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ABSTRACT

Characterizing the remarkable generalization properties of over-parameterized
neural networks remains an open problem. A growing body of recent literature
shows that the bias of stochastic gradient descent (SGD) and architecture choice
implicitly leads to better generalization. In this paper, we show on the contrary that,
independently of architecture, SGD can itself be the cause of poor generalization
if one does not ensure good initialization. Specifically, we prove that any differ-
entiably parameterized model, trained under gradient flow, obeys a weak spectral
bias law which states that sufficiently high frequencies train arbitrarily slowly. This
implies that very high frequencies present at initialization will remain after training,
and hamper generalization. Further, we empirically test the developed theoretical
insights using practical, deep networks. Finally, we contrast our framework with
that supplied by the flat-minima conjecture and show that Fourier analysis grants a
more reliable framework for understanding the generalization of neural networks.

1 INTRODUCTION
Neural networks are often used in the over-parameterized regime, meaning their loss landscapes admit
many global minima that achieve zero training error. However, finding such solutions is a non-convex,
high-dimensional problem, which is typically intractable to solve analytically. Furthermore, each
of these minima may have unique properties that can lead to varying generalization performance,
making some solutions more preferred than others. Surprisingly, however, it is widely established that
when neural networks are trained with gradient-based optimization techniques, they not only converge
towards a global minimum, but also are biased towards solutions that exhibit good generalization even
without explicit regularization. This mysterious behavior is flagged as the “implicit regularization” of
neural networks and remains an open research problem.

To understand implicit regularization, numerous studies have considered simplified settings with
restrictive assumptions such as linear networks (Jacot et al., 2018a; Soudry et al., 2018; Wei et al.,
2019; Yun et al., 2020; Gunasekar et al., 2018b; Wu et al., 2019), shallow networks (Gunasekar
et al., 2018a; Ji and Telgarsky, 2019; Ali et al., 2020), wide networks (Jacot et al., 2018b; Mei et al.,
2019; Chizat and Bach, 2020; Oymak and Soltanolkotabi, 2019; Zhang et al., 2020a), vanishing
initialization (Chizat et al., 2019; Gunasekar et al., 2017; Arora et al., 2019), or infinitesimal learning
rates (Ma et al., 2018; Li et al., 2018; Ji and Telgarsky, 2018; Moroshko et al., 2020). Despite different
assumptions, most of these works primarily focus on the effect of optimization procedure over the
other factors and, at a high level, conclude that gradient-based optimizations guides neural networks
toward max-margin solutions for separable data or minimize a notion of weight-norm in regression.
While the aforementioned studies yield powerful insights, there remains a gap between theory and
practice due to the restrictive assumptions presently necessary to prove quantitative results.

Our work is an attempt to help bridge this gap. To this end, we show substantial evidence that
although the optimization procedure provides an important bias, initialization also plays a decisive
role in determining the generalization of a neural network, and that this factor is at play across all
architectures. In particular, we demonstrate that even with gradient-based optimization and a deep
architecture – networks can converge to solutions with extremely poor generalization properties. We
further demonstrate that this result depends on the Fourier spectrum at initialization. It should be
noted that our result is not a recapitulation of the well-known observation that bad initialization
hampers the convergence of neural networks. Rather, we show that initializing networks such
that they have higher energies for higher frequencies leads to solutions that achieve perfect
training accuracy, yet succumb to inferior test accuracy. We further reveal that this is a generic
property that holds in both classification and regression settings across various architectures.
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The roots of our analysis extend to the “spectral bias” (also known as the frequency principle) of
neural networks (Xu et al., 2019b; Rahaman et al., 2019). Spectral bias is the interesting phenomenon
that neural networks tend to learn low frequencies faster, and consequently, tend to fit training data
with low frequency functions. Significant progress has been made on understanding and quantifying
this phenomenon Rahaman et al. (2019); Xu (2018); Xu et al. (2019b); Luo et al. (2019; 2020); Zhang
et al. (2019; 2020a), however research up until this point has made assumptions on architecture (such
as large width, limited depth, limited choice of activations, and chain-only architectures) which do
not hold for many practical models. As has been noted in these previous works, the spectral bias
has deep implications for generalization and its relationship to initialization. We contend that the
provision of a more general theoretical and empirical analysis of spectral bias, one which applies
even to practical models widely in use, will thus be of great value to the machine learning community.

