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ABSTRACT

When a small molecule binds to a protein, the 3D structure of the protein and
its ability and efficiency to perform its function can significantly change. Un-
derstanding this process, called molecular docking, can be crucial in areas such
as drug design. Recent learning-based attempts have shown promising results at
this task, yet lack features that traditional approaches support. In this work, we
close this gap by proposing DIFFDOCK-POCKET, a diffusion-based docking al-
gorithm that is conditioned on a binding target to predict ligand poses only in a
specific binding pocket. On top of this, our model supports receptor flexibility
and predicts the position of sidechains close to the binding site. Empirically, we
improve the state-of-the-art in site-specific-docking on the PDBBind benchmark.
Especially when using in-silico generated structures, we achieve more than twice
the performance of current methods while being more than 20 times faster than
other flexible approaches. Although the model was not trained for cross-docking
to different structures, it yields competitive results in this task.

1 INTRODUCTION

Proteins are the building blocks of life and are ubiquitous in biochemical processes of all organisms.
They realize various biological functions by interacting with other biomolecules, such as other pro-
teins or small ligands. The 3D structure of each protein governs the possible interaction partners,
which can play a crucial role in their function. When a molecule (ligand) interacts with a protein
(receptor) and binds to it, they form a so-called complex that can have a different function [Stank
et al., 2016]. Accurately predicting these molecular interactions can give insight into the inner work-
ings of biological processes and is thus a highly important task in computational biology and drug
discovery [Kubinyi, 2006; Meng et al., 2011; Pinzi & Rastelli, 2019]. Molecular docking aims to
predict these interactions by determining the 3D position of the ligand when bound to the receptor.

In drug discovery campaigns, the processes underlying diseases are usually well-researched and
specific targets can often be identified, which, if modified or inhibited, can potentially treat a dis-
ease [Weisel et al., 2009]. This means a specific part of the protein (e.g., a druggable pocket) is
often known to be responsible for a biochemical interaction and is thus the target of a docking pro-
cedure [Zheng et al., 2012]. Site-specific docking incorporates prior knowledge of a binding site
and limits possible docking poses of a given ligand to a specific receptor region. This reduces the
search space by a large margin, simplifying the docking problem. Many machine-learning (ML)
based approaches cannot account for prior knowledge of a pocket [Stärk et al., 2022; Lu et al., 2022;
Corso et al., 2023], despite the need in practical applications for docking to a specific target. This is
seen as one of the most significant limitations of current ML approaches [Yu et al., 2023].

Therefore, we consider the task of pocket-level docking and additionally model receptor flexibility
of the sidechain atoms near the binding site. When a ligand docks to a receptor, they both undergo
conformational changes [Huang, 2017], with the sidechain atoms in the binding site displaying the
most significant ones [Clark et al., 2019]. Understanding and modeling sidechain flexibility is criti-
cal in molecular docking [Teague, 2003], as it can directly influence the prediction accuracy [Zhao
& Sanner, 2007; Hogues et al., 2018]. Many current methods either ignore this issue and model rigid
receptors [Stärk et al., 2022; Lu et al., 2022; Corso et al., 2023], or adding flexibility significantly
impacts the accuracy and runtime [Koes et al., 2013b; McNutt et al., 2021], making them unsuitable
for large-scale tasks such as screening drug candidates. We believe that fast, accessible, and reliable
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DIFFDOCK-POCKET

Reverse Diffusion Process over Ligand Pose and Sidechain Torsionst=T t=0

Figure 1: Overview of our approach. The model takes as an input a ligand, an (in-silico generated)
protein structure, and the binding target. The process starts with random ligand poses (orange) and
sidechain conformations (magenta), which are gradually improved by a reverse diffusion process
(left to right) to represent meaningful results. The generative process modifies the translation, rota-
tion, and torsional angles of the ligand and the torsional angles of the receptor’s sidechain atoms to
predict a final pose for each. This is all done with the knowledge of a binding pocket (blue).

site-specific docking with flexibility can drive discovery in computational biology, especially in drug
design.

This paper takes a step towards solving this problem by proposing DIFFDOCK-POCKET: a diffusion-
based model for pocket-level molecular docking with receptor sidechain flexibility inspired by the
ideas of DIFFDOCK [Corso et al., 2023]. It uses diffusion over a reduced product space to predict
sidechain and ligand confirmations, as illustrated in Figure 1. Moreover, our approach narrows
the performance gap when docking to in-silico generated structures, which, while not exact, often
provide strong approximations and are readily accessible.

Our model demonstrates state-of-the-art performance in the PDBBind [Liu et al., 2017] docking
benchmark, where we achieve a root mean squared deviation (RMSD) of less than 2Å in 49.8% of
cases compared to 27.8% achieved by the best method evaluated with receptor flexibility. All other
tested approaches suffered majorly in terms of accuracy and runtime when modeling the receptor as
flexible (DIFFDOCK-POCKET is 25–90 times faster than other flexible approaches). When relying
on in-silico generated protein structures, the model retains most of its capabilities for docking and
sidechain predictions. We achieve scores of 41.7% and 39.5% for in-silico structures generated from
ESMFold2 [Lin et al., 2022] and ColabFold [Mirdita et al., 2022] respectively. On the CrossDocked
2020 benchmark [Francoeur et al., 2020], our model yields better pocket-normalized docking scores
than other methods, despite some of the other approaches being specifically trained on this dataset.

Our main contributions can be summarized as follows:

1. We introduce a diffusion model for site-specific docking with receptor flexibility, yielding
better results than all freely available approaches on the PDBBind benchmark.

2. We show that by including computationally generated structures in the training procedure,
our model can retain a high performance when using in-silico generated structures.

3. We demonstrate competitive cross-docking performance by evaluating it on a subset of the
CrossDocked 2020 dataset, with proteins removed that were seen during training.

2 RELATED WORK

Molecular docking. Docking a small molecule to a protein is a complicated biochemical process
governed by the energy of the interacting atoms. During docking, the protein and ligand atoms orient
themselves and take on the conformation that results in the most energetically favorable binding con-
figuration. Using this knowledge, traditional search-based models such as GLIDE, [Friesner et al.,
2004; Halgren et al., 2004], MOLDOCK [Thomsen & Christensen, 2006], and AUTODOCK [Trott &
Olson, 2010] minimize a scoring function that calculates the energy of a given configuration (based
on the force fields or statistical potential recovered from experimental data). Approaches such as
GNINA [McNutt et al., 2021] and DEEPDOCK [Méndez-Lucio et al., 2021] use ML to approximate
this score function, while others such as SMINA [Koes et al., 2013b] take a more classical ap-
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proach. SMINA and GNINA are considered among the best freely available search-based docking
solutions, whereas GLIDE enjoys commercial success.

Minimizing the scoring function over the whole search space can be challenging. However, since key
binding regions are often already known through experimental data, the search space can be limited.
Most approaches, especially classical ones, can typically limit the search space to this pocket rather
easily. ML based approaches such as DIFFDOCK [Corso et al., 2023], EQUIBIND [Stärk et al.,
2022], and TANKBIND [Lu et al., 2022] usually fail to account for binding pockets completely.

Flexible docking. Almost all recent docking approaches model the ligand flexible [Huang, 2017;
Koes et al., 2013b; McNutt et al., 2021], but some do not account for the changes that can occur
in the protein [Friesner et al., 2004; Halgren et al., 2004; Stärk et al., 2022; Lu et al., 2022; Corso
et al., 2023]. These geometrical changes can play a crucial role in successfully modeling a bind-
ing process because already slightly different receptor conformations can change the energetically
optimal structure. Algorithms that fail to account for receptor flexibility can lose accuracy because
wrong configurations can make correct docking positions biochemically unlikely [Zhao & Sanner,
2007; Hogues et al., 2018]. Modeling flexibility is thus especially important when no re-docking is
performed (i.e., docking to a ligand-free structure) and realistic sidechain positions are unknown.

Since predicting the position of each atom of a protein is a computationally expensive task, es-
pecially for large proteins, most algorithms used in practice nowadays model the proteins semi-
flexible [Meng et al., 2011]. This method is motivated by the chemical properties of the protein
because peptide bonds between the amino and carboxyl groups of the amino acids are rigid in na-
ture, so the protein’s backbone is usually rigid. However, the parts of the amino acids that extend
outwards from the α-carbon atom (i.e., the sidechain atoms) display more flexibility and undergo
the majority of structural changes, especially near the binding site [Clark et al., 2019].

Search-based approaches such as GNINA or SMINA can include the additional sidechain atoms
in their stochastic energy-optimization procedure. However, this can drastically increase the search
space, and the computational effort and thus reduce the accuracy. For ML models, modeling receptor
flexibility can be challenging and is typically unsupported [Corso et al., 2023; Stärk et al., 2022; Lu
et al., 2022]. NEURALPLEXER [Qiao et al., 2023], is a recent diffusion-based docking algorithm that
can predict all atom coordinates of the protein and the ligand within a specified pocket by masking
the target and predicting new coordinates. However, as of writing, no code is available.

