Machine Reading Comprehension: Generative or Extractive Reader?

Anonymous ACL submission

Abstract

While both extractive and generative readers
have been successfully applied to the Question
Answering (QA) task, little attention has been
paid toward the comparison of these two read-
ers. Which reader performs better? What are
the reasons for the performance differences?
In this paper, we aim to answer these ques-
tions in the setting of extractive QA tasks. We
design multiple transformer-based models and
different scenarios to systematically compare
these two readers. Our findings characterize
the difference of two readers and their pros
and cons, which can instruct the optimal se-
lection of the two readers, and open up new
research avenues to improve each reader. Our
major findings are: 1) generative readers per-
form better when the input context is long,
whereas extractive readers are better when the
context is short; 2) extractive readers general-
ize better as compared to the generative ones
under out-of-domain settings, in both single-
and multi-task learning scenarios. Our exper-
iments also suggest that, although an encoder-
only pre-trained language model (PrLM) is an
intuitive choice for extractive readers, the en-
coder from encoder-decoder PrLM is a strong
alternative that performs competitively.

1 Introduction

Question Answering (QA) is an important sub-
task of reading comprehension and can be di-
rectly used in real applications such as search en-
gines (Kwiatkowski et al., 2019) and dialogue sys-
tems (Reddy et al., 2019; Choi et al., 2018). Ex-
tractive question answering is a specific type of
QA i.e., the answer to the question is a span in the
context (Rajpurkar et al., 2016; Fisch et al., 2019),
and this work focuses on such QA tasks. Extractive
readers (Seo et al., 2017; Devlin et al., 2019) are
widely used to effectively tackle such a task, where
the goal is to classify start and end positions of the
answer in the context. Generative readers (Raffel
et al., 2020; Lewis et al., 2020b; Izacard and Grave,

2021) have also shown remarkable performance on
QA tasks, where the goal is to generate answers by
autoregressively predicting tokens.

While both extractive and generative readers
have been successfully applied to the QA task, a
natural question arises: which approach is better,
extractive or generative? This question is appeal-
ing as (1) it can provide guidance on which reader
should be applied in certain cases; (2) it reveals the
pros and cons of the two reader approaches, and
thus opens up opportunities to improve each reader.
Motivated by the aforementioned, we design multi-
ple transformer-based models and scenarios (e.g.,
single-tasks, multi-task learning, short and long
context settings, etc.) to compare these two reader
approaches.

Our first comparison is to examine which answer
prediction approach is better (i.e. classifying the
start and end positions v.s. generating sequential
tokens) when we have two comparable readers (in
terms of the model size and their training corpus).
Previously, extractive and generative readers are
usually based on different PrLMs, for example, XL-
NET (Yang et al., 2019) for extractive and T5 (Raf-
fel et al., 2020) for generative readers. Under such
circumstances, both the pre-training corpus and the
pre-training objective are different. Thus, it is hard
to attribute whether the performance difference is
due to their differences in training objectives, pre-
training corpus, or the way the answer is obtained.
To address this concern, we use TS PrLLM for both
the readers and make their model size comparable
such that the only variation is in the way that a
reader makes predictions. As such, the comparison
focuses more on the answer prediction approaches
and reduces the influence introduced by other fac-
tors. To the best of our knowledge, this is the first
work comparing the two readers with minimal dis-
tinctions. In addition, our work is the first attempt
to employ the encoder in a pre-trained encoder-
decoder model for extractive readers.

Towards better generalizability and grounding of
our conclusions, we also apply ELECTRA (Clark
et al., 2020) for the extractive reader and compare
it with the T5 extractive and generative readers. To-
gether, we present a systematic evaluation for com-
paring three readers (TS5 generative, TS extractive,
and ELECTRA extractive readers) on the MRQA
task (Fisch et al., 2019), a collection of multiple
extractive QA datasets. Our experiments reveal
several interesting insights:

1. Extractive readers can generalize better in out-
of-domain (OOD)' datasets as compared to the
generative reader. Additionally, extractive read-
ers are better at learning from different domains;
i.e. extractive readers benefit more from multi-
task learning.

2. Generative readers have an advantage when the
input context is long, and the performance is not
affected by variations in the context length. On
the other hand, extractive readers are better at
short context but show sensitivity to the context
length.

3. Previous work used to apply encoder-only PrLM
to the extractive reader, however, our exper-
iments indicate that the encoder of encoder-
decoder models (e.g. TS) is a viable alternative
with strong performance. It can even outper-
form traditional encoder-only extractive readers
when the model learns from different domains
or when the context is long.

Along with the comparison, our experiments
also reveal that the inference length affects the
performance significantly — encoding the full con-
text during inference leads to significantly better
performance as compared to truncating and only
encoding to its training context length.

While the focus of this paper is the compar-
ison of different readers, we also explore two
constrained generations for the generative reader.
Traditionally, the decoder generates a token from
the entire token vocabulary. A natural but under-
explored question is whether it is beneficial to con-
strain the generation space with input context, espe-
cially for extractive QA tasks, where an answer is
supposed to be extracted from a given context. To
answer this question, we introduce two constrained
generations conditioned on the context (§3.2). Sur-
prisingly, we find that these additional conditions
result in no improvements. Further analysis reveals
that in most cases, the decoder, without any con-

'In this paper, we use OOD to represent out-of-domain

dition, already generates tokens from the context
tokens and thus the extra constraints have no addi-
tional impact. In other cases, the generative reader
generates the same surface form as in context, but
with a different sequence of subword tokens,? and
limiting the generation space results in the refusal
of potentially correct answers.

To summarize, our contributions are threefold:
1) we systematically compare extractive reader and
generative reader, and our findings can instruct the
optimal selection of extractive and generative read-
ers under certain conditions; 2) our experiments
suggest that the encoder from encoder-decoder
PrLLM architecture is a strong candidate that can be
used for extractive readers; 3) for the generative
reader, we conclude that constrained generation
does not lead to noticeable improvement because
the decoder already generates tokens from the input
context, in most cases.

2 Related Work

Pretrained Language Models Here, we mainly
discuss two types of pre-trained models based on
transformers architecture (Vaswani et al., 2017),
Autoencoder and sequence-to-sequence models.
Autoencoder only relies on the encoder part in the
original transformer, and in the pretraining time,
the input is a corrupted sentence, for example, a
sentence with mask tokens, such as BERT (Devlin
et al., 2019) and its variants (Liu et al., 2019; Lan
et al., 2020). ELECTRA (Clark et al., 2020) also
belongs to this family. ELECTRA adapts GAN-
style training (Mirza and Osindero, 2014) where a
language model is given a sentence with masked
tokens and outputs a corrupted sentence, ELEC-
TRA then aims to detect if a token is replaced or
is from the original text. Sequence-to-sequence
models keep both the encoder and decoder, for
example, BART (Lewis et al., 2020a) and T5 (Raf-
fel et al., 2020). While most PrML is pre-trained
on Wikipedia, TS is pre-trained on Colossal Clean
Common Crawl Corpus>.

Question Answering Systems We focus on QA
systems that are built upon PrLMs. Extractive QA
readers assume that answers can be found in the
context and aim to predict the corresponding start
and end tokens from the context (Fisch et al., 2019;
Li et al., 2019; Clark et al., 2020; Karpukhin et al.,
2020). Differently, generative QA readers are not

*In this paper, a “token” corresponds to a “subword token.”
3https://www.tensorflow.org/datasets/catalog/c4

restricted to the input context, where they can freely
generate answers token by token using the entire vo-
cabulary in an autoregressive manner (Raffel et al.,
2020). Generative readers are more often used in
open domain (Lewis et al., 2020b; Izacard and
Grave, 2021; Xiong et al., 2021) and unified set-
tings (Khashabi et al., 2020; Tafjord and Clark,
2021). Fajcik et al. (2021) combines extractive
and generative readers by adding a classification
module to decide which reader predicts answers.
Cheng et al. (2021) proposes a unified system of ex-
tractive and generative readers, but different from
(Fajcik et al., 2021), the output is computed by both
extractive and generative readers.