The central objective of this paper the provision of such a general analysis. To this end, we utilize
recently popularized implicit neural networks (Tancik et al., 2020; Ramasinghe and Lucey, 2021)
(also referred to as coordinate-based networks) as an initial test-bed. Implicit neural networks
are architecturally modified fully-connected networks – using non traditional activations such as
Gaussians/sinusoids or positional embedding layers – that can learn high-frequency functions rapidly.
In particular, we first demonstrate that implicit neural networks do not always converge to smooth
solutions, contradicting mainstream expectations. In resolving this surprising observation, first, we
invoke a compact data manifold hypothesis to show that a weak form of spectral bias (namely that
sufficiently high frequencies train arbitrarily slowly) is both architecture- and loss-agnostic in a
general sense. The term “sufficiently high” is architecture dependent; the aim of this work is not to
provide precise quantifications of the spectral bias over a subset of architectures, but is instead to
present a more general result. Our qualitative theorem applies to any differentiably parameterized
model, and our experiments suggest that for common neural networks this spectral decay is present
even at quite low frequencies. With this in hand, we affirm that the poor generalization of implicit
neural networks is linked to the presence of high frequencies at initialization which, due to the
aforementioned weak spectral bias, tend to remain unchanged during training. Similarly, we further
show that the implicit regularization of neural networks requires an initial spectrum that is biased
towards lower frequencies. We postulate that the remarkable generalization properties of modern
neural architectures can be partly attributed to the employment of non-linearities (such as ReLU)
that exhibit such spectra upon random initialization. Extending the above analysis, we depict that
even ReLU networks, when initialized with higher frequencies, fail to converge to minima with good
generalization properties.

Finally, we investigate the “flat minima conjecture”, an informal hypothesis in the literature that
flatness of a minimum is sufficient Keskar et al. (2016); Ronny Huang et al. (2020); Chaudhari
et al. (2019) (but not necessary Dinh (2017)) condition for good generalisation. We find that the
consistency of the conjecture with experiment is architecture-dependent, while the predictions made
using a spectral bias approach are consistent across all examined architectures and problems.

Our main contributions are listed below:
• We offer a proof of a weak but very general form of spectral bias (that sufficiently high

frequencies train arbitrarily slowly) for gradient based training. Our result applies to all
presently-used neural network architectures (along with a vast space of parameterized
models that are not neural networks) in problems satisfying the compact data manifold
hypothesis.

• We show that initialization plays a crucial role in governing the implicit regularization
of neural networks. Our results advocate for a shift of focus towards initialization in
understanding the generalization paradox, which currently revolves primarily around the
optimization procedure.

• We conduct experiments in both classification and regression settings. We show that the de-
veloped insights are generic across different architectures, non-linearities, and initialization
schemes. Our experiments include practical, deep networks, in contrast to many existing
related works.

• We present (empirical) counter-evidence against the flat minima conjecture and show that 1)
SGD is not always biased towards flat minima and 2) flat minima do not always correlate
with better generalization.
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2 RELATED WORKS

Implicit regularization Mathematically characterizing implicit regularization of neural networks is
at the heart of understanding deep learning. This intriguing phenomenon received increasing attention
from the machine learning community after the seminal work by Zhang et al. (2016), in which they
showed that deep models, despite having the capacity to fit even random data, demonstrate remarkable
generalization properties. Since then, an extensive body of works have tried to characterize implicit
regularization through various lenses including training dynamics (Advani et al., 2020; Gidel et al.,
2019; Lampinen and Ganguli, 2018; Goldt et al., 2019; Arora et al., 2019), flat minima conjecture
(Keskar et al., 2016; Jastrzebski et al., 2017; Wu et al., 2018; Simsekli et al., 2019; Mulayoff and
Michaeli, 2020), statistical properties of data (Brutzkus and Globerson, 2020), architectural aspects
such as skip connections He et al. (2020); Huang et al. (2020), and matrix factorization Gunasekar et al.
(2017); Arora et al. (2019); Razin et al. (2021). At a high-level, these works show that deep models
implicitly minimize a form of weight norms, regularize derivatives of the outputs, or analogously,
maximize a notion of margin between output classes. However, the center of attention of (almost
all) these works is the bias induced by the optimization (SGD) methods. In contrast, we show that
the bias of SGD can itself be a source of poor generalization if initialization is not accounted for.
Notably, Zhang et al. (2020b) recently showed that in the NTK regime, for any loss in a general
class of functions, the neural networks finds the same global minima—the one that is nearest to
the initial value in the parameter space. This result is a strong indication that the generalization of
neural networks indeed depends on initialization. Similarly, Min et al. (2021) recently discussed
the role of initialization in the convergence and implicit bias of neural networks. They showed that
the rate of convergence of a neural network depends on the level of imbalance of the initialization.
Their setting, however, only considered single-hidden-layer linear networks under the square loss.
Furthermore, Zhang et al. (2020a) provide an analysis of the impact of initialization on generalization
in the infinite-width chain network setting, and offer a method of initializing at zero to minimise
generalization error. In contrast, our analysis is more general, and applies to commonly used, practical
networks.

