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Abstract
This paper explores the role of individual agency in
algorithmic risk predictions. By comparing the rel-
ative control individuals have over various features
used for risk prediction to the predictive relevance
of these features, we formalize an audit procedure
to assess the usability of risk prediction in practice.

Algorithmic risk assessment tools perform the task of pre-
dicting the context-relevant risk of individuals obtaining
certain outcomes in the future using their historical and
demographic data. Their usage in practice is becoming in-
creasingly widespread and spans various societal domains,
including recidivism risk prediction for pre-trial defendants
Ghasemi et al. [2021], early warning systems to predict
school dropout risks Mac Iver et al. [2019], and even dis-
ease prediction Pudjihartono et al. [2022]. The deployment
of these tools is often justified by claims that they allow
for targeted interventions for high-risk individuals to im-
prove individual or societal-level outcomes. However, em-
pirical audits of various risk prediction tools has questioned
these claims. Various audits of recidivism risk prediction
demonstrate inaccuracies and disparities in the predictive
performance along racial lines ProPublica [2016], Goel
et al. [2021]. Analyses of early warning systems used in
public schools found that dropout risk scores from these
tools were only as accurate as scores generated using stu-
dents’ environmental/group-level data Perdomo et al. [2023].
Similar issues of stereotyping and/or disparities in individ-
ual vs group-level predictive performance have been noted
with the use of risk prediction in other domains Nabi et al.
[2021], Brotcke [2022]. The evolving audit literature pro-
vides evidence to counter the often-dubious performance
claims made when deploying risk assessment tools in prac-
tice. However, what lacks in this literature is the underly-
ing causal picture that explains why certain risk prediction
mechanisms are problematic to employ an individual-level.
This work aims to fill this gap in the audit literature.

To understand the impact of algorithmic risk prediction

tools on individuals, we argue that it is important to ques-
tion whether the algorithm’s predictions are based on
features that are within an individual’s control. By con-
trol, we refer to the past or future ability of the individual to
change the way they are perceived by the risk prediction tool.
This paper proposes an audit procedure that compares the
relative control that an individual has over a subset of fea-
tures to the predictive relevance of that feature subset to risk
prediction. If risk predictions are predominantly based on
features over which an individual has relatively low control
(such as, race or parental income), then the risk prediction
tool can be deemed to unjust and/or impractical, depending
on what actions are considered when quantifying control.

To make the notions of control and predictive relevance
more precise, suppose the risk prediction tool, denoted by
Risk : X → [0, 1], takes as input a d-dimensional vector
for each individual from the space X ∈ Rd and return a
risk score in the range [0, 1]. Let X,Y, Ŷ denote the random
variable corresponding to an individual’s feature, their true
outcome, and the output from the risk prediction tool respec-
tively. Each individual x is represented by d features, i.e.,
x := (x1, x2, . . . , xd). With this setup, quantifying predic-
tive relevance of any feature subset amounts to computing
how important the feature subset is to the output of Risk(·),
which can indeed be done using standard feature impor-
tance frameworks Covert et al. [2020]. For instance, one
can quantify of predictive relevance of any feature subset
X ′ ⊂ X using the log-loss of predicting Risk(·) with only
the features from X ′; see Appendix A for details. We will
denote predictive relevance of subset X ′ by pr(X ′).

To quantify relative control, we first need to know what
actions are available in the given setting. An individual can
at any point take actions to change the value of one or more
of their features; e.g., using do-calculus framework Pearl
[2012], an action can be of the kind A := do(Xi = x′

i), i.e.,
an individual takes action to change set feature i to value x′

i,
Suppose A denotes all possible actions available to an indi-
vidual. Since taking different actions will involve different
levels of difficulty and we can characterize this using a cost



function, defined as cost : X × A → R. Then, cost(x,A)
denotes the cost paid by an individual with features x to
perform the action A. With this notation, we can define what
we mean by an individual’s control over different features.
Consider two feature i, j ∈ [d]. Let Ai,Aj ⊂ A denote
actions that only operate over features i, j respectively, i.e.,
actions that only change the value of the corresponding fea-
ture while leaving everything else unchanged. Then, (with
some abuse of notation) for an individual with features x,
we can define cost(x, {i}) := 1/|Ai| ·

∑
A∈Ai

cost(x,A).
An individual with features x has relatively more control
over feature i compared to j if cost(x, {i}) < cost(x, {j}).
To understand this setup, consider the simple example of
the following features of any student: their GPA and their
average school GPA. Both take the same range of values
and the action space for both features is the same. However,
for pretty much all actions, changing the average school
GPA will be more costly for a student than changing their
own GPA. This definition of cost can also be extended to
account for relative control over feature combinations. This
extension is specially important because many real-world
features are often associated with each other, such that
if features i and j are highly correlated, then in certain
cases cost(x, {i, j}) could be smaller than cost(x, {i}) or
cost(x, {j}) (i.e., changing these features together might
be easier than changing just one of them). We can further
generalize this to measure population-level average cost of
updating features. For any feature subset X ′, we can define
average action cost as cost(X ′) := Ex[cost(x,X ′)]. Once
again, cost(X ′

1) < cost(X ′
2) implies that an average indi-

vidual has a greater level of control over features in X ′
1

compared to features in X ′
2.