Diffusion. Previous work [Corso et al., 2023] has shown that generative modeling is well-suited
for docking due to its ability to capture the stochastic nature of the biological process and its un-
certainty. Score-based diffusion models [Song et al., 2021] define a continuous diffusion process
dx = f(x, t) dt + g(t) dw to apply to points of the data. Critically, this has a corresponding re-
verse SDE dx = [f(x, t) − g(t)2∇x log pt(x)]dt + g(t) dw where only the score ∇x log pt(x) is
unknown. Throughout this paper, f(x, t) will be 0. Given an initial distribution p0 (the distribution
of the data), if the evolving score is learned, the reverse equation can be numerically solved to pro-
duce new points of the underlying data distribution from random noise. For molecular docking, this
means that beginning from a random starting conformation of the ligand, noise can be removed such
that the end conformation will be the state of the ligand docked to the target protein.

3 METHOD

Given a ligand and a protein, flexible docking models predict the geometrical structure of both the
ligand and the protein. Assuming a fixed scaffold, the structure of this binding complex is uniquely
described by its atom positions in the three-dimensional space. For a ligand with n atoms, and a
protein with m flexible atoms, the space of possible predictions is in R3(m+n). The large space
w.r.t. the number of data points available makes docking a challenging problem. Especially for
large proteins with thousands of atoms, searching for an optimal conformation of all positions is
computationally infeasible.

The first step we take is to make the search space smaller by reducing its dimension using knowledge
about the rigidity of different molecular transformations. Instead of modeling the protein and ligand
with all their 3D atom coordinates, the conformations can also be described by the changes the ligand
and the sidechains undergo during binding. The main biochemically possible changes are the rigid
3D translation or rotation of the complete ligand w.r.t. the receptor and the rotation of the torsion
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angles of the ligand’s chemical bonds. Similarly, the backbone of the receptor stays mostly rigid,
and mostly the torsional angles of the receptor sidechain atoms change. These transformations form
an algebraic group structure and together span a 3+3+k+ ℓ dimensional manifold, which we refer
to as the product space. k, ℓ are the number of torsion angles in the ligand and protein respectively.
While this does not cover all possible conformations of the protein and ligand, it accounts for the
most prominent changes and keeps properties such as the rather stable bond lengths fixed. By
applying the knowledge of possible modifications and searching in the product space, we reduce the
dimensionality of the search (see Appendix A), excluding chemically unlikely structural changes.
This way, we can aim to learn the scores on the tangent spaces of the transformation manifold and
only predict these four lower-dimensional changes to the initial structure.

3.1 SITE-SPECIFIC DOCKING

Since docking sites are often known or chosen in advance, we can further reduce the space and
speed up the search for an optimal conformation by including this prior information. With this, we
can expect more accurate results while requiring less computational effort. Various ways exist to
condition the model to a known binding pocket, depending on the underlying method used. Diffu-
sion models build on the idea that they iteratively refine a random initial configuration. To condition
the ligand pose on a binding pocket, we propose to center the ligand’s initial random configuration
around the pocket’s center while also limiting the maximum translation our model can predict. With
this change, all ligand poses are guaranteed to be within the target pocket, but the model still needs
to predict a (small) translation to account for the random noise and different poses. Formally, the
random ligand translation ztr will be sampled from a normal distribution with a relatively small
variance. This will have no effect on the initially random rotation and torsion angles.

Figure 2: Pocket reduction.
Only retain amino acids close
to the ligand (green) and dis-
card all others (gray).

However, for large proteins, this would still mean that our approach
needs to consider atoms far away, although the atoms close to the
binding site influence the actual binding procedure most. By ex-
ploiting this fact, we decided to discard all amino acids that are
too far away from the target binding site, as depicted in Figure 2.
This focuses the model’s attention on the binding site and reduces
all proteins to a similar size. Additionally, this reduced view of
the protein allows us to represent even large proteins using only a
comparatively small subset of amino acids and did not lead to a de-
crease in accuracy in our tests. With this, all atom positions can be
used as input to the model instead of simply using the coordinates
of the backbone (C-α atoms), as was done in previous work [Corso
et al., 2023]. This allows our model to learn more physics-informed
predictions, potentially improving the accuracy.

We require knowledge of the pocket center position in R3 and a radius indicating the pocket’s size
to center the translational noise and reduce the protein. As for the pocket size, we use the radius of
the smallest sphere centered at the mean of the ligand that can fit all atoms. We then also add an
additional buffer of 10Å to the radius to retain the surrounding context of the pocket for the model to
make predictions. If any atom of an amino acid falls within this distance from the pocket center, the
whole amino acid is kept, whereas all other amino acids are discarded. Defining the pocket center
can be a bit more challenging because, in practice, one might be able to infer the general area where
a ligand might dock but cannot pinpoint the exact center of the ligand. To avoid bias in the training
data, we calculate the pocket center by taking the average positions of the C-α atoms within 5Å of
any ground truth ligand atom. This technique aligns with a setting where one would visually analyze
the protein and suspect the pocket location. By only using the rigid backbone to calculate the center,
this definition of a pocket works well, even when the protein has a different sidechain structure.

3.2 FLEXIBLE SIDECHAINS

In principle, any of the remaining amino acids can be modeled flexibly. However, implementing
flexibility for all residues would again increase computational complexity (although manageable
with this reduced product space) without providing much benefit as it has been shown that flexibility
is mostly restricted to the residues close to the binding site [Clark et al., 2019]. Therefore, we follow
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the convention from other docking algorithms [McNutt et al., 2021], and model only amino acids
which have at least one atom within 3.5Å of any ligand atom as flexible.

Once the flexible sidechains have been selected, the concrete rotatable bonds have to be determined.
A graph is constructed for each residue based on the chemical order of atoms inside the sidechain.
Each connecting edge then describes one rotatable bond (refer to Section C.3). This way, the con-
formation of the sidechains can be approximately described by the torsion angles of each rotatable
bond, and the model can learn to predict the score of these angles. Formally this means that depend-
ing on the concrete amino acid a, the model predicts ℓa ordered torsion angles χa

1 , . . . , χ
a
ℓ . Rotating

the torsion angles of each sidechain bond of the protein y by the predicted angles χ yields the new
atom positions ỹ. Although all angles χ are predicted simultaneously at each timestep, they are it-
eratively refined by the diffusion process. This has the advantage that the angles can influence each
other without sacrificing performance compared to doing it autoregressive.

3.3 SIDECHAIN CONFORMER MATCHING

Figure 3: Sidechain con-
former matching. Op-
timize the sidechain tor-
sional angles (green) of the
computationally generated
structure (gray) to minimize
the distance to the ground
truth positions (yellow).

When learning the torsional angles with our proposed diffusion ap-
proach, we need access to a protein where the atoms of the flexible
sidechains are bound to the ligand. Holo crystal structures already
contain this correct information. A problem arises when we want to
rely on different data for our method, such as either computationally
generated structures or proteins that are bound to different ligands. In
these cases, the torsional bond angles and bond lengths will be differ-
ent from the ground truth data. This shift can be attributed to other
(non-prominent) conformational changes the protein undergoes (e.g.,
the lengthening or shortening of bonds) or to inaccuracies of predic-
tive models when using synthetic data (i.e. ESMFold is not perfect).
Hence, such protein structures cannot be used directly for training.

To still be able to expose the model to different structures, we pre-
pared computationally generated structures with a procedure referred
to as sidechain conformer matching. The idea is to align the torsional angles of the computationally
generated structures to the ground truth ligand-bound crystal structures while keeping the rigidity of
the bonds, as can be seen in Figure 3. This allows us to use computationally generated structures
for the training procedure while having sidechain positions that are close to the ground truth. At
inference time no sidechain conformer matching will be performed, as this could leak test data.

Similarly to Jing et al. [2022], we define the search for these structures as a minimization problem of
the RMSD between the ground truth structure y and in-silico structure y′ over the torsional angles
of the flexible amino acids. When referring to the ligand as x and assuming we have a sidechain for
amino acid a with ℓa rotatable bonds χa

1 , . . . , χ
a
ℓ the goal can be phrased as ℓ minimization problems

for each amino acid

match(x,y,y′) = argmin
ỹ∈{apply(y′,χ)}

RMSD(y, ỹ) · penalty(x, ỹ). (1)

The additional penalty in the optimization goal was introduced to make the matched proteins more
realistic. It aims to reduce the number of steric clashes (i.e., atoms that would be too close to-
gether), and is described in more detail in Appendix B. The minimization is solved with differential
evolution, which iteratively combines potential solutions of a population to converge to the global
minimum. We can then use the computationally generated structure where the sidechains have been
conformer-matched with the bound structure in training. This matching still leaves some distance
between the structures (as seen in Figure 3) but aligns with our definition of a semi-flexible receptor.

3.4 MODEL ARCHITECTURE AND TRAINING

Models. The model architecture we are using is inspired by the structure of DIFFDOCK [Corso
et al., 2023] and consists of two different models which are executed in sequence during inference:
the score model and the confidence model. The aim of the score model is to learn the (diffusion)
scores of the tangent spaces of the transformation manifolds: T3 for translation, SO(3) for rota-
tion, SO(2)k and SO(2)ℓ for the torsion angles of the ligand and flexible sidechains respectively.

5



Under review as a conference paper at ICLR 2024

With the knowledge of the scores during inference, we can take a protein with pocket and a ligand
structure in 3D space and produce i ∈ N different complex structures

(
x̃(1), ỹ(1)

)
, . . . ,

(
x̃(i), ỹ(i)

)
.