Spectral bias Neural networks tend to learn low frequencies faster. To the best of our knowledge,
this peculiar behavior was first systematically demonstrated on ReLU networks by Xu et al. (2019b)
and Rahaman et al. (2019) in independent studies, and a subsequent theoretical work showed that
shallow networks with Tanh activations (Xu, 2018) also admit the same bias. Several recent works
have also attempted to characterize the spectral bias of neural networks in different training phases
and under various (relatively restrictive) architectural assumptions Luo et al. (2019); Zhang et al.
(2019); Luo et al. (2020). Perhaps, the insights developed by Zhang et al. (2019) and Luo et al.
(2020) are more closely aligned with some of the conclusions of our work, in which they showed that
shallow ReLU networks with infinite width converge to solutions by minimally changing the initial
Fourier spectrum. The spectral bias that we prove is slightly weaker precisely due to its generality:
namely that sufficiently high frequencies train arbitrarily slowly. However our result applies more
generally and its qualitative predictions are borne out by our experiments.

Implicit neural networks Implicit neural networks are a class of fully connected networks that
were recently popularized by the seminal work of Mildenhall et al. (2020). Implicit neural networks
either use non-traditional activation functions (Gaussian (Ramasinghe and Lucey, 2021) or Sinusoid
(Sitzmann et al., 2020)) or positional embedding layers (Tancik et al., 2020; Zheng et al., 2021).
The key difference between implicit neural networks and conventional fully connected networks is
that the former can learn high frequency functions more effectively and, thus, can encode natural
signals with higher fidelity. Owing to this unique ability, implicit neural networks have penetrated
many tasks in computer vision such as texture generation (Henzler et al., 2020; Oechsle et al., 2019;
Henzler et al., 2020; Xiang et al., 2021), shape representation (Chen and Zhang, 2019; Deng et al.,
2020; Tiwari et al., 2021; Genova et al., 2020; Basher et al., 2021; Mu et al., 2021; Park et al., 2019),
and novel view synthesis (Mildenhall et al., 2020; Niemeyer et al., 2020; Saito et al., 2019; Sitzmann
et al., 2019; Yu et al., 2021; Pumarola et al., 2021; Rebain et al., 2021; Martin-Brualla et al., 2021;
Wang et al., 2021; Park et al., 2021).

3 GENERALIZATION AND FOURIER SPECTRUM OF NEURAL NETWORKS

Generalization of neural networks Consider a set of training data {xi,yi}Ni=1 sampled from a
distribution D. Given a new set {x̄, ȳ} ∼ D, where a neural network f only observes {x̄}, the goal is
to learn a function such that f(x̄) ≈ ȳ. Since D is unknown, the network tries to learn a function that
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minimizes an expected cost E[L(f(xi),yi)] over the training data, where L is a suitable loss function.
After training, if the network acts as a good estimator f : x̄ → ȳ, we say that f generalizes well. In
classification, usually, a variant of the cross-entropy loss is chosen as L, and in regression, ℓ1 or ℓ2
loss is chosen. It should be noted that generalization is entirely a function of D and thus, cannot be
measured without priors on D. In image classification, for instance, a held-out set of validation/testing
data is used to as prior on D to measure the generalization performance. In regression, due to the
infinite sampling precision of both input and output spaces, the use of such held-out data becomes less
meaningful. Thus, a more practical method of measuring the generalization in a regression setting, at
least in an engineering sense, is to measure the “smoothness” of interpolation between training data.
That is, we say that a network generalizes well if its output is smooth while fitting the training data
(Appendix 10.2).

Smooth interpolations and the Fourier spectrum In machine learning and statistics, a “smooth”
signal is typically considered a signal with bounded higher-order derivatives. This interpretation
stems from the fact that, in practice, noise causes large derivatives and, thus, suppressing higher-order
derivatives is equivalent to suppressing noise in a signal, leading to better generalization. A widely
used approach to obtain a smooth output signal is regularizing the second-order derivatives. For
instance, in spline regression, a weighted sum of second-order derivatives and the square loss is
minimized to achieve better generalization (Reinsch, 1967; Craven and Wahba, 1978; Kimeldorf
and Wahba, 1970). Interestingly, Heiss et al. (2019), showed that shallow ReLU networks, when
initialized randomly, implicitly regularize the second-order derivatives of the output over a broad class
of loss functional, leading to better generalization. Next we show that minimizing the second-order
derivatives of a signal is equivalent to minimizing the power of higher frequencies of that particular
signal. Consider an absolutely integrable function g(x) and its Fourier transform ĝ(x). Then,

g(x) =

∫ ∞

−∞
ĝ(k)e2πjkxdk

∣∣∣∣d2g(x)dx2

∣∣∣∣ = |4π2

∫ ∞

−∞
k2ĝ(k)e2πjkxdk| ≤ |4π2|

∫ ∞

−∞
|k2ĝ(k)|dk

Therefore, suppressing the higher frequencies of the Fourier spectrum ĝ(k) of a signal reduces the
upperbound on the magnitude of the second-order derivatives of that particular signal.
Fourier spectrum of a neural network To any integrable function f : Rd → R is associated its
Fourier transform, given by the formula F [f ](k) :=

∫
e−ik·xf(x) dx Grafakos (2008). In particular,

a scalar-valued neural network defines a function fθ : Rd → R, whose Fourier transform makes sense
provided fθ is integrable. We will mollify (set to zero outside of some set) fθ to take into account
data locality, which guarantees integrability. The Fourier transform of a vector-valued network is
defined by taking the Fourier transform of each of its component functions.