3 Model

3.1 Extractive Reader

In extractive reader, an encoder firstly receives
a question q :{q1,...,q:} as well as a context
c:{ci,...,cm}, where ¢; and c; are tokens in ques-
tion and context, respectively. Then, it produces
contextual representations {1, ..., hy, }, denoted
by h. Last, two linear layers predict the proba-
bility of each token in h of being start and end
positions independently. More formally, given a
tuple (q, c, a), where a is an answer, the training
objective is to minimize the following loss function

‘CEXI = - 1Og(]-)start,s) - 1Og(]-:)end,e> (1)
where Pgtart and Peyqg are defined by

Pstart = SOftmaX(Wstart h) (2)

Pend = softmax(wepqgh) 3)

where Pgtarts and Peng e denote the probability
of the ground truth start and end tokens of answer
a, respectively. In testing time, the answer span is
decoded by argmax; j{Pstart,i X Pend j}. In this
work, we apply two encoders, TS5 and ELECTRA.
When T5 is applied to QA tasks, previous work
tends to take it as a generative reader (§3.2). Dif-
ferently, we also use the encoder from TS in an ex-
tractive reader, where a classification layer is added
on top of the encoder. In addition, we also tried
to use the entire TS model and add a classification
layer on top of the decoder. The latter performed
consistently worse as compared to the former (see
Appendix E). Therefore, we use the former and
denote it as T5-Ext (i.e. encoder+linear layer) as
an extractive reader from T3 in later experiments.

ELECTRA is an encoder-only model that is pre-
trained on detecting replaced tokens in the input,
which is similar to the QA downstream task since
both are at the token level. Building an extractive
reader on top of ELECTRA has obtained rather
good performance on QA tasks (Xiong et al., 2021),
thus, we also use it to compare with T5 PrML.

3.2 Generative Reader

In a generative reader, an encoder, similar to the
extractive reader, takes a question q and a context
c as input and outputs contextual representation h.
A decoder takes the previously generated answer
tokens as input and performs attention over h and
then generates a token. Formally, given a tuple
(q,c, a), the training objective is to minimize the
following loss function

K
Loen = Y _logP(a; | h,a.))
=1

where K is the number of tokens in answer a, a;
is the i*" token in a, and ag corresponds to a spe-
cial beginning of sequence (BOS) token. In the
inference time, we use the greedy search method
to autoregressively generate the answer.

Here, we further investigate variants for the gen-
erative reader from training target and answer gen-
eration aspects.

Training Targets TS5 uses SentencePiece (Kudo
and Richardson, 2018), a subword tokenization
toolkit, such that the same word can be represented
by different tokens if the surrounding contexts are
different. For example, a single word NASA is rep-
resented by one token { ‘_NASA’}, while in context
“... the National Aeronautics and Space Administra-
tion (NASA),...”, NASA is represented by two tokens
{ ‘NAS’, ‘A’}. In conventional training, the targets
are tokens of answer without any surrounding con-
text (e.g. {*_NASA’}). Such kinds of targets are
not assured to be the tokens in the given context.
To better fit the purpose of extractive QA tasks,
we extract the tokens of answer in the context as
the target, (e.g. { ‘NAS’, ‘A’}). We term the con-
ventional one as A-Target (i.e. direct tokenization
of answer), and the new one as C-Target (i.e. use
tokens in the given context as answer targets).

Constrained generation Usually, the decoder
generates tokens from the entire vocabulary. How-
ever, due to the nature of the extractive QA task,

Dataset ‘ Training size ‘ Avg. tokens in Q ‘ Avg. tokens in C

In-domain datasets

SQuAD 86,588 14.7 179.87
NewsQA 74,160 9.79 699.75
TriviaQA 61,688 20.49 1071.66
SearchQA 117,384 23.74 1081.63
HotpotQA 72,928 24.29 31541
NQ 104,071 12.87 359.2
Out-of-domain datasets

DROP - 14.0 279.02
RACE - 13.98 403.77
BioASQ - 19.07 368.89
TextbookQA - 13.76 792.493
RE - 13.43 42.97
DuoRC - 11.61 932.08

Table 1: Statistics of in-domain data of MRQA shared
Task.T5 tokenizer is used to obtain the tokens.

only spans presented in the context are valid. Re-
stricting the generating space by the valid tokens
can prevent the model from generating invalid to-
kens and thus is likely to improve the accuracy. The
same intuition had been mentioned in (Xue et al.,
2021). Motivated by this, we explore two con-
strained generations. In Context constrained gener-
ation (C-Con), the decoder can generate any token
given in the context. In Next Token constrained
generation (NT-Con), the decoder can generate any
token which are the next tokens of the current pre-
dicted one in the context. The decoder is allowed
to generate end token anytime to denote the end of
prediction. We only enforce these conditions in the
testing time and the generation in training time is
still across the entire vocabulary.

4 Experiments

4.1 Dataset

Table 1 shows the training size of in-domain (IID)*
datasets and the number of average tokens in ques-
tions and context of IID and OOD datasets. We
present the histogram of the context length of every
dataset in Appendix C. It is easy to see that some
datasets have longer context as compared to others,
thus we further group them into long/short context
datasets. The long context datasets include Trivi-
aQA, SearchQA, TextbookQA, and DuoRC. The
remaining datasets are in the short context category.
We find that the context length has a strong impact
on models’ performance (§5).

4.2 Learning Strategy

Single Task Learning: we use each IID datasets
to train extractive and generative readers. Multi-

“In this paper, we use IID to represent in-domain

| T5-Ext | ELECTRA | T5-Gen | T5-Gen
Size ‘ large ‘

#Pararns‘ 335M ‘

large ‘ base

334M | 223M | 737TM

‘ large

Table 2: Size and Number of parameters of each reader.

Task Learning: we consider training with all (six)
IID datasets as multi-task learning for two rea-
sons. As (Su et al., 2019) showed that different
IID datasets share a low similarity, therefore, they
may require different reasoning skills. In addition,
Table 1 shows that different datasets have different
question and context lengths, which may lead to
different difficulties between datasets.

4.3 Experimental Setup

We use Huggingface (Wolf et al., 2020) and Py-
torch (Paszke et al., 2019) implementation for train-
ing each model. Detailed information on hyper-
parameters and the type of hardware we use for
our experiments is given Appendix A. Model Size
To have a fair comparison, we make the number
of parameters of extractive and generative read-
ers as close as possible (see Table 2). To do this,
we use T5-large for TS5-encoder extractive reader,
ELECTRA-large for ELECTRA extractive reader,
and T5-base for generative readers. For the rest
of the paper, we use T5-Ext, ELECTRA, and T5-
Gen to represent each reader. For the purpose of
comparison, using T5-base for generative reader
is more suitable than T5-large since the advantage
of T5-large generative over T5 extractive reader
is a lot more significant than the advantage of TS
extractive reader over T5-base generative reader.
Input Format Given a question Q and a context
C, the input to extractive readers is {Q [SEP] C}
and the input to generative readers is {question: Q
[SEP] context: C}. We also tried other alternatives
and results are given Appendix E.

5 Results and Analysis

In this section, we present the results and analysis
of three readers. For generative readers, we use C-
Target to train the model and the regular generation
method. By our experimental result (Appendix D),
C-Target and A-Target do not make a noticeable
difference when regular generation is applied, but
the C-Target model is more stable than A-Target
regarding different generation methods. We use
the maximum answer length to be 16 in the testing
time for T5-Gen. One can find the performance of

other lengths (32 and 64) in Appendix H, which do
not result in a noticeable difference.

