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Abstract
While both extractive and generative readers001
have been successfully applied to the Question002
Answering (QA) task, little attention has been003
paid toward the comparison of these two read-004
ers. Which reader performs better? What are005
the reasons for the performance differences?006
In this paper, we aim to answer these ques-007
tions in the setting of extractive QA tasks. We008
design multiple transformer-based models and009
different scenarios to systematically compare010
these two readers. Our findings characterize011
the difference of two readers and their pros012
and cons, which can instruct the optimal se-013
lection of the two readers, and open up new014
research avenues to improve each reader. Our015
major findings are: 1) generative readers per-016
form better when the input context is long,017
whereas extractive readers are better when the018
context is short; 2) extractive readers general-019
ize better as compared to the generative ones020
under out-of-domain settings, in both single-021
and multi-task learning scenarios. Our exper-022
iments also suggest that, although an encoder-023
only pre-trained language model (PrLM) is an024
intuitive choice for extractive readers, the en-025
coder from encoder-decoder PrLM is a strong026
alternative that performs competitively.027

1 Introduction028

Question Answering (QA) is an important sub-029

task of reading comprehension and can be di-030

rectly used in real applications such as search en-031

gines (Kwiatkowski et al., 2019) and dialogue sys-032

tems (Reddy et al., 2019; Choi et al., 2018). Ex-033

tractive question answering is a specific type of034

QA; i.e., the answer to the question is a span in the035

context (Rajpurkar et al., 2016; Fisch et al., 2019),036

and this work focuses on such QA tasks. Extractive037

readers (Seo et al., 2017; Devlin et al., 2019) are038

widely used to effectively tackle such a task, where039

the goal is to classify start and end positions of the040

answer in the context. Generative readers (Raffel041

et al., 2020; Lewis et al., 2020b; Izacard and Grave,042

2021) have also shown remarkable performance on 043

QA tasks, where the goal is to generate answers by 044

autoregressively predicting tokens. 045

While both extractive and generative readers 046

have been successfully applied to the QA task, a 047

natural question arises: which approach is better, 048

extractive or generative? This question is appeal- 049

ing as (1) it can provide guidance on which reader 050

should be applied in certain cases; (2) it reveals the 051

pros and cons of the two reader approaches, and 052

thus opens up opportunities to improve each reader. 053

Motivated by the aforementioned, we design multi- 054

ple transformer-based models and scenarios (e.g., 055

single-tasks, multi-task learning, short and long 056

context settings, etc.) to compare these two reader 057

approaches. 058

Our first comparison is to examine which answer 059

prediction approach is better (i.e. classifying the 060

start and end positions v.s. generating sequential 061

tokens) when we have two comparable readers (in 062

terms of the model size and their training corpus). 063

Previously, extractive and generative readers are 064

usually based on different PrLMs, for example, XL- 065

NET (Yang et al., 2019) for extractive and T5 (Raf- 066

fel et al., 2020) for generative readers. Under such 067

circumstances, both the pre-training corpus and the 068

pre-training objective are different. Thus, it is hard 069

to attribute whether the performance difference is 070

due to their differences in training objectives, pre- 071

training corpus, or the way the answer is obtained. 072

To address this concern, we use T5 PrLM for both 073

the readers and make their model size comparable 074

such that the only variation is in the way that a 075

reader makes predictions. As such, the comparison 076

focuses more on the answer prediction approaches 077

and reduces the influence introduced by other fac- 078

tors. To the best of our knowledge, this is the first 079

work comparing the two readers with minimal dis- 080

tinctions. In addition, our work is the first attempt 081

to employ the encoder in a pre-trained encoder- 082

decoder model for extractive readers. 083
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Towards better generalizability and grounding of084

our conclusions, we also apply ELECTRA (Clark085

et al., 2020) for the extractive reader and compare086

it with the T5 extractive and generative readers. To-087

gether, we present a systematic evaluation for com-088

paring three readers (T5 generative, T5 extractive,089

and ELECTRA extractive readers) on the MRQA090

task (Fisch et al., 2019), a collection of multiple091

extractive QA datasets. Our experiments reveal092

several interesting insights:093

1. Extractive readers can generalize better in out-094

of-domain (OOD)1 datasets as compared to the095

generative reader. Additionally, extractive read-096

ers are better at learning from different domains;097

i.e. extractive readers benefit more from multi-098

task learning.099

2. Generative readers have an advantage when the100

input context is long, and the performance is not101

affected by variations in the context length. On102

the other hand, extractive readers are better at103

short context but show sensitivity to the context104

length.105

3. Previous work used to apply encoder-only PrLM106

to the extractive reader, however, our exper-107

iments indicate that the encoder of encoder-108

decoder models (e.g. T5) is a viable alternative109

with strong performance. It can even outper-110

form traditional encoder-only extractive readers111

when the model learns from different domains112

or when the context is long.113

Along with the comparison, our experiments114

also reveal that the inference length affects the115

performance significantly – encoding the full con-116

text during inference leads to significantly better117

performance as compared to truncating and only118

encoding to its training context length.119

While the focus of this paper is the compar-120

ison of different readers, we also explore two121

constrained generations for the generative reader.122

Traditionally, the decoder generates a token from123

the entire token vocabulary. A natural but under-124

explored question is whether it is beneficial to con-125

strain the generation space with input context, espe-126

cially for extractive QA tasks, where an answer is127

supposed to be extracted from a given context. To128

answer this question, we introduce two constrained129

generations conditioned on the context (§3.2). Sur-130

prisingly, we find that these additional conditions131

result in no improvements. Further analysis reveals132

that in most cases, the decoder, without any con-133

1In this paper, we use OOD to represent out-of-domain

dition, already generates tokens from the context 134

tokens and thus the extra constraints have no addi- 135

tional impact. In other cases, the generative reader 136

generates the same surface form as in context, but 137

with a different sequence of subword tokens,2 and 138

limiting the generation space results in the refusal 139

of potentially correct answers. 140

To summarize, our contributions are threefold: 141

1) we systematically compare extractive reader and 142

generative reader, and our findings can instruct the 143

optimal selection of extractive and generative read- 144

ers under certain conditions; 2) our experiments 145

suggest that the encoder from encoder-decoder 146

PrLM architecture is a strong candidate that can be 147

used for extractive readers; 3) for the generative 148

reader, we conclude that constrained generation 149

does not lead to noticeable improvement because 150

the decoder already generates tokens from the input 151

context, in most cases. 152

2 Related Work 153

Pretrained Language Models Here, we mainly 154

discuss two types of pre-trained models based on 155

transformers architecture (Vaswani et al., 2017), 156

Autoencoder and sequence-to-sequence models. 157

Autoencoder only relies on the encoder part in the 158

original transformer, and in the pretraining time, 159

the input is a corrupted sentence, for example, a 160

sentence with mask tokens, such as BERT (Devlin 161

et al., 2019) and its variants (Liu et al., 2019; Lan 162

et al., 2020). ELECTRA (Clark et al., 2020) also 163

belongs to this family. ELECTRA adapts GAN- 164

style training (Mirza and Osindero, 2014) where a 165

language model is given a sentence with masked 166

tokens and outputs a corrupted sentence, ELEC- 167

TRA then aims to detect if a token is replaced or 168

is from the original text. Sequence-to-sequence 169

models keep both the encoder and decoder, for 170

example, BART (Lewis et al., 2020a) and T5 (Raf- 171

fel et al., 2020). While most PrML is pre-trained 172

on Wikipedia, T5 is pre-trained on Colossal Clean 173

Common Crawl Corpus3. 174

Question Answering Systems We focus on QA 175

systems that are built upon PrLMs. Extractive QA 176

readers assume that answers can be found in the 177

context and aim to predict the corresponding start 178

and end tokens from the context (Fisch et al., 2019; 179

Li et al., 2019; Clark et al., 2020; Karpukhin et al., 180

2020). Differently, generative QA readers are not 181

2In this paper, a “token” corresponds to a “subword token.”
3https://www.tensorflow.org/datasets/catalog/c4
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restricted to the input context, where they can freely182

