 1.42% 1.23% 16.84% 1.11% 1.02% 1.28% 0.70% 0.27%

bier127 3.24% 3.24% 6.29% 5.63% 16.29% 3.01% 5.81% 14.96%
ch130 1.77% 2.00% 0.21% 0.56% 1.75% 2.36% 0.62% 0.41%
pr136 2.29% 1.43% 9.87% 0.45% 1.73% 0.77% 1.04% 1.14%
pr144 2.83% 2.34% 14.73% 3.59% 0.52% 1.86% 1.88% 0.37%

kroA150 1.67% 2.43% 4.95% 1.40% 2.38% 1.84% 3.60% 6.59%
kroB150 4.02% 2.57% 7.19% 0.76% 1.42% 1.44% 2.96% 2.55%

ch150 2.79% 2.40% 5.65% 0.60% 1.67% 1.55% 0.69% 0.78%
pr152 5.64% 7.97% 11.92% 12.14% 1.81% 1.40% 1.69% 0.45%
u159 1.71% 1.01% 0.00% 1.45% 1.32% 1.20% 1.35% 1.05%

rat195 3.10% 3.36% 10.93% 1.42% 7.32% 6.29% 10.16% 13.52%
d198 10.07% 8.09% 10.32% 9.24% 27.05% 3.54% 32.84% 20.21%

kroA200 2.80% 2.51% 8.79% 0.64% 3.92% 1.77% 3.78% 8.90%
kroB200 2.34% 3.98% 10.74% 0.16% 3.58% 1.63% 4.39% 8.56%
tsp225 1.79% 1.05% 4.70% 0.69% 4.60% 3.63% 7.69% 11.62%
ts225 3.90% 3.12% 13.48% 0.28% 5.57% 2.53% 8.48% 2.65%
pr226 8.74% 4.24% 11.76% 0.87% 1.03% 1.95% 4.56% 2.09%
gil262 4.16% 5.09% 4.79% 1.60% 3.20% 3.36% 4.16% 2.61%
pr264 1.95% 2.02% 12.50% 5.17% 4.03% 2.67% 16.02% 10.21%
a280 5.27% 6.79% 0.47% 3.02% 8.06% 5.54% 13.77% 13.18%
pr299 5.74% 5.29% 6.65% 2.91% 5.84% 4.43% 15.33% 17.58%
lin318 5.42% 3.49% 10.36% 1.41% 6.21% 4.84% 12.34% 8.54%
rd400 4.17% 5.37% 3.06% 1.01% 6.39% 5.24% 14.70% 10.89%
fl417 8.61% 8.57% 19.02% 4.78% 8.30% 7.57% 15.47% 7.23%
pr439 7.12% 7.42% 7.14% 3.37% 6.97% 5.61% 24.08% 18.02%

pcb442 2.79% 4.44% 0.90% 3.11% 10.08% 7.78% 18.26% 16.57%
d493 9.33% 5.80% 8.00% 9.49% 58.60% 9.79% 76.74% 35.85%
u574 6.88% 6.02% 1.76% 2.73% 10.05% 10.25% 26.05% 23.08%

rat575 5.76% 5.96% 10.08% 3.03% 8.53% 14.07% 26.16% 24.23%
p654 15.26% 9.31% 16.03% 10.24% 9.78% 10.67% 28.73% 14.14%
d657 9.52% 7.52% 8.62% 8.05% 18.43% 12.32% 34.53% 27.21%
u724 5.76% 5.30% 2.18% 3.27% 11.25% 15.22% 27.16% 22.82%

rat783 5.20% 5.74% 9.81% 4.28% 10.88% 17.42% 33.26% 26.25%
pr1002 9.38% 11.56% 8.74% 4.44% 11.25% 18.44% 40.16% 25.50%
u1060 9.40% 10.38% 8.63% 8.92% 12.22% 21.98% 46.47% 33.86%

vm1084 7.42% 6.72% 10.38% 5.98% 19.43% 19.04% 43.18% 30.27%
pcb1173 6.04% 7.24% 11.71% 6.34% 15.68% 24.68% 44.42% 31.15%
d1291 11.36% 10.87% 11.14% 14.13% 12.21% 27.26% 145.87% 26.52%
rl1304 8.87% 8.77% 8.77% 7.75% 15.25% 26.93% 56.70% 32.11%
rl1323 8.90% 8.62% 7.63% 9.26% 16.79% 26.07% 55.96% 32.69%

