
Under review as submission to TMLR

Rethinking Prompt Optimization: Reinforcement, Diversifi-
cation, and Migration in Blackbox LLMs

Anonymous authors
Paper under double-blind review

Abstract

An increasing number of NLP applications interact with large language models (LLMs) through
black-box APIs, making prompt engineering critical for controlling model outputs. While recent
Automatic Prompt Optimization (APO) methods iteratively refine prompts using model-generated
feedback, textual gradients, they primarily focus on error correction and neglect valuable insights
from correct predictions. This limits both their effectiveness and efficiency. In this paper, we propose
a novel APO framework centered on enhancing the feedback mechanism. We reinterpret the textual
gradient as a form of negative reinforcement and introduce the complementary positive reinforcement
to explicitly preserve beneficial prompt components identified through successful predictions. To
mitigate the noise inherent in LLM-generated feedback, we introduce a technique called feedback
diversification, which aggregates multiple feedback signals, emphasizing consistent, actionable advice
while filtering out outliers. Motivated by the rapid evolution and diversity of available LLMs, we also
formalize Continual Prompt Optimization (CPO), addressing the practical challenge of efficiently
migrating optimized prompts between different model versions or API providers. Our experiments
reveal that naive prompt migration often degrades performance due to loss of critical instructions.
In contrast, our approach consistently outperforms strong baselines, achieving significant accuracy
improvements, faster convergence, and lower computational costs in both standard and migration
scenarios.

1 Introduction

Traditionally, NLP tasks have relied on direct fine-tuning of pretrained foundation models (Bommasani et al., 2021;
Devlin et al., 2019; Lewis et al., 2020; Radford et al., 2018; Raffel et al., 2020) on downstream datasets (Davari
et al., 2019; Farahnak et al., 2021; Davari et al., 2020; Yang et al., 2023b; Marks et al., 2024; Davari, 2020). This
process enables models to adapt their internal parameters to task-specific distributions. Parallel to fine-tuning, methods
utilizing internal model representations, such as hidden states (Rogers et al., 2021; Davari et al., 2022a), gradients,
and attention patterns (Kornblith et al., 2019; Raghu et al., 2021; Davari et al., 2023; 2022b), have inspired advanced
optimization techniques including prompt tuning (Li & Liang, 2021; Lester et al., 2021), LoRA (Hu et al., 2022), and
other parameter-efficient methods (Davari & Belilovsky, 2024b; Yadav et al., 2023; Davari & Belilovsky, 2024a; Yu
et al., 2024).

However, the NLP landscape is shifting toward closed-weight Large Language Models (LLMs) accessed via black-
box APIs, where internal representations and gradients are inaccessible. Consequently, traditional fine-tuning and
interpretability-driven methods become impractical, placing greater emphasis on prompt design as the primary mecha-
nism for model adaptation. The increasing reliance on API-based models, such as GPT-3 and GPT-4, has spurred a
wave of commercial applications (OpenAI, 2023; Bubeck et al., 2023), where carefully engineered prompts critically
influence model outputs (Luo et al., 2022; Kojima et al., 2022; Wang et al., 2022; Zhou et al., 2022a; Madaan et al.,
2023; Bai et al., 2022; Chen et al., 2023c). Yet manually formulating effective prompts is costly, requiring extensive
domain knowledge, prompting expertise (Jiang et al., 2023b; Wei et al., 2022; Kong et al., 2023), and considerable
trial-and-error effort.

To alleviate these challenges, recent work has introduced Automatic Prompt Optimization (APO) methods (Wang
et al., 2023a; Yang et al., 2023a; Zhou et al., 2022b; Pryzant et al., 2023), which iteratively refine prompts based
on model performance feedback, typically measured on a held-out validation set. These refinement methods either
follow predefined actions such as deleting, paraphrasing, or rearranging prompt elements (Zhou et al., 2022b; Schnabel

1

Under review as submission to TMLR

& Neville, 2024), or employ a secondary LLM to generate candidate prompts guided by model predictions and
corresponding feedback signals (Wang et al., 2023a; Pryzant et al., 2023; Yang et al., 2023a). Such feedback, often
referred to as the textual gradient (Wang et al., 2023a), is typically generated from incorrect predictions and serves
as a form of negative reinforcement aimed at correcting errors. While useful, this singular focus neglects valuable
information available from correct predictions, limiting both efficiency and effectiveness.

In this paper, we enhance the feedback component of prompt optimization, a dimension relatively underexplored
compared to search and planning approaches explored in prior work (Wang et al., 2023a; Pryzant et al., 2023; Schnabel
& Neville, 2024). Our insights complement existing methods and can be seamlessly integrated with them. Specifically,
we reconceptualize the textual gradient as negative reinforcement (Mnih et al., 2013), capturing corrective signals from
incorrect predictions. To augment this, we introduce positive reinforcement, explicitly identifying and reinforcing
beneficial prompt components discovered through successful predictions.

Additionally, to manage variability and noise in LLM-generated feedback, we propose feedback diversification. This
method aggregates multiple feedback samples (both positive and negative) for the same prompt and training examples,
summarizing them via an LLM. The aggregation leads to an emphasis on consistent, impactful instructions while
filtering out noisy outliers. This process resembles the peer review process, where diverse perspectives collectively
highlight the most valuable insights. We combine these concepts into BReAD, short for Balanced Reinforcement and
Aggregated Diversification, a unified framework yielding robust, efficient prompt optimization.

Prompt optimization becomes even more challenging when migrating optimized prompts between different LLMs or
across API providers. Rapid advancements in LLM technology frequently necessitate adapting existing optimized
prompts to newer models, such as from GPT-3 to GPT-4. To formally address this scenario, we introduce Continual
Prompt Optimization (CPO), inspired by the machine learning paradigm of continual learning (Parisi et al., 2019; Li
& Hoiem, 2017; Davari et al., 2022a). Similar to continual learning, CPO emphasizes retaining critical knowledge,
specifically valuable prompt elements, while adapting to new models.

Naive prompt migration strategies, involving direct reuse of previously optimized prompts, frequently degrade perfor-
mance due to differences in model capabilities, tasks, and providers (Kojima et al., 2022; Zhou et al., 2022b; Zhang
et al., 2022; Ma et al., 2023; Chen et al., 2023a). Standard APO methods can exacerbate this issue, inadvertently
discarding or altering crucial prompt elements during iterative optimization. Our proposed framework mitigates this
problem by explicitly preserving essential instructions through balanced reinforcement and feedback diversification,
ensuring efficient and effective prompt migration.

Empirical evaluations demonstrate our framework consistently surpasses strong baselines in standard optimization
and realistic migration scenarios. Experiments migrating prompts from GPT-3.5-turbo to GPT-4o show significantly
improved accuracy and reduced computational cost through accelerated convergence. Overall, our contributions are as
follows:

1. We introduce and formalize Continual Prompt Optimization (CPO), a framework designed to efficiently
adapt optimized prompts across evolving LLM versions, effectively addressing performance degradation and
instruction loss common in naive migration approaches.

2. We propose BReAD, an APO method combining structured positive/negative reinforcement and feedback
diversification, achieving robust accuracy improvements, faster convergence, and reduced API usage.