5.1 Comparison of Readers with Same PrML

Single-Task Learning The first two rows in Sin-
gle task learning in Table 3 present the performance
of T5-Ext and T5-Gen readers. For IID datasets,
we train a model on dataset A and evaluate it on
the same dataset A. Comparing the results of two
readers, T5-Ext achieves better performance than
T5-Gen on four out of six datasets. On the other
two datasets, TriviaQA and SearchQA, which are
of long context, T5-Gen outperforms T5-Ext by
more than 3%, which leads to a higher average
F1 than T5-Ext. For OOD datasets, we evaluate
each single-task model on every dataset and present
the result which is the best among six single-task
models®. We see that on one long context dataset,
i.e. TextbookQA, T5-Gen achieves a much higher
F1 score than T5-Ext. This is consistent with our
previous observation and shows the advantage of
T5-Gen in a long context setting. For the other
five datasets, T5-Ext achieves better performance,
especially on three datasets, DROP, RACE, and
BioASQ, T5-Ext is much better, indicating that
TS5-Ext generalizes better on OOD datasets. We hy-
pothesize that this is because there are more unseen
(or less observed) tokens present in the answer for
the OOD datasets, which presents a challenge for
the generative reader. For generative readers, when
a token is less observed during training, it is less
likely to get predicted at test time.

Multi-Task Learning For multi-task models, we
present the results using full data in training. Fol-
lowing (Fisch et al., 2019), we also compare full
data training with down-sampling data and find
that full data is slightly better than down-sampling
(see Appendix G). From the first three rows in the
multi-task learning block in Table 3, we find that
the performance of the extractive reader improved
significantly when trained on all datasets. Specif-
ically, the average performance of T5-Ext on the
IID and OOD datasets are both increased compared
to the single-task model (11 out of 12 datasets are
increased). On the other hand, though the gener-
ative reader benefits from multi-task learning on
OOD datasets, the performance decreases on three
IID datasets. We also notice that on the dataset
when two models are both improved, T5-Ext al-

5The performance of each single-task model is given Ap-
pendix Table 12.

ways achieved larger improvement as compared
to T5-Gen. For OOD datasets, T5-Ext still per-
forms better than T5-Gen, similar to single-task
learning, which indicates the potential advantage
of extractive readers in OOD settings.

Long and Short Context We further investigate
the short and long context within each dataset.
Specifically, given a question and a context from
a dataset, if the context exceeds 800 tokens®, then
we consider such pair as a long context question;
otherwise, a short context question. We then ob-
tain a mixed long context question set that contains
questions and contexts from all datasets, similarly
for a mixed short context question set. Table 4
shows how two readers perform on each set. In the
mixed long context question set, T5-Gen is better
than T5-Ext in both IID and OOD datasets while
in the mixed short context question set, T5-Ext per-
forms better. It is worth mentioning that although
the average F1 score of OOD achieved by T5-Ext
is higher than T5-Gen, the latter achieves higher F1
on the subset of long context questions. We also
observe that T5-Gen performs more stable in terms
of different context lengths, shown by the smaller
gap of F1 score between the mix short and long
context (e.g. for IID datasets, the gap of T5-Ext
is 4.45%, and the gap of T5-Gen is 0.6%). We
conjecture that T5-Gen is more stable w.r.t the con-
text length because the decoder always generates
tokens from the entire vocabulary that is unlikely
to be affected by the input length. However, the
situation is quite different for the T5-Ext setting.
Because the classification layer needs to classify
every token, the longer the input is, the larger the
classification space becomes, in other words, the
more difficult the prediction becomes.

Rare Tokens When looking into the answers of
testing sets, we find that few answers include rare
characters such as 7 and ¢, which raises a ques-
tion does rare token affect the performance of the
model? Driven by this question, we define a list
of normal characters . If an answer includes any
character which is not in the normal character list,
we consider it belongs to the rare answer set, oth-
erwise, it belongs to the normal answer set. The
percentage of rare cases for IID and OOD datasets
is 1.4% and 2%, respectively. From Table 5, first

®We choose 800 based on the statistic shown in Table 1

"Normal characters are obtained by the printable characters
in the string library of Python including lower and upper case
alphabets, digits, punctuation, and white-space.

Model ‘ In-domain Datasets

Out-domain Datasets

| SQuAD NewsQA TQA SQA HQA NQ Avg. | DROP RACE BioASQ TbQA RE DuoRC Avg.
Single Task Learning
T5-Ext 92.27 72.76 76.34 82.78 80.05 80.55 80.79 53.47 49.05 70.29 49.69 85.61 62.37 61.75
T5-Gen 91.33 71.6 80.1 85.93 79.88 78.17 81.17 48.09 46.99 66.33 60.74 85.34 61.56 61.51
ELECTRA 93.08 65.21 76.51 82.93 81.21 79.69 79.77 58.74 50.86 70.21 50.94 87.36 59.83 62.99
Multi-Task Learning
T5-Ext 92.84 057 7327051 78.01.167 83.664085 82.24.519 810,045 8184, 105 | 60.96, 749 5348, 443 6952 77 60941105 867111 643750 66.0, 55
T5-Gen 91.54.00 714 0, 80.76.04 8583, 7898 o5 78264000 8113 00s | 51.98,50 4951,5 692159 6L66,09 8542,0, 63.02.,; 6347, 0
ELECTRA | 93.92.x 6533 010 73.63 55: 8194 oo 83.36.515 79.98,000 79.69 s | 6177 505 5271 155 718615 548,55 8718 o1 59.76 (0; 6468140
T5-Gen (large) | 93.54 73.44 84.08 88.38 82.88 80.58 83.82 63.63 55.87 72.33 68.76 87.33 68.09 69.33
Table 3: Three readers trained by single and multi task learning and evaluated on in-domain and out-

domain datasets by F1 Score.

TQA: TriviaQA; SQA:SearchQA; HQA:HotpotQA; NQ: NaturalQuestions;

TbQA:TextbookQA; RE:RelationExtraction; Avg.: the Macro Average of in-domain/out-domain datasets. Bold
values are the best performance in a column for each block.

Context type | Model | IID | OOD
Mix Long | TEXt | 8073 6132
€ | T5-Gen | 82.46 | 61.64

. T5-Ext | 85.18 | 72.98
Mix Short | 15 Gen | 83.06 | 69.96

Table 4: Compare T5-Ext and T5-Gen on the mixed
long/shot context questions sets.

Answer type | Model 1D | OOD
Rare T5-Ext | 78.77* | 83.5*
T5-Gen | 69.11 | 63.56

N | TS-Ext | 83.14 | 69.91
oM T5-Gen | 82.97 | 68.05

Table 5: Compare T5-Ext and T5-Gen reader on rare
and normal answers, * denote significantly better than
others on the same answer type and same domain.

we see that the extractive reader performs better in
both rare and normal cases, but more importantly,
the performance of T5-Gen on rare answer sets de-
creases significantly, indicating that the generative
reader is more sensitive to rare characters. A simi-
lar reason for relatively poor performance on OOD
dataset can also be considered here — in the train-
ing time, the frequency of these rare characters is
much less, and hence are less likely to be predicted
during test time. Table 6 shows examples when
T5-Gen drops the rare characters in answers.

To summarize, our findings are the following:
1) in single task, for IID data, two readers achieve
comparable performance. T5-Ext performs better
on OOD data as compared to T5-Gen; 2) in multi-
task setting, T5-Ext is better at utilizing data from
different domains, thus performs better than T5-
Gen in both IID and OOD datasets; 3) in multi-
task setting, T5-Ext is better at utilizing data from
different domains, thus performs better than T5-
Gen in both IID and OOD datasets, and 4) the

Question Answer Prediction
Who was one of the Maria Maria

most famous people Sktodowskacurie Skodowska-
born in Warsaw? Curie

What museum pre-
serves the memory of
the crime?

Katyht Museum Katy Museum

Table 6: Examples of questions with answers contain-
ing rare characters and the prediction of T5-Gen.

extractive reader is more stable than the generative
one when answer contains rare characters.