The confidence model is then used to rank each protein-ligand prediction such that the best-predicted
structures can be selected. Our training routine and objective are defined so that our confidence
model learns to predict the accuracy of generated binding structures by considering both the ligand’s
docking success and the similarity of flexible sidechains to the bound structure. The output of the
confidence model is a logit and important for real-world application since it allows practitioners to
judge the accuracy of the predictions without access to the ground truth.

Architecture. The architecture between both models is very similar and mostly differs in the last
few layers. Since we are learning the distributions on the transformation space instead of the three-
dimensional positions, we can formulate a desirable generalization of the model by exploiting at-
tributes of group actions. Mainly, we want our model to recognize the similarity or equivalence
of complex structures that can be transformed into each other using distance-maintaining (SE(3))
transformations. Therefore, we expect our output scores on the rotation and translation tangent
spaces to be SE(3)-equivariant and our torsion angle scores to be SE(3)-invariant. We achieve this
by using SE(3)-equivariant convolutional networks, so-called tensor field networks [Thomas et al.,
2018; Geiger et al., 2022] that encode the data into irreducible representations of the O(3) group.

In our architecture, both the ligand and protein are represented as geometric graphs where nodes
represent atoms and edges are between close neighbors or chemical bonds. There are edges between
ligand-ligand nodes, receptor-receptor nodes, and also receptor-ligand nodes. Moreover, we also
define a graph for each amino acid in the receptor instead of every atom. This representation follows
multiple convolutional layers, where we make use of message passing between the nodes based on
the node and edge features. In the end, this yields representations for each atom.

After the convolutional layers, the architecture between the score and confidence model differ, as
they have different objectives. The score model needs to output a translational score, a rotational
score (around the center of the mass of the ligand), and one torsional score for each of the k rotatable
bonds of the ligand. To allow for a flexible receptor, the score model also needs to predict ℓa torsional
scores, one for each rotatable bond in every flexible amino acid a. For this, we use a pseudotorque
layer as introduced by [Jing et al., 2022] similar to the architecture predicting the torsion scores of
the ligand. For the concrete diffusion process on torsional angles, we refer to [Jing et al., 2022;
Corso et al., 2023]. As opposed to the score model, the confidence model is not diffusion-based and
thus does not predict any scores. The output is a single SE(3)-invariant scalar, which is predicted
by an MLP that uses the flexible atom and ligand representations. It uses the predicted structures as
input and aims to determine the probability that the docking is accurate.

Training. We use diffusion score-matching [Song et al., 2021] to train our score model by sampling
the transformations from the perturbation kernels, applying them to the input structures of our model,
and minimizing the theoretical denoising score matching loss function for each transformation T

θ∗ = argmin
θ

∑
trf∈T

Et

{
λ(t)Ex(0)Ex(t)|x(0)

[∥∥strf
θ (x(t), t)−∇x(t) log p

trf
0t(x(t) | x(0))

∥∥2
2

]}
, (2)

as described in Song et al. [2021], with λ(t) a positive weighting function for each time t. The
minimization is done while iterating through the conditional distributions corresponding to each
ligand-protein pair. This formulation is equivalent to minimizing the distance between the real and
predicted scores of the conditional distribution.

To train the confidence model, we first sample diverse ligand and sidechain configurations with the
score model. The predictions are then compared with the ground truth training data to assess their
quality. The confidence model learns to predict this quality by training it with a binary cross-entropy
loss on those generated structures to predict if the sampled configuration is plausible.

Inference. To predict a docked complex, we start from an arbitrary ligand and flexible sidechain
conformations by applying random transformations in all degrees of freedom. We then use the
score model to predict the transformation scores of the conditional distributions at each timestep
and use the output to construct the reverse stochastic equation. Intuitively, by solving the reverse
diffusion equation, we iteratively move the samples to regions with high densities of the underlying
distribution by following the vector field produced by the predicted scores. Once the diffusion
process is finished, the samples are ranked based on their quality estimated by the confidence model.
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Due to the maximum likelihood training, the predictions of the score model can be dispersed over
multiple modes of the target distribution. We perform low-temperature sampling to prevent this
problem of overdispersion at inference due to model uncertainty and thereby emphasize the modes
of the distribution. This is done via the approach proposed by Ingraham et al. [2022, Apx. B]. For
this, we have determined the temperature values for our score model that maximize its performance
on the validation set.

4 RESULTS

Obtaining real-world data in molecular biology can be challenging, and the limited available data
must be used meaningfully. This can make it difficult for docking algorithms when the distribu-
tion of the structures changes. In this section, we will demonstrate that our model generalizes
well beyond the data seen and exhibits high performance over different tasks, including docking
to computationally generated structures and docking to proteins originally bound to a different lig-
and. We will also show that our model can be used to improve the sidechain configuration of in-
silico generated protein structures to better account for the ligand-bound structure. The source code
and documentation of our model is available at https://anonymous.4open.science/r/
DiffDock-Pocket-AQ32, and the versatile interface allows it to be run with many different
formats, pockets, and with any number of flexible amino acids.

Setup. As a training set, we relied on PDBBind [Liu et al., 2017], a subset of PDB [Berman et al.,
2003], with a time-based split and a mixture of crystal and ESMFold2 generated structures. In this
section, we evaluate it on the unseen testset. We either used the crystal structure from PDBBind
or computationally generated structures with the same amino acid sequence aligned to the crystal
structure. Similar studies for evaluating structures generated by ColabFold [Mirdita et al., 2022],
a faster version of AlphaFold2 [Jumper et al., 2021], can be found in Appendix E. However, al-
though the model has never seen ColabFold structures during training, the performance is similar
to ESMFold structures. Further, we will also be evaluating our model on the CrossDocked 2020
dataset [Francoeur et al., 2020]. This dataset contains similar binding pockets, with different ligands
docked to these pockets, and is sometimes used to train docking algorithms [McNutt et al., 2021].

Metrics. To evaluate the quality of a docking prediction, we can compare how much the predicted
ligand pose differs from the ground truth position. Commonly, the root mean squared deviation
(RMSD) of the predicted and ground truth ligand atom position pairs is used for that. A pose
prediction with an RMSD below 2Å is considered to be approximately correct [Alhossary et al.,
2015; Hassan et al., 2017; McNutt et al., 2021], so we calculate the percentage of predictions under
this threshold. We also compare the median RMSD of the predictions for a better grasp of their
quality. To evaluate the predictions of the sidechain atoms, we rely on a similar metric, namely the
RMSD of the sidechain atoms (or SC-RMSD) to the ground truth holo crystal structure. Since we
consider the backbone rigid, the sidechain atoms show less variation than the ligand and typically
do not exceed a SC-RMSD of 4. Hence, we decided to use an SC-RMSD threshold of 1 for the main
comparisons instead, but also show results for different thresholds (see Appendix F).

In all cases, even when using computationally generated structures as input, the holo crystal structure
of the PDBBind dataset is always considered the ground truth. However, it is important to note that
in-silico generated structures are often considerably different from the ground truth (compare Fig-
ure 10). A perfect match is thus unrealistic, especially for the SC-RMSD, as the conformations also
differ in bond lengths. To compensate for this fact, we introduce a relative measure that compares
the SC-RMSD before and after the prediction.

Docking performance. We compare our model to the freely available state-of-the-art search-based
method GNINA and SMINA which outperform VINA [Koes et al., 2013a] on known binding-sites,
and the diffusion-based model DIFFDOCK. Deep-learning methods with receptor flexibility [Qiao
et al., 2023; McPartlon & Xu, 2023] are not available as of writing. Results are shown in Table 1. Our
model is evaluated for drawing 10 and 40 samples, where we present metrics for the top-1 prediction,
which corresponds to the highest-ranked prediction from the confidence model, as well as for the
top-5 predictions, which selects the most accurate pose from the five highest-ranked predictions.

Our approach outperforms both search-based methods and DIFFDOCK in all instances, even when
only drawing 10 samples. For bound protein docking with predicting 40 samples, we achieve an
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approximately correct docking pose in 49.8% of instances. In rigid docking, GNINA also performs
well in this task, achieving 42.7%, but no other compared method with flexibility is competitive at
this benchmark (27.8%). We can see that current methods suffer from a substantial loss in docking
accuracy when introducing flexibility while also requiring significantly more time to predict poses
(and sidechains). We attribute this to the fact that the search space grows exponentially with each
atom position, which limits search-based approaches.

Table 1: PDBBind docking performance. This table compares the performance of different dock-
ing methods on computationally generated structures and crystal structures. Methods that do not
model the receptor as flexible, have been marked with the keyword rigid. All methods other than
DIFFDOCK use site-specific docking and use the same pocket definition (i.e., the mean of C-α atoms
within 5Å of any ligand atom). For a more detailed explanation of how these numbers were com-
puted for existing approaches, see Appendix D. The numbers for the methods highlighted with a *
were taken from Corso et al. [2023].