2 Related Work

Automatic prompt optimization (APO) methods can be broadly categorized based on their level of access to model
internals. The first category includes approaches that assume full or partial access to internal model states, such as
parameters, gradients, or output probabilities. These methods are primarily applicable to open-source models like
LLaMA (Touvron et al., 2023a;b; Grattafiori et al., 2024) or Mistral (Jiang et al., 2023a; team, 2024). Leveraging
this internal information, these methods can directly train additional parameters, such as soft prompts (Li & Liang,
2021; Lester et al., 2021; Hu et al., 2022; Wang et al., 2023b; Qin & Eisner, 2021), or optimize discrete prompts using
gradient-guided search (Shin et al., 2020; Wen et al., 2023; Gao et al., 2020; Chen et al., 2023b). Some approaches even
involve training the prompt generator itself (Hao et al., 2023; Wang et al., 2022). However, these techniques are not
feasible when interacting with black-box APIs, which is the primary focus of our paper.

2

Under review as submission to TMLR

The second category encompasses methods designed for black-box interaction, where models are accessed only through
APIs without internal visibility. Black-box APO methods generally fall into two subcategories: (1) iterative generation
methods and (2) search and planning-based methods.

Iterative Generation and Evaluation Iterative generation methods repeatedly propose new prompt candidates,
evaluate their effectiveness based on the model’s performance, and select the best-performing prompts for subsequent
iterations. These methods typically rely on performance-driven cycles of generation and evaluation, often using external
metrics or validation sets.

Automatic Prompt Engineer (APE)(Zhou et al., 2022b), for example, iteratively generates prompt variations through
semantic modifications of an initial prompt, selecting the best candidate based on validation accuracy until convergence.
Similarly, Optimization by PROmpting (OPRO)(Yang et al., 2023a) employs an LLM to iteratively propose new prompts
informed by previous prompts and their respective performance metrics. Unlike APE, OPRO can generate substantially
different prompts rather than mere semantic variations.

Despite their effectiveness, iterative methods like APE and OPRO primarily rely on implicit and unstructured feedback
signals derived indirectly from performance metrics. Consequently, these methods are limited in the depth of optimiza-
tion they can achieve. In contrast, our proposed approach explicitly incorporates structured feedback, both positive and
negative, derived directly from model predictions, significantly enriching the feedback mechanism and enhancing the
optimization process.

Search and Planning-based Approaches Another family of black-box APO methods frames prompt optimization
as a search or planning problem. These methods leverage systematic exploration techniques, such as tree search or
multi-objective optimization, to efficiently navigate the prompt space. Prominent examples include PromptAgent (Wang
et al., 2023a), ProTeGi (Pryzant et al., 2023), and SAMMO (Schnabel & Neville, 2024).

PromptAgent employs Monte Carlo Tree Search (MCTS) (Coulom, 2006) to formulate prompt optimization as
sequential decision-making, guided by a textual gradient derived from incorrect predictions. Similarly, ProTeGi uses
beam search to systematically explore prompt modifications, also relying primarily on corrective textual gradients.
In contrast, SAMMO applies a multi-objective optimization framework, performing structural modifications, such as
adding, removing, or replacing prompt components, guided by predefined objectives.

While these search-based methods effectively explore the prompt space, they predominantly utilize corrective feedback
from incorrect model predictions, neglecting beneficial insights from correct predictions. Our proposed framework
complements these methods by enhancing the feedback component. By explicitly integrating structured positive
and negative reinforcement signals, along with feedback diversification to manage feedback noise, our approach
improves both efficiency and robustness. Importantly, our framework can be seamlessly combined with these existing
search-based methods, potentially increasing their performance by enriching their feedback mechanisms.

3 Methodology

In this section, we introduce our proposed framework for APO, which is composed of five primary modules (see
Figure 1).

Forward Generation: This module generates model predictions by applying the current prompt to a batch of training
examples via the underlying LLM.

Evaluation: The evaluation module measures the effectiveness of a given prompt based on the accuracy of the model’s
predictions on a held-out validation set. The evaluation can be deterministic, such as measuring accuracy via the exact
match between the model’s predictions and the ground truth labels, or it can be LLM-based, where the model is asked
to evaluate the quality of the predictions. In this paper, we focus on deterministic evaluation, but the framework can be
easily extended to include LLM-based evaluations.

Feedback Generation: This module is responsible for producing structured feedback signals based on the model’s
predictions using the current prompt. It generates positive feedback, which explicitly identifies and encourages retaining
prompt components that lead to correct model predictions, and negative feedback, which highlights potential issues that
lead to incorrect predictions, suggesting specific modifications to improve model accuracy. When employing feedback
diversification, this module generates multiple feedback signals (both positive and negative) for the same prompt and

3

Under review as submission to TMLR

training batch. These signals are then aggregated via a summarization call to an LLM, resulting in a consolidated
feedback signal emphasizing consistent and impactful instructions while minimizing noise.

Training Batch

Forward Generation

Generates predictions via LLM

Evaluation Module
Evaluates prompt effectiveness

on validation set

Feedback Generation
Positive & negative feedback for

a training batch

Feedback Aggregation
Aggregates multiple feedbacks

into one actionable signal

Current Prompt
Base prompt for the current

optimization step

Prompt Update Module
Generates a new prompt based

on feedback

Next Iteration

Feedback Diversification
Generates multiple feedback

signals

Search Module - Abstracted

Selects next candidate prompt

Figure 1: Overview of our proposed framework for auto-
matic prompt optimization (APO). The framework con-
sists of five primary modules: Forward Generation, Eval-
uation, Feedback Generation, Prompt Update, and Search
Module. The Search Module is abstracted to allow for the
integration of various search and planning methods.

Prompt Update: This module generates a new prompt
based on the current prompt, the training batch processed
by the model, and the feedback signals generated in the
previous step.

Search Module (Abstracted): The search module pro-
poses the next candidate prompt to be further explored. The
suggestion is based on the evaluation metrics and other
search-related criteria (e.g., visitation frequency in MCTS).
Since this research focuses explicitly on feedback enhance-
ment rather than search or planning techniques, this mod-
ule is treated as an abstract, interchangeable component
that can adopt existing APO methods, including PromptA-
gent (Wang et al., 2023a), ProTeGi (Pryzant et al., 2023),
or iterative generation methods such as APE (Zhou et al.,
2022b) and OPRO (Yang et al., 2023a).

In our experimental evaluation, Section 4, we specifically
utilize PromptAgent (Wang et al., 2023a) as the baseline
search and planning method due to its established effective-
ness and robust performance across diverse prompt opti-
mization tasks (Zhang et al., 2025; Li et al., 2025). Nev-
ertheless, the modular design of our feedback generation
component allows straightforward integration with other
existing APO frameworks, making our approach versatile
and broadly applicable.