generate answers token by token using the entire vo-183

cabulary in an autoregressive manner (Raffel et al.,184

2020). Generative readers are more often used in185

open domain (Lewis et al., 2020b; Izacard and186

Grave, 2021; Xiong et al., 2021) and unified set-187

tings (Khashabi et al., 2020; Tafjord and Clark,188

2021). Fajcik et al. (2021) combines extractive189

and generative readers by adding a classification190

module to decide which reader predicts answers.191

Cheng et al. (2021) proposes a unified system of ex-192

tractive and generative readers, but different from193

(Fajcik et al., 2021), the output is computed by both194

extractive and generative readers.195

3 Model196

3.1 Extractive Reader197

In extractive reader, an encoder firstly receives198

a question q :{q1, . . . , qt} as well as a context199

c :{c1, . . . , cm}, where qi and cj are tokens in ques-200

tion and context, respectively. Then, it produces201

contextual representations {h1, . . . , hm}, denoted202

by h. Last, two linear layers predict the proba-203

bility of each token in h of being start and end204

positions independently. More formally, given a205

tuple (q, c,a), where a is an answer, the training206

objective is to minimize the following loss function207

LExt = − log(Pstart,s)− log(Pend,e) (1)208

where Pstart and Pend are defined by209

Pstart = softmax(wstarth) (2)210

Pend = softmax(wendh) (3)211

where Pstart,s and Pend,e denote the probability212

of the ground truth start and end tokens of answer213

a, respectively. In testing time, the answer span is214

decoded by argmaxi,j{Pstart,i ×Pend,j}. In this215

work, we apply two encoders, T5 and ELECTRA.216

When T5 is applied to QA tasks, previous work217

tends to take it as a generative reader (§3.2). Dif-218

ferently, we also use the encoder from T5 in an ex-219

tractive reader, where a classification layer is added220

on top of the encoder. In addition, we also tried221

to use the entire T5 model and add a classification222

layer on top of the decoder. The latter performed223

consistently worse as compared to the former (see224

Appendix E). Therefore, we use the former and225

denote it as T5-Ext (i.e. encoder+linear layer) as226

an extractive reader from T5 in later experiments.227

ELECTRA is an encoder-only model that is pre- 228

trained on detecting replaced tokens in the input, 229

which is similar to the QA downstream task since 230

both are at the token level. Building an extractive 231

reader on top of ELECTRA has obtained rather 232

good performance on QA tasks (Xiong et al., 2021), 233

thus, we also use it to compare with T5 PrML. 234

3.2 Generative Reader 235

In a generative reader, an encoder, similar to the 236

extractive reader, takes a question q and a context 237

c as input and outputs contextual representation h. 238

A decoder takes the previously generated answer 239

tokens as input and performs attention over h and 240

then generates a token. Formally, given a tuple 241

(q, c,a), the training objective is to minimize the 242

following loss function 243

LGen =
K∑
i=1

logP(ai | h, a:i) (4) 244

where K is the number of tokens in answer a, ai 245

is the ith token in a, and a0 corresponds to a spe- 246

cial beginning of sequence (BOS) token. In the 247

inference time, we use the greedy search method 248

to autoregressively generate the answer. 249

Here, we further investigate variants for the gen- 250

erative reader from training target and answer gen- 251

eration aspects. 252

Training Targets T5 uses SentencePiece (Kudo 253

and Richardson, 2018), a subword tokenization 254

toolkit, such that the same word can be represented 255

by different tokens if the surrounding contexts are 256

different. For example, a single word NASA is rep- 257

resented by one token {‘_NASA’}, while in context 258

“... the National Aeronautics and Space Administra- 259

tion (NASA),...”, NASA is represented by two tokens 260

{ ‘NAS’, ‘A’}. In conventional training, the targets 261

are tokens of answer without any surrounding con- 262

text (e.g. {‘_NASA’}). Such kinds of targets are 263

not assured to be the tokens in the given context. 264

To better fit the purpose of extractive QA tasks, 265

we extract the tokens of answer in the context as 266

the target, (e.g. { ‘NAS’, ‘A’}). We term the con- 267

ventional one as A-Target (i.e. direct tokenization 268

of answer), and the new one as C-Target (i.e. use 269

tokens in the given context as answer targets). 270

Constrained generation Usually, the decoder 271

generates tokens from the entire vocabulary. How- 272

ever, due to the nature of the extractive QA task, 273
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Dataset Training size Avg. tokens in Q Avg. tokens in C
In-domain datasets
SQuAD 86,588 14.7 179.87
NewsQA 74,160 9.79 699.75
TriviaQA 61,688 20.49 1071.66
SearchQA 117,384 23.74 1081.63
HotpotQA 72,928 24.29 315.41
NQ 104,071 12.87 359.2

Out-of-domain datasets
DROP - 14.0 279.02
RACE - 13.98 403.77
BioASQ - 19.07 368.89
TextbookQA - 13.76 792.493
RE - 13.43 42.97
DuoRC - 11.61 932.08

Table 1: Statistics of in-domain data of MRQA shared
Task.T5 tokenizer is used to obtain the tokens.

only spans presented in the context are valid. Re-274

stricting the generating space by the valid tokens275

can prevent the model from generating invalid to-276

kens and thus is likely to improve the accuracy. The277

same intuition had been mentioned in (Xue et al.,278

2021). Motivated by this, we explore two con-279

strained generations. In Context constrained gener-280

ation (C-Con), the decoder can generate any token281

given in the context. In Next Token constrained282

generation (NT-Con), the decoder can generate any283

token which are the next tokens of the current pre-284

dicted one in the context. The decoder is allowed285

to generate end token anytime to denote the end of286

prediction. We only enforce these conditions in the287

testing time and the generation in training time is288

still across the entire vocabulary.289

4 Experiments290

4.1 Dataset291

Table 1 shows the training size of in-domain (IID)4292

datasets and the number of average tokens in ques-293

tions and context of IID and OOD datasets. We294

present the histogram of the context length of every295

dataset in Appendix C. It is easy to see that some296

datasets have longer context as compared to others,297

thus we further group them into long/short context298

datasets. The long context datasets include Trivi-299

aQA, SearchQA, TextbookQA, and DuoRC. The300

remaining datasets are in the short context category.301

We find that the context length has a strong impact302

on models’ performance (§5).303

4.2 Learning Strategy304

Single Task Learning: we use each IID datasets305

to train extractive and generative readers. Multi-306

4In this paper, we use IID to represent in-domain

T5-Ext ELECTRA T5-Gen T5-Gen
Size large large base large

# Params 335M 334M 223M 737M

Table 2: Size and Number of parameters of each reader.