Apo ESMFold Proteins Holo Crystal Proteins
Top-1 RMSD Top-5 RMSD Top-1 RMSD Top-5 RMSD Average

Method %<2 Med. %<2 Med. %<2 Med. %<2 Med. Runtime (s)

DIFFDOCK (blind, rigid)* 20.3 5.1 31.3 3.3 38.2 3.3 44.7 2.4 40
SMINA (rigid) 6.6 7.7 15.7 5.6 32.5 4.5 46.4 2.2 258
SMINA 3.6 7.3 13.0 4.8 19.8 5.4 34.0 3.1 1914
GNINA (rigid) 9.7 7.5 19.1 5.2 42.7 2.5 55.3 1.8 260
GNINA 6.6 7.2 12.1 5.0 27.8 4.6 41.7 2.7 1575

DIFFDOCK-POCKET (10) 41.0 2.6 47.6 2.2 47.7 2.1 56.3 1.8 17
DIFFDOCK-POCKET (40) 41.7 2.6 47.8 2.1 49.8 2.0 59.3 1.7 61

Furthermore, when docking to computationally generated structures, we achieve four times higher
results as the best search-based method GNINA and nearly double the previous state-of-the-art
DIFFDOCK on top-1 predictions. When run on GPU hardware, our model is also significantly faster
than search-based methods (especially with flexibility modeling turned on). This can be extremely
useful for practitioners because this allows them to use DIFFDOCK-POCKET for high-throughput
tasks, even when the experimental structures are unavailable.

Sidechain prediction quality. All flexible methods investigated predict the sidechain positions
jointly with the ligand pose. For predictions on the ground-truth, the sidechains are first randomly
perturbed by the respective methods. We now investigate the quality of these predictions for SMINA
and GNINA (we do not compare to DIFFDOCK as it is unable to model flexible residues). Table 2
illustrates the performance similarly to the docking results. Both SMINA and GNINA fail to predict
accurate sidechains for computationally generated structures and crystal structures. Our approach
achieves good sidechain reconstruction in 33.3% and 49.2% of cases for computationally generated
structures and crystal structures respectively.

Table 2: PDBBind sidechain performance. Comparing the predicted sidechains of the different
models with different inputs to the ground truth crystal structures.

Apo ESMFold Proteins Holo Crystal Proteins
Top-1 SC-RMSD Top-5 SC-RMSD Top-1 SC-RMSD Top-5 SC-RMSD

Method %<1 Med. %<1 Med. %<1 Med. %<1 Med.

SMINA 0.6 2.4 1.8 2.0 4.7 1.8 8.3 1.4
GNINA 0.6 2.5 1.8 2.0 3.3 1.7 7.7 1.4

DIFFDOCK-POCKET (10) 33.3 1.2 44.6 1.1 49.2 1.0 58.6 0.9
DIFFDOCK-POCKET (40) 32.6 1.2 44.4 1.1 48.7 1.0 59.2 0.9

The in-silico generated structures already have a median SC-RMSD of 1.5Å and 20.5% of struc-
tures have an SC-RMSD of less than 1Å. This means that the sidechain predictions of SMINA
and GNINA are worse than those of structure generation algorithms without access to information
about the ligand. This becomes more apparent when investigating these numbers visually in Fig-
ure 4. Both score-based methods improve the sidechains only in less than 10% of cases. Overall,
DIFFDOCK-POCKET predicts sidechains that are substantially closer to the ground truth.
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Figure 4: Quality of predicted sidechains for in-silico structures. Left: The cumulative distribu-
tion function shows how many instances have an SC-RMSD below a certain threshold to the holo
structure. Right: The relative SC-RMSD between the structures before and after the predictions.
The optimal line is computed by conformer matching the in-silico structures to the crystal structure.

Cross-docking performance. To demonstrate that the model can generalize to different scenarios,
we evaluated it on the task of pocket-level cross-docking, as seen in Table 3. Our model achieves a
pocket-normalized RMSD of less than 2Å in 28.6% of instances, compared to the best other method
of 24.4%. As for the overall accuracy, GNINA yields the best results. Brocidiacono et al. [2023]
argue that the pocket-normalized score is more important since the size of the dockings per pocket is
unevenly distributed. These results for our model are especially impressive considering that a) cross-
docked structures were never seen during training, but some of the other approaches trained with this
data, and b) the definition of the pocket center was out of distribution for our model. When we use
the available data but compute the center of the pocket the same way as we did during training,
our model achieves substantially higher results (compare Section F.7). This benchmark shows that
DIFFDOCK-POCKET generalizes well to unseen structures and is suitable for a wide range of tasks.

Table 3: Cross-docking performance on CrossDocked 2020. Evaluation of the top-1 RMSD
between different methods on the CrossDocked 2020 testset with complexes removed that were
seen during training. The pocket-normalized percentage is presented for each value, and the overall
score is listed in brackets. For the pocket-normalized score, the average performance on each pocket
is reported instead of the performance across all complexes. Numbers for the methods marked with
a * were taken from Brocidiacono et al. [2023].

Top-1 RMSD Average
Method %<2 %<5 Runtime (s)

VINA* 11.7 (15.6) 40.2 (37.9) 73.7
GNINA* 21.5 (23.5) 51.7 (47.3) 51.6
DIFFDOCK* (blind) 17.3 (11.6) 51.7 (47.3) 98.7
PLANTAIN* 24.4 (15.2) 73.7 (71.9) 4.9
DIFFDOCK-POCKET (10) 28.3 (17.7) 67.5 (50.2) 22.0
DIFFDOCK-POCKET (40) 28.6 (18.5) 67.9 (49.4) 87.2

5 CONCLUSION

In this paper, we presented DIFFDOCK-POCKET, a fast diffusion-based generative model to dock
small molecules. In contrast to many other ML-based approaches, we are able to incorporate prior
knowledge of the binding pocket and model the protein’s sidechain atoms close to the binding site
as flexible. Our approach improves the state-of-the-art in almost all tested instances while also being
significantly faster. Traditional approaches exhibit a drastic decline in runtime and accuracy when
modeling receptor flexibility, which is not the case for our approach. A similar trend can be observed
when using computationally generated structures, with which our approach works exceptionally
well and loses almost no accuracy. Even when presenting the model with out-of-distribution data
and pockets, our model improves the score for the pocket-normalized RMSD for CrossDocked2020
compared to existing methods. Especially in combination with in-silico generated structures, which
can be generated quickly, we believe that our model opens new capabilities in high-throughput tasks,
such as drug screening.
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A BOUND ON REDUCED PREDICTION SPACE

As mentioned in the main text, our model makes predictions in a reduced, lower-dimensional space
instead of predicting all atom positions. We can assess the reduction by counting the degrees of
freedom of translations on the ligand and flexible sidechains as a function of their number of atoms.
Sidechains have m−r degrees of freedom for m atoms on r residues, since each residue has mr−1
torsion angles (where mr is the number of atoms in one residue). Since the maximum number of
torsional angles in an amino acid (counted by our algorithm) is five, we can further bound m − r
with 0.8m. Similarly, we can bound the ligand degrees of freedom by n−2+6, 6 for the freedom of
rotations and translations, and n− 2 the degrees of freedom from the torsion angles. This is because
we can use an upper bound by assuming a tree-like bond structure between the ligand atoms, which
means n − 1 bonds for n atoms and, therefore n − 2 degrees of freedom (in case there is a cycle
the ligand graph would have one more bond but it would also lose a degree of freedom from the
restriction of the cycle structure). We can then compare the dimensions of 0.8m+n+4 to 3(m+n)
and conclude that the three-dimensional coordinate space clearly has magnitudes larger (about three
times as many) degrees of freedom, already for molecules with a small number of atoms.

B STERIC CLASHES

Steric clashes play a fundamental role in molecular interactions and structural biology. These clashes
occur when atoms, or groups of atoms, come too close to each other, resulting in repulsive forces that
hinder their ability to adopt certain conformations. In the context of generative modeling of com-
plex structures, these clashes occur when atoms or groups of atoms in a three-dimensional structure
are placed too closely together, violating the principles of molecular geometry and leading to unfa-
vorable interactions. In essence, steric clashes represent a clash of physical space, as atoms cannot
occupy the same space simultaneously due to their electron clouds. Understanding and mitigating
steric clashes are important to check in generative modeling because they can lead to the generation
of incorrect or physically unrealistic structures.

To quantify and evaluate steric clashes, several computational methods have been developed. One
common approach involves computing the overlap between van der Waals radii of atoms. The van
der Waals radii represent the approximate size of atoms and are typically defined as the distance
at which the attractive van der Waals forces balance the repulsive forces between two atoms. To
detect steric clashes, we assessed whether the van der Waals radii of atoms or groups of atoms in a
molecular structure overlap by at least 0.4 Angstroms (Å). If the overlap exceeds this threshold, it
indicates a steric clash, suggesting that the molecular conformation is unfavorable due to repulsive
forces. For the concrete values, we followed the tables from Mantina et al. [2009].

B.1 REDUCING STERIC CLASHES IN PROTEIN SIDECHAIN ALIGNMENT

To train our flexible model, we align the sidechains of the unbound (apo) ESMFold protein with
the bound (holo) crystal structure with conformer matching. Especially in cases where the predicted
atomic structure differs from the actual true structure, simply reducing the RMSD between those two
structures might lead to unrealistic proteins. For example, there could be a lot of steric clashes or
the sidechain atoms completely turned away from the pocket. We introduced an additional penalty
term when aligning the two protein structures to overcome these issues. The term that produced the
most reasonable outputs (with regard to the number of steric clashes) was

RMSD(Crystal Sc, S̃c) ·

√∑
l∈Lig,s∈Sc e

−(s−l)2√∑
l∈Lig,s∈Sc e

−(s−l)2(s− l)2
. (3)

s and l are the positions of atoms of the sidechains and ligands respectively.