5.2 Comparison of Different Pre-trained
Models

In this section, we compare different readers based
on different pre-training models, TS5 and ELEC-
TRA. We would like to note that the pre-trained
model of TS is already trained on SQuAD, while
ELECTRA does not. However, based on the results
on SQuAD that ELECTRA is even better than TS5,
we assume that the effect of the downstream train-
ing task dominates the effect of the pretraining.
TS Generative Reader and ELECTRA Ex-
tractive Reader. Table 3 shows that in both single
and multi-task learning, TS5 generative reader is
consistently better in long context datasets (e.g. for
TextbookQA, in single-task learning, T5-Gen is bet-
ter than ELECTRA by 3.59%; in multi-task learn-
ing, T5-Gen is better by 7.13%); in short context
datasets, ELECTRA extractive reader is better (e.g.
for SQuAD, in single-task learning, ELECTRA is
better than T5-Gen by 2.75%; in multi-task learn-
ing, ELECTRA is better by 2.84%). Two Extrac-
tive Readers. In single-task learning, two readers
are comparable in general except for the NewsQA
on which T5-Ext is better than ELECTRA by 7.5%.
In multi-task learning, T5 significantly outperforms

ELECTRA in long context datasets, and in short
context datasets, the performance of two readers
is comparable (see table 3). This suggests that the
encoder in the encoder-decoder pre-trained model
is also suitable for the extractive reader.

To summary, 1) TS PrLM has an advantage over
ELECTRA PrML if the context is long in both
single- and multi-task learning scenarios; 2) in
multi-task setting, the average performance of T5-
Ext is the best on both IID and OOD datasets.

5.3 TS5 Large Generative Reader

We also present the result of the T5 large generative
reader as the reference of the upper bound of the
T5 generative reader (last row in Table 3). For IID
datasets, in short context datasets, the performance
is comparable to other models, while in long con-
text datasets, TS large performs much better than
the others (e.g. at least 3.33 % and 2.55% better
than other models). For OOD datasets, T5-large
performs consistently the best, demonstrating that
the large model has better generalization capac-
ity. We would like to note that the winner of the
MRQA 2019 competition, D-NET (Li et al., 2019),
achieves a 69.67 average F1 score on OOD datasets
by the ensemble of XLNET (Yang et al., 2019) and
ERNIE (Zhang et al., 2019). TS5-large achieves
comparable performance.

5.4 Constrained generation

Table 7 presents the F1 score of the generative
reader using three different generation methods dis-
cussed in §3.2. The difference between the three
methods is marginal and the main reason is that
our generative reader already generates the tokens
from the context in most cases, in which the pre-
dictions of the three methods are always the same.
The last row in Table 7 shows the number of novel
cases of each dataset, which are all less than 1%
of the testing data. Table 8 presents some exam-
ples when the regular prediction is wrong but our
constrained generation is correct. In Examplel, by
regular generation, T5-Gen predicts the synonym
of the answer, which is not present in the context,
and by our constrained generation, it predicts the
correct answers. In Example2, by regular gener-
ation, T5-Gen predicts a partially correct answer
but injects some words, and by our constrained
generation, these words are removed from the pre-
diction and thus match with the correct answer. In
example3, by regular generation, T5-Gen predicts
a completely wrong answer, and by our generation

method, it predicts the correct answer. There are
also few cases that regular prediction is correct but
the constrained generation is wrong. In such cases,
answers are surrounded by punctuation in the con-
text, T5-Gen tends to predict novel tokens as shown
in Table 9. In the first example, by regular genera-
tion, T5-Gen predicts a novel token ‘_3’, while in
the context the corresponding token is ‘_(3’. If this
happens and the reader fails to recognize the exact
tokens from the context, it predicts wrongly.

6 Additional Findings

6.1 Input Length in Training and Testing

TS5 uses relative position embeddings (Ruder et al.,
2019) which allows the input to be any length. We
discover that input length dramatically affects the
performance of T5-Ext. Specifically, we examine
two types of input length in testing time: the length
used in training time and the maximum length in a
batch. In the former setting, the extractive reader
uses the window-stride strategy to slice a long doc-
ument into multiple short inputs; while in the latter
setting, the given document can be represented by
a single and complete input. In addition, we train
different multi-task T5-Ext by three values of input
length, 384, 512, and 1024.

Table 10 shows the F1 score of three models.
For three models, using longer input length in test-
ing time consistently leads to better performance,
especially for long context datasets. When diagnos-
ing the predictions of using short input length, we
observe that T5-Ext can predict the correct answer
in the top 5 but mistakenly predicts higher scores
for distracting answers. In contrast, when the full
input is encoded directly, T5-Ext can predict the
correct answer with the highest score. This indi-
cates that directly encoding the full input provides
more complete information, which in turn helps T5-
Ext to predict more accurate answers. From Table
10, we also see that for IID long context datasets,
the longer the input length used in training time,
the better performance the model has. Our findings
lead to the two suggestions: 1) when computation
budget is allowed, it is better to train a model with
longer input length limit; 2) irrespective of the in-
put length limit at training, one should do inference
with full input encoded directly.

6.2 Re-rank Answers from Two Readers

By the comparison between two readers, a natural
question is that can we utilize two readers to predict

Generation Method ‘

IID Datasets

‘ OOD Datasets

| SQUAD NewsQA TQA SQA HQA NQ | DROP RACE BioASQ ThQA RE DuoRC

Regular 91.54 714 80.76 85.83 7898 7826 | 51.98 4951 6921 61.66 8542 63.02

C-Con 91.57 7144 80.76 8582 7896 7826 | 51.78 49.7 69.29 61.66 8556 63.02

NT-Con 91.52 7142 80.73 8575 78.93 7827 | 51.76 49.66 6923 61.66 8549 63.02
#Novel tokens | 21 8 28 33 9 18 | 5 10 3 4 9 5

Table 7: Test Multi task T5-Gen with three different generation methods. Regular: the reader can choose one of
the tokens from the entire vocabulary. # Novel tokens:number of novel tokens predicted by regular generation.

Question Answer Regular C-Con NT-Con

How fast is phar- quickly rapidly quickly quickly

macy informatics

growing?

What did Tesla alternating creating an alter- an alter-

work on in 1888? current an alter- nating nating

system nating current current

current system system
system

Money put in a offering coin offering offering

collection plate at
church

Table 8: Answers predicted by T5-Gen with different
generation methods.

Context Answer Regular C-Con NT-Con
Text ...(325 mi)... 325 325 (325mi) (325 mi)
Tokens (3,25, _mi,) _3,25 3,25 _(3, 25, _(3, 25,
_mi,) _mi,)
Text ...all-Gemini... Gemini Gemini G mis- G mis-
sion sion
Token G, e, mini Ge, Ge, G, G,

mini mini _mission _mission

Table 9: Tokens of answer and the predictions of T5-
Gen using three generation methods.

an answer. Furthermore, from Table 11, we find
that both models predict high-quality answers in the
top5 which provides enough room for improvement.
Thus, we design a re-ranking paradigm. First, we
use T5-Ext to generate five answers, then for each
answer, we concatenate it with the question and
the context and use T5-Gen to predict a score. The
final score of an answer is computed by the sum
of the T5-Ext and T5-Gen scores. We select the
answer with the highest score as the final answer
(see Appendix I for more details). As shown by Ta-
ble 118, for IID data, the re-ranking method yields
a small improvement, while for OOD data, the re-
ranking method is slightly worse than T5-Ext. The
inferior performance on OOD might be due to the
relatively poor performance of T5-Gen.

8More detailed results are given Appendix I Table 21.

Train Len ‘ Test Len ‘ 1> ‘ 00D

Long Short | Long Short

284 384 67.02 83.59 | 52.64 65.0
Max 76.96 85.1 633 67.72

512 512 70.0 84.17 | 53.53 67.1
Max 77.54 8521 | 62.52 67.74

1004 1024 7456 849 | 6098 67.67
Max 78.31 8536 | 62.66 67.67

Table 10: Three T5-Ext readers trained with different
input lengths. For each one, use two input lengths in
the testing time. Max: Maximum length in a batch.

| T5Ext | T5Gen | T5-Ext-Gen

‘ in out ‘ in out ‘ in out
topl | 81.84 660 | 81.13 6347 | 8207 6588
top5 | 91.65 79.68 | 89.81 79.74 | - -

Table 11: The topl performance for T5-Ext-Gen is se-
lecting the topl after re-ranking.