Task Learning: we consider training with all (six) 307

IID datasets as multi-task learning for two rea- 308

sons. As (Su et al., 2019) showed that different 309

IID datasets share a low similarity, therefore, they 310

may require different reasoning skills. In addition, 311

Table 1 shows that different datasets have different 312

question and context lengths, which may lead to 313

different difficulties between datasets. 314

4.3 Experimental Setup 315

We use Huggingface (Wolf et al., 2020) and Py- 316

torch (Paszke et al., 2019) implementation for train- 317

ing each model. Detailed information on hyper- 318

parameters and the type of hardware we use for 319

our experiments is given Appendix A. Model Size 320

To have a fair comparison, we make the number 321

of parameters of extractive and generative read- 322

ers as close as possible (see Table 2). To do this, 323

we use T5-large for T5-encoder extractive reader, 324

ELECTRA-large for ELECTRA extractive reader, 325

and T5-base for generative readers. For the rest 326

of the paper, we use T5-Ext, ELECTRA, and T5- 327

Gen to represent each reader. For the purpose of 328

comparison, using T5-base for generative reader 329

is more suitable than T5-large since the advantage 330

of T5-large generative over T5 extractive reader 331

is a lot more significant than the advantage of T5 332

extractive reader over T5-base generative reader. 333

Input Format Given a question Q and a context 334

C, the input to extractive readers is {Q [SEP] C} 335

and the input to generative readers is {question: Q 336

[SEP] context: C}. We also tried other alternatives 337

and results are given Appendix E. 338

5 Results and Analysis 339

In this section, we present the results and analysis 340

of three readers. For generative readers, we use C- 341

Target to train the model and the regular generation 342

method. By our experimental result (Appendix D), 343

C-Target and A-Target do not make a noticeable 344

difference when regular generation is applied, but 345

the C-Target model is more stable than A-Target 346

regarding different generation methods. We use 347

the maximum answer length to be 16 in the testing 348

time for T5-Gen. One can find the performance of 349
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other lengths (32 and 64) in Appendix H, which do350

not result in a noticeable difference.351

5.1 Comparison of Readers with Same PrML352

Single-Task Learning The first two rows in Sin-353

gle task learning in Table 3 present the performance354

of T5-Ext and T5-Gen readers. For IID datasets,355

we train a model on dataset A and evaluate it on356

the same dataset A. Comparing the results of two357

readers, T5-Ext achieves better performance than358

T5-Gen on four out of six datasets. On the other359

two datasets, TriviaQA and SearchQA, which are360

of long context, T5-Gen outperforms T5-Ext by361

more than 3%, which leads to a higher average362

F1 than T5-Ext. For OOD datasets, we evaluate363

each single-task model on every dataset and present364

the result which is the best among six single-task365

models5. We see that on one long context dataset,366

i.e. TextbookQA, T5-Gen achieves a much higher367

F1 score than T5-Ext. This is consistent with our368

previous observation and shows the advantage of369

T5-Gen in a long context setting. For the other370

five datasets, T5-Ext achieves better performance,371

especially on three datasets, DROP, RACE, and372

BioASQ, T5-Ext is much better, indicating that373

T5-Ext generalizes better on OOD datasets. We hy-374

pothesize that this is because there are more unseen375

(or less observed) tokens present in the answer for376

the OOD datasets, which presents a challenge for377

the generative reader. For generative readers, when378

a token is less observed during training, it is less379

likely to get predicted at test time.380

Multi-Task Learning For multi-task models, we381

present the results using full data in training. Fol-382

lowing (Fisch et al., 2019), we also compare full383

data training with down-sampling data and find384

that full data is slightly better than down-sampling385

(see Appendix G). From the first three rows in the386

multi-task learning block in Table 3, we find that387

the performance of the extractive reader improved388

significantly when trained on all datasets. Specif-389

ically, the average performance of T5-Ext on the390

IID and OOD datasets are both increased compared391

to the single-task model (11 out of 12 datasets are392

increased). On the other hand, though the gener-393

ative reader benefits from multi-task learning on394

OOD datasets, the performance decreases on three395

IID datasets. We also notice that on the dataset396

when two models are both improved, T5-Ext al-397

5The performance of each single-task model is given Ap-
pendix Table 12.

ways achieved larger improvement as compared 398

to T5-Gen. For OOD datasets, T5-Ext still per- 399

forms better than T5-Gen, similar to single-task 400

learning, which indicates the potential advantage 401

of extractive readers in OOD settings. 402

Long and Short Context We further investigate 403

the short and long context within each dataset. 404

Specifically, given a question and a context from 405

a dataset, if the context exceeds 800 tokens6, then 406

we consider such pair as a long context question; 407

otherwise, a short context question. We then ob- 408

tain a mixed long context question set that contains 409

questions and contexts from all datasets, similarly 410

for a mixed short context question set. Table 4 411

shows how two readers perform on each set. In the 412

mixed long context question set, T5-Gen is better 413

than T5-Ext in both IID and OOD datasets while 414

in the mixed short context question set, T5-Ext per- 415

forms better. It is worth mentioning that although 416

the average F1 score of OOD achieved by T5-Ext 417

is higher than T5-Gen, the latter achieves higher F1 418

on the subset of long context questions. We also 419

observe that T5-Gen performs more stable in terms 420

of different context lengths, shown by the smaller 421

gap of F1 score between the mix short and long 422

context (e.g. for IID datasets, the gap of T5-Ext 423

is 4.45%, and the gap of T5-Gen is 0.6%). We 424

conjecture that T5-Gen is more stable w.r.t the con- 425

text length because the decoder always generates 426

tokens from the entire vocabulary that is unlikely 427

to be affected by the input length. However, the 428

situation is quite different for the T5-Ext setting. 429

Because the classification layer needs to classify 430

every token, the longer the input is, the larger the 431

classification space becomes, in other words, the 432

more difficult the prediction becomes. 433

Rare Tokens When looking into the answers of 434

testing sets, we find that few answers include rare 435

characters such as ń and ł, which raises a ques- 436

tion does rare token affect the performance of the 437

model? Driven by this question, we define a list 438

of normal characters 7. If an answer includes any 439

character which is not in the normal character list, 440

we consider it belongs to the rare answer set, oth- 441

erwise, it belongs to the normal answer set. The 442

percentage of rare cases for IID and OOD datasets 443

is 1.4% and 2%, respectively. From Table 5, first 444

6We choose 800 based on the statistic shown in Table 1
7Normal characters are obtained by the printable characters

in the string library of Python including lower and upper case
alphabets, digits, punctuation, and white-space.
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Model
In-domain Datasets Out-domain Datasets

SQuAD NewsQA TQA SQA HQA NQ Avg. DROP RACE BioASQ TbQA RE DuoRC Avg.