We calculate the pairwise distances between the ligand and sidechain atoms, with an exponential
weighting scheme applied to emphasize closer atoms of the protein. The weights are calculated
based on the exponential of the negative distances, indicating a stronger penalty for closer atomic
interactions. The resulting weighted distances are then summed and normalized, contributing to an
overall penalty term incorporated into the calculation of the root-mean-square deviation (RMSD) of
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the modified atoms. This RMSD, adjusted by the weighted penalty term, measures the structural de-
viation while accounting for steric clashes. The method reduces clashes by penalizing close atomic
contacts and promoting greater separation between the ligand and protein, as seen in Table 4. While
conformer matching already reduces the number of steric clashes, this penalty can further reduce
the number. All RMSDs that are shown in this paper are calculated by removing the hydrogens and
computing the distance between all atoms, not just the C-α backbone.

Table 4: Steric clashes for in-silico structures. This table analyzes the number of steric clashes
between the receptor and the ligand.

Percentage with Average Number of
Method Steric Clashes Steric Clashes

Crystal structures 14.3 0.2

ESMFold2 structures 76.7 19.1
Conformer-Matched 68.3 15.4
Conformer-Matched w/ penalty 67.7 13.9

B.2 MODEL RESULTS

Given this definition of steric clashes, we can evaluate the different models, as done in Table 5. It
can be seen that flexible models produce substantially more steric clashes, especially when executed
on computationally generated structures. This aligns well with the fact that the ESMFold structure
itself already exhibits many steric clashes. Our model produces more steric clashes than search-
based methods on in-silico structures and drastically more on the crystal structure. For the ESMFold
predictions, this may be because our model achieves more than four times the docking performance
on this data, and the other methods typically predict wrong ligand poses, which are possibly far
away (see high median RMSD). For example, SMINA predicts the least number of steric clashes,
but also has the lowest docking performance. However, this table definitely highlights a shortcoming
of our approach for at least crystal structures. Those shortcomings of ML docking methods have
been discussed by Buttenschoen et al. [2023] and can be reduced by performing small optimizations
of the predicted docking poses.

Table 5: Steric clashes for top-1 predictions. Comparison of the number of steric clashes between
the receptor and ligand atoms using the predictions of different models and structures.

Apo ESMFold Proteins Holo Crystal Proteins
Percentage with Average Number of Percentage with Average Number of

Method Steric Clashes Steric Clashes Steric Clashes Steric Clashes

SMINA (rigid) 0.9 0.1 0.0 0.0
SMINA 60.4 12.8 1.1 0.0
GNINA (rigid) 5.4 0.4 1.7 0.1
GNINA 52.7 12.7 0.3 0.0

DIFFDOCK-POCKET (10) 69.3 9.8 57.7 4.4
DIFFDOCK-POCKET (40) 69.0 9.2 55.3 4.1

C MODEL DETAILS

C.1 ARCHITECTURE

The protein and the ligand structures can be represented as geometric graphs. Our architecture uses
three different graphs: a graph containing the ligand atoms, one that contains the protein atoms, and
a third where each node corresponds to a residue (i.e., an amino acid). The atom nodes of the ligands
and proteins are featurized with their chemical properties, the residue nodes with embeddings of the
ESM2 language model [Lin et al., 2023].

The nodes in each graph are connected to nodes in the same graph with inter-graph edges. We
construct receptor-receptor and residue-residue edges between an atom and its k nearest neighbors
(for residues we use the C-α positions). The ligand-ligand edges correspond to bonds between the
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ligand atoms that are featurized by their bonding type, and additionally, we form edges between
atoms under a cutoff distance of 5Å.

Nodes can also be connected to nodes in the other graphs by (dynamic) cross edges. For the ligand-
receptor and ligand-atom edges, we form edges between atoms based on a distance threshold that is
calculated with the diffusion noise. As for the atom-residue graphs, we connect each residue to the
atoms it consists of. As the positions of the ligand and receptor atoms are dynamic in the diffusion
process, these graphs need to be reconstructed at each time step.

Several convolutional layers are concatenated in which the nodes pass messages using tensor prod-
ucts based on the node features and irreducible representations of the edges. The number of con-
volutional layers differs between the score and confidence model. MLPs are then used on the node
embeddings to make the final predictions.

C.2 TRAINING THE CONFIDENCE MODEL

To train the confidence model, we trained a smaller score model (in the same way as the main/large
model) that predicts more diverse but less accurate ligand poses and protein structures. The predic-
tions are then evaluated against the ground truth to create a label that indicates whether the RMSD
is < 2Å and the RMSD of the flexible atoms in the sidechains is < 1Å. The confidence model then
learns to predict a label of 1 iff the prediction of the score model is good in terms of docking and
sidechain atom positions. The model is then trained with a binary cross-entropy loss. No diffusion
is involved in the training of the confidence model.

C.3 SIDECHAIN FLEXIBILITY

The flexible residues can be automatically determined based on the distance to the ground truth
ligand pose or, at inference, manually specified when there is no access to a ground truth ligand. We
then select residues with atoms inside a rectangular prism around the ligand as also used in previous
works [McNutt et al., 2021]. This means that with a “radius” of r every residue is selected where
for the coordinates x, y, z any atom of this amino acids it holds that

min(ligx)− r < x < max(ligx) + r

min(ligy)− r < y < max(ligy) + r

min(ligz)− r < z < max(ligz) + r,
(4)

where ligx, ligy and ligz mean the collection of x, y and z coordinates of the ligand atoms. This
defines a prism around the ligand with an additional radius r. For a flexible radius, we chose 3.5Å
as modeling flexibility for sidechains within this radius to the ligand was found to be a reasonable
representation for structural changes happening upon ligand binding in Meli et al. [2021]. During
inference, we cannot assume to have any information regarding the ligand position therefore instead
of calculating a prism around the ligand, the user needs to set them manually.

To determine the concrete bonds at which torsional angles need to be applied, we build a graph
for each amino acid according to the chemical structure. Each found rotatable bond is stored as
the corresponding edge and subgraph that starts at the second vertex/end of the edge, onto which a
rotation would be applied. See Algorithm 1 for the implementation.

Corso et al. [2023] had to rely on the definition of preservation of angular velocity and Kabsch align-
ments to disentangle the effect of the updates in torsion angles of the ligands from the roto-translation
of the ligand w.r.t. the protein. In our case, we keep this convention for the disentanglement of the
degrees of freedom of the ligand. When it comes to defining the direction of update of the torsion
angles of the sidechains of the protein, we always rotate the side that does not contain the protein
backbone. This simple convention makes the update of the sidechain’s conformation disentangled
from the roto-translation of the ligand w.r.t. the protein without requiring any additional Kabsch
alignment. We note that in practice this is very similar to the induction of no linear or angular ve-
locity in the protein due to the significantly larger size of the rest of the protein compared to the
individual sidechain.
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Algorithm 1: Graph Traversal to Compute Rotatable Bonds
Input: Atom positions x, atom names N
Output: Rotable bonds B, rotation maskM
(x,N )← removeHydrogens(x,N );
G← constructDirectedGraph(x,N );
for e ∈ edges(BFS(G)) do

GU ← toUndirected(G);
GU ← removeEdge(GU , e);

if not isConnected(GU ) then
c← connectedComponents(GU );

if size(sorted(c)[0]) > 1 then
M.append(c[1]);
B.append(e);

end
end

end

C.4 TRAINING AND INFERENCE OF THE SCORE MODEL

We use ESMFold2 predicted structures conformer-matched to the PDBBind crystal structures to
train the score model. If the RMSD in the pocket between the ground truth and in-silico structure is
larger than 2Å, we assume that ESMFold was unable to predict a good structure and use the ground
truth holo structure instead. The training and inference procedures were inspired by DIFFDOCK and
can be seen in Algorithm 2 and Algorithm 3 respectively.

At inference (i.e., Algorithm 3), it is important to note that the model is not aware of any of the
ground-truth ligand or sidechain positions. As such, there is no possibility for data leakage as the
model is neither aware of the ground-truth sidechain positions, nor which sidechains are flexible.