Figure 1: Implicit neural networks are not implicitly regularized. The ReLU network keeps converging
to smooth solutions despite the increasing depth. In contrast, Gaussian and sinusoidal networks converge to
increasingly erratic solutions as the depth is increased. Interestingly, note that the Gaussian and sinusoidal
networks add higher frequencies to the spectrum at initialization as the depth is increased, in contrast to the
ReLU network.
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4 IMPLICIT NEURAL NETWORKS DO NOT ALWAYS GENERALIZE WELL
In this section, we compare implicit neural networks against conventional ReLU networks in regres-
sion, and show that the former do not always generalize well. The experiments are described in detail
below.

Experiment 1: We utilize fully-connected networks with three types of activation functions: 1)
ReLU, 2) Gaussian, and 3) Sinusoidal. We sample 8 sparse points from the signal 3sin(0.4πx) +
5sin(0.2πx) and regress them using networks across varying depths. Each layer contains 256 neurons.
As depicted in Fig. 1, when more capacity is added to the ReLU network via hidden layers, the
network keeps converging to a smooth solution as expected. In contrast, Gaussian and Sinusoidal
networks showcase worsening interpolations, contradicting the mainstream expectations of implicit
regularization. Interestingly, it can be observed that sinusoidal and Gaussian networks add more
energy to higher frequencies at initialization as more layers are added. In contrast, ReLU networks
tend to have a highly biased spectrum towards lower frequencies irrespective of the depth. All the
networks are randomly initialized using Xavier initialization (Glorot and Bengio, 2010). We use SGD
to optimize the networks with a learning rate of 1× 10−4. The networks consist of 256 neurons in
each hidden layer.

Experiment 1 concludes that even with SGD as the optimization algorithm, not all types of networks
are implicitly regularized. Instead, the results hint that the initial Fourier spectrum impacts the
generalization performance of a neural network, and the network architecture (activation) plays a
crucial role in determining the spectrum. In the upcoming sections, we dig deeper into these insights.

5 THE UNIVERSALITY OF WEAK SPECTRAL BIAS
Sec. 4 showed that networks with higher frequencies at initialization tend to exhibit poor generaliza-
tion. However, it is worth investigating if there is indeed a causal link between the two. Intuitively,
spectral bias allows us to speculate such a link. That is, one can speculate that the non-smooth inter-
polations are a result of unwanted residual frequencies after the convergence of lower frequencies.
Continuing this line of thought, we present a general proof of a weaker version of spectral bias, which
we show to be a universal phenomenon that exists in any parameterized function (which includes the
class of all neural networks), given that they are trained with gradient-based optimization methods.

Let f : Rp × Rd → R be a parameterized family θ 7→ fθ of continuous functions Rd → R. We
assume that the map (θ, x) 7→ fθ(x) is differentiable almost everywhere, and that the restriction of
the (almost everywhere-defined) map x 7→ Dθfθ(x) is bounded over any compact set. This setting
includes all presently used neural network architectures, with activation functions constrained only to
be differentiable almost everywhere.

We care only about the behaviour of fθ in a neighbourhood of the data. We invoke the compact data
manifold hypothesis: that the entire data manifold is contained in some compact neighbourhood1 K.
Let gθ be the extension by zero of fθ outside of K (our result also holds if one mollifies by a smooth
bump function, as in Luo et al. (2019)) i.e.

gθ(x) :=

{
fθ(x) if x ∈ K,

0 otherwise
(1)

Thus gθ has compact support2 K and is continuous on K since fθ is continuous globally. It follows
that gθ is in L1(Rd). It follows from the Riemann-Lebesgue lemma (Grafakos, 2008, Proposition
2.2.17) that the Fourier transform F [gθ] of gθ vanishes at infinity. The next theorem shows that
the same is true of the change d

dt [gθ(t)] during training, hence that high enough frequencies will be
essentially unaffected during training.
Theorem 5.1 (The (weak) spectral bias of differentiably parameterized models). Let c : R× R → R
be any differentiable cost function, and let {xi}ni=1 be a training set drawn from the data manifold,
with corresponding target values {yi}ni=1. Assume that the parameterized function θ 7→ gθ is trained
according to almost-everywhere-defined gradient flow:

d

dt
gθ(t)(x) = − 1

n

n∑
i=1

K(θ(t), x, xi)∇c(gθ(t)(xi), yi), (2)

1A compact neighbourhood is a compact set containing a nonempty open set.
2The support of a function is the smallest closed set containing the set on which the function is nonzero
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where
K(θ, x, x′) := Dθgθ(x)Dθgθ(x

′)T (3)
is the tangent kernel Jacot et al. (2018a) defined by gθ. Then the Fourier transform F [gθ(t)] evolves
according to the differential equation

d

dt
F [gθ(t)](ξ) = − 1

n

n∑
i=1

∫
x∈Rd

e−ix·ξK(θ(t), x, xi)∇c(gθ(t)(xi), yi) dx. (4)

Moreover, d
dtF [gθ(t)] vanishes at infinity: for each ϵ > 0, there exists κ > 0 such that ∥ξ∥ > κ

implies
∣∣ d
dtF [gθ(t)](ξ)

∣∣ < ϵ.