Single Task Learning

T5-Ext 92.27 72.76 76.34 82.78 80.05 80.55 80.79 53.47 49.05 70.29 49.69 85.61 62.37 61.75
T5-Gen 91.33 71.6 80.1 85.93 79.88 78.17 81.17 48.09 46.99 66.33 60.74 85.34 61.56 61.51

ELECTRA 93.08 65.21 76.51 82.93 81.21 79.69 79.77 58.74 50.86 70.21 50.94 87.36 59.83 62.99

Multi-Task Learning

T5-Ext 92.84+0.57 73.27+0.51 78.01+1.67 83.66+0.88 82.24+2.19 81.0+0.45 81.84+1.05 60.96+7.49 53.48+4.43 69.52−0.77 60.94+11.25 86.71+1.1 64.37+2.0 66.0+4.25

T5-Gen 91.54+0.21 71.4−0.2 80.76+0.66 85.83−0.1 78.98−0.9 78.26+0.09 81.13−0.04 51.98+3.9 49.51+2.5 69.21+2.9 61.66+0.9 85.42+0.1 63.02+1.5 63.47+1.96

ELECTRA 93.92+0.84 65.33+0.12 73.63−2.88 81.94−0.99 83.36+2.15 79.98+0.29 79.69−0.08 61.77+3.03 52.71+1.85 71.86+1.65 54.8+3.86 87.18−0.18 59.76−0.07 64.68+1.69

T5-Gen (large) 93.54 73.44 84.08 88.38 82.88 80.58 83.82 63.63 55.87 72.33 68.76 87.33 68.09 69.33

Table 3: Three readers trained by single and multi task learning and evaluated on in-domain and out-
domain datasets by F1 Score. TQA: TriviaQA; SQA:SearchQA; HQA:HotpotQA; NQ: NaturalQuestions;
TbQA:TextbookQA; RE:RelationExtraction; Avg.: the Macro Average of in-domain/out-domain datasets. Bold
values are the best performance in a column for each block.

Context type Model IID OOD

Mix Long
T5-Ext 80.73 61.32
T5-Gen 82.46 61.64

Mix Short
T5-Ext 85.18 72.98
T5-Gen 83.06 69.96

Table 4: Compare T5-Ext and T5-Gen on the mixed
long/shot context questions sets.

Answer type Model IID OOD

Rare
T5-Ext 78.77? 83.5?
T5-Gen 69.11 63.56

Normal
T5-Ext 83.14 69.91
T5-Gen 82.97 68.05

Table 5: Compare T5-Ext and T5-Gen reader on rare
and normal answers, ? denote significantly better than
others on the same answer type and same domain.

we see that the extractive reader performs better in445

both rare and normal cases, but more importantly,446

the performance of T5-Gen on rare answer sets de-447

creases significantly, indicating that the generative448

reader is more sensitive to rare characters. A simi-449

lar reason for relatively poor performance on OOD450

dataset can also be considered here – in the train-451

ing time, the frequency of these rare characters is452

much less, and hence are less likely to be predicted453

during test time. Table 6 shows examples when454

T5-Gen drops the rare characters in answers.455

To summarize, our findings are the following:456

1) in single task, for IID data, two readers achieve457

comparable performance. T5-Ext performs better458

on OOD data as compared to T5-Gen; 2) in multi-459

task setting, T5-Ext is better at utilizing data from460

different domains, thus performs better than T5-461

Gen in both IID and OOD datasets; 3) in multi-462

task setting, T5-Ext is better at utilizing data from463

different domains, thus performs better than T5-464

Gen in both IID and OOD datasets, and 4) the465

Question Answer Prediction
Who was one of the
most famous people
born in Warsaw?

Maria
Skłodowskacurie

Maria
Skodowska-
Curie

What museum pre-
serves the memory of
the crime?

Katyń Museum Katy Museum

Table 6: Examples of questions with answers contain-
ing rare characters and the prediction of T5-Gen.

extractive reader is more stable than the generative 466

one when answer contains rare characters. 467

5.2 Comparison of Different Pre-trained 468

Models 469

In this section, we compare different readers based 470

on different pre-training models, T5 and ELEC- 471

TRA. We would like to note that the pre-trained 472

model of T5 is already trained on SQuAD, while 473

ELECTRA does not. However, based on the results 474

on SQuAD that ELECTRA is even better than T5, 475

we assume that the effect of the downstream train- 476

ing task dominates the effect of the pretraining. 477

T5 Generative Reader and ELECTRA Ex- 478

tractive Reader. Table 3 shows that in both single 479

and multi-task learning, T5 generative reader is 480

consistently better in long context datasets (e.g. for 481

TextbookQA, in single-task learning, T5-Gen is bet- 482

ter than ELECTRA by 3.59%; in multi-task learn- 483

ing, T5-Gen is better by 7.13%); in short context 484

datasets, ELECTRA extractive reader is better (e.g. 485

for SQuAD, in single-task learning, ELECTRA is 486

better than T5-Gen by 2.75%; in multi-task learn- 487

ing, ELECTRA is better by 2.84%). Two Extrac- 488

tive Readers. In single-task learning, two readers 489

are comparable in general except for the NewsQA 490

on which T5-Ext is better than ELECTRA by 7.5%. 491

In multi-task learning, T5 significantly outperforms 492
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ELECTRA in long context datasets, and in short493