7 Conclusion

In this paper, we aim to systematically compare the
extractive and generative reader for QA tasks. To
minimize the effect other than the reader, we design
a fair comparison by using comparable pre-trained
models for these two types of readers. We con-
duct comprehensive experiments to understand the
pros and cons of two readers. Our findings provide
guidelines on how to choose extractive or genera-
tive readers under certain conditions and open new
avenues for improving each reader. Furthermore,
our experiments reveal that encoder-only models
are not always the best options for extractive read-
ers, rather, encoder-decoder models also fit. In ad-
dition, the input length is a key factor for applying
encoder-decoder models to extractive readers. Last
but not least, we find that both extractive and gen-
erative readers can predict high-quality answers at
top5, which suggests that a good answer re-ranking
method has the potential to achieve significant im-
provement.

References

Hao Cheng, Yelong Shen, Xiaodong Liu, Pengcheng
He, Weizhu Chen, and Jianfeng Gao. 2021. Unit-
edQA: A hybrid approach for open domain question
answering. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers),
pages 3080-3090, Online. Association for Computa-
tional Linguistics.

Eunsol Choi, He He, Mohit Iyyer, Mark Yatskar, Wen-
tau Yih, Yejin Choi, Percy Liang, and Luke Zettle-
moyer. 2018. QuAC: Question answering in con-
text. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2174-2184, Brussels, Belgium. Association
for Computational Linguistics.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. Electra: Pre-
training text encoders as discriminators rather than
generators. ArXiv, abs/2003.10555.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Martin Fajcik, Martin Docekal, Karel Ondrej, and
P. Smrz. 2021. Pruning the index contents
for memory efficient open-domain qa. ArXiv,
abs/2102.10697.

Adam Fisch, Alon Talmor, Robin Jia, Minjoon Seo, Eu-
nsol Choi, and Dangi Chen. 2019. MRQA 2019
shared task: Evaluating generalization in reading
comprehension. In Proceedings of the 2nd Work-
shop on Machine Reading for Question Answering,
pages 1-13, Hong Kong, China. Association for
Computational Linguistics.

Gautier Izacard and Edouard Grave. 2021. Leveraging
passage retrieval with generative models for open
domain question answering. In Proceedings of the
16th Conference of the European Chapter of the As-
sociation for Computational Linguistics: Main Vol-
ume, pages 874-880, Online. Association for Com-
putational Linguistics.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Dangi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 6769—
6781, Online. Association for Computational Lin-
guistics.

Daniel Khashabi, Sewon Min, Tushar Khot, Ashish

Sabharwal, Oyvind Tafjord, Peter Clark, and Han-
naneh Hajishirzi. 2020. UNIFIEDQA: Crossing for-
mat boundaries with a single QA system. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2020, pages 18961907, Online. As-
sociation for Computational Linguistics.

Taku Kudo and John Richardson. 2018. SentencePiece:

A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66-71, Brussels, Belgium.
Association for Computational Linguistics.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-

field, Michael Collins, Ankur Parikh, Chris Al-
berti, Danielle Epstein, Illia Polosukhin, Jacob De-
vlin, Kenton Lee, Kristina Toutanova, Llion Jones,
Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai,
Jakob Uszkoreit, Quoc Le, and Slav Petrov. 2019.
Natural questions: A benchmark for question an-
swering research. Transactions of the Association
for Computational Linguistics, 7:452-466.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,

Kevin Gimpel, Piyush Sharma, and Radu Sori-
cut. 2020. Albert: A lite bert for self-supervised
learning of language representations. ArXiv,
abs/1909.11942.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-

jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020a. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871-7880, Online. Association
for Computational Linguistics.

Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio

Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kuttler, M. Lewis, Wen tau Yih, Tim Rock-
taschel, Sebastian Riedel, and Douwe Kiela. 2020b.
Retrieval-augmented generation for knowledge-
intensive nlp tasks. ArXiv, abs/2005.11401.

Hongyu Li, Xiyuan Zhang, Yibing Liu, Yiming Zhang,

Quan Wang, Xiangyang Zhou, Jing Liu, Hua Wu,
and Haifeng Wang. 2019. D-NET: A pre-training
and fine-tuning framework for improving the gen-
eralization of machine reading comprehension. In
Proceedings of the 2nd Workshop on Machine Read-
ing for Question Answering, pages 212-219, Hong
Kong, China. Association for Computational Lin-
guistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-

dar Joshi, Danqi Chen, Omer Levy, M. Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. 2019. Roberta:
A robustly optimized bert pretraining approach.
ArXiv, abs/1907.11692.

https://doi.org/10.18653/v1/2021.acl-long.240
https://doi.org/10.18653/v1/2021.acl-long.240
https://doi.org/10.18653/v1/2021.acl-long.240
https://doi.org/10.18653/v1/2021.acl-long.240
https://doi.org/10.18653/v1/2021.acl-long.240
https://doi.org/10.18653/v1/D18-1241
https://doi.org/10.18653/v1/D18-1241
https://doi.org/10.18653/v1/D18-1241
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/D19-5801
https://doi.org/10.18653/v1/D19-5801
https://doi.org/10.18653/v1/D19-5801
https://doi.org/10.18653/v1/D19-5801
https://doi.org/10.18653/v1/D19-5801
https://aclanthology.org/2021.eacl-main.74
https://aclanthology.org/2021.eacl-main.74
https://aclanthology.org/2021.eacl-main.74
https://aclanthology.org/2021.eacl-main.74
https://aclanthology.org/2021.eacl-main.74
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.findings-emnlp.171
https://doi.org/10.18653/v1/2020.findings-emnlp.171
https://doi.org/10.18653/v1/2020.findings-emnlp.171
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/D19-5828
https://doi.org/10.18653/v1/D19-5828
https://doi.org/10.18653/v1/D19-5828
https://doi.org/10.18653/v1/D19-5828
https://doi.org/10.18653/v1/D19-5828

Mehdi Mirza and Simon Osindero. 2014. Conditional
generative adversarial nets. ArXiv, abs/1411.1784.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Py-
torch: An imperative style, high-performance deep
learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 32, pages 8024—8035. Curran Asso-
ciates, Inc.

Colin Raffel, Noam M. Shazeer, Adam Roberts,
Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, W. Li, and Peter J. Liu. 2020. Explor-
ing the limits of transfer learning with a unified text-
to-text transformer. ArXiv, abs/1910.10683.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383-2392, Austin,
Texas. Association for Computational Linguistics.

Siva Reddy, Danqi Chen, and Christopher D. Manning.
2019. CoQA: A conversational question answering
challenge. Transactions of the Association for Com-
putational Linguistics, 7:249-266.

Sebastian Ruder, Matthew E. Peters, Swabha
Swayamdipta, and Thomas Wolf. 2019. Trans-
fer learning in natural language processing. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Com-
putational Linguistics: Tutorials, pages 15-18,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2017. Bidirectional atten-
tion flow for machine comprehension. ArXiv,
abs/1611.01603.

Dan Su, Yan Xu, Genta Indra Winata, Peng Xu,
Hyeondey Kim, Zihan Liu, and Pascale Fung. 2019.
Generalizing question answering system with pre-
trained language model fine-tuning. In Proceedings
of the 2nd Workshop on Machine Reading for Ques-
tion Answering, pages 203-211, Hong Kong, China.
Association for Computational Linguistics.

Oyvind Tafjord and Peter Clark. 2021.
purpose question-answering with macaw.

General-

Ashish Vaswani, Noam M. Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. 2017. Atten-
tion is all you need. ArXiv, abs/1706.03762.

10

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38—45, Online. Asso-
ciation for Computational Linguistics.