A Taylor expansion argument can be used to argue for the same result for discrete-time gradient
descent (see Appendix A1). Two remarks are in order regarding Theorem 5.1.
Remark 5.2. For a given architecture, it is desirable to have quantitative bounds on the frequency
above which training can be guaranteed to be negligible. Such bounds exist in the literature Zhang
et al. (2019); Luo et al. (2019; 2020), but these bounds make strong architectural assumptions such as
limited depth, infinite width or purely chain MLP architectures. While our theorem is quantitatively
limited, it is qualitatively powerful in that it predicts that for any learning problem using gradient flow
on a parameterized model, sufficiently high frequencies present at initialization will tend to remain
after training. Our experiments suggest that for practical neural networks in particular, “sufficiently
high” frequencies are far from out of reach and can cause poor generalization.
Remark 5.3. Our use of the tangent kernel in characterising the dynamics of gradient flow are inspired
by the seminal work of Jacot et al. (2018a), which is well-known for hypothesising infinite width for
several of its results. In fact, the tangent kernel governs gradient flow dynamics independently of any
architectural assumptions (beyond the stated differentiability assumption), and in particular, Theorem
5.1 does not require an assumption of infinite width in order to use the tangent kernel. The infinite
width hypothesis is invoked in Jacot et al. (2018a) specifically to give a simple proof of evolution
towards a global minimum. We do not attempt any such proof and so do not require the infinite width
hypothesis.

Experiement 2: The goal of this experiment is to (partially) empirically validate the above
theoretical conclusions. To this end, we use 4-layer deep ReLU, Gaussian, and sinusoid networks
where each layer contains 256 neurons. We train the networks on densely sampled points from
g(x) =

∑6
n=1 sin(10πnx). While training, we visualize the convergence of frequency indices of all

the networks (Fig. 2). As Theorem 5.1 predicted, all three types of networks exhibit spectral bias.
Note that the convergence-decay rates differ across network-types and initialization schemes, which
also has an impact on generalization (see Appendix).

In the next section, we show that the initialization plays a key role in generalization and the widely-
observed good generalization properties of ReLU networks are merely a consequence of them having
biased initial spectra (towards lower frequencies), upon random initialization.

Figure 2: Spectral bias applies to different network types and initialization schemes. We measure the
convergence of each frequency index as the training progresses. The colors indicate the difference between the
ground truth and the predicted frequencies at each index. Xavier and Sitzmann are the initialization schemes
proposed by Glorot and Bengio (2010) and Sitzmann et al. (2020), respectively. Note that the convergence-decay
rates of frequencies varies across network types and initialization schemes.

6 RELU NETWORKS DO NOT ALWAYS GENERALIZE WELL
In this section, we show that the initial Fourier spectrum plays a decisive role in governing the implicit
regularization of a neural network. Notably, we show that even ReLU networks (which are commonly
expected to generalize well) do not always converge to smooth solutions despite training with SGD.
We use 4-layer networks where each layer’s width is 256 neurons
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Experiment 3a: We investigate and analyze the effect of the initial Fourier spectrum on general-
ization. First, we sample a signal sin(πx) with a step size of 1. Thus, the lowest frequency signal
that can fit this set of training points is sin(πx) (Nyquist-Shannon sampling theorem). Then, we
randomly initialize a ReLU network using Xavier initialization, so that its initial Fourier spectrum
does not contain significant energies above the frequency index k = 0.5 (which corresponds to the
lowest frequency solution). After training the network over the training points, the network converges
to the lowest frequency solution, i.e., sin(πx).
Experiment 3b: We utilize the same training points used in Experiment 4a. However, in this
instance, we pre-train the ReLU network on a signal sin(10πx). Note that at this instance, the Fourier
spectrum of the network has a spike at k = 5, which is above k = 0.5. Then, starting from these
pre-trained weights, we train the network on the training points.
Experiment 3c: We initialize a Gaussian network with Xavier initialization, so that it contains
frequencies above k = 0.5. Then, starting from these weights, we train the model on the above
training points.
Experiment 3d: We initialize a Gaussian network with a random weight distribution N (0, 0.03)
such that it does not contain frequencies above k = 0.5. Then, starting from these weights, we train
the model on the training points used in the above experiments.