context datasets, the performance of two readers494

is comparable (see table 3). This suggests that the495

encoder in the encoder-decoder pre-trained model496

is also suitable for the extractive reader.497

To summary, 1) T5 PrLM has an advantage over498

ELECTRA PrML if the context is long in both499

single- and multi-task learning scenarios; 2) in500

multi-task setting, the average performance of T5-501

Ext is the best on both IID and OOD datasets.502

5.3 T5 Large Generative Reader503

We also present the result of the T5 large generative504

reader as the reference of the upper bound of the505

T5 generative reader (last row in Table 3). For IID506

datasets, in short context datasets, the performance507

is comparable to other models, while in long con-508

text datasets, T5 large performs much better than509

the others (e.g. at least 3.33 % and 2.55% better510

than other models). For OOD datasets, T5-large511

performs consistently the best, demonstrating that512

the large model has better generalization capac-513

ity. We would like to note that the winner of the514

MRQA 2019 competition, D-NET (Li et al., 2019),515

achieves a 69.67 average F1 score on OOD datasets516

by the ensemble of XLNET (Yang et al., 2019) and517

ERNIE (Zhang et al., 2019). T5-large achieves518

comparable performance.519

5.4 Constrained generation520

Table 7 presents the F1 score of the generative521

reader using three different generation methods dis-522

cussed in §3.2. The difference between the three523

methods is marginal and the main reason is that524

our generative reader already generates the tokens525

from the context in most cases, in which the pre-526

dictions of the three methods are always the same.527

The last row in Table 7 shows the number of novel528

cases of each dataset, which are all less than 1%529

of the testing data. Table 8 presents some exam-530

ples when the regular prediction is wrong but our531

constrained generation is correct. In Example1, by532

regular generation, T5-Gen predicts the synonym533

of the answer, which is not present in the context,534

and by our constrained generation, it predicts the535

correct answers. In Example2, by regular gener-536

ation, T5-Gen predicts a partially correct answer537

but injects some words, and by our constrained538

generation, these words are removed from the pre-539

diction and thus match with the correct answer. In540

example3, by regular generation, T5-Gen predicts541

a completely wrong answer, and by our generation542

method, it predicts the correct answer. There are 543

also few cases that regular prediction is correct but 544

the constrained generation is wrong. In such cases, 545

answers are surrounded by punctuation in the con- 546

text, T5-Gen tends to predict novel tokens as shown 547

in Table 9. In the first example, by regular genera- 548

tion, T5-Gen predicts a novel token ‘_3’, while in 549

the context the corresponding token is ‘_(3’. If this 550

happens and the reader fails to recognize the exact 551

tokens from the context, it predicts wrongly. 552

6 Additional Findings 553

6.1 Input Length in Training and Testing 554

T5 uses relative position embeddings (Ruder et al., 555

2019) which allows the input to be any length. We 556

discover that input length dramatically affects the 557

performance of T5-Ext. Specifically, we examine 558

two types of input length in testing time: the length 559

used in training time and the maximum length in a 560

batch. In the former setting, the extractive reader 561

uses the window-stride strategy to slice a long doc- 562

ument into multiple short inputs; while in the latter 563

setting, the given document can be represented by 564

a single and complete input. In addition, we train 565

different multi-task T5-Ext by three values of input 566

length, 384, 512, and 1024. 567

Table 10 shows the F1 score of three models. 568

For three models, using longer input length in test- 569

ing time consistently leads to better performance, 570

especially for long context datasets. When diagnos- 571

ing the predictions of using short input length, we 572

observe that T5-Ext can predict the correct answer 573

in the top 5 but mistakenly predicts higher scores 574

for distracting answers. In contrast, when the full 575

input is encoded directly, T5-Ext can predict the 576

correct answer with the highest score. This indi- 577

cates that directly encoding the full input provides 578

more complete information, which in turn helps T5- 579

Ext to predict more accurate answers. From Table 580

10, we also see that for IID long context datasets, 581

the longer the input length used in training time, 582

the better performance the model has. Our findings 583

lead to the two suggestions: 1) when computation 584

budget is allowed, it is better to train a model with 585

longer input length limit; 2) irrespective of the in- 586

put length limit at training, one should do inference 587

with full input encoded directly. 588

6.2 Re-rank Answers from Two Readers 589

By the comparison between two readers, a natural 590

question is that can we utilize two readers to predict 591
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Generation Method
IID Datasets OOD Datasets

SQuAD NewsQA TQA SQA HQA NQ DROP RACE BioASQ TbQA RE DuoRC
Regular 91.54 71.4 80.76 85.83 78.98 78.26 51.98 49.51 69.21 61.66 85.42 63.02
C-Con 91.57 71.44 80.76 85.82 78.96 78.26 51.78 49.7 69.29 61.66 85.56 63.02

NT-Con 91.52 71.42 80.73 85.75 78.93 78.27 51.76 49.66 69.23 61.66 85.49 63.02

# Novel tokens 21 8 28 33 9 18 5 10 3 4 9 5

Table 7: Test Multi task T5-Gen with three different generation methods. Regular: the reader can choose one of
the tokens from the entire vocabulary. # Novel tokens:number of novel tokens predicted by regular generation.

Question Answer Regular C-Con NT-Con
How fast is phar-
macy informatics
growing?

quickly rapidly quickly quickly

What did Tesla
work on in 1888?

alternating
current
system

creating
an alter-
nating
current
system

an alter-
nating
current
system

an alter-
nating
current
system

Money put in a
collection plate at
church

offering coin offering offering

Table 8: Answers predicted by T5-Gen with different
generation methods.

Context Answer Regular C-Con NT-Con
Text ...(325 mi)... 325 325 (325 mi) (325 mi)

Tokens _(3, 25, _mi, ) _3, 25 _3, 25 _(3, 25,
_mi, )

_(3, 25,
_mi, )

Text ...all-Gemini... Gemini Gemini G mis-
sion

G mis-
sion

Token G, e, mini _Ge,
mini

_Ge,
mini

_G,
_mission

_G,
_mission

Table 9: Tokens of answer and the predictions of T5-
Gen using three generation methods.

an answer. Furthermore, from Table 11, we find592

that both models predict high-quality answers in the593

top5 which provides enough room for improvement.594

Thus, we design a re-ranking paradigm. First, we595

use T5-Ext to generate five answers, then for each596

answer, we concatenate it with the question and597

the context and use T5-Gen to predict a score. The598

final score of an answer is computed by the sum599

of the T5-Ext and T5-Gen scores. We select the600

answer with the highest score as the final answer601

(see Appendix I for more details). As shown by Ta-602

ble 118, for IID data, the re-ranking method yields603

a small improvement, while for OOD data, the re-604

ranking method is slightly worse than T5-Ext. The605

inferior performance on OOD might be due to the606

relatively poor performance of T5-Gen.607

8More detailed results are given Appendix I Table 21.

Train Len Test Len
IID OOD

Long Short Long Short

384
384 67.02 83.59 52.64 65.0
Max 76.96 85.1 63.3 67.72

512
512 70.0 84.17 53.53 67.1
Max 77.54 85.21 62.52 67.74

1024
1024 74.56 84.9 60.98 67.67
Max 78.31 85.36 62.66 67.67

Table 10: Three T5-Ext readers trained with different
input lengths. For each one, use two input lengths in
the testing time. Max: Maximum length in a batch.

T5-Ext T5-Gen T5-Ext-Gen

in out in out in out

top1 81.84 66.0 81.13 63.47 82.07 65.88
top5 91.65 79.68 89.81 79.74 - -

Table 11: The top1 performance for T5-Ext-Gen is se-
lecting the top1 after re-ranking.