4 Experiments

4.1 Data, Metrics, and Models

We evaluate our method across five tasks that collectively
span causal, spatial, tabular, inferential, and semantic rea-
soning, covering both classification and regression set-
tings. Three of these tasks are drawn from the BBH bench-
mark (Suzgun et al., 2022), a widely used suite in prompt
optimization (Schnabel & Neville, 2024; Wang et al., 2023a;
Zhou et al., 2022b; Pryzant et al., 2023; Yang et al., 2023a)
and prompt engineering research (Wei et al., 2022; Kojima
et al., 2022; Wang et al., 2022; Zhou et al., 2022a; Madaan
et al., 2023; Bai et al., 2022; Chen et al., 2023c). We fo-
cus on a representative subset of BBH tasks selected for
their diversity in reasoning requirements: Causal Judgment
evaluates causal inference through binary classification; Ge-
ometric Shapes assesses geometric and spatial reasoning by
requiring the model to interpret SVG path strings in a multi-
class classification setting; and Penguins tests the model’s
ability to perform table-based classification by reasoning
over structured data.

To complement these, we include two additional benchmarks outside of BBH. The CommitmentBank (CB) (De Marneffe
et al., 2019) is a natural language inference dataset in which models classify contextualized sentence pairs as entailment,
contradiction, or neutral. Biosses (Soğancıoğlu et al., 2017) is a biomedical dataset that measures sentence-level
semantic similarity, framed as a regression task with continuous similarity scores. This combination of tasks enables a

4

Under review as submission to TMLR

comprehensive evaluation of our framework’s generalizability, robustness, and performance across a broad spectrum of
reasoning types, domains, and output formats. For details on the dataset statistics, see Appendix B.

We use accuracy as the primary evaluation metric. During the optimization process, model performance is assessed on a
held-out validation set, and final results are reported on the test set. Both GPT-3.5-turbo and GPT-4o are evaluated
using the dataset’s default prompts, as well as the optimized prompts generated by our proposed approach and the
baseline method, PromptAgent (Wang et al., 2023a).

4.2 Standard Prompt Optimization (GPT-3.5-turbo)

In this section, we evaluate our methodology in the standard Automatic Prompt Optimization (APO) setting, where
the goal is to improve a prompt for a fixed language model, GPT-3.5-turbo. We initialize the optimization with a
task-specific default prompt, which is a concise, single-sentence instruction describing the task (e.g., “Answer questions
about causal attribution” for Causal Judgment). The full list of default prompts is provided in Appendix C.

Each experiment is run for up to 15 optimization iterations. During this process, the feedback diversification module
samples six feedback signals per batch. Positive feedback is introduced after the third or fourth iteration, depending on
the dataset, as determined empirically (see Section 4.4 for details). This staged introduction ensures that early updates
prioritize error correction before preserving beneficial prompt components.

Table 1 summarizes our experimental results, averaged across five random seeds. Compared to the PromptAgent
baseline (Wang et al., 2023a), our approach achieves consistent and statistically significant improvements in accuracy
across all tasks, ranging from 4.9% to 21.5% (p < 0.01). Additionally, incorporating feedback diversification, either to
the baseline or in our approach, reduces the standard deviation, which highlights the role of feedback diversification in
stabilizing the optimization process. Beyond accuracy, our method offers improved efficiency. By reinforcing helpful
prompt elements early, it avoids redundant removals and rediscoveries, leading to faster convergence. This translates
into a reduction ranging from 0.5% to 3.3% in the number of LLM calls across tasks compared to the baseline (details
in Appendix D). Such efficiency is particularly valuable in real-world applications, where API costs and latency are
critical considerations.

4.3 Prompt Migration: GPT-3.5-turbo →GPT-4o

Having established the effectiveness of our method in the standard optimization setting, we now turn to the more
challenging and practically important scenario of prompt migration. This setting involves transferring prompts optimized
for one language model (e.g., GPT-3.5-turbo) to a newer or different model (e.g., GPT-4o), with the goal of preserving
both effectiveness and key instructional components.

We begin by evaluating the direct transferability of prompts optimized for GPT-3.5-turbo. We refer to these as expert
prompts, which are the final outputs of the APO procedure described in Section 4.2. These prompts are applied directly
to GPT-4o and compared against the task-specific default prompts. A full list of default and expert prompts is provided
in Appendix C. As shown in Table 2, expert prompts generally outperform default prompts when transferred directly,
yielding initial accuracy gains of 1.3% to 3.3% across tasks.

However, applying standard APO to these transferred expert prompts often results in worse or statistically insignificant
performance improvements, compared to optimizing from the default prompt. This degradation occurs because early-
stage corrective feedback can overwrite useful instructions of the expert prompt that were critical for task success. While
some of this content may be recovered in later iterations, the optimization becomes inefficient and unstable. These
findings highlight a key limitation of naive prompt migration: it risks discarding task-relevant knowledge embedded in
prompts tuned for the source model.

Next, we evaluate the effectiveness of our framework in the prompt migration setting. The optimization process is
initialized with expert prompts derived from GPT-3.5-turbo optimization (see Section 4.2) and applied to GPT-4o
for up to 15 iterations. To account for the higher API cost and greater accuracy of GPT-4o, we reduce the number of
feedback diversification samples to two per iteration. Unlike in the standard APO setting, where the initial prompt
contains minimal task-specific guidance, we introduce positive feedback from the first iteration to preserve valuable
information already present in the expert prompts. These design choices are guided by preliminary experiments,
which showed diminishing returns from additional diversification and performance degradation when delaying positive
feedback.

5

Under review as submission to TMLR

Table 1: Performance of prompt optimization methods on GPT-3.5-turbo, averaged over five random seeds. Results
show mean accuracy (± standard deviation), with statistical significance assessed via two-tailed paired t-tests (p-value,
Cohen’s d). +FD = Feedback Diversification; +PR = Positive Reinforcement; BReAD = full method combining both.
Init. Acc. refers to the accuracy achieved by the default prompt before optimization. All methods use 15 iterations and
6 feedback samples per step; positive reinforcement is introduced at iteration 3 for Casual Judgment, Geometric Shapes,
and Penguins, and at iteration 4 for Biosses and CB. BReAD consistently outperforms the baseline and its variants,
achieving significant accuracy gains (4.9%–21.5%) and improved stability.

Dataset (Init. Acc.) Method Accuracy p-value Cohen’s d

Causal Judgment
(56.5 ± 3.67)

Baseline 58.6 ± 3.98 – –
Baseline + FD* 60.8 ± 2.38 0.020 1.687
Baseline + PR* 63.6 ± 2.62 0.040 1.336
BReAD** 64.4 ± 2.16 0.008 2.162

Geometric Shapes
(32.7 ± 2.04)

Baseline 52.1 ± 4.94 – –
Baseline + FD* 57.8 ± 3.15 0.032 1.439
Baseline + PR* 61.6 ± 4.18 0.035 1.399
BReAD** 63.3 ± 1.16 0.004 2.644

Penguins
(60.5 ± 4.87)

Baseline 65.1 ± 4.96 – –
Baseline + FD* 66.1 ± 2.42 0.083 1.148
Baseline + PR* 66.9 ± 3.97 0.043 1.464
BReAD** 68.6 ± 1.87 0.007 2.556

Biosses
(25.2 ± 3.84)

Baseline 62.5 ± 4.19 – –
Baseline + FD* 67.0 ± 2.92 0.044 1.456
Baseline + PR* 68.2 ± 3.02 0.021 1.844
BReAD** 70.4 ± 2.02 0.006 2.654

CB
(68.5 ± 4.22)

Baseline 81.7 ± 3.17 – –
Baseline + FD* 84.2 ± 2.02 0.032 1.610
Baseline + PR* 84.2 ± 3.73 0.049 1.402
BReAD** 85.7 ± 3.54 0.008 2.495

As shown in Table 3, our method consistently improves performance across all tasks, with relative accuracy gains
ranging from 3.5% to 16.0% over the PromptAgent baseline (p < 0.01). The most substantial improvements are
observed in Geometric Shapes (12.5%) and Biosses (16.0%), where preserving domain-specific instructions is especially
important. In Geometric Shapes, spatial reasoning patterns embedded in the prompt are critical; in Biosses, biomedical
terminology and precise phrasing directly affect model output. These results demonstrate the framework’s ability to
maintain and adapt task-relevant instructions during migration.