Fig. 3 visualizes the results. As illustrated, when the spectrum of the ReLU network does not contain
frequencies higher than k = 0.5, the final spectrum of the network matches with the lowest frequency
solution. In contrast, when the initial spectrum of the ReLU network contains frequencies higher
than k = 0.5, the network adds a spike at k = 0.5, but leaves the high-frequency spike untouched as
the network has already reached zero train error. This results in a non-smooth (poorly generalized)
solution. Interestingly, observe that Gaussian networks also can generalize well if the initial spectrum
does not contain higher frequencies. It is vital to note that, however, the convergence-decay rates of
frequencies also play an important role. For instance, if the convergence-decay rate is low, higher
frequencies begin to get affected before the lower frequencies are converged, which can lead to
non-smooth solutions (see Appendix). In the next section, we investigate the effect of having high
bandwidth spectra at initialization in classification, using popular deep networks.

7 GENERALIZATION OF DEEP NETWORKS IN CLASSIFICATION
Sec. 5 affirmed that the spectral bias holds for any parameterized model trained using gradient descent.
Thus, it is intriguing to explore whether the practical insights we developed thus far extrapolate to
popular deep networks that are ubiquitously used. However, for deep networks with high-dimensional
inputs (e.g., images), high-bandwidth initialization becomes less straightforward. For instance,
consider a network that consumes high dimensional inputs x = (x1, x2, . . . , xn). Then, one can hope
to directly extend the one dimensional technique we used and train the network on the supervisory
signal sin(wx1)× sin(wx2)× · · · × sin(wxn). However, it is easy to show that in this case, as the
dimension of the input grows, the target signal converges to zero.

Let us instead state and justify the following two hypotheses. First, we hypothesize that pretraining
on random labels will suffice to introduce high frequencies into the resulting function due to the
high frequency nature of random noise: we empirically justify this using low-dimensional proxy
experiments (Appendix A.2) . Second, we hypothesize that a high frequency function will generalize
poorly in image classification: we believe this to be justified by the manifold hypothesis, which
asserts that natural images tend to cluster along smooth manifolds. If these two hypotheses are true,
then pretraining a network on random labels before training on real labels will cause worse test
performance. This is indeed what we observe as shown next.
Experiment 4 We use 9 popular models for this experiment: VGG16, VGG11, AlexNet, Efficient-
Net, DenseNet, ResNet-50, ResNet-18, SENet, and ConvMixer. In the first setting, we initialize
the models with random weights, train them on the train splits of the datasets, and measure the
test accuracy on the test splits. In the next setting, we first pre-train the models on the train split
with randomly shuffled labels. Then, starting from the pre-trained weights, we train the models on
the train splits of datasets with correct labels and compute the test accuracy on the test splits. The
results are depicted in Table 1. Recall that the pre-trained models on random labels yield higher
initial bandwidths compared to randomly initialized models. As evident from the results, starting
from a higher bandwidth hinders good generalization, validating our previous conclusions. The test
accuracies of some models under random weight initialization (Table 1) are slightly lower than the
benchmark results reported in the literature. This is because, following Zhang et al. (2016), we treat
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Figure 3: Left block shows sparsely sampled training points from sin(πx) and the corresponding lowest
frequency solution that fits the training data. Right block compares generalization corresponding to different
networks and initializations. Top row: The ReLU network tries to converge to a solution by changing low
frequencies at a faster rate due to spectral bias. Consequently, when initialized with no high frequencies, the
network ends up converging to the lowest frequency (hence smooth) solution for the training points. Second row:
ReLU networks do not always generalize well. If higher frequencies (than the lowest frequency solution)
exist at initialization, ReLU networks reach a solution manipulating only the lower frequencies, resulting in bad
interpolations. Third row: Same behavior is demonstrated with a Gaussian network. Fourth row: Gaussian
networks can generalize well if initialized properly. Since the network does not contain high frequencies at
initialization, it is possible for the network to converge to the lowest frequency solution.

data augmentation as an explicit regularization technique and do not use it. In contrast to Zhang
et al. (2016), we consider dropout and batch normalization as architectural aspects and keep them.
Nevertheless, it is important to note that in the above experiments, we cannot guarantee that no other
adversarial effects will be introduced to the networks other than higher frequencies. We leave precise
investigation into this matter to future works.

8 A CASE AGAINST THE FLAT MINIMA CONJECTURE

The “flat minima conjecture” refers to an informal hypothesis present in the literature that convergence
of neural network training to a flat minimum is sufficient Keskar et al. (2016); Chaudhari et al. (2019);
Ronny Huang et al. (2020) (but not necessary Dinh (2017)) for the network to generalize well. While
a good deal of empirical evidence exists to support this conjecture for ReLU networks (see especially
Chaudhari et al. (2019)), we show that the conjecture is not true for Gaussian-activated networks.