7 Conclusion 608

In this paper, we aim to systematically compare the 609

extractive and generative reader for QA tasks. To 610

minimize the effect other than the reader, we design 611

a fair comparison by using comparable pre-trained 612

models for these two types of readers. We con- 613

duct comprehensive experiments to understand the 614

pros and cons of two readers. Our findings provide 615

guidelines on how to choose extractive or genera- 616

tive readers under certain conditions and open new 617

avenues for improving each reader. Furthermore, 618

our experiments reveal that encoder-only models 619

are not always the best options for extractive read- 620

ers, rather, encoder-decoder models also fit. In ad- 621

dition, the input length is a key factor for applying 622

encoder-decoder models to extractive readers. Last 623

but not least, we find that both extractive and gen- 624

erative readers can predict high-quality answers at 625

top5, which suggests that a good answer re-ranking 626

method has the potential to achieve significant im- 627

provement. 628
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A Training Setup831

We use Huggingface implementation and Pytorch832

to train each model. For all experiments, we use833

4 A-100 GPUs, and all models are trained in 4834

epochs with a learning rate of 1e-4, batch size of835

128. We set the maximum length in training to836

be 1024 for T5 and 512 for ELECTRA. We use 1837

GPU to test models with a batch size of 16, and838

use the maximum length in a batch to be the input839

length for T5 and 512 for ELECTRA. Using the840

maximum length guarantees that every question841

and context pair can be encoded by one single and842

complete sequence of tokens.843

B F1 and Exact Match844

Here, we present the detailed F1 (Table 13) and Ex-845

act Match (Table 12) score for each reader trained846

with single domain or multi-domain data. We pro-847

vide more analysis on single task learning and the848

observation on multi-task learning is discussed in849

the main paper.850

We find that there is some correlation between851

the source of the dataset and the performance of852

different PrLM. Table 14 shows the source of each853

dataset. In IID datasets, ELECTRA achieves the854

best performances on SQuAD and HQA. It might855

because the context of SQuAD and HQA are from856

Wikipedia, which is part of the pretraining corpus857

of ELECTRA but not of T5. Thus, ELECTRA858

has pre-owned domain knowledge of these datasets859

and achieves the best performance. For NewsQA,860

TQA and SQA, the context are from News articles,861

trivia and quiz-league websites, and Jeopardy! TV862

show, respectively, ELECTRA is not pretrained863

on such domains and does not show advantage on864

these datasets, and T5 PrLM presents better perfor-865

mances. Although NQ is also based on Wikipedia,866

T5 PrLM is better than ELECTRA. The reason867

for such a result is that T5 has advantage when868

the context is long and the NQ dataset contains869

a crucial portion of long context questions. In870

OOD datasets, again, ELECTRA has advantage871

of pre-owned knowledge about Wikipedia and thus872

performs the best on DROP and RE, whose con-873

texts are from Wikipedia. Furthermore, on DROP,874

ELECTRA is better than T5-Ext by 5.37% and T5-875

Gen by 10.65%. These improvement is much larger876

than IID dataset (e.g. on SQuAD, ELECTRA is bet-877

ter than T5-Ext only by 0.91% and T5-Gen only by878

1.75%.), indicating the positive effect of pretraining879

corpus on the performance of OOD dataset.880

C Distribution of Context Length 881

Figure 1 and 2 show the histogram of the context 882

length of IID and OOD dataset. We see that the 883

distribution of each dataset is quite different from 884

each other. Some are mainly short, some are mainly 885

long, and others are the combination of short and 886

long. 887

D Two Training Targets of Generative 888

Reader 889

As we mentioned in §3.2, we have two training 890

strategies, one is to use the target tokens of answers 891

without any context, termed as A-Target, the other 892

is to use the target tokens of answers in given con- 893

text, termed as C-Target. We obtain two readers 894

by each training strategy and count the number of 895

questions such that the reader generates answers 896

with novel tokens (see Table 16). As expected, the 897

A-Target reader can generate more novel tokens (to- 898

kens) than the C-Target reader. Meanwhile, we also 899

compare the Macro-average F1 of IID and OOD 900

using three generation methods by two generative 901

readers as shown in Table 15. Although two read- 902

ers achieve similar performance and the difference 903

between three generation methods is marginal, for 904

A-Target generative reader, the constrained genera- 905

tion methods decrease the performance more com- 906

pared to C-Target, especially on datasets on which 907

the regular generation produces more novel tokens. 908

For example, on HotpotQA, T-Target model pre- 909

dicts 303 novel answers, and compared to regular 910

generation, the F1 of C-Con generation decreases 911

by 0.93% and NT-Con decreases by 1.54% . For 912

the same dataset and for the C-Target model, com- 913

pared to regular generation, the F1 of C-Con gener- 914

ation decreases by 0.02% and NT-Con decreases by 915

0.05%. The same trend can be observed on SQuAD 916

and TextbookQA. 917

E Two Input Format 918

When fine-tuning T5 on down-stream tasks like 919

question answering and natural language inference, 920

some special words are added before the real input 921

to denote the type of task. In an extractive reader, 922

usually, there are no special words added. Inspired 923

by these input formats, Given a question Q and a 924

context C, we examine two formats of inputs. One 925

is to add the “question:” and “context:” in front 926

of the real question and context such that the input 927

is {question: Q [SEP] context: C}. The other one 928

11



Model
Train

Test In-domain Datasets Out-domain Datasets

SQuAD NewsQA TQA SQA HQA NQ DROP RACE BioASQ TbQA RE DuoRC

Single Task Learning

T5-Ext

SQuAD 92.27 64.36 65.55 17.76 71.42 60.7 53.47 49.05 68.71 23.7 85.56 60.89
NewsQA 86.89 72.76 67.99 27.57 67.65 65.62 31.79 48.64 66.76 33.68 79.47 62.37
TQA 73.31 48.15 76.34 58.86 56.4 50.28 38.74 38.28 66.17 31.2 79.14 51.11
SQA 34.56 22.94 70.73 82.78 37.59 40.51 20.52 18.7 50.14 38.31 42.57 30.05
HQA 84.92 58.93 61.23 23.03 80.05 63.9 47.18 43.11 68.46 27.51 85.61 56.08
NQ 82.35 58.03 66.72 42.79 65.48 80.55 46.99 43.6 70.29 49.69 82.95 54.94

T5-Gen

SQuAD 91.33 61.55 69.44 29.01 67.92 61.39 42.58 47.8 66.05 49.08 84.32 60.12
NewsQA 86.51 71.6 69.74 43.07 64.59 63.53 26.01 47.83 61.11 54.38 77.77 61.56
TQA 76.84 51.41 80.1 63.36 58.64 56.21 34.05 42.48 57.94 52.43 81.91 54.32
SQA 74.63 48.09 78.13 85.93 58.65 54.59 31.68 39.67 59.31 54.21 79.93 53.35
HQA 86.07 59.96 70.61 52.21 79.88 63.59 43.73 45.1 66.16 42.6 85.34 58.24
NQ 85.4 62.15 71.68 58.01 67.41 78.17 48.09 46.99 66.33 60.74 83.84 59.17

ELECTRA

SQuAD 93.08 58.31 66.49 46.16 71.75 66.36 58.74 50.86 70.21 39.89 87.36 59.83
NewsQA 86.16 65.21 63.88 49.72 61.83 67.96 32.05 49.08 64.87 48.74 78.3 57.26
TQA 70.69 42.46 76.51 67.79 60.61 57.7 42.19 36.66 62.27 44.06 83.28 49.01
SQA 51.54 28.59 72.12 82.93 43.6 41.11 30.72 21.76 53.28 42.67 70.66 35.77
HQA 84.97 53.72 61.94 36.9 81.21 64.93 48.55 37.39 65.2 26.55 84.66 53.19
NQ 85.75 55.12 67.88 62.14 64.06 79.67 53.7 50.69 67.76 50.94 83.83 56.54