In addition to accuracy improvements, our method enhances both stability and efficiency. As in the standard APO setting,
we again observe that feedback diversification reduces variance across runs, leading to more consistent convergence.
Moreover, the total number of LLM calls is reduced by 4.2% to 6.2% compared to the baseline, offering meaningful
cost savings given the higher API expense of GPT-4o. A detailed breakdown of LLM usage is provided in Appendix D.

4.4 Ablation Studies

In this section, we analyze the contribution of key components and hyperparameters in our framework through a series
of ablation studies. All experiments are conducted using the GPT-3.5-turbo model with a maximum of 8 optimization
iterations, starting from the minimal instruction set defined in the default prompts (see Appendix C). We report relative
accuracy improvements over the PromptAgent baseline (Wang et al., 2023a), shown as a dotted red line in Figures 2a
and 2b.

Impact of Positive and Negative Reinforcement Our framework uses structured reinforcement signals derived
from model predictions. Negative reinforcement, based on incorrect predictions, guides the prompt toward correcting
errors. Positive reinforcement, drawn from correct predictions, encourages the retention of effective prompt components.

6

Under review as submission to TMLR

Table 2: Transferability of Expert Prompts (EP) (optimized prompts from GPT-3.5-turbo) to GPT-4o. Accuracy (mean
± std, over five seeds) is reported for the Default Prompt (DP) and the transferred EP at two stages: Initial: direct transfer
without further optimization, and Final: after 15 iterations of PromptAgent on GPT-4o. Significance is assessed with
two-tailed paired t-tests. Expert prompts yield small but significant gains on direct transfer (1.3%–3.3% improvement),
yet re-optimizing them often erodes or reverses this advantage.

Dataset Stage DP Acc. EP Acc. p-value Cohen’s d

Causal Judgment Initial 71.8 ± 1.92 74.2 ± 3.46 0.033∗ 1.434
Final 73.4 ± 1.82 73.8 ± 1.79 0.803 0.119

Geometric Shapes Initial 54.8 ± 1.89 58.2 ± 2.22 0.001∗∗ 4.138
Final 79.0 ± 5.32 75.1 ± 5.80 0.040∗ –1.344

Penguins Initial 92.9 ± 1.85 95.8 ± 1.72 0.025∗ 1.745
Final 95.2 ± 2.03 92.3 ± 2.89 0.005∗∗ –2.771

Biosses Initial 69.9 ± 2.73 72.2 ± 1.78 0.0125∗ 2.159
Final 76.7 ± 2.84 76.1 ± 1.97 0.381 –0.600

CB Initial 79.3 ± 1.57 80.3 ± 1.54 0.005∗∗ 2.855
Final 80.0 ± 4.62 78.7 ± 2.13 0.381 –0.492

0 1 2 3 4 5 6 7
Depth of Introduction of Positive Reinfrocement

10

5

0

5

10

15

20

No
rm

al
ize

d
Im

pr
ov

em
en

t i
n

Ac
c.

 (%
)

Baseline: PromptAgent

Impact of Balanced Reinforcement vs. Negative Reinforcement
Causal Judgment Geometric Shapes Penguins Biosses CB

(a) Accuracy gains relative to the baseline (no positive reinforce-
ment) when positive reinforcement is introduced at different
optimization depths. Performance peaks at depth 3–4. Early
introduction (depth 0–1) impedes prompt refinement, while later
introduction (depth ≥ 5) leads to diminishing returns due to pre-
mature loss of useful instructions.

2 3 4 5 6 7 8 9 10
Number of Feedbacks

15

10

5

0

5

10

15

No
rm

al
ize

d
Im

pr
ov

em
en

t i
n

Ac
c.

 (%
)

Baseline: PromptAgent

Impact of Aggregated Feedback Diversification
Causal Judgment Geometric Shapes Penguins Biosses CB

(b) Accuracy improvements relative to the baseline (without feed-
back diversification) as a function of the number of diversification
samples. Performance consistently improves up to six samples
across tasks, after which accuracy declines. This drop is attributed
to overly generalized feedback aggregation, which dilutes spe-
cific and actionable suggestions.

A key consideration here is when to introduce positive reinforcement. If applied too early, when the prompt is
still underdeveloped, it may preserve premature structures and impede beneficial edits. If applied too late, valuable
components may already have been discarded, requiring inefficient rediscovery. The timing, or depth, of introducing
positive reinforcement is therefore critical. Figure 2a shows the relative accuracy gains across tasks as a function of this
introduction depth. Early introduction (depth 0 or 1) leads to underperformance across all tasks. Peak performance is
achieved at depth 3 for Causal Judgment, Geometric Shapes, and Penguins, and at depth 4 for CB and Biosses. Beyond
these points, performance declines as the optimization process continues to discard and re-learn useful instructions
for too long before reinforcement stabilizes them. These results suggest that a brief initial phase of corrective-only
feedback allows the model to build a minimal set of effective instructions, which can then be reinforced and refined in
subsequent iterations.

Impact of Feedback Diversification We also study the role of feedback diversification, which aggregates multiple
independently sampled feedback signals into a consolidated actionable summary. Inspired by the peer-review process,
this mechanism aims to highlight consistent, high-value suggestions while down-weighting noisy or inconsistent

7

Under review as submission to TMLR

Table 3: Prompt migration results from GPT-3.5-turbo to GPT-4o. Each block reports the initial accuracy (± std.) of
the Default Prompt (DP) and Expert Prompt (EP), followed by final post-optimization accuracy under different methods,
averaged over five random seeds. All experiments start from the EPs previously optimized for GPT-3.5-turbo. Baseline
refers to the original PromptAgent; +FD augments the baseline with Feedback Diversification; +PR adds Positive
Reinforcement; BReAD combines both. Two-tailed paired t-test p-values and Cohen’s d measure statistical significance
relative to the baseline. Significant improvements: ∗p < 0.05, ∗∗p < 0.01. Our method, BReAD, consistently achieves
the highest final accuracy and strongest effect sizes, with gains up to 16.0% over the baseline, underscoring its robustness
in real-world migration scenarios where preserving critical prompt elements is essential.