Wenhan Xiong, Xiang Lorraine Li, Srini Iyer, Jingfei
Du, Patrick Lewis, William Yang Wang, Yashar
Mehdad, Wen tau Yih, Sebastian Riedel, Douwe
Kiela, and Barlas Ouguz. 2021. Answering com-
plex open-domain questions with multi-hop dense
retrieval. ArXiv, abs/2009.12756.

Linting Xue, Aditya Barua, Noah Constant, Rami Al-
Rfou, Sharan Narang, Mihir Kale, Adam Roberts,
and Colin Raffel. 2021. Byt5: Towards a token-free
future with pre-trained byte-to-byte models. ArXiv,
abs/2105.13626.

Zhilin Yang, Zihang Dai, Yiming Yang, J. Carbonell,
R. Salakhutdinov, and Quoc V. Le. 2019. Xlnet:
Generalized autoregressive pretraining for language
understanding. In NeurIPS.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang,
Maosong Sun, and Qun Liu. 2019. ERNIE: En-
hanced language representation with informative en-
tities. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 1441-1451, Florence, Italy. Association
for Computational Linguistics.

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.1162/tacl_a_00266
https://doi.org/10.1162/tacl_a_00266
https://doi.org/10.1162/tacl_a_00266
https://doi.org/10.18653/v1/N19-5004
https://doi.org/10.18653/v1/N19-5004
https://doi.org/10.18653/v1/N19-5004
https://doi.org/10.18653/v1/D19-5827
https://doi.org/10.18653/v1/D19-5827
https://doi.org/10.18653/v1/D19-5827
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/P19-1139
https://doi.org/10.18653/v1/P19-1139
https://doi.org/10.18653/v1/P19-1139
https://doi.org/10.18653/v1/P19-1139
https://doi.org/10.18653/v1/P19-1139

A Training Setup

We use Huggingface implementation and Pytorch
to train each model. For all experiments, we use
4 A-100 GPUs, and all models are trained in 4
epochs with a learning rate of 1le-4, batch size of
128. We set the maximum length in training to
be 1024 for TS5 and 512 for ELECTRA. We use 1
GPU to test models with a batch size of 16, and
use the maximum length in a batch to be the input
length for TS5 and 512 for ELECTRA. Using the
maximum length guarantees that every question
and context pair can be encoded by one single and
complete sequence of tokens.

B F1 and Exact Match

Here, we present the detailed F1 (Table 13) and Ex-
act Match (Table 12) score for each reader trained
with single domain or multi-domain data. We pro-
vide more analysis on single task learning and the
observation on multi-task learning is discussed in
the main paper.

We find that there is some correlation between
the source of the dataset and the performance of
different PrLM. Table 14 shows the source of each
dataset. In IID datasets, ELECTRA achieves the
best performances on SQuAD and HQA. It might
because the context of SQuAD and HQA are from
Wikipedia, which is part of the pretraining corpus
of ELECTRA but not of T5. Thus, ELECTRA
has pre-owned domain knowledge of these datasets
and achieves the best performance. For NewsQA,
TQA and SQA, the context are from News articles,
trivia and quiz-league websites, and Jeopardy! TV
show, respectively, ELECTRA is not pretrained
on such domains and does not show advantage on
these datasets, and TS PrLLM presents better perfor-
mances. Although NQ is also based on Wikipedia,
TS5 PrLLM is better than ELECTRA. The reason
for such a result is that TS has advantage when
the context is long and the NQ dataset contains
a crucial portion of long context questions. In
OOD datasets, again, ELECTRA has advantage
of pre-owned knowledge about Wikipedia and thus
performs the best on DROP and RE, whose con-
texts are from Wikipedia. Furthermore, on DROP,
ELECTRA is better than T5-Ext by 5.37% and T5-
Gen by 10.65%. These improvement is much larger
than IID dataset (e.g. on SQuAD, ELECTRA is bet-
ter than T5-Ext only by 0.91% and T5-Gen only by
1.75%.), indicating the positive effect of pretraining
corpus on the performance of OOD dataset.

11

C Distribution of Context Length

Figure 1 and 2 show the histogram of the context
length of IID and OOD dataset. We see that the
distribution of each dataset is quite different from
each other. Some are mainly short, some are mainly
long, and others are the combination of short and
long.

D Two Training Targets of Generative
Reader

As we mentioned in §3.2, we have two training
strategies, one is to use the target tokens of answers
without any context, termed as A-Target, the other
is to use the target tokens of answers in given con-
text, termed as C-Target. We obtain two readers
by each training strategy and count the number of
questions such that the reader generates answers
with novel tokens (see Table 16). As expected, the
A-Target reader can generate more novel tokens (to-
kens) than the C-Target reader. Meanwhile, we also
compare the Macro-average F1 of IID and OOD
using three generation methods by two generative
readers as shown in Table 15. Although two read-
ers achieve similar performance and the difference
between three generation methods is marginal, for
A-Target generative reader, the constrained genera-
tion methods decrease the performance more com-
pared to C-Target, especially on datasets on which
the regular generation produces more novel tokens.
For example, on HotpotQA, T-Target model pre-
dicts 303 novel answers, and compared to regular
generation, the F1 of C-Con generation decreases
by 0.93% and NT-Con decreases by 1.54% . For
the same dataset and for the C-Target model, com-
pared to regular generation, the F1 of C-Con gener-
ation decreases by 0.02% and NT-Con decreases by
0.05%. The same trend can be observed on SQuAD
and TextbookQA.

E Two Input Format

When fine-tuning TS5 on down-stream tasks like
question answering and natural language inference,
some special words are added before the real input
to denote the type of task. In an extractive reader,
usually, there are no special words added. Inspired
by these input formats, Given a question Q and a
context C, we examine two formats of inputs. One
is to add the “question:” and “context:” in front
of the real question and context such that the input
is {question: Q [SEP] context: C}. The other one

M Test ‘ In-domain Datasets ‘ Out-domain Datasets
odel .
\ Train SQUAD NewsQA TQA SQA HQA NQ | DROP RACE BioASQ TbQA RE DuoRC
Single Task Learning
SQuAD 92.27 64.36 65.55 17776 7142 60.7 | 5347 49.05 68.71 237 8556 60.89
NewsQA 86.89 72.76 67.99 27.57 67.65 6562 | 31.79 48.64 66.76 33.68 79.47 62.37
TS-Ext TQA 73.31 48.15 76.34 58.86 564 50.28 | 38.74 38.28 66.17 31.2 79.14 51.11
SQA 34.56 22.94 70.73 8278 37.59 4051 | 20.52 18.7 50.14 38.31 4257 30.05
HQA 84.92 58.93 61.23 23.03 80.05 639 | 47.18 43.11 68.46 27.51 85.61 56.08
NQ 82.35 58.03 66.72 42779 6548 80.55 | 46.99 43.6 70.29 49.69 8295 54.94
SQuAD 91.33 61.55 69.44 29.01 6792 61.39 | 42.58 47.8 66.05 49.08 8432 60.12
NewsQA 86.51 71.6 69.74 43.07 6459 63.53 26.01 47.83 61.11 5438 77.77 61.56
T5-Gen TQA 76.84 51.41 80.1 63.36 58.64 56.21 34.05 42.48 57.94 5243 8191 54.32
SQA 74.63 48.09 78.13 8593 58.65 5459 | 31.68 39.67 59.31 5421 7993 5335
HQA 86.07 59.96 70.61 5221 79.88 63.59 | 43.73 45.1 66.16 42.6 8534 5824
NQ 85.4 62.15 71.68 58.01 67.41 78.17 | 48.09 46.99 66.33 60.74 83.84 59.17
SQuAD 93.08 58.31 66.49 46.16 7175 66.36 | 58.74 50.86 70.21 39.89 87.36 59.83
NewsQA 86.16 65.21 63.88 49.72 61.83 67.96 | 32.05 49.08 64.87 48.74 78.3 57.26
ELECTRA TQA 70.69 42.46 76.51 6779 60.61 57.7 | 4219 36.66 62.27 44.06 8328 49.01
SQA 51.54 28.59 72.12 8293 43.6 41.11 | 30.72 21.76 53.28 42.67 70.66 35.77
HQA 84.97 53.72 61.94 369 8121 6493 | 4855 37.39 65.2 26.55 84.66 53.19
NQ 85.75 55.12 67.88 62.14 64.06 79.67 53.7 50.69 67.76 50.94 83.83 56.54
Multi-Task Learning
T5-Ext Multi 92.84 73.27 78.01 83.66 8224 810 | 60.96 53.48 69.52 60.94 86.71 64.37
T5-Gen (base) | Multi 91.54 71.4 80.76 85.83 7898 7826 | 51.98 49.51 69.21 61.66 8542 63.02
T5-Gen (large) | Multi 93.54 73.44 84.08 88.38 82.88 80.58 | 63.63 55.87 72.33 68.76 8733 68.09
ELECTRA Multi 93.92 65.33 73.63 8194 8336 7998 | 61.77 5271 71.86 548 87.18 59.76

Table 12: Evaluation by F1 score.

