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1 INTRODUCTION

Computational drug discovery demands robust methods to identify novel drug-disease interactions
Chen et al.| (2012). Given a drug-disease interaction matrix ¥ € R™*™, where .A;; = 1 indicates
an interaction, traditional models often lack interpretability and scalability |Ching et al.|(2018). We
propose a hybrid framework that leverages Graph Neural Networks (GNNs) and Self-Organizing
Maps (SOMs). GraphSAGE is employed for link prediction on a heterogeneous biomedical graph,
while SOM projects high-dimensional embeddings onto a 2D lattice to reveal latent biological rela-
tionships.

2 METHODOLOGY

Our approach integrates heterogeneous graph learning with topological mapping in three phases
(Algorithm ).

We define a biomedical network G = (V, E') where nodes (e.g., genes, proteins, diseases, drugs) are
initialized with features:
n = X,. (1)

v

GraphSAGE [Hamilton et al.|(2017) computes node embeddings by aggregating features from sam-
pled neighbors:

(k) = U(Wk MEAN({h{:=1) sy € N(v)})), 2)

with W}, as trainable weights.

SOM |Pasa et al.| (2022) projects the embeddings onto a 2D hexagonal lattice. Neuron weights
update via:
wi(t + 1) - wi(t) + a(t) 77(@ i, t) (hv - wi(t))v (3)

where a(t) is the decaying learning rate and 7)(i,4*, t) defines neighborhood influence.

Algorithm 1 Biomedical Graph Analysis Pipeline

1: Input: Entities V, relationships F, features X

2: Phase 1: Build G = (V, E); initialize h0 + X,

3: Phase 2: For each epoch, sample N (v) and update embeddings via GraphSAGE; optimize link
prediction loss L = BCE(S(u, v), Yirue)

4: Phase 3: Initialize SOM grid; assign nodes to best-matching neurons; update weights using the
SOM rule.

5: Output: A 2D map of biomedical relationships.

3 RESULTS AND EXPERIMENTS

Using the dataset from |[Liang et al| (2017), Figure E] presents SOM of drug-disease interactions.
In Figure red dots denote diseases and green dots represent drugs, clustered according to their
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interaction profiles. This spatial organization reflects inherent biological relationships, thereby fa-
cilitating the identification of potential drug repurposing opportunities and novel therapeutic tar-
gets. Figure [ID]illustrates the SOM trained on high-dimensional embeddings, with the background
grayscale U-Matrix indicating similarity among neighboring nodes. Darker regions correspond to ar-
eas of high similarity, while lighter areas delineate cluster boundaries. This structured representation
enhances biomarker discovery and disease classification, underscoring its utility in computational
biology.
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(a) Drug-Disease Associations. (b) SOM Cluster Centers and Topology.

Figure 1: SOM Clustering Results

4 CONCLUSION

Our hybrid framework advances computational drug discovery by integrating interpretable graph
embedding with Graph Neural Network and Self-Organizing Map methods.

MEANINGFULNESS STATEMENT

Our work leverages SOM to preserve topological relationships in high-dimensional biological data,
ensuring smooth cluster transitions and biologically relevant proximities. This structured represen-
tation enhances interpretability, aiding disease classification and biomarker identification. Our find-
ings demonstrate SOM’s effectiveness in learning meaningful representations, improving biological
data analysis, and supporting translational research in computational biology.
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