Algorithm 2: Training Epoch
Input: Training pairs: {(x⋆,y⋆), }, flexibility radius: r, pocket radius: p with buffer
foreach x⋆,y⋆ do

Let x0 ← argminx†∈Mtr,rot,tor,x⋆ RMSD(x⋆,x†);
Let
ỹ⋆ ← {res ∈ y⋆ : ∃ atom = (ax, ay, az) ∈ res, ax ∈ [minx(x

⋆)−r,maxx(x
⋆)+r], ay ∈

[miny(x
⋆)− r,maxy(x⋆) + r], az ∈ [minz(x

⋆)− r,maxz(x
⋆) + r]};

Let y⋆
0 ← argminy†∈Msc−tor,y⋆ RMSD(ỹ⋆, ỹ†) · penalty;

Let pocket center = pc← average of positions of Cα ∈ {residue ∈ y⋆ ∃atom = a ∈
residue for which ∃ ligand atom l ∈ x0∥a− l∥< p} if the set is empty, then closest Cα;

Let y0 ← {res ∈ y⋆
0 : ∃a ∈ res for which ∃l ∈ x0 : ∥a− l∥ < circumradius(y⋆

0) + buffer};
Sample t ∼ U([0, 1]);
Sample ∆r,∆R,∆θl,∆θsc, from diffusion kernels
ptr
t (· | 0), prot

t (· | 0), ptorl
t (· | 0), ptorsc

t (· | 0);
Compute xt by applying ∆r,∆R,∆θl to x0;
Compute yt by applying θsc to ỹ0;
Predict scores α ∈ R3, β ∈ R3, γ ∈ Rn, δ ∈ Rm = s(xt,yt, t) ;
Take optimization step on loss
L = ||α−∇ log ptr

t (∆r | 0)||2 + ||β −∇ log prot
t (∆R | 0)||2 +∣∣∣∣γ −∇ log ptorl

t (∆θl | 0)
∣∣∣∣2 + ∣∣∣∣δ −∇ log ptorsc

t (∆θsc | 0)
∣∣∣∣2

end
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Algorithm 3: Inference Algorithm
Input: RDKit prediction c, generated protein structure d, flxibility radius r, pocket radius p

with buffer (both centered at origin)
Output: Sampled ligand pose x0, sampled protein pose y0 with applied pocket knowledge
Let pocket center = pc← average of positions of Cα ∈ {residue ∈ d ∃atom = a ∈

residue for which ∃ ligand atom l ∈ c∥a− l∥< p};
Let d⋆ ← {res ∈ d : ∃a ∈ res, ∥a− pc∥ < circumradius(c) + buffer};
Sample θl;N ∼ U(SO(2)k), RN ∼ U(SO(3)), rN ∼ N (0, σ2

tr(T )) θsc,N ∼ U(SO(2)m);
Define ỹk from yk as {residue = res ∈ yk : ∃atom = a ∈ res, ∥a− pc∥< r};
Randomize ligand and sidechains by applying rN , RN ,θl;N , to c and θsc;N to d̃⋆;
for n← N to 1 do

Let t = n/N and ∆σ2
tr = σ2

tr(n/N)− σ2
tr((n− 1)/N) and similarly for

∆σ2
rot,∆σ2

torl ,∆σ2
torsc ;

Predict scores α ∈ R3, β ∈ R3, γ ∈ Rk, δ ∈ Rm,← s(xn,yn, t);
Sample ztr, zrot, ztorl , ztorsc from N (0,∆σ2

tr),N (0,∆σ2
rot),N (0,∆σ2

torl),N (0,∆σ2
torsc)

respectively;
Set ∆r← ∆σ2

trα+ ztr and similarly for ∆R,∆θl,∆θsc;
Compute xn−1 by applying ∆r,∆R,∆θl, to xn;
Compute yn−1 by applying ∆θsc, to ỹn;

end
Return x0,y0;

D BENCHMARKING DETAILS

In our experimentation, we used NVIDIA RTX 6000 GPUs to conduct the assessment of our model’s
performance. To ensure robustness and reliability, we executed the model three times, each run ini-
tiated with seeds 0, 1, and 2. It is crucial to note that while seeds were employed to initialize the
runs, achieving 100 percent reproducibility proved challenging due to the inherent non-deterministic
nature of certain operations when executed on a GPU. To enhance the reliability of our reported val-
ues, we computed the mean across the three runs, providing a more stable and indicative measure
of the model’s performance rather than relying on individual figures from a single run. This ap-
proach ensures that our reported results reflect the averaged behavior of the model under different
seed initializations, acknowledging and addressing the inherent stochasticity introduced by GPU
computations.

D.1 PARAMETERS FOR GNINA AND SMINA

We opted to use the default/suggested parameters as much as possible when running GNINA and
SMINA. We set the exhaustiveness (number of Monte Carlo chains for searching) to 8. When
applying the flexible features we chose the flexible radius to be 3.5Å as in our model, where GNINA
also specifies the flexible sidechains as we do during training with a rectengular prism. We generated
10 modes for each run on which we were able to evaluate top-N metrics and provide a fair assessment
accounting for the variance of the results of the algorithm.

For site-specific docking, GNINA has two distinct approaches. The first method involves establish-
ing a rectangular prism around the ground truth atom, utilizing the minimum and maximum values
for the x, y, and z coordinates. This prism can be further customized with the addition of a buffer
(and in case the box defined by the prism is too small, it is appended in such a way that the ligand
can rotate inside of it). Alternatively, the second method permits the construction of a Cartesian box
by directly specifying the coordinates. In our comparative analysis with our results, we opted for the
Cartesian box approach, as it aligns more closely with our definition of the ligand-binding pocket.
This choice was also motivated by the perception that the prism method, relying on knowledge of
the original ligand position, may introduce strong bias. However, even when using the autobox
method to level the playing field, our results demonstrate that the performance of our model remains
competitive. In this case, we compared the different approaches using the rigid model on crystal
structures of the testset of PDBBind depicted in Table 6.
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Even with no additional buffer when autoboxing the ligand, we can see that the results of GNINA
are below 50% on the pre-processed files. We can also see that even doubling the exhaustiveness
does not significantly affect the docking results. This plateau effect may indicate that the algorithm
has adequately explored the conformational space, and additional computational resources do not
lead to a proportional enhancement in the quality of predictions. When looking at the results of
the preprocessed and original protein files, we can also observe that minor changes in the protein
structure inputs result in significant differences in docking performance, suggesting a concerning
sensitivity to variations in molecular configurations. This sensitivity is undesirable, especially when
handling generated protein structures is a goal.

Clearly, the case of only autoboxing the ligand with no additional buffer does not reflect reality as
the user would have to know the exact bounding box of the ligand with a 0Å margin of error. We
can then observe that with an increase in the search space, the docking performance of GNINA
deteriorates. The Cartesian pocket we selected exhibits very similar performance to the default
setting, which incorporates a 4Å buffer through autoboxing, with only a marginal 1-2% difference.
This justifies our comparison to the Cartesian box instead of the default GNINA settings while also
being fair in having a similar pocket definition.

Table 6: GNINA results with different attributes. In this table, we present additional results for
benchmarking GNINA: the differences in results with differently defined or sized pockets, exhaus-
tiveness and input protein files.

preprocessed PDB files on original PDB files
Top-1 RMSD Top-5 RMSD Top-1 RMSD Top-5 RMSD

Pocket Type Exhaustiveness <2% Median <2% Median <2% Median <2% Median

Our pocket center + 10Å 8 42.7 2.5 55.3 1.8 48.2 2.2 63.0 1.5
Autobox Ligand + 0Å 8 48.0 2.2 63.9 1.5 53.0 1.9 69.8 1.3

16 45.7 2.2 85.6 1.5 - - - -
Autobox Ligand + 4Å 8 43.6 2.3 58.1 1.7 51.0 1.9 67.2 1.3

16 46.4 2.2 60.4 1.6 - - - -
Autobox Ligand + 10Å 8 39.6 3.0 49.9 2.0 47.0 2.3 61.5 1.5

16 42.2 2.7 54.7 1.8 - - - -

E PERFORMANCE ON COLABFOLD

ColabFold [Mirdita et al., 2022] is a faster version of AlphaFold2 [Jumper et al., 2021] and is often
used to generate a 3D structure based on a given sequence. In this part, we show how the model
behaves on these structures instead of using ESMFold2 structures. This study is crucial since the
model uses ESMFold embeddings during training for all proteins, and some of the training set also
consists of high-quality structures predicted by ESMFold. This could mean that the model only
works well with those specific structures while producing inferior results otherwise. To answer this,
we have presented similar studies for ColabFold structures in Table 7, Table 8, and Table 9. We can
see that the results are similar to those from ESMFold, letting us conclude that the model generalizes
to well.

Table 7: PDBBind docking performance with ColabFold structures. Comparing the top-1 and
top-5 results of multiple docking approaches when using structures generated by ColabFold.

Apo ColabFold Proteins
Top-1 RMSD Top-5 RMSD

Method %<2 Med. %<2 Med.

SMINA (rigid) 5.7 7.5 13.1 5.5
SMINA 5.3 7.0 11.5 5.4
GNINA (rigid) 10.5 7.3 18.0 5.0
GNINA 7.7 6.8 15.6 4.9

DIFFDOCK-POCKET (10) 37.5 2.8 45.0 2.3
DIFFDOCK-POCKET (40) 39.5 2.7 46.0 2.2
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Table 8: Top-1 PDBBind docking with ColabFold structures. More detailed performance evalu-
ation when docking to in-silico structures generated by ColabFold.

Ligand RMSD Sidechain RMSD

Percentiles ↓ % below
threshold ↑ Percentiles ↓ % below

threshold ↑
Methods 25th 50th 75th 2 Å 5 Å 25th 50th 75th 1 Å 2 Å

SMINA (rigid) 5.1 7.5 11.4 5.7 23.9 - - - - -
SMINA 5.0 7.0 9.7 5.3 25.6 1.9 2.3 3.2 0.6 32.1
GNINA (rigid) 3.7 7.3 11.6 10.5 34.8 - - - - -
GNINA 4.1 6.8 10.3 7.7 33.5 1.9 2.3 3.1 0.3 32.9

DIFFDOCK-POCKET (10) 1.5 2.8 5.0 37.5 75.2 1.0 1.4 1.9 28.2 79.0
DIFFDOCK-POCKET (40) 1.5 2.7 5.0 39.5 74.6 1.0 1.4 1.9 27.6 79.0

Table 9: PDBBind sidechain performance with ColabFold structures. Evaluating the perfor-
mance of the sidechains when relying on in-silico structures generated by ColabFold.