TQA: TriviaQA; SQA:SearchQA; HQA:HotpotQA; NQ: NaturalQuestions;

TbQA:TextbookQA; RE:RelationExtraction. Bold values are the best performance in a column for single-task and

multi-task learning.

is without these special words such that the input
is {Q [SEP] C}. Table 17 shows no noticeable
difference between these two formats.

F T5 Encoder-Decoder Extractive
Reader

When we apply TS to an extractive reader, we have
two options, one is to add a linear layer on top of
the encoder, the other one is to add a linear layer on
top of the decoder. Specifically, in the later model,
the input to the encoder is the concatenation of
question and context, and the input to the decoder
is the same as encoder. Notice that the initial input
to the decoder in such a model is different from
the input to the decoder in generative reader whose
input is the start token in the vocabulary. Then we
apply a linear layer on top of the decoder to classify
the start and end token. To have a more reasonable
comparison with the T5-large extractive reader, we
use the T5-base model instead of T5-large model.
We find that on two datasets, T5-Ext is consistently
better (see Table 18), thus we choose T5-Ext as the
extractive reader to compare with the generative
reader in the main result.

G Training Data Size

Table 1 shows that the training samples from each
dataset are imbalanced (e.g. the size of SearchQA
is roughly twice as TriviaQA). To see the effect of
imbalanced data, we apply two training strategies.
In full data training, we use all samples from 11D
datasets; in down-sampling training, we sample up
to 75K data points from each IID datasets follow-
ing the setting in (Fisch et al., 2019). Specifically,
for SQuAD, SearchQA, and NaturalQuestions, we
sample 75K data points in the training set, for the
other three datasets, we use all given training data.
Table 19 shows that using full data to train T5-Ext
yields higher average F1 score than using down-
sampling data in both IID and OOD dataset. For
T5-Gen, using full data leads to higher average F1
than using down-sampling data on IID datasets,
and down-sampling leads to higher average F1 on
OOD datasets. But such differences are marginal,
and to align with T5-Ext, we present the results of
a model that is trained on a full dataset.

H Answer Length of Generative Reader

For the generative reader, we tried different maxi-
mum lengths of the generated answer: 16, 32, and
64. Table 20 shows that increasing the length of

12

M Test ‘ In-domain Datasets ‘ Out-domain Datasets
odel .
\ Train SQUAD NewsQA TQA SQA HQA NQ | DROP RACE BioASQ TbQA RE DuoRC
Single Task Learning
SQuAD 85.02 45.99 55.86 12.01 55.14 4571 | 41.78 35.76 53.46 167 7483 50.23
NewsQA 74.97 56.46 5775 2092 47.87 50.68 | 22.49 32.79 4481 23.35 61.4 49.37
TS-Ext TQA 61.35 33.5 7092 50.81 40.69 37.57 | 27.94 27.6 51.53 25.15 66.82 39.37
SQA 27.64 15.57 6491 77.01 2655 3225 | 1344 1291 36.5 3234 3412 2358
HQA 75.56 41.71 51.92 1657 63.8 50.19 | 332 28.93 52.06 19.69 74.83 45.04
NQ 70.58 40.81 56.56 344 48,6 68.61 33.0 31.6 52.13 39.39 69.27 42.5
SQuAD 83.62 43.61 61.27 2158 525 4634 | 338 35.16 52.13 37.99 73.68 49.7
NewsQA 73.94 55.03 60.51 35.58 4521 48.27 18.83 33.98 40.43 40.85 59.06 49.77
T5-Gen TQA 65.52 349 75.74 55774 4198 4036 | 25.68 30.56 45.81 43.65 69.37 42.84
SQA 63.65 33.43 7342 80.84 4357 39.81 | 2482 2834 47.67 46.11 68.89 435
HQA 77.65 42.55 62.61 43.0 6379 49.6 | 3466 3294 52.53 348 7493 47.63
NQ 73.53 42.55 62.67 48.63 50.33 65.02 | 38.26 35.01 46.81 50.77 70.93 47.5
SQuAD 85.75 41.48 58.19 37.17 5597 50.2 47.5 37.69 55.85 2834 7748 50.23
NewsQA 71.64 51.38 54.8 40.08 4233 51.51 23.29 33.98 44.02 3426 58.18 45.97
ELECTRA TQA 59.52 29.01 71.84 5949 4348 4228 324 27.0 48.87 36.06 72.05 @ 38.64
SQA 42.06 19.9 67.66 77.7 31.5 3061 | 2349 16.02 38.96 3553 5736 2891
HQA 74.77 38.08 54.18 28.5 65.51 50.57 36.46 24.33 49.2 19.03 72.56 435
NQ 73.76 38.08 5997 5289 46.59 6793 | 4045 36.5 45.74 41.05 70.15 47.17
Multi-Task Learning
T5-Ext Multi 86.11 57.1 7259 7801 6634 69.06 | 51.03 39.02 53.66 49.83 76.73 52.5
T5-Gen (base) | Multi 84.12 55.03 76.53 80.73 6292 655 | 4291 3754 55.65 52.69 7517 5243
T5-Gen (large) | Multi 86.74 56.91 79.85 83.52 6743 6747 54.22 42.43 60.04 59.08 77.1 57.69
ELECTRA Multi 87.83 52.02 69.02 76.64 68.02 6834 | 523 36.94 57.18 4478 77.07 49.83

Table 13: Evaluation by Exact Match(EM). TQA: TriviaQA; SQA:SearchQA; HQA:HotpotQA; NQ: NaturalQues-

tions; TbQA:TextbookQA; RE:RelationExtraction

Dataset Source

SQuUAD Wikipedia

NewsQA News article

TQA Trivia and quiz-league websites

SQA Jeopardy! TV show

HQA Wikipedia

NQ Wikipedia

DROP Wikipedia

RACE English reading comprehension exams for mid-
dle and high school

BioASQ Science (PubMed) articles

TbQA Lessons from middle school Life Science,
Earth Science, and Physical Science textbooks

RE Wikiread

DuoRC wikipedia

Table 14: The source of each dataset

the target does not make improvement, this might
be because the answer in the testing data is usually
short and thus length of 16 is sufficient.

