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1 INTRODUCTION

Computational drug discovery demands robust methods to identify novel drug-disease interactions
Chen et al. (2012). Given a drug-disease interaction matrix Y ∈ Rn×m, where Aij = 1 indicates
an interaction, traditional models often lack interpretability and scalability Ching et al. (2018). We
propose a hybrid framework that leverages Graph Neural Networks (GNNs) and Self-Organizing
Maps (SOMs). GraphSAGE is employed for link prediction on a heterogeneous biomedical graph,
while SOM projects high-dimensional embeddings onto a 2D lattice to reveal latent biological rela-
tionships.

2 METHODOLOGY

Our approach integrates heterogeneous graph learning with topological mapping in three phases
(Algorithm 1).

We define a biomedical network G = (V,E) where nodes (e.g., genes, proteins, diseases, drugs) are
initialized with features:

h0
v = Xv. (1)

GraphSAGE Hamilton et al. (2017) computes node embeddings by aggregating features from sam-
pled neighbors:

h(k)
v = σ

(
Wk ·MEAN

(
{h(k−1)

u : u ∈ N(v)}
))

, (2)

with Wk as trainable weights.

SOM Pasa et al. (2022) projects the embeddings onto a 2D hexagonal lattice. Neuron weights
update via:

wi(t+ 1) = wi(t) + α(t) η(i, i∗, t) (hv − wi(t)), (3)

where α(t) is the decaying learning rate and η(i, i∗, t) defines neighborhood influence.

Algorithm 1 Biomedical Graph Analysis Pipeline

1: Input: Entities V , relationships E, features X
2: Phase 1: Build G = (V,E); initialize h0

v ← Xv

3: Phase 2: For each epoch, sample N(v) and update embeddings via GraphSAGE; optimize link
prediction loss L = BCE(S(u, v), ytrue)

4: Phase 3: Initialize SOM grid; assign nodes to best-matching neurons; update weights using the
SOM rule.

5: Output: A 2D map of biomedical relationships.

3 RESULTS AND EXPERIMENTS

Using the dataset from Liang et al. (2017), Figure 1 presents SOM of drug-disease interactions.
In Figure 1a, red dots denote diseases and green dots represent drugs, clustered according to their
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interaction profiles. This spatial organization reflects inherent biological relationships, thereby fa-
cilitating the identification of potential drug repurposing opportunities and novel therapeutic tar-
gets. Figure 1b illustrates the SOM trained on high-dimensional embeddings, with the background
grayscale U-Matrix indicating similarity among neighboring nodes. Darker regions correspond to ar-
eas of high similarity, while lighter areas delineate cluster boundaries. This structured representation
enhances biomarker discovery and disease classification, underscoring its utility in computational
biology.

(a) Drug-Disease Associations. (b) SOM Cluster Centers and Topology.

Figure 1: SOM Clustering Results

4 CONCLUSION

Our hybrid framework advances computational drug discovery by integrating interpretable graph
embedding with Graph Neural Network and Self-Organizing Map methods.

MEANINGFULNESS STATEMENT

Our work leverages SOM to preserve topological relationships in high-dimensional biological data,
ensuring smooth cluster transitions and biologically relevant proximities. This structured represen-
tation enhances interpretability, aiding disease classification and biomarker identification. Our find-
ings demonstrate SOM’s effectiveness in learning meaningful representations, improving biological
data analysis, and supporting translational research in computational biology.
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