nrw1379 6.30% 6.03% 9.83% 9.91% 12.18% 21.24% 36.06% 27.62%
fl1400 12.26% 12.24% 31.19% 18.80% 30.61% 16.39% 40.15% 18.76%
u1432 5.30% 4.81% 4.98% 3.34% 11.62% 19.43% 31.40% 21.53%
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Table 5 – continued from previous page
Instance INViT-2 INViT-3 BQ-NCO LEHD ELG Omni-TSP POMO PointerFormer

fl1577 9.15% 8.49% 21.61% 17.63% 14.19% 29.08% 74.78% 25.32%
d1655 12.32% 12.84% 17.01% 13.89% 19.24% 30.77% 58.94% 34.38%

vm1748 7.92% 9.46% 11.18% 14.81% 19.28% 26.67% 53.97% 31.73%
u1817 6.66% 8.40% 9.43% 10.28% 15.62% 35.97% 59.63% 34.44%
rl1889 11.78% 9.42% 14.91% 10.64% 18.54% 33.30% 67.05% 35.20%
d2103 9.75% 7.53% 17.47% 14.57% 15.10% 33.54% 64.58% 22.21%
u2152 8.59% 7.87% 9.08% 11.62% 17.58% 37.83% 59.57% 37.22%
u2319 0.98% 1.41% 3.41% 2.54% 4.02% 16.73% 23.53% 12.41%
pr2392 9.00% 8.75% 9.26% 10.98% 18.23% 38.31% 60.63% 38.57%

pcb3038 8.23% 7.29% 13.44% 13.04% 17.53% 38.11% 59.24% 36.91%
fl3795 13.20% 10.74% 32.09% 13.55% 22.15% 42.58% 92.85% 15.31%

fnl4461 6.77% 6.64% 21.38% 18.79% 17.42% 41.94% 59.62% 34.14%
rl5915 9.50% 11.64% 24.58% 22.34% 23.06% 64.59% 83.28% 48.38%
rl5934 12.34% 8.97% 30.17% 35.47% 23.88% 65.84% 83.16% 42.81%
rl11849 10.38% 9.91% 45.21% 41.69% 24.01% 77.16% 92.57% 52.02%

usa13509 12.19% 10.29% OOM 55.80% 32.59% 107.88% 116.26% 67.06%
brd14051 9.41% 8.82% OOM 42.54% 25.70% 78.22% 91.32% 49.20%
d15112 7.84% 8.45% OOM 34.41% 25.69% 73.40% 82.63% 46.62%
d18512 7.87% 8.07% OOM OOM 25.65% 77.97% 88.59% 47.41%

Table 6: Detailed Results for all included CVRPLIB Set-X instances.

Instance INViT-2 INViT-3 BQ-NCO LEHD ELG Omni-TSP POMO

X-n101-k25 3.70% 2.61% 21.84% 13.97% 3.66% 5.80% 9.01%
X-n106-k14 4.17% 4.75% 7.05% 3.75% 3.01% 7.59% 4.64%
X-n110-k13 7.03% 5.06% 4.99% 1.88% 8.34% 3.49% 2.85%
X-n115-k10 5.38% 7.82% 19.76% 9.44% 3.96% 12.19% 15.49%
X-n120-k6 8.18% 7.73% 16.44% 3.89% 7.36% 5.69% 12.16%

X-n125-k30 3.08% 7.18% 13.11% 17.89% 4.42% 9.44% 5.31%
X-n129-k18 7.40% 7.25% 5.96% 4.01% 2.65% 6.00% 2.18%
X-n134-k13 5.88% 5.57% 9.83% 8.94% 5.84% 6.07% 5.77%
X-n139-k10 4.75% 5.92% 9.22% 3.08% 8.91% 4.75% 4.16%
X-n143-k7 7.26% 8.46% 13.41% 14.01% 7.25% 8.87% 4.43%

X-n148-k46 7.57% 4.36% 10.05% 38.98% 2.81% 9.12% 10.86%
X-n153-k22 13.22% 11.62% 34.22% 28.93% 11.10% 15.27% 19.02%
X-n157-k13 12.57% 5.92% 9.60% 4.72% 11.15% 4.50% 21.81%
X-n162-k11 5.74% 5.80% 9.46% 3.47% 8.38% 7.35% 7.72%
X-n167-k10 7.41% 5.51% 13.51% 5.03% 13.94% 5.33% 6.38%
X-n172-k51 9.25% 8.59% 14.88% 33.28% 4.26% 7.40% 15.01%
X-n176-k26 14.97% 4.85% 20.57% 27.00% 7.75% 10.90% 11.71%
X-n181-k23 14.40% 8.24% 5.80% 1.44% 5.98% 6.46% 8.18%
X-n186-k15 6.17% 6.54% 9.42% 3.64% 12.64% 7.07% 7.31%
X-n190-k8 8.24% 6.37% 9.71% 5.41% 7.33% 10.29% 8.38%