Dataset (Init. Acc.) Method Final Acc. p-value Cohen’s d

Causal Judgment
DP: 71.8 ± 1.92
EP: 74.2 ± 3.46

Baseline 73.8 ± 1.79 – –
Baseline + FD* 74.7 ± 1.44 0.053 1.214
Baseline + PR* 75.8 ± 1.78 0.047 1.265
BReAD** 76.4 ± 1.59 0.007 2.280

Geometric Shapes
DP: 54.8 ± 1.89
EP: 58.2 ± 2.22

Baseline 75.1 ± 5.80 – –
Baseline + FD* 79.4 ± 2.92 0.016 1.782
Baseline + PR* 81.7 ± 3.07 0.021 1.641
BReAD** 84.5 ± 2.33 0.008 2.175

Penguins
DP: 92.9 ± 1.85
EP: 95.8 ± 1.72

Baseline 92.3 ± 2.89 – –
Baseline + FD* 94.2 ± 1.33 0.083 1.148
Baseline + PR* 96.7 ± 0.88 0.041 1.493
BReAD** 98.0 ± 0.73 0.008 2.449

Biosses
DP: 69.9 ± 2.73
EP: 72.2 ± 1.78

Baseline 76.1 ± 1.97 – –
Baseline + FD* 78.4 ± 1.66 0.043 1.461
Baseline + PR* 83.7 ± 3.86 0.003 3.186
BReAD** 88.3 ± 2.00 0.0001 8.696

CB
DP: 79.3 ± 1.57
EP: 80.3 ± 1.54

Baseline 78.7 ± 2.13 – –
Baseline + FD* 82.7 ± 2.31 0.029 1.659
Baseline + PR* 85.3 ± 4.49 0.014 2.047
BReAD** 87.5 ± 3.56 0.006 2.713

signals. To isolate this effect, we apply feedback diversification to the PromptAgent baseline using only negative
reinforcement. Figure 2b reports relative accuracy improvements as the number of feedback samples per batch increases
from 2 to 10. With just two samples, the benefits are limited, either due to insufficient variety or aggregation of
conflicting signals into generic summaries. Accuracy improves steadily with more samples and plateaus around six
for all datasets. Beyond this, performance drops. Manual inspection reveals that excessive diversification (8–10
samples) produces overly generalized summaries that dilute actionable guidance. These findings highlight the need for
a balanced sampling strategy that captures meaningful feedback diversity without introducing aggregation noise. While
our implementation uses LLM-based summarization, alternative aggregation methods such as concatenation or voting
may offer complementary trade-offs. However, these approaches may increase context length and computational cost,
and we leave their exploration to future work.

5 Conclusion and Future Work

In this work, we introduced a novel framework for Automatic Prompt Optimization (APO) specifically designed to
enhance the feedback generation process when optimizing prompts for black-box Large Language Models (LLMs).
Unlike prior APO methods, which predominantly rely on corrective feedback from incorrect predictions, our method
integrates structured reinforcement signals derived from both correct (positive reinforcement) and incorrect (negative
reinforcement) model predictions. Additionally, we introduced feedback diversification, an effective technique that
aggregates multiple feedback signals to highlight consistently impactful instructions and reduce the influence of noisy
or irrelevant feedback.

8

Under review as submission to TMLR

Motivated by real-world industry scenarios, we also formalized the concept of Continual Prompt Optimization (CPO),
addressing the practical need for efficiently adapting optimized prompts across evolving LLM versions or migrating
prompts between different API providers. Our empirical evaluations demonstrated that naive migration strategies
degrade performance due to inadvertent loss or distortion of crucial instructions. In contrast, our reinforcement-driven
APO framework consistently outperformed the state-of-the-art baseline, increased robustness, converged faster, and
reduced computational cost.

These contributions open several promising directions for future work. Exploring alternative aggregation techniques,
such as weighted voting or prompt-based structuring of feedback inputs, may enhance the granularity and reliability of
diversified signals. For instance, using consistent prompting templates or role-based formulations could encourage
clearer, more targeted feedback from the model. Extending the framework to dynamic or interactive settings, including
multi-turn dialogue, real-time systems, or multimodal inputs, could further broaden its applicability. Finally, incorporat-
ing adaptive reinforcement schedules that respond to uncertainty or performance drift may lead to more sample-efficient
and resilient optimization strategies in real-world deployments.

6 Limitations
Despite the consistent improvements observed in prompt optimization efficiency, robustness, and migration performance,
our framework has several limitations. First, our experiments are limited to GPT-family models (GPT-3.5-turbo and
GPT-4o), which may constrain generalizability to other LLMs or commercial APIs. Future work should evaluate the
framework’s adaptability across a broader range of models and providers.

Second, the effectiveness of both reinforcement and feedback diversification strategies depends on careful hyperpa-
rameter selection, such as the number of diversification samples and the timing of positive reinforcement. While we
conducted ablation studies to characterize these choices, more systematic or automated tuning may be necessary for
optimal performance across diverse tasks.

Finally, although our method reduces computational cost relative to a strong baseline, it still involves multiple API
calls per optimization step. This can be a limiting factor in large-scale or latency-sensitive deployments. Exploring
approaches such as adaptive sampling, caching strategies, or lightweight aggregation mechanisms could help reduce
this cost and further improve real-world feasibility.

9

Under review as submission to TMLR

References
Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna Chen, Anna

Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harmlessness from ai feedback. arXiv
preprint arXiv:2212.08073, 2022.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S Bernstein,
Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportunities and risks of foundation models. arXiv
preprint arXiv:2108.07258, 2021.

Sébastien Bubeck, Varun Chadrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar, Peter Lee, Yin Tat
Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence: Early experiments with gpt-4, 2023.

Jiuhai Chen, Lichang Chen, Heng Huang, and Tianyi Zhou. When do you need chain-of-thought prompting for chatgpt?
arXiv preprint arXiv:2304.03262, 2023a.

Lichang Chen, Jiuhai Chen, Tom Goldstein, Heng Huang, and Tianyi Zhou. Instructzero: Efficient instruction
optimization for black-box large language models. arXiv preprint arXiv:2306.03082, 2023b.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models to self-debug. arXiv
preprint arXiv:2304.05128, 2023c.

Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In International conference on
computers and games, pp. 72–83. Springer, 2006.

MohammadReza Davari. Neural network approaches to medical toponym recognition. PhD thesis, Concordia University,
2020.

MohammadReza Davari and Eugene Belilovsky. Model breadcrumbs: Scaling multi-task model merging with sparse
masks. In European Conference on Computer Vision, pp. 270–287. Springer, 2024a.

MohammadReza Davari and Eugene Belilovsky. Model breadcrumbs: scalable upcycling of finetuned foundation
models via sparse task vectors merging. In ICML 2024 Workshop on Foundation Models in the Wild, 2024b.

MohammadReza Davari, Leila Kosseim, and Tien D Bui. Toponym identification in epidemiology articles–a deep
learning approach. In International Conference on Computational Linguistics and Intelligent Text Processing, pp.
26–37. Springer, 2019.