Experiment 5 We sample four random variables w1, w2 ∼ U(0.01, 1), a1, a2 ∼ U(1, 10) and
define 20 signals using the sampled variables as a1sin(2πw1x) + a2sin(2πw2x). Then, we sample 8
equidistant samples between 0 and 10, and use them as the training points to train models. We use
Gaussian and ReLU networks for this experiment in two settings. In the first setting, we initialize the
ReLU network using Xavier initialization and the Gaussian networks with N (0, 0.03). In this setting,
both the networks are able to interpolate the points smoothly. In the other setting, we initialize the
ReLU network by pre-training it on sin(6πx) and the Gaussian network with Xavier initialization. In
this scenario, both networks demonstrate non-smooth interpolations due to initial high bandwidth. At
convergence, we compute the hessian of the loss with respect to the parameters and then compute the
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CIFAR10

Model Random initialization High B/W initialization
Train accuracy Test accuracy Train accuracy Test accuracy

VGG11 (Simonyan and Zisserman, 2014) 100% 84.33 ± 0.49% 100% 71.94 ± 0.71%
VGG16 (Simonyan and Zisserman, 2014) 100% 88.24 ± 0.12% 100% 71.55 ± 0.79%

AlexNet (Krizhevsky, 2014) 100% 80.11 ± 1.13% 100% 51.31 ± 0.61%
EfficientNet (Tan and Le, 2019) 100% 76.78 ± 0.57% 100% 61.38 ± 0.46%
DenseNet (Huang et al., 2017) 100% 86.69 ± 0.02% 100% 80.86 ± 0.01%

ResNet-18 He et al. (2016) 100% 82.44 ± 0.15% 100% 68.99 ± 0.62%
ResNet-50 He et al. (2016) 100% 87.18 ± 0.21% 100% 62.72 ± 0.47%

SENet (Hu et al., 2018) 100% 86.31 ± 0.30% 100% 71.20 ± 0.35%
ConvMixer (Trockman and Kolter, 2022) 100% 86.72 ± 0.97% 100% 49.33 ± 0.78%

CIFAR100

Model Random initialization High B/W initialization
Train accuracy Test accuracy Train accuracy Test accuracy

VGG11 100% 54.03 ± 0.71% 100% 41.88 ± 0.94%
VGG16 100% 56.86 ± 0.68% 100% 36.27 ± 1.92%
AlexNet 100% 53.12 ± 1.01% 100% 41.44 ± 1.21%

EfficientNet 100% 43.15 ± 0.58% 100% 26.83 ± 0.89%
DenseNet. 100% 57.76 ± 0.24% 100% 46.56 ± 0.41%
ResNet-18 100% 52.14 ± 0.61% 100% 41.98 ± 0.59%
ResNet-50 100% 54.42 ± 0.78% 100% 30.56 ± 0.58%

SENet 100% 58.64 ± 0.25% 100% 51.56 ± 0.77%
ConvMixer 100% 61.20 ± 0.24% 100% 26.35 ± 0.99%

Tiny ImageNet

Model Random initialization High B/W initialization
Train accuracy Test accuracy Train accuracy Test accuracy

VGG11 100% 38.87 ± 0.41% 100% 27.99 ± 0.73%
VGG16 100% 40.95 ± 0.61% 100% 21.77 ± 0.85%
AlexNet 100% 35.56 ± 0.55% 100% 21.94 ± 1.66%

EfficientNet 100% 33.39 ± 0.42% 100% 18.19 ± 0.92%
DenseNet 100% 48.86 ± 0.35% 100% 28.23 ± 0.27%
ResNet-18 100% 43.58 ± 1.21% 100% 26.73 ± 0.63%
ResNet-50 100% 43.33 ± 1.43% 100% 28.08 ± 0.61%

SENet 100% 28.27 ± 1.33% 100% 24.03 ± 0.29%
ConvMixer 100% 45.38 ± 0.88% 100% 27.77 ± 0.28%

Table 1: Generalization of deep networks in classification (accuracy ± std.). When the models
are initialized with higher bandwidths (pre-trained on random labels), the test accuracy drops. This
pattern is consistent across various architectures and datasets. We do not use data augmentation in
these experiments and each model is run for five times in each setting.

Figure 4: Flat minima conjecture does not always hold. The left block and the right block correspond to high
bandwidth and low bandwidth initializations, respectively. In each block, from the left column, the interpolations,
loss landscapes, and the eigenvalue distribution of the loss-Hessian are illustrated. The loss landscapes are
plotted along with the directions of the two largest eigenvalues. As depicted, while our results for the ReLU
network are consistent with the conjecture, the Gaussian network behaves in the opposite manner. For more
detailed quantitative results, see Table 4.

eigenvalues and the trace of the hessian. The results are shown in Fig. 4 and Table 4 (Appendix). As
evident, the behavior of the Gaussian network is not consistent with the flat minima conjecture.

9 CONCLUSION

We focus on the effect of initialization on the implicit generalization of neural networks. We reveal that
the Fourier spectrum of the network at initialization has a significant impact on the generalization gap.
Moreover, we offer evidence against the flat minima conjecture and show that the correlation between
the flatness of the minima and the generalization can be architecture-dependent. We empirically
validate the generality of our insights across diverse, practical settings.
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Michael Kohler, Adam Krzyżak, and Dominik Schäfer. Application of structural risk minimization to
multivariate smoothing spline regression estimates. Bernoulli, pages 475–489, 2002.