X-n195-k51 8.98% 9.73% 22.75% 15.47% 3.60% 10.84% 15.78%
X-n200-k36 5.72% 5.62% 12.13% 10.26% 4.54% 7.16% 9.37%
X-n204-k19 7.69% 9.32% 13.53% 2.69% 14.19% 8.26% 10.68%
X-n209-k16 6.68% 7.92% 9.63% 3.88% 11.07% 5.08% 8.18%
X-n214-k11 12.55% 11.84% 12.56% 7.21% 7.88% 8.60% 8.94%
X-n219-k73 9.46% 2.36% 9.03% 15.51% 1.27% 3.16% 3.92%
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Table 6 – continued from previous page
Instance INViT-2 INViT-3 BQ-NCO LEHD ELG Omni-TSP POMO

X-n223-k34 8.20% 8.28% 7.95% 5.80% 4.73% 7.14% 9.66%
X-n228-k23 12.12% 8.31% 23.02% 14.41% 8.12% 10.19% 18.73%
X-n233-k16 10.85% 11.82% 10.17% 5.64% 7.07% 7.31% 11.72%
X-n237-k14 10.34% 12.07% 3.46% 4.06% 13.97% 5.05% 25.80%
X-n242-k48 4.48% 2.75% 5.75% 6.02% 2.69% 5.99% 8.36%
X-n247-k50 15.14% 14.15% 27.82% 44.92% 9.37% 9.46% 18.40%
X-n251-k28 7.45% 7.40% 4.56% 2.37% 8.67% 6.33% 11.08%
X-n256-k16 8.15% 6.15% 14.22% 7.30% 13.83% 8.16% 20.04%
X-n261-k13 8.82% 9.33% 8.85% 8.83% 9.35% 6.61% 11.22%
X-n266-k58 8.41% 8.02% 7.02% 6.38% 5.54% 8.96% 12.64%
X-n270-k35 8.88% 9.36% 5.71% 6.54% 13.13% 8.19% 13.13%
X-n275-k28 14.70% 14.37% 4.96% 6.58% 10.60% 7.27% 18.19%
X-n280-k17 9.81% 9.03% 12.04% 9.64% 7.31% 5.48% 11.66%
X-n284-k15 9.93% 9.71% 9.95% 4.99% 10.54% 18.46% 13.43%
X-n289-k60 7.34% 7.08% 8.19% 9.90% 4.06% 8.26% 11.14%
X-n294-k50 9.39% 4.67% 10.99% 9.68% 5.20% 10.75% 17.70%
X-n298-k31 9.03% 11.08% 7.34% 7.65% 8.71% 7.14% 16.70%
X-n303-k21 7.91% 9.25% 8.94% 2.83% 6.31% 6.73% 15.92%
X-n308-k13 10.33% 10.63% 9.53% 4.49% 11.34% 8.42% 17.34%
X-n313-k71 8.01% 7.52% 12.05% 14.06% 3.77% 7.82% 12.58%
X-n317-k53 8.96% 7.67% 5.18% 3.88% 5.02% 4.25% 69.93%
X-n322-k28 8.52% 9.80% 8.11% 3.89% 14.94% 6.26% 19.26%
X-n327-k20 9.78% 8.05% 8.63% 10.74% 14.66% 7.25% 22.13%
X-n331-k15 10.21% 10.50% 8.59% 3.36% 14.63% 5.96% 59.53%
X-n336-k84 8.98% 8.38% 13.66% 18.78% 3.70% 8.37% 13.60%
X-n344-k43 10.41% 10.35% 7.57% 3.93% 10.78% 8.94% 20.30%
X-n351-k40 10.14% 9.59% 13.02% 7.48% 8.35% 12.43% 23.99%
X-n359-k29 8.83% 8.27% 6.21% 2.79% 6.00% 5.02% 10.38%
X-n367-k17 11.38% 9.95% 11.15% 9.44% 9.80% 10.98% 19.40%
X-n376-k94 5.78% 6.11% 5.13% 5.45% 1.96% 3.54% 19.79%
X-n384-k52 6.29% 7.21% 6.93% 7.79% 10.19% 7.50% 17.74%
X-n393-k38 10.32% 9.30% 11.75% 4.47% 13.62% 9.85% 24.97%
X-n401-k29 7.44% 6.28% 9.88% 5.55% 10.48% 5.60% 13.21%
X-n411-k19 15.84% 14.91% 10.61% 13.49% 15.67% 14.29% 40.13%
X-n420-k130 16.78% 16.25% 20.61% 61.64% 4.24% 14.40% 22.21%
X-n429-k61 7.71% 7.38% 8.36% 6.25% 11.24% 8.65% 30.63%
X-n439-k37 14.92% 14.95% 5.39% 2.00% 11.91% 8.05% 31.51%
X-n449-k29 7.61% 7.52% 14.47% 7.18% 9.49% 7.44% 25.14%
X-n459-k26 11.04% 11.37% 11.74% 8.66% 14.05% 10.78% 30.76%
X-n469-k138 7.03% 7.14% 14.26% 28.32% 6.89% 9.15% 14.47%
X-n480-k70 8.54% 7.55% 5.78% 3.06% 8.16% 7.43% 24.92%
X-n491-k59 8.41% 8.40% 10.61% 5.08% 6.99% 11.40% 27.87%
X-n502-k39 12.40% 11.05% 5.27% 3.31% 27.77% 7.30% 56.62%
X-n513-k21 13.90% 12.88% 7.37% 4.97% 21.89% 11.02% 57.73%
X-n524-k153 14.33% 14.20% 29.80% 78.66% 9.23% 13.42% 28.64%
X-n536-k96 8.32% 8.01% 10.66% 13.92% 6.29% 9.33% 29.50%
X-n548-k50 13.81% 14.19% 2.50% 3.32% 10.03% 6.42% 30.66%
X-n561-k42 6.14% 12.51% 6.73% 5.86% 12.24% 8.86% 67.95%
X-n573-k30 8.29% 6.53% 13.45% 11.35% 11.60% 18.10% 41.22%
X-n586-k159 10.73% 10.25% 11.73% 17.12% 7.25% 8.72% 25.73%
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Table 6 – continued from previous page
Instance INViT-2 INViT-3 BQ-NCO LEHD ELG Omni-TSP POMO