MohammadReza Davari, Leila Kosseim, and Tien Bui. Timbert: toponym identifier for the medical domain based on
bert. In Proceedings of the 28th International Conference on Computational Linguistics, pp. 662–668, 2020.

MohammadReza Davari, Nader Asadi, Sudhir Mudur, Rahaf Aljundi, and Eugene Belilovsky. Probing representation
forgetting in supervised and unsupervised continual learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 16712–16721, 2022a.

MohammadReza Davari, Stefan Horoi, Amine Natik, Guillaume Lajoie, Guy Wolf, and Eugene Belilovsky. On
the inadequacy of cka as a measure of similarity in deep learning. In ICLR 2022 Workshop on Geometrical and
Topological Representation Learning, 2022b.

MohammadReza Davari, Stefan Horoi, Amine Natik, Guillaume Lajoie, Guy Wolf, and Eugene Belilovsky. Reliability of
CKA as a similarity measure in deep learning. In The Eleventh International Conference on Learning Representations,
2023.

Marie-Catherine De Marneffe, Mandy Simons, and Judith Tonhauser. The commitmentbank: Investigating projection
in naturally occurring discourse. In proceedings of Sinn und Bedeutung, volume 23, pp. 107–124, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. In Proceedings of the 2019 conference of the North American chapter of
the association for computational linguistics: human language technologies, volume 1 (long and short papers), pp.
4171–4186, 2019.

10

Under review as submission to TMLR

Farhood Farahnak, Elham Mohammadi, MohammadReza Davari, and Leila Kosseim. Semantic similarity matching
using contextualized representations. In Canadian AI, 2021.

Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better few-shot learners. arXiv
preprint arXiv:2012.15723, 2020.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Let-
man, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of models. arXiv preprint arXiv:2407.21783,
2024.

Yaru Hao, Zewen Chi, Li Dong, and Furu Wei. Optimizing prompts for text-to-image generation. Advances in Neural
Information Processing Systems, 36:66923–66939, 2023.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen, et al.
Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Albert Q Jiang, A Sablayrolles, A Mensch, C Bamford, D Singh Chaplot, Ddl Casas, F Bressand, G Lengyel, G Lample,
L Saulnier, et al. Mistral 7b. arxiv. arXiv preprint arXiv:2310.06825, 10, 2023a.

Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye, Wayne Xin Zhao, and Ji-Rong Wen. Structgpt: A general framework
for large language model to reason over structured data. arXiv preprint arXiv:2305.09645, 2023b.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large language models are
zero-shot reasoners. Advances in neural information processing systems, 35:22199–22213, 2022.

Aobo Kong, Shiwan Zhao, Hao Chen, Qicheng Li, Yong Qin, Ruiqi Sun, Xin Zhou, Enzhi Wang, and Xiaohang Dong.
Better zero-shot reasoning with role-play prompting. arXiv preprint arXiv:2308.07702, 2023.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural network representations
revisited. In International conference on machine learning, pp. 3519–3529. PMLR, 2019.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt tuning. arXiv
preprint arXiv:2104.08691, 2021.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Veselin Stoyanov,
and Luke Zettlemoyer. BART: Denoising sequence-to-sequence pre-training for natural language generation,
translation, and comprehension. In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, pp. 7871–7880. Association for Computational Linguistics, July 2020.

Wenwu Li, Xiangfeng Wang, Wenhao Li, and Bo Jin. A survey of automatic prompt engineering: An optimization
perspective. arXiv preprint arXiv:2502.11560, 2025.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv preprint
arXiv:2101.00190, 2021.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern analysis and machine
intelligence, 40(12):2935–2947, 2017.

Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon, and Tie-Yan Liu. Biogpt: generative
pre-trained transformer for biomedical text generation and mining. Briefings in bioinformatics, 23(6):bbac409, 2022.

Xiao Ma, Swaroop Mishra, Ahmad Beirami, Alex Beutel, and Jilin Chen. Let’s do a thought experiment: Using
counterfactuals to improve moral reasoning. arXiv preprint arXiv:2306.14308, 2023.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, Nouha Dziri,
Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement with self-feedback. Advances in Neural
Information Processing Systems, 36:46534–46594, 2023.

Jennifer Marks, MohammadReza Davari, and Leila Kosseim. Clac at semeval-2024 task 2: Faithful clinical trial
inference. In Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024), pp. 1673–
1677, 2024.

11

Under review as submission to TMLR

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and Martin
Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual lifelong learning with
neural networks: A review. Neural networks, 113:54–71, 2019.

Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chenguang Zhu, and Michael Zeng. Automatic prompt optimization
with" gradient descent" and beam search. arXiv preprint arXiv:2305.03495, 2023.

Guanghui Qin and Jason Eisner. Learning how to ask: Querying lms with mixtures of soft prompts. arXiv preprint
arXiv:2104.06599, 2021.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language understanding by
generative pre-training. 2018.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li,
and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of machine
learning research, 21(140):1–67, 2020.

Maithra Raghu, Thomas Unterthiner, Simon Kornblith, Chiyuan Zhang, and Alexey Dosovitskiy. Do vision transformers
see like convolutional neural networks? Advances in neural information processing systems, 34:12116–12128, 2021.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky. A primer in bertology: What we know about how bert works.
Transactions of the association for computational linguistics, 8:842–866, 2021.

Tobias Schnabel and Jennifer Neville. Symbolic prompt program search: A structure-aware approach to efficient
compile-time prompt optimization. arXiv preprint arXiv:2404.02319, 2024.

Taylor Shin, Yasaman Razeghi, Robert L Logan IV, Eric Wallace, and Sameer Singh. Autoprompt: Eliciting knowledge
from language models with automatically generated prompts. arXiv preprint arXiv:2010.15980, 2020.

Gizem Soğancıoğlu, Hakime Öztürk, and Arzucan Özgür. Biosses: a semantic sentence similarity estimation system for
the biomedical domain. Bioinformatics, 33(14):i49–i58, 2017.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung, Aakanksha
Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks and whether chain-of-thought
can solve them. arXiv preprint arXiv:2210.09261, 2022.

Mistral AI team. Mistral nemo, 2024. URL https://mistral.ai/news/mistral-nemo. Accessed: 2025.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste
Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation language models.
arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models.
arXiv preprint arXiv:2307.09288, 2023b.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel
Bowman. Superglue: A stickier benchmark for general-purpose language understanding systems. Advances in neural
information processing systems, 32, 2019.

Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai, Haotian Luo, Jiayou Zhang, Nebojsa Jojic, Eric P Xing, and Zhiting
Hu. Promptagent: Strategic planning with language models enables expert-level prompt optimization. arXiv preprint
arXiv:2310.16427, 2023a.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, and Denny
Zhou. Self-consistency improves chain of thought reasoning in language models. arXiv preprint arXiv:2203.11171,
2022.

12

https://mistral.ai/news/mistral-nemo

Under review as submission to TMLR

Zhen Wang, Rameswar Panda, Leonid Karlinsky, Rogerio Feris, Huan Sun, and Yoon Kim. Multitask prompt tuning
enables parameter-efficient transfer learning. arXiv preprint arXiv:2303.02861, 2023b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. Chain-
of-thought prompting elicits reasoning in large language models. Advances in neural information processing systems,
35:24824–24837, 2022.