Apo ColabFold Proteins
Top-1 SC-RMSD Top-5 SC-RMSD

Method %<1 Med. %<1 Med.

SMINA 0.6 2.3 0.6 2.0
GNINA 0.3 2.3 1.2 1.9

DIFFDOCK-POCKET (10) 28.2 1.4 35.1 1.2
DIFFDOCK-POCKET (40) 27.6 1.4 34.9 1.2

F ADDITIONAL RESULTS

F.1 FURTHER DOCKING RESULTS

We have compiled a list of tables and figures that allow further evaluation of the docking results. In
Table 10 and Table 11, we illustrate the different percentiles of our predictions for the ligand and
sidechain predictions for both crystal structures and ESMFold. We also evaluate the models on a
subset of the testset where UnitProt IDs that are present in the training or validation set have been
removed. The results are shown in Table 12. Figure 5 shows the cumulative distribution functions
of the top-1 docking RMSD.

Similarly as for the ligand docking accuracy, we also provide further studies for the sidechain ac-
curacy. Figure 6 illustrates the fraction of predictions with a lower sidechain RMSD for crystal
structures and ESMFold structures respectively. Since the sidechains of ESMFold structures cannot
be aligned completely to the crystal structures by only changing the torsional angles, Figure 7 shows
further studies on the relative SC-RMSD. The relative SC-RMSD is computed by subtracting the
SC-RMSD of the ESMFold structure from the SC-RMSD of the predicted protein.

Table 10: Top-1 PDBBind crystal docking. A more detailed performance evaluation of docking
with holo crystal structures.

Ligand RMSD Sidechain RMSD

Percentiles ↓ % below
Threshold ↑ Percentiles ↓ % below

Threshold ↑
Methods 25th 50th 75th 2 Å 5 Å 25th 50th 75th 1 Å 2 Å

SMINA (rigid) 1.6 4.5 8.0 32.5 54.7 - - - - -
SMINA 2.8 5.4 7.8 19.8 47.9 1.6 1.8 2.2 2.0 63.8
GNINA (rigid) 1.2 2.5 6.8 42.7 67.0 - - - - -
GNINA 1.8 4.6 7.9 27.8 54.4 1.4 1.7 2.1 3.3 71.9

DIFFDOCK-POCKET (10) 1.1 2.1 4.5 47.7 78.7 0.6 1.0 1.6 49.2 85.7
DIFFDOCK-POCKET (40) 1.1 2.0 4.3 49.8 79.8 0.6 1.0 1.5 48.7 87.0
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Table 11: Top-1 PDBBind ESMFold docking. A more detailed performance evaluation of docking
with computationally generated ESMFold structures.

Ligand RMSD Sidechain RMSD

Percentiles ↓ % below
threshold ↑ Percentiles ↓ % below

threshold ↑
Methods 25th 50th 75th 2 Å 5 Å 25th 50th 75th 1 Å 2 Å

SMINA (rigid) 5.4 7.7 11.9 6.6 22.5 - - - - -
SMINA 5.5 7.3 9.9 3.6 20.5 1.9 2.4 3.7 0.6 34.4
GNINA (rigid) 4.1 7.5 12.0 9.7 33.6 - - - - -
GNINA 4.7 7.2 10.5 6.6 28.0 1.9 2.5 3.7 0.6 31.0

DIFFDOCK-POCKET (10) 1.3 2.6 5.1 41.0 74.6 0.9 1.2 1.8 33.3 79.6
DIFFDOCK-POCKET (40) 1.2 2.6 5.0 41.7 74.9 0.9 1.2 1.8 32.6 80.3

Table 12: Filtered PDBBind docking performance. This table mirrors the resutls from Table 1,
but has filtered out all the complexes of the testset where the UniProt ID appears in the training or
validation set.

Apo ESMFold Proteins Holo Crystal Proteins
Top-1 RMSD Top-5 RMSD Top-1 RMSD Top-5 RMSD Average

Method %<2 Med. %<2 Med. %<2 Med. %<2 Med. Runtime (s)

DIFFDOCK (blind, rigid)* - - - - 20.8 6.2 28.7 3.9 40
SMINA (rigid) 6.5 7.7 15.9 6.2 29.0 5.1 45.7 2.2 258
SMINA 4.8 7.6 12.7 5.3 18.3 6.2 38.7 3.0 1914
GNINA (rigid) 10.1 7.2 20.3 5.3 39.9 2.6 54.5 1.9 260
GNINA 8.7 6.6 15.9 4.9 24.8 4.5 38.7 2.9 1575

DIFFDOCK-POCKET (10) 27.7 3.3 34.6 2.8 36.5 2.5 49.4 2.0 17
DIFFDOCK-POCKET (40) 26.3 3.3 33.6 2.7 39.2 2.4 52.4 1.9 61
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Figure 5: Cumulative distribution function of RMSD. Left: The CDF when using crystal struc-
tures as input. Right: The CDF when using ESMFold structures as input.
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Figure 6: Cumulative distribution function of SC-RMSD. Left: The CDF when using crystal
structures as input. Right: The CDF when using ESMFold structures as input.
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Figure 7: Relative sidechain improvements on ESMFold structures. Left: The relative sidechain
improvement, when picking the top-5 sidechain prediction. Right: The relative sidechain improve-
ment only for ESMFold complexes that have a pocket RMSD of < 1.5Å.

F.2 RIGID MODEL COMPARISON

In this section, we will investigate the impact of training with flexibility on the model’s performance.
For this, we trained a rigid model on the holo crystal structure of proteins with pocket reduction, and
compared it to a flexible model. In all cases, we used models without low-temperature sampling, 20
inference steps and 10 samples per complex. In Table 13 this comparison is illustrated. We further
added a comparison for when we use the flexible model, but do not predict the pose of any sidechain
positions during training.

From this, we can see that training with flexibility improves the docking accuracy, especially for
proteins where the true sidechain conformations are unknown (i.e., apo). We can also see that the
performance decreases when using a flexible model in a rigid fashion. However, in our experiments,
these effects were less prominent when relying on low-temperature sampling.

Table 13: PDBBind docking performance rigid and flexible. We compare the docking perfor-
mance of a rigid model, a model that was trained with flexibility (marked with *), and the same
model but without flexibility at inference†. None of the models use low-temperature sampling.

Apo ESMFold Proteins Holo Crystal Proteins
Top-1 RMSD Top-5 RMSD Top-1 RMSD Top-5 RMSD

Method %<2 Med. %<2 %<5 %<2 Med. %<2 %<5

DIFFDOCK-POCKET (rigid) 29.8 3.6 40.7 76.7 44.7 2.4 55.0 86.5
DIFFDOCK-POCKET* 37.7 3.0 45.9 82.2 45.4 2.2 57.2 87.6
DIFFDOCK-POCKET† 24.9 4.0 41.0 76.8 27.7 3.5 45.9 81.5

F.3 PERFORMANCE ON MEMBRANE PROTEINS

Membrane proteins make up more than 60% of the drug targets in humans and hence play a crucial
role in drug discovery [Overington et al., 2006]. In the testset of PDBBind, there are nine proteins
that are membrane proteins that have been classified as such by either White [2009]; Lomize et al.
[2011]; Kozma et al. [2012]; Newport et al. [2018]. The corresponding PDB ids are: 6e4v, 6h7d,
6iql, 6kqi, 6n4b, 6qxa, 6qzh, 6r7d, 6rz6. The docking performance of our model on these nine
proteins is illustrated in Table 14. We can see that for experimentally generated crystal structure and
ColabFold membrane proteins our model archives only in 33.3% of cases a ligand RMSD of < 2.
For ESMFold, there is no successful docking for these proteins. We believe this is the case because
the quality of the structure of ESMFold is worse on these proteins as ColabFold (compare Table 15).
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Table 14: Docking performance on PDBBind membrane proteins. This table denotes the Top-1
ligand RMSD on the listed proteins for different protein structures.

Protein Top-1 Ligand RMSD in Å
Structure 6e4v 6h7d 6iql 6kqi 6n4b 6qxa 6qzh 6r7d 6rz6

Crystal 8.8 1.6 2.2 3.5 1.2 13.7 2.3 4.8 2.0
ESMFold 5.6 3.4 3.1 2.3 5.3 10.5 5.1 9.0 2.7
ColabFold 6.3 1.5 2.9 3.6 1.7 10.0 5.5 5.4 1.9

Table 15: Pocket RMSDs of PDBBind membrane proteins. The RMSDs between the atoms of
the receptor and the computationally generated protein are shown in this table.

Protein Pocket RMSD in Å
Structure 6e4v 6h7d 6iql 6kqi 6n4b 6qxa 6qzh 6r7d 6rz6

ESMFold 2.3 1.7 4.0 2.8 4.5 5.9 3.7 8.6 2.7
ColabFold 3.0 1.3 4.2 1.7 2.8 3.8 5.8 1.2 2.1

Since the available number of membrane proteins in our testset is small, this study does not allow
us to give definitive answers on the performance of our model on these types of proteins.