Multi-Task Learning

T5-Ext Multi 92.84 73.27 78.01 83.66 82.24 81.0 60.96 53.48 69.52 60.94 86.71 64.37
T5-Gen (base) Multi 91.54 71.4 80.76 85.83 78.98 78.26 51.98 49.51 69.21 61.66 85.42 63.02
T5-Gen (large) Multi 93.54 73.44 84.08 88.38 82.88 80.58 63.63 55.87 72.33 68.76 87.33 68.09

ELECTRA Multi 93.92 65.33 73.63 81.94 83.36 79.98 61.77 52.71 71.86 54.8 87.18 59.76

Table 12: Evaluation by F1 score. TQA: TriviaQA; SQA:SearchQA; HQA:HotpotQA; NQ: NaturalQuestions;
TbQA:TextbookQA; RE:RelationExtraction. Bold values are the best performance in a column for single-task and
multi-task learning.

is without these special words such that the input929

is {Q [SEP] C}. Table 17 shows no noticeable930

difference between these two formats.931

F T5 Encoder-Decoder Extractive932

Reader933

When we apply T5 to an extractive reader, we have934

two options, one is to add a linear layer on top of935

the encoder, the other one is to add a linear layer on936

top of the decoder. Specifically, in the later model,937

the input to the encoder is the concatenation of938

question and context, and the input to the decoder939

is the same as encoder. Notice that the initial input940

to the decoder in such a model is different from941

the input to the decoder in generative reader whose942

input is the start token in the vocabulary. Then we943

apply a linear layer on top of the decoder to classify944

the start and end token. To have a more reasonable945

comparison with the T5-large extractive reader, we946

use the T5-base model instead of T5-large model.947

We find that on two datasets, T5-Ext is consistently948

better (see Table 18), thus we choose T5-Ext as the949

extractive reader to compare with the generative950

reader in the main result.951

G Training Data Size 952

Table 1 shows that the training samples from each 953

dataset are imbalanced (e.g. the size of SearchQA 954

is roughly twice as TriviaQA). To see the effect of 955

imbalanced data, we apply two training strategies. 956

In full data training, we use all samples from IID 957

datasets; in down-sampling training, we sample up 958

to 75K data points from each IID datasets follow- 959

ing the setting in (Fisch et al., 2019). Specifically, 960

for SQuAD, SearchQA, and NaturalQuestions, we 961

sample 75K data points in the training set, for the 962

other three datasets, we use all given training data. 963

Table 19 shows that using full data to train T5-Ext 964

yields higher average F1 score than using down- 965

sampling data in both IID and OOD dataset. For 966

T5-Gen, using full data leads to higher average F1 967

than using down-sampling data on IID datasets, 968

and down-sampling leads to higher average F1 on 969

OOD datasets. But such differences are marginal, 970

and to align with T5-Ext, we present the results of 971

a model that is trained on a full dataset. 972

H Answer Length of Generative Reader 973

For the generative reader, we tried different maxi- 974

mum lengths of the generated answer: 16, 32, and 975

64. Table 20 shows that increasing the length of 976
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Model
Train

Test In-domain Datasets Out-domain Datasets

SQuAD NewsQA TQA SQA HQA NQ DROP RACE BioASQ TbQA RE DuoRC

Single Task Learning

T5-Ext

SQuAD 85.02 45.99 55.86 12.01 55.14 45.71 41.78 35.76 53.46 16.7 74.83 50.23
NewsQA 74.97 56.46 57.75 20.92 47.87 50.68 22.49 32.79 44.81 23.35 61.4 49.37
TQA 61.35 33.5 70.92 50.81 40.69 37.57 27.94 27.6 51.53 25.15 66.82 39.37
SQA 27.64 15.57 64.91 77.01 26.55 32.25 13.44 12.91 36.5 32.34 34.12 23.58
HQA 75.56 41.71 51.92 16.57 63.8 50.19 33.2 28.93 52.06 19.69 74.83 45.04
NQ 70.58 40.81 56.56 34.4 48.6 68.61 33.0 31.6 52.13 39.39 69.27 42.5

T5-Gen

SQuAD 83.62 43.61 61.27 21.58 52.5 46.34 33.8 35.16 52.13 37.99 73.68 49.7
NewsQA 73.94 55.03 60.51 35.58 45.21 48.27 18.83 33.98 40.43 40.85 59.06 49.77
TQA 65.52 34.9 75.74 55.74 41.98 40.36 25.68 30.56 45.81 43.65 69.37 42.84
SQA 63.65 33.43 73.42 80.84 43.57 39.81 24.82 28.34 47.67 46.11 68.89 43.5
HQA 77.65 42.55 62.61 43.0 63.79 49.6 34.66 32.94 52.53 34.8 74.93 47.63
NQ 73.53 42.55 62.67 48.63 50.33 65.02 38.26 35.01 46.81 50.77 70.93 47.5

ELECTRA

SQuAD 85.75 41.48 58.19 37.17 55.97 50.2 47.5 37.69 55.85 28.34 77.48 50.23
NewsQA 71.64 51.38 54.8 40.08 42.33 51.51 23.29 33.98 44.02 34.26 58.18 45.97
TQA 59.52 29.01 71.84 59.49 43.48 42.28 32.4 27.0 48.87 36.06 72.05 38.64
SQA 42.06 19.9 67.66 77.7 31.5 30.61 23.49 16.02 38.96 35.53 57.36 28.91
HQA 74.77 38.08 54.18 28.5 65.51 50.57 36.46 24.33 49.2 19.03 72.56 43.5
NQ 73.76 38.08 59.97 52.89 46.59 67.93 40.45 36.5 45.74 41.05 70.15 47.17

Multi-Task Learning

T5-Ext Multi 86.11 57.1 72.59 78.01 66.34 69.06 51.03 39.02 53.66 49.83 76.73 52.5
T5-Gen (base) Multi 84.12 55.03 76.53 80.73 62.92 65.5 42.91 37.54 55.65 52.69 75.17 52.43
T5-Gen (large) Multi 86.74 56.91 79.85 83.52 67.43 67.47 54.22 42.43 60.04 59.08 77.1 57.69

ELECTRA Multi 87.83 52.02 69.02 76.64 68.02 68.34 52.3 36.94 57.18 44.78 77.07 49.83

Table 13: Evaluation by Exact Match(EM). TQA: TriviaQA; SQA:SearchQA; HQA:HotpotQA; NQ: NaturalQues-
tions; TbQA:TextbookQA; RE:RelationExtraction

Dataset Source
SQuAD Wikipedia
NewsQA News article
TQA Trivia and quiz-league websites
SQA Jeopardy! TV show
HQA Wikipedia
NQ Wikipedia
DROP Wikipedia
RACE English reading comprehension exams for mid-

dle and high school
BioASQ Science (PubMed) articles
TbQA Lessons from middle school Life Science,