Yuxin Wen, Neel Jain, John Kirchenbauer, Micah Goldblum, Jonas Geiping, and Tom Goldstein. Hard prompts
made easy: Gradient-based discrete optimization for prompt tuning and discovery. Advances in Neural Information
Processing Systems, 36:51008–51025, 2023.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin A Raffel, and Mohit Bansal. Ties-merging: Resolving interference
when merging models. Advances in Neural Information Processing Systems, 36:7093–7115, 2023.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun Chen. Large language
models as optimizers. arXiv preprint arXiv:2309.03409, 2023a.

Zachary Yang, Yasmine Maricar, MohammadReza Davari, Nicolas Grenon-Godbout, and Reihaneh Rabbany. Toxbuster:
In-game chat toxicity buster with bert. arXiv preprint arXiv:2305.12542, 2023b.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario: Absorbing abilities
from homologous models as a free lunch. In Forty-first International Conference on Machine Learning, 2024.

Jian Zhang, Zhangqi Wang, Haiping Zhu, Jun Liu, Qika Lin, and Erik Cambria. Mars: A multi-agent framework
incorporating socratic guidance for automated prompt optimization. arXiv preprint arXiv:2503.16874, 2025.

Tianjun Zhang, Xuezhi Wang, Denny Zhou, Dale Schuurmans, and Joseph E Gonzalez. Tempera: Test-time prompting
via reinforcement learning. arXiv preprint arXiv:2211.11890, 2022.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans, Claire Cui,
Olivier Bousquet, Quoc Le, et al. Least-to-most prompting enables complex reasoning in large language models.
arXiv preprint arXiv:2205.10625, 2022a.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy Ba. Large
language models are human-level prompt engineers. arXiv preprint arXiv:2211.01910, 2022b.

13

Under review as submission to TMLR

A Appendix

B Dataset

Table 4 summarizes the dataset splits used in our experiments, including the number of training, validation, and test
instances per task. Each dataset is designed to probe distinct reasoning capabilities of large language models (LLMs),
and collectively they offer a diverse evaluation ground for prompt optimization.

Causal Judgment This dataset tests causal attribution skills by presenting real-world scenarios and asking whether
one event caused another. It evaluates the model’s ability to perform commonsense reasoning under ambiguity. Below
is an example instance from the dataset:

Joe was feeling quite dehydrated, so he stopped by the local smoothie shop to buy the largest sized
drink available. Before ordering, the cashier told him that the Mega-Sized Smoothies were now one
dollar more than they used to be. Joe replied, “I don’t care if I have to pay one dollar more, I just
want the biggest smoothie you have.” Sure enough, Joe received the Mega-Sized Smoothie and paid one
dollar more for it. Did Joe intentionally pay one dollar more?
Label: Yes

Geometric Shapes A synthetic visual-reasoning-inspired dataset that describes a geometric shape via its SVG
representation. The task tests the model’s ability to infer spatial and comparative relationships. An example is shown
below:

This SVG path element <path d=M̈ 59.43,52.76 L 75.49,27.45 L 54.92,4.40 M 54.92,4.40 L 23.70,7.77 L
15.15,42.15 L 34.51,57.44 L 59.43,52.76/̈> draws a
Label: hexagon

Penguins This dataset examinsines the model’s ability to reason about tabular data. At each instance, the model is
presented with a question about penguins in a table format, and it must select the correct answer from a set of choices.

Here is a table where the first line is a header and each subsequent line is a penguin:

name, age, height (cm), weight (kg)
Louis, 7, 50, 11
Bernard, 5, 80, 13
Vincent, 9, 60, 11
Gwen, 8, 70, 15
For example: the age of Louis is 7, the weight of Gwen is 15 kg, the height of Bernard is 80 cm.
Question: What is the height of Gwen?
Options: A) 50 cm, B) 80 cm, C) 70 cm, D) 60 cm

Label: C) 70 cm

Biosses This biomedical sentence similarity dataset presents pairs of scientific statements and asks for semantic
similarity on a scale, assessing the model’s ability to reason about specialized, domain-specific language. A sample pair
is shown below:

S1: It has recently been shown that Craf is essential for Kras G12D-induced NSCLC.
S2: It has recently become evident that Craf is essential for the onset of Kras-driven non-small cell
lung cancer.

Label: Similar

CB (CommitmentBank) CB is a SuperGLUE (Wang et al., 2019) NLI dataset designed to evaluate pragmatic
inference and speaker commitment in naturally occurring sentences. It differs from standard NLI datasets because

14

Under review as submission to TMLR

Table 4: Dataset splits used for prompt optimization and evaluation. The training set is used during prompt updates, the
validation set is used to select the best-performing prompt, and the test set is reserved for final accuracy reporting.

Dataset Train Validation Test

Causal Judgment 30 60 100
Geometric Shapes 50 100 200
Penguins 30 40 79
Biosses 30 30 40
CB 30 95 56

each hypothesis is derived directly from the premise’s embedded clause, minimizing annotation artifacts. Below is a
representative example:

Premise: Some of them, like for instance the farm in Connecticut, are quite small. If I like a place
I buy it. I guess you could say it’s a hobby.”
Hypothesis: Buying places is a hobby.

Label: Entailment

In this case, the hypothesis is the complement of the clause-embedding verb say, and models must correctly infer that
the sentence author is committed to the embedded proposition. This task hinges on understanding modality, clause
embedding, and speaker stance, rather than surface-level lexical overlap.

These datasets collectively test a broad spectrum of reasoning abilities, ranging from causal inference and visual
abstraction to factual recall, biomedical semantics, and logical entailment, making them suitable benchmarks for
evaluating the generality and robustness of prompt optimization methods.

C Task Prompts

Each task begins with a minimalist base prompt that serves as the initialization point for prompt optimization. These
prompts are written as system messages in the GPT-3.5-turbo and GPT-4o chat interfaces, and are intentionally kept
simple to avoid embedding task-specific strategies or heuristics. The goal is to provide just enough instruction for the
model to attempt the task, allowing the optimization process to refine and expand the prompt effectively. Below, we list
the base prompts used for each task.

Task: Causal Judgment
Answer questions about causal attribution

Task: Geometric Shapes
Name geometric shapes from their SVG paths

Task: Penguins
Answer questions about a table of penguins and their attributes

Task: Biosses
Decide if these two sentences are (A) Not similar (B) Somewhat similar (C) Similar.

15

Under review as submission to TMLR

Task: CB
What is the relationship between the following premise and the hypothesis?
Options:
- Contradiction
- Neutral
- Entailment

In Section 4.2, we described how each base prompt is optimized using our reinforcement-based approach. Below, we
include the resulting expert prompts obtained from the final iteration of the standard prompt optimization process.
These reflect the outcome of the optimization process when targeting performance on the GPT-3.5 model.