X-n599-k92 7.39% 7.46% 6.17% 8.93% 8.61% 9.22% 29.18%
X-n613-k62 10.00% 10.03% 10.32% 6.89% 9.80% 10.65% 89.65%
X-n627-k43 8.50% 8.33% 9.72% 5.50% 16.78% 8.78% 61.36%
X-n641-k35 8.16% 8.19% 4.28% 5.66% 16.40% 9.15% 21.82%
X-n655-k131 6.05% 10.18% 4.54% 5.24% 4.23% 5.43% 23.02%
X-n670-k130 16.68% 15.87% 30.49% 98.95% 10.11% 16.46% 44.83%
X-n685-k75 11.21% 11.35% 13.75% 8.34% 9.38% 11.29% 78.15%
X-n701-k44 7.87% 8.65% 6.50% 4.11% 8.92% 7.94% 52.05%
X-n716-k35 9.78% 8.19% 14.26% 8.80% 14.97% 12.50% 44.14%

X-n733-k159 12.43% 6.86% 11.76% 14.72% 5.36% 11.81% 57.41%
X-n749-k98 8.42% 9.41% 11.55% 8.97% 7.67% 14.73% 37.53%
X-n766-k71 12.42% 12.16% 17.32% 15.49% 7.98% 10.28% 41.54%
X-n783-k48 9.29% 7.94% 12.99% 5.64% 16.36% 15.49% 105.04%
X-n801-k40 12.39% 12.25% 5.80% 3.48% 16.59% 8.98% 124.56%

X-n819-k171 8.54% 7.53% 11.51% 12.21% 8.35% 11.50% 86.87%
X-n837-k142 8.38% 8.43% 4.56% 6.68% 7.07% 10.53% 21.08%
X-n856-k95 17.80% 18.55% 3.65% 2.97% 11.56% 8.87% 87.82%
X-n876-k59 7.51% 7.14% 13.10% 7.30% 12.97% 11.92% 78.67%
X-n895-k37 10.29% 9.24% 7.91% 8.70% 21.53% 14.18% 56.53%

X-n916-k207 9.78% 9.06% 9.10% 15.36% 6.03% 9.27% 18.34%
X-n936-k151 7.93% 8.19% 35.15% 139.42% 12.86% 20.60% 57.97%
X-n957-k87 15.66% 15.48% 5.92% 3.85% 23.85% 12.52% 115.04%
X-n979-k58 8.13% 7.35% 13.16% 19.79% 11.52% 7.59% 69.18%

X-n1001-k43 9.74% 9.35% 6.87% 7.57% 15.65% 15.87% 142.29%
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