I Re-rank Answers from Two Readers

We observe that both models can predict high qual-
ity answers in top5 as shown by the large improve-
ment on every dataset. Based on this observation, a
good re-ranking method can potentially yield good
performance, thus we propose a re-ranking method.
One model is employed to produce candidate an-
swers, termed as producing model, then the other
model re-rank the candidate answers, termed as re-

ranking model. Specifically, we use a production
model to predict five answers. If the generative
reader is the re-ranking model, then for each an-
swer, we concatenate it with the question and the
context and use T5-Gen to predict a score. If the
extractive reader is the re-ranking model, then we
feed the question and the context to the extractive
reader, and take each candidate answer as a label
to get a score. The final score of an answer is com-
puted by the sum of the T5-Ext and T5-Gen score.
We select the answer with the highest score as the
final answer. When T5-Ext is the producing model
and T5-Gen is the re-ranking model, the final score
is computed by the following equations,

P — M)
> exp(zm,;)
SE:Bt(AnS) = log(PEmt,start X PEXt,end) (6)
1
SGen(Ans) = N Z log(PGen,t) @)
teAns
Score(Ans) = Sgxi(Ans) + Sgen(Ans), (8)

where P, ; is the logit of ith token given by model

m, 10g(PEat,start and log(PEyt enq mean the logits

of ground truth start and end token, respectively.
When the T5-Gen is the producing model, if an

13

0.005
0.005
0.008
0.004
0.004
0.006
0.003
2 2 20.003
@ @ @
i § §
Q 0.004 [=} a
0.002
0.002
0.002 0.001 0.001
0.000 =l 0.000
(i) 200 400 600 860 " 600 800 1000 500 1000 1500 2000 2500 3000
SQuAD NewsQA TriviaQA
0.004
0.006 0.004
0.004
0.005
0.003
0.003
0.004 0.003 2z
> > 2
Z Z z
$0.003 £0.002 0.002
=} o
0.002
0.002
0.001
0.001
0.001
0.001
00007577500 1000 1500 2000 2500 3000 3500
0.000%5 500 1000 1500 2000 0.000 200 400 600 800 1000 1200 NaturalQuestions
SearchQA HotpotQA

Figure 1: Context Length Histogram of In-domain dataset

answer is not an exact span in the context, then
we ignore this answer. In a few cases, none of the
answers in Top5 is actually a span coming from
the context. In such cases, we do not use the re-
ranking model and take the Topl answer as the
final prediction.

14

0.006 0.004

0.005 0.004

0.005
0.003
0.004

0.004
0.003

ity
ity

0.003 20.003 20.002

Density
Densi
Densi

0.002

0.002 0.002

0.001

0.001 0.001

0.001

0.000 0.000 0.000

200 400 800 1000

100 200 300 400 500 600 700 800 900 600
RACE BioASQ

0 600
DROP

0005 0.025 0.008
0.007
0.004 0.020 0.006
20.005
20.003 20.015 2
@ @ & 0.004
2 2
4 §
=] [=]
0.002 0.010 0.003
0.002
0,001 0.005 0.001
0-000° 600 800 1000 12
0,000 0.000 DuoRC
200 400 600 800 1000 1200 0 100 200 300 400 500 1o
TextbookQA RelationExtraction

Figure 2: Context Length Histogram of out-domain dataset

Target Inference Method ‘ In-domain Datasets ‘ Out-domain Datasets
SQuAD NewsQA TQA SQA HQA NQ | DROP RACE BioASQ TbQA RE DuoRC
A-Target Regular 91.56 71.26 81.01 86.62 79.65 77.89 | 50.88 49.95 69.03 63.13 85.88 63.04
A-Target C-Con 91.32 71.25 80.76 86.6 7872 77.89 | 50.81 50.27 68.99 63.08 8533 62.86
A-Target NT-Con 90.69 71.22 80.57 86.47 7811 77.87 | 50.79 49.63 69.0 63.11 8512 6231
C-Target Regular 91.54 71.4 80.76 85.83 7898 7826 | 51.98 4951 69.21 61.66 8542 63.02
C-Target C-Con 91.57 71.44 80.76 85.82 7896 7826 | 51.78 49.7 69.29 61.66 85.56 63.02
C-Target NT-Con 91.52 71.42 80.73 8575 7893 7827 | 51.76 49.66 69.23 61.66 8549 63.02

Table 15: Generative model trained by multi-tasks and evaluated by F1 score on each datasets. Regular: the reader
can choose one of the token from the entire vocabulary; C-Con: the reader can choose one of the token from the
context tokens and the end token(</s>); NT-Con: the reader can choose one of the token from the the next token
of current predicted tokens in the context and the end token.

15

A-Target | C-Target
SQuAD 345 21
NewsQA 16 8
TQA 114 28
SQA 86 33
HQA 303 9
NQ 11 18
DROP 9 5
RACE 20 10
BioASQ 27 3
TbQA 8 4
RE 64 9
DuoRC 84 5

Table 16: Number of Novel tokens generated by A-
Target and C-Target Reader using regular generation
method.

Model ‘ Format

EM FI | EM F1

1 8536 9238 | 68.60 80.55
T5-Ext

2 85.02 9227 | 68.61 80.55
T5-Gen 1 83.62 9133 | 68.61 78.17

2 83.02 90.75 | 63.87 77.08

Table 17: Comparison between different input format
on two datasets. Format]l means input with “question:”
and “context:” as format1, and format2 means without.

v | _SQAD_| N0

| EM Fl | EM Fl
T5-Ext | 85.02 92.27 | 68.61 80.55

T5-EnDe-Ext | 83.73 90.68 | 66.34 78.58

Table 18: Two style of extractive reader, T5-Ext con-
sists of encoder and a linear layer, T5-EnDe-ext con-
sists of encoder, decoder and a linear layer.

16

‘ IID Datasets ‘ OOD Datasets
Tr Data
\SQuAD NewsQA TQA SQA HQA NQ Avg. \DROP RACE BioASQ TbQA RE DuoRC Avg.
T5-Ext Reader
Full 92.84 73.27 78.01 83.66 8224 81.0 81.84 | 60.96 5348 69.52 60.94 86.71 64.37 66.0
Downsampling | 92.62 73.54 78.58 8295 81.77 80.71 81.69 | 58.66 51.86 69.27 59.4 875 64.02 65.12
T5-Gen Reader
Full 91.54 71.4 80.76 8582 7898 7825 81.12|51.84 4947 69.14 61.66 8542 63.02 63.42
Downsampling | 91.19 71.13 80.64 84.86 79.24 77.87 80.82 | 49.78 5149 69.63 6131 8599 6332 63.59
Table 19: Training T5-Ext and T5-Gen with full or down-sampling data.
‘ IID Datasets ‘ OOD Datasets
Length
‘SQuAD NewsQA TQA SQA HQA NQ Avg. ‘DROP RACE BioASQ TbQA RE DuoRC Avg.
16 91.54 71.4 80.76 85.83 7898 7826 81.13 | 51.98 49.51 69.21 61.66 8542 63.02 6347
32 91.54 71.4 80.76 85.82 78.98 78.25 81.12 | 51.84 4947 69.14 61.66 8542 63.02 63.42
64 91.54 714 80.76 85.82 7898 7825 81.12 | 51.84 4947 69.14 61.66 8542 63.02 6342
Table 20: Performance of using different Answer length for generative reader
‘ In-domain Datasets ‘ Out-domain Datasets
Model
‘SQuAD NewsQA TQA SQA HQA NQ Avg. ‘DROP RACE BioASQ TbQA RE DuoRC Avg.
Topl
T5-Ext | 92.84 73.27 78.01 83.66 8224 81.0 81.84| 6096 5348 69.52 60.94 86.71 6437 66.0
T5-Gen | 91.54 71.4 80.76 85.83 7898 7826 81.13 | 51.98 49.51 69.21 61.66 8542 63.02 6347
Top5
T5-Ext | 97.31 86.9 88.72 91.14 93.88 9193 91.65 | 82.03 68.36 84.51 742 9383 75.18 79.68
T5-Gen | 95.67 81.17 90.68 94.24 90.17 86.96 89.81 | 80.73 67.61 79.75 79.35 93.06 7796 79.74
T5-Gen as Re-ranking Model
Re—rank‘ 93.14 73.46 78.34 83.84 8245 81.19 82.07‘ 60.53 53.65 70.67 60.87 86.18 6336 65.88
T5-Ext as Re-rankering Model
Re—rank‘ 91.03 68.61 81.11 86.28 80.03 76.34 80.57‘ 57.85 5242 66.32 6347 86.5 6535 65.32

Table 21: Top5 Answers

17