F.4 CONFIDENCE MODEL EVALUATION

To determine the effectiveness of the confidence model, we have compared how the impact of the
number of generated samples on the quality. When having a strong confidence model, the perfor-
mance with more samples will be monotonically increasing. This analysis is illustrated in Figure 8
for RMSD, SC-RMSD, and for crystal and ESMFold structures respectively. However, if the model
only produced very similar poses, then the number of generative samples would not be indicative of
the quality of the confidence model. To further investigate the performance of the confidence model,
we compare the selective accuracy. For this, we rank the confidence of all top-1 predictions and
discard the lowest-ranking ones (according to the confidence model). How this selection compares
to an oracle with perfect selection gives insight into the quality of the confidence model. This is
shown in Figure 9, where we see that the confidence model works especially well for the RMSD,
and is less accurate for the SC-RSMD. In all cases, a higher confidence correlates with a better pose.

10 20 30 40

Number of generative Samples

0.2

0.3

0.4

0.5

0.6

0.7

Fr
ac

tio
n

w
ith

R
M

SD
<

2Å
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Figure 8: Performance based on number of generative samples. Compare the top-1, top-5, and
top-10 accuracy based on the number of samples generated by our procedure. In left, the RMSD of
the ligand can be seen, whereas right, the sidechain RMSD is illustrated. In the top row, the input
are crystal structures, while the bottom row uses structures generated by ESMFold.
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Figure 9: Selective accuracy of the score-model. Compare the performance of the model with
respect to the confidence model, and a perfect selection. In left, the RMSD of the ligand can be seen,
whereas right, the sidechain RMSD is illustrated. In the top row, the input are crystal structures,
while the bottom row uses structures generated by ESMFold.

F.5 PERFORMANCE BASED ON QUALITY OF COMPUTATIONAL STRUCTURES

While we saw that the docking results between ESMFold and ColabFold structures did not change
much, we will investigate whether the quality of the computationally generated structures impacts
the performance. Figure 10 shows the overall quality of the predictions by illustrating the RMSD to
the ground truth protein structure in the pocket. We see that more than half of the predictions have
an RMSD of < 2Å to the ground truth structure. Figure 11 shows the percentage of complexes with
a good RMSD and SC-RMSD respectively. For this, we have split the test set into roughly three
equally sized parts based on the RMSD of all atoms in the pocket between ESMFold structures
and the ground truth crystal structures. We can clearly see that the performance degrades with
worse predictions. For structures that are not accurate, our method is not notably better than others.
Especially for the sidechains, the prediction quality of our model strongly depends on the quality of
the computationally generated structure.
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Figure 10: Pocket RMSD between apo and holo structures. Apo ESMFold and ColabFold struc-
tures have been aligned with the holo crystal structures such that the RMSD in the pocket is the
lowest. This figure shows the RMSD of the pocket for proteins in the test set. The dashed lines rep-
resent the 25%, 50%, and 75% percentiles respectively. This figure does not show outliers having
an RMSD larger than 10Å.
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Figure 11: Model accuracy based on quality of ESMFold predictions. Comparison of the model
accuracy with three different levels of the quality of ESMFold predictions. The predicted ligand
(left) and sidechain quality (right) are evaluated respectively.

F.6 NUMBER OF REVERSE DIFFUSION STEPS

We evaluated multiple values for the concrete number of reverse diffusion steps on the validation
set to determine the best number at inference time. The results are visualized in Figure 12. 30
reverse diffusion steps yielded the best results while not impacting the performance too much. We
can see that we could reduce the number of reverse diffusion steps to 20 without losing too much
performance. This reduction in reverse diffusion steps could reduce the runtime by up to 33%.
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Figure 12: Comparison of the number of reverse diffusion steps. Results of the inference with
different reverse diffusion steps on the validation set. The values on the y-axis shows the fraction of
samples where the RMSD is < 2Å and the SC-RMSD is < 1Å.

F.7 IMPACT OF POCKETS FOR CROSS-DOCKING

When comparing works that use site-specific docking, it is important to compare which pockets
they used and if the definitions are similar enough not to skew the results. More accurate pockets
typically result in better predictions. In Table 16, we see how different pockets influence the results
of the performance of our model in the cross-docking benchmark. For this testset, we present the
numbers for three different choices of pockets.

1. Use the pocket center definition as we did in training which is defined as the mean α-
carbon atoms that are within 5Å of any ligand atom. This requires the ground truth ligand
and would thus be an unfair comparison. Marked with a *.

2. Use the pocket center definition as Brocidiacono et al. [2023] where they rely on informa-
tion from multiple ligands [Brocidiacono et al., 2022]. This can be very different from our
definitions. Marked with a †.

3. Pre-process the pockets from Brocidiacono et al. [2023] by computing the mean of the
α-carbon atoms in the pocket. This does not use any additional data and follows a more
similar definition to our pocket. These numbers were presented in the main paper.
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If the pockets were constructed the same way as in training (i.e., no distribution shift but different
data than competitors), we would achieve results improving on the state-of-the-art in all < 2Å accu-
racy metrics. Even giving better predictions than GNINA. When using the exact pockets specified
by Brocidiacono et al. [2023], the results are slightly worse than those presented in the paper’s main
text but still show the same trend.

Table 16: Cross-docking performance on CrossDocked 2020 with different pockets. In this
table, we present additional results for the cross-docking benchmarks when using different pockets.
The method highlighted with * follows our pocket definition presented with access to the ground
truth data to compute the pockets as in training. For the results marked with a †, we use identical
pocket centers as presented in Brocidiacono et al. [2023].

Top-1 RMSD Average
Method %<2 %<5 Runtime (s)

DIFFDOCK-POCKET* (10) 32.7 (31.8) 68.2 (71.5) 20.6
DIFFDOCK-POCKET† (10) 26.8 (17.0) 67.2 (50.5) 21.4
DIFFDOCK-POCKET† (40) 28.3 (18.2) 68.2 (49.6) 71.6

G VISUALIZATION OF DOCKING RESULTS

We present the visualization for four different dockings in Figure 13. An animation of the dock-
ing process for multiple complexes can be found in our repository at https://anonymous.
4open.science/r/DiffDock-Pocket-AQ32.

Figure 13: Flexible docking of unseen complexes. Visualization of the results of four dockings on
arbitrarily selected complexes (top: 6a1c, 6hzb, bottom: 6md6, 6uii). Four different poses for the
sidechains and ligand are presented in different colors.

H EVALUATION WITH POSEBUSTERS

We have evaluated our results with the PoseBusters [Buttenschoen et al., 2023] method to determine
the percentage of our results which are physically plausible. For this, we used two separate tests
implemented by Buttenschoen et al. [2023], one that measures the quality of the predicted complex
structures (including intramolecular and intermolecular validity, such as the bond lengths and inter-
nal steric clashes in the ligand or its volume overlap with the protein) and the redocking success,
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which also takes into account the accuracy of the prediction of the ligand, including that the RMSD
between the predicted and true ligand is below 2Å but also checking that the molecules have the
same chirality and double bond stereochemical properties. We report these results on our model and
baselines for both holo-crystal and ESMFold generated apo structures of the PDBBind benchmark
in Table 17.

Table 17: Results of PoseBusters quality check. We report the percentage of predictions that pass
all Posebuster quality checks required for the docked complex structure and the redocked structure
compared to the ground truth ligand.

ESMFold Structures Holo-crystal Structures
Method Docking Structure Re-docking Docking Structure Re-docking

GNINA (rigid) 90.4 7.0 95.8 36.3
GNINA 93.2 4.2 95.4 14.8
DIFFDOCK 11.4 3.6 23.4 18.4
ESMFOLD 16.0 - - -

DIFFDOCK-POCKET (40) 21.6 10.9 29.4 17.4

The results on holo-crystal structures align with the findings presented by Buttenschoen et al. [2023]:
The classical model GNINA outperforms both deep learning models in both the physical plausibil-
ity of predicted structures as well as the physical plausibility of good predicted structures. Compar-
ing DIFFDOCK-POCKET with DIFFDOCK, we can observe that while the percentage of generated
structures that pass all PoseBuster quality checks is higher for DIFFDOCK-POCKET, this advantage
disappears when looking at the percentage of structures that are also considered to be a successful
redocking attempt and DIFFDOCK even slightly outperforms DIFFDOCK-POCKET.

What we find very promising and something we believe would require further examination is the
results on ESMFold structures. In Table 17, we also report that only 16% of ESMFold generated
protein structures pass all quality checks when comparing it with the ground-truth ligand. GNINA
and DIFFDOCK-POCKET both improve on this number in their generated structures which can be
attributed to better sidechain positions. However, although more than 90% of generated structures
by GNINA are considered correct, DIFFDOCK-POCKET outperforms all methods when considering
successful redocking. This suggests a possible advantage DIFFDOCK-POCKET could have over
classical approaches when docking to apo structures, however further examination is needed.

Altogether we can report that on the PDBBind testset DIFFDOCK-POCKET outperforms DIFFDOCK
on the percentage of generated structures that pass all PoseBusters checks (with DIFFDOCK being
the best deep-learning method reported by Buttenschoen et al. [2023]) and outperforms all consid-
ered methods on redocking to ESMFold structures. Further evaluation on the PoseBusters bench-
mark for both holo-crystals and generated structures as well as comparison to other docking methods
is needed to reassure these claims and is an objective of future work.
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