Task: Causal Judgment
Provide causal attributions in complex scenarios by guiding the model to thoroughly analyze the critical
steps, individual intentions, and specific actions that lead to outcomes. Emphasize the importance
of identifying and prioritizing the primary cause in each scenario, focusing on direct causes rather
than incidental factors. Define clear criteria for evaluating factors and determining the primary
cause, considering the combined impact of multiple factors working in conjunction. Instruct the model
to weigh the influence of various factors and explicitly guide it on handling conflicting actions and
scenarios involving multiple individuals. Ensure that the model carefully considers all significant
actions, intentions, and sequences of events leading to the final outcome to accurately attribute
causation. Provide explicit instructions for distinguishing between direct causes and incidental
factors, prioritizing immediate actions that directly influence outcomes. Define specific criteria
for evaluating factors and determining the primary cause, especially in scenarios involving multiple
individuals. Emphasize the need to analyze critical steps and actions leading to outcomes in order
to accurately attribute causation.

Task: Geometric Shapes
Name the geometric shape accurately based on the provided SVG path. Carefully analyze the properties
of the path, including the number of sides, angles, lengths of sides, and overall configuration,
to determine the most appropriate geometric shape. Your options should encompass a wide variety
of shapes, ranging from simple polygons to circles. Ensure that the model considers all relevant
attributes before selecting the most suitable shape from the available options.
Options: (A) circle, (B) equilateral triangle, (C) regular hexagon, (D) rhombus, (E) line segment,
(F) octagon, (G) pentagon, (H) rectangle, (I) sector, (J) square, (K) trapezoid, (L) oval

16

Under review as submission to TMLR

Task: Penguins
Answer questions regarding the following tables of penguins and giraffes, ensuring to accurately
reflect any changes made to the penguin table throughout our discussion. Please note these
modifications specifically when determining key attributes such as age, weight, or when making
comparisons between penguins and giraffes.

Penguin Table:
name, age, height (cm), weight (kg)
Louis, 7, 50, 11
Vincent, 9, 60, 11
Gwen, 8, 70, 15
(Any additions or deletions of penguins will be noted in subsequent questions)

Giraffe Table:
name, age, height (cm), weight (kg)
Jody, 5, 430, 620
Gladys, 10, 420, 590
Marian, 2, 310, 410
Donna, 9, 440, 650

For each question, provide clear and logical reasoning behind your answer. Remember to validate
the latest state of the penguin table before responding, especially when involving comparisons with
giraffes or assessing the attributes of the penguins.

Additionally, if modifications were made to the penguin table, please annotate them clearly
in your response. This ensures that we maintain an accurate understanding of the current data.

Task: Biosses
Decide if these two sentences are (A) Not similar (B) Somewhat similar (C) Similar. Compare the
specific regulatory mechanisms and molecular pathways mentioned in each sentence to determine their
similarity, explicitly identifying the role of miRNA expression and binding, as well as the relevance
of the molecular characteristics of GEFs and nucleotide-binding pockets in the context of the sentences.
Analyze both the similarities and differences between the sentences, focusing on the nuances of the
regulatory mechanisms and molecular pathways mentioned, and considering the implications for cancer
types and cellular processes

Task: CB
What is the relationship between the following premise and the hypothesis? Premise: As the storm
raged outside, with thunder clapping and lightning illuminating the dark sky, Sarah felt a wave of
panic wash over her. She could hear the wind howling, and every crash of thunder made her heart
race faster. Despite being tucked away under her thick blankets, she couldn’t shake the feeling of
terror that gripped her. The flickering candle nearby offered little comfort as she lay wide awake,
listening to the chaos around her.
Hypothesis: Sarah felt a strong fear of the storm.
Entailment: The hypothesis is entailed by the premise. Sarah’s panic and terror at the storm directly
imply that she felt a strong fear of it. What is the relationship between the following premise and
the hypothesis?
Options:
- Contradiction
- Neutral
- Entailment

17

Under review as submission to TMLR

Table 5: Average number of API calls required for prompt optimization and migration (lower is better), averaged over
five runs. Percent changes are shown relative to the PromptAgent baseline: green indicates a reduction in calls, red
indicates an increase. +FD = Feedback Diversification; +PR = Positive Reinforcement; BReAD = both combined.
Despite leveraging more feedback signals, BReAD achieves faster convergence, reducing API calls by 0.5–3.3% in
the standard setting (GPT-3.5) and by 4.2–6.2% in the migration setting (GPT-4o), demonstrating efficiency gains in
optimization and transfer.

Model Method
Causal
Judgment

Geometric
Shapes Penguins Biosses CB

GPT-3.5

Baseline 7670.4 11263.8 2663.6 3566.1 5489.5
Baseline+FD 7918.8 (↑ 3.2%) 11730.9 (↑ 4.1%) 2735.4 (↑ 2.7%) 3709.7 (↑ 4.0%) 5606.2 (↑ 2.1%)

Baseline+PR 7039.8 (↓ 8.2%) 10899.7 (↓ 3.2%) 2533.3 (↓ 4.9%) 3294.0 (↓ 7.6%) 5337.2 (↓ 2.8%)

BReAD 7429.2 (↓ 3.1%) 11204.0 (↓ 0.5%) 2622.4 (↓ 1.5%) 3449.1 (↓ 3.3%) 5421.9 (↓ 1.2%)

GPT-4o

Baseline 8575.8 9642.0 2980.4 3008.1 6228.9
Baseline+FD 9271.0 (↑ 8.1%) 10093.2 (↑ 4.7%) 3068.3 (↑ 2.9%) 3069.6 (↑ 2.0%) 6393.6 (↑ 2.6%)

Baseline+PR 7963.2 (↓ 7.1%) 9395.6 (↓ 2.6%) 2908.9 (↓ 2.4%) 2868.8 (↓ 4.6%) 6079.1 (↓ 2.4%)

BReAD 8040.8 (↓ 6.2%) 9049.4 (↓ 6.1%) 2825.2 (↓ 5.2%) 2860.1 (↓ 4.9%) 5964.5 (↓ 4.2%)

D Experimentation Costs
Table 5 reports the average number of API calls required by each method during prompt optimization and migration, for
both GPT-3.5 and GPT-4o. Each value reflects the mean over five runs per task.

These figures serve as a proxy for real-world deployment costs, especially when interacting with commercial LLM
APIs. While Feedback Diversification (+FD) increases the number of calls due to repeated querying, both Positive
Reinforcement (+PR) and our full method, BReAD, achieve more efficient convergence. Notably, BReAD consistently
reduces total API calls despite using more feedback samples per iteration, underscoring its sample efficiency and
effective guidance.

Efficiency gains are more pronounced in the migration setting, where BReAD lowers API usage by 4.2–6.2% compared
to the PromptAgent baseline. This cost reduction, combined with improved accuracy and stability, positions BReAD as
a practical optimization strategy for scalable LLM-based systems.

18

	Introduction
	Related Work
	Methodology
	Experiments
	Data, Metrics, and Models
	Standard Prompt Optimization (GPT-3.5-turbo)
	Prompt Migration: GPT-3.5-turbo →GPT-4o
	Ablation Studies

	Conclusion and Future Work
	Limitations
	Appendix
	Dataset
	Task Prompts
	Experimentation Costs