Coming back to the central question of this paper: why is
it important to consider relative individual-level control
over various features when auditing risk predictions?
A two-dimensional analysis of predictive relevance vs cost
associated with all feature subsets can provide crucial infor-
mation about the usability of the risk prediction tool. First,
we can rule out the trivial setting where pr(·) of all feature
subsets is low; in this case, audit doesn’t make sense as there
is an obviously wide gap in the information used by the risk
prediction tool and our audit setup. Hence, suppose there
are feature subsets that indeed achieve high pr(·) values.
Among these, the problematic cases are those where there’s
at least one feature subset that achieve high cost(·) values.
That is, for any subset X ′, if both pr(X ′) and cost(X ′) are
relatively large, then Risk(·) predictions are highly depen-
dent on the values taken by the features in X ′ and, at the
same time, the average individual has relatively low control
over changing the values of these features in X ′.

The implications of having features with high predictive
relevance and high cost depends on the use case of risk
prediction and the actions used to quantify the cost. For
instance, in the case of school dropout risk prediction, the

use case is to design targeted interventions to reduce the
number of students dropping out from high school. The fea-
tures used include student’s education, socio-economic, and
demographic attributes and the available actions cover steps
that the students can take in the future, like improving GPA
or changing schools, with the latter usually being relatively
more costly than the former. For this setting, the findings of
Perdomo et al. [2023] indicate that risk predictions obtained
using school or district-level features are similar to those
obtained using individual student-level features, indicating
that school or district-level features have high predictive
relevance and also high level of average action cost. High
action cost implies that students have low control over the
features used for risk prediction. Hence, even if this tool
does identify students at high risk of dropout, it would be dif-
ficult to deploy individual-level interventions to help them
reduce their dropout risk. School/district-level interventions
might be more appropriate for this case. Another relevant
example is the case of criminal recidivism risk prediction.
Here, features include criminal history and demographic at-
tributes of the defendants and use case is justly determining
which defendants are safe release pre-trial. For this task, the
relevant actions are those that were available to the defen-
dant in the past, such as appearing for prior court dates or
not participating in criminal activities. However, if features
like race or socio-economic status have high predictive rele-
vance, than risk predictions would be deemed to be unjust
as they employ features over which the defendants have had
little to no control throughout their lifetime.

Despite differences in use cases and available actions in the
above two examples, our audit setup shows that the central
issue with risk prediction in both applications is that predic-
tion is dependent on features over which individuals have
relatively low control. Hence, with this notion of control,
our audit setup can be used identify potential issues of im-
practicality and/or injustice in risk prediction applications.

Finally, one major hurdle to this approach is quantifying
cost(x,X ′), i.e. cost of updating features in the set X ′, given
current feature values x. Ideally, knowing this requires ac-
cess to the complete causal structure of the relevant context.
To approximate cost, we can instead use a matching-based
method based on the idea that if changing a feature requires
low average cost, then (with large enough sample size) there
would be many other individuals in the dataset who differ
based on this feature’s value but are similar in other aspects.
That is, cost(x,X ′) can be approximated by the fraction of
individuals for whom values of features in X ′ are different
than x but all other feature values are same as x.

With this method for quantifying cost, our framework for-
wards a feasible audit system for practitioners to determine
the usability of algorithmic risk prediction tools. Our work
explores the role of agency in algorithmic predictions and
can inform the wider causal ML literature on algorithmic
recourse, causal fairness, and strategic classification.
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A PREDICTIVE RELEVANCE SCORES

To capture the predictive relevance of any subset X ′ ⊂ X ,
we need to quantify the extent to which these features are
used in the Risk function. There are multiple ways this
can be accomplished. Let X,X ′ denote random variables
for features corresponding to X , X ′ respectively. Suppose
we have access to a loss function L : Y × Y → R, that
can be used to quantify the error associated with any risk
prediction (e.g, simple log-loss function). Let Y denote
the “true risk” associated with any given individual with
features X . Assuming that (X,Y ) follow an underlying
joint distribution D, the error associated with prediction
function Risk(·) can be quantified as

Error(Risk,D) := EX,Y∼D [L(Y,Risk(X)] .

Using this framework, predictive relevance of any subset
of features X ′, denoted by pr(X ′), can be measured by the
amount of increase in error due to the use of X ′ instead of
X (assuming adding information always lead to same or
lower amount of prediction error). In other words, we can
quantify

prideal(X
′) = Error(Risk,D′)−Error(Risk,D)

= EX′,Y∼D′ [L(Y,Risk(X ′)]− EX,Y∼D [L(Y,Risk(X)] ,

where D′ is the joint distribution of X ′, Y . Note that the
above measure requires access to true-risk scores Y . Access
to these scores is not always guaranteed considering the
true outcomes that define “true-risk” are often unobserved
when/immediately after making the risk decisions (e.g., ob-
serving dropout or recidivism outcomes). In the absence
of true outcomes, we can alternately define predictive rel-
evance simply by how well we can predict Risk(X) just
using features X ′, i.e., define

pr(X ′) := −EX∼DX
[L(Risk(X ′),Risk(X)] ,

where DX is the marginal distribution of X over variables
from X .
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