Earth Science, and Physical Science textbooks
RE Wikiread
DuoRC wikipedia

Table 14: The source of each dataset

the target does not make improvement, this might977

be because the answer in the testing data is usually978

short and thus length of 16 is sufficient.979

I Re-rank Answers from Two Readers980

We observe that both models can predict high qual-981

ity answers in top5 as shown by the large improve-982

ment on every dataset. Based on this observation, a983

good re-ranking method can potentially yield good984

performance, thus we propose a re-ranking method.985

One model is employed to produce candidate an-986

swers, termed as producing model, then the other987

model re-rank the candidate answers, termed as re-988

ranking model. Specifically, we use a production 989

model to predict five answers. If the generative 990

reader is the re-ranking model, then for each an- 991

swer, we concatenate it with the question and the 992

context and use T5-Gen to predict a score. If the 993

extractive reader is the re-ranking model, then we 994

feed the question and the context to the extractive 995

reader, and take each candidate answer as a label 996

to get a score. The final score of an answer is com- 997

puted by the sum of the T5-Ext and T5-Gen score. 998

We select the answer with the highest score as the 999

final answer. When T5-Ext is the producing model 1000

and T5-Gen is the re-ranking model, the final score 1001

is computed by the following equations, 1002

Pm,i =
exp(zm,i)∑K
j exp(zm,j)

(5) 1003

SExt(Ans) = log(PExt,start × PExt,end) (6) 1004

SGen(Ans) =
1

N

∑
t∈Ans

log(PGen,t) (7) 1005

Score(Ans) = SExt(Ans) + SGen(Ans), (8) 1006

where Pm,i is the logit of ith token given by model 1007

m, log(PExt,start and log(PExt,end mean the logits 1008

of ground truth start and end token, respectively. 1009

When the T5-Gen is the producing model, if an 1010
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Figure 1: Context Length Histogram of In-domain dataset

answer is not an exact span in the context, then1011

we ignore this answer. In a few cases, none of the1012

answers in Top5 is actually a span coming from1013

the context. In such cases, we do not use the re-1014

ranking model and take the Top1 answer as the1015

final prediction.1016
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Figure 2: Context Length Histogram of out-domain dataset

Target Inference Method
In-domain Datasets Out-domain Datasets

SQuAD NewsQA TQA SQA HQA NQ DROP RACE BioASQ TbQA RE DuoRC
A-Target Regular 91.56 71.26 81.01 86.62 79.65 77.89 50.88 49.95 69.03 63.13 85.88 63.04
A-Target C-Con 91.32 71.25 80.76 86.6 78.72 77.89 50.81 50.27 68.99 63.08 85.33 62.86
A-Target NT-Con 90.69 71.22 80.57 86.47 78.11 77.87 50.79 49.63 69.0 63.11 85.12 62.31
C-Target Regular 91.54 71.4 80.76 85.83 78.98 78.26 51.98 49.51 69.21 61.66 85.42 63.02
C-Target C-Con 91.57 71.44 80.76 85.82 78.96 78.26 51.78 49.7 69.29 61.66 85.56 63.02
C-Target NT-Con 91.52 71.42 80.73 85.75 78.93 78.27 51.76 49.66 69.23 61.66 85.49 63.02

Table 15: Generative model trained by multi-tasks and evaluated by F1 score on each datasets. Regular: the reader
can choose one of the token from the entire vocabulary; C-Con: the reader can choose one of the token from the
context tokens and the end token(</s>); NT-Con: the reader can choose one of the token from the the next token
of current predicted tokens in the context and the end token.
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A-Target C-Target
SQuAD 345 21
NewsQA 16 8
TQA 114 28
SQA 86 33
HQA 303 9
NQ 11 18
DROP 9 5
RACE 20 10
BioASQ 27 3
TbQA 8 4
RE 64 9
DuoRC 84 5

Table 16: Number of Novel tokens generated by A-
Target and C-Target Reader using regular generation
method.

Model Format
SQuAD NQ

EM F1 EM F1

T5-Ext
1 85.36 92.38 68.60 80.55
2 85.02 92.27 68.61 80.55

T5-Gen
1 83.62 91.33 68.61 78.17
2 83.02 90.75 63.87 77.08

Table 17: Comparison between different input format
on two datasets. Format1 means input with “question:”
and “context:” as format1, and format2 means without.

Model
SQuAD NQ

EM F1 EM F1

T5-Ext 85.02 92.27 68.61 80.55

T5-EnDe-Ext 83.73 90.68 66.34 78.58

Table 18: Two style of extractive reader, T5-Ext con-
sists of encoder and a linear layer, T5-EnDe-ext con-
sists of encoder, decoder and a linear layer.
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Tr Data
IID Datasets OOD Datasets

SQuAD NewsQA TQA SQA HQA NQ Avg. DROP RACE BioASQ TbQA RE DuoRC Avg.

T5-Ext Reader

Full 92.84 73.27 78.01 83.66 82.24 81.0 81.84 60.96 53.48 69.52 60.94 86.71 64.37 66.0
Downsampling 92.62 73.54 78.58 82.95 81.77 80.71 81.69 58.66 51.86 69.27 59.4 87.5 64.02 65.12

T5-Gen Reader

Full 91.54 71.4 80.76 85.82 78.98 78.25 81.12 51.84 49.47 69.14 61.66 85.42 63.02 63.42
Downsampling 91.19 71.13 80.64 84.86 79.24 77.87 80.82 49.78 51.49 69.63 61.31 85.99 63.32 63.59

Table 19: Training T5-Ext and T5-Gen with full or down-sampling data.

Length
IID Datasets OOD Datasets

SQuAD NewsQA TQA SQA HQA NQ Avg. DROP RACE BioASQ TbQA RE DuoRC Avg.

16 91.54 71.4 80.76 85.83 78.98 78.26 81.13 51.98 49.51 69.21 61.66 85.42 63.02 63.47
32 91.54 71.4 80.76 85.82 78.98 78.25 81.12 51.84 49.47 69.14 61.66 85.42 63.02 63.42
64 91.54 71.4 80.76 85.82 78.98 78.25 81.12 51.84 49.47 69.14 61.66 85.42 63.02 63.42

Table 20: Performance of using different Answer length for generative reader

Model
In-domain Datasets Out-domain Datasets

SQuAD NewsQA TQA SQA HQA NQ Avg. DROP RACE BioASQ TbQA RE DuoRC Avg.

Top1

T5-Ext 92.84 73.27 78.01 83.66 82.24 81.0 81.84 60.96 53.48 69.52 60.94 86.71 64.37 66.0
T5-Gen 91.54 71.4 80.76 85.83 78.98 78.26 81.13 51.98 49.51 69.21 61.66 85.42 63.02 63.47

Top5

T5-Ext 97.31 86.9 88.72 91.14 93.88 91.93 91.65 82.03 68.36 84.51 74.2 93.83 75.18 79.68
T5-Gen 95.67 81.17 90.68 94.24 90.17 86.96 89.81 80.73 67.61 79.75 79.35 93.06 77.96 79.74

T5-Gen as Re-ranking Model

Re-rank 93.14 73.46 78.34 83.84 82.45 81.19 82.07 60.53 53.65 70.67 60.87 86.18 63.36 65.88

T5-Ext as Re-rankering Model

Re-rank 91.03 68.61 81.11 86.28 80.03 76.34 80.57 57.85 52.42 66.32 63.47 86.5 65.35 65.32

Table 21: Top5 Answers
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