Alex Krizhevsky. One weird trick for parallelizing convolutional neural networks. arXiv preprint
arXiv:1404.5997, 2014.

Andrew K Lampinen and Surya Ganguli. An analytic theory of generalization dynamics and transfer
learning in deep linear networks. arXiv preprint arXiv:1809.10374, 2018.

Yuanzhi Li, Tengyu Ma, and Hongyang Zhang. Algorithmic regularization in over-parameterized
matrix sensing and neural networks with quadratic activations. In Conference On Learning Theory,
pages 2–47. PMLR, 2018.

Tao Luo, Zheng Ma, Zhi-Qin John Xu, and Yaoyu Zhang. Theory of the frequency principle for
general deep neural networks. arXiv preprint arXiv:1906.09235, 2019.

Tao Luo, Zheng Ma, Zhi-Qin John Xu, and Yaoyu Zhang. On the exact computation of linear
frequency principle dynamics and its generalization. arXiv preprint arXiv:2010.08153, 2020.

Cong Ma, Kaizheng Wang, Yuejie Chi, and Yuxin Chen. Implicit regularization in nonconvex
statistical estimation: Gradient descent converges linearly for phase retrieval and matrix completion.
In International Conference on Machine Learning, pages 3345–3354. PMLR, 2018.

Ricardo Martin-Brualla, Noha Radwan, Mehdi SM Sajjadi, Jonathan T Barron, Alexey Dosovitskiy,
and Daniel Duckworth. Nerf in the wild: Neural radiance fields for unconstrained photo collections.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
7210–7219, 2021.

Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Mean-field theory of two-layers neural
networks: dimension-free bounds and kernel limit. In Conference on Learning Theory, pages
2388–2464. PMLR, 2019.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In European
Conference on Computer Vision, pages 405–421. Springer, 2020.
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10 APPENDIX

10.1 PROOF OF THEOREM 5.1

Proof. The evolution in parameter space is described by the differential equation

d

dt
θ(t) = − 1

n

n∑
i=1

Dθgθ(t)(xi)
T∇c(gθ(t)(xi), yi).

The evolution of the corresponding function gθ(t) is given by pushing this differential equation
forward to function space by acting on both sides with the derivative Dθgθ(t)(x):

d

dt
gθ(t)(x) = Dθgθ(t)(x)

d

dt
θ(t) =− 1

n

n∑
i=1

Dθgθ(t)(x)Dθgθ(t)(xi)
T∇c(gθ(t)(xi), yi)

=− 1

n

n∑
i=1

K(θ, x, xi)∇c(gθ(t)(xi), yi),

where K the extension of the tangent kernel associated to fθ by zero outside of the compact neigh-
bourhood K of the data manifold, i.e.

K(θ, x, x′) =

{
Dθfθ(x)Dθfθ(x

′)T , if x, x′ ∈ K

0, otherwise.

The evolution equation for F [gθ(t)] follows easily from the Liebniz integral rule:

d

dt
F [gθ(t)] = F

[
d

dt
gθ(t)

]
.

Now, by our hypothesis on fθ that x 7→ Dθfθ(x) is bounded over compact sets, one has that
x 7→ K(θ, x, xi) is L1 for each i, hence that d

dtgθ(t) is an L1 function. By the Riemann-Lebesgue
lemma its Fourier transform vanishes at infinity as stated.

The same result can be argued for discrete-time gradient descent as follows. At a given time step T ,
the gradient update is given by the equation

θT+1 − θT = − η

n

n∑
i=1

DθfθT (xi)
T∇c(fθT (xi)),

where η is the step size. One wishes to show that the difference x 7→ fθT+1
(x)− fθT (x), extended

by zero for x outside of the compact data manifold K, has Fourier transform vanishing at infinity. To
first order in η, one can approximate this difference by

− η

n

n∑
i=1

DθfθT (x)DθfθT (xi)
T∇c(fθT (xi)),

again extended by zero for x outside of K. Spectral bias for gradient descent then follows (at least
approximately, for η << 1) from the same Riemann-Lebesgue argument that we used for gradient
flow.

10.2 SMOOTHNESS, GENERALIZATION, AND THE THE EMPIRICAL RISK MINIMIZATION (ERM)

The ERM framework provides a well-established framework for studying the generalization in
learnable models. The smoothness is a property which stems from the empirical risk minimization
framework, and has been used since the earliest days of ML to quantify generalization (in regression).
In summary, given a set of hypotheses (models) that minimizes the empirical risk (with training
data), the ERM framework prefers a solution that minimizes the true risk (with respect to the actual
data distribution) with a higher probability. When extra prior knowledge is unavailable on the true
data distribution, ERM suggests that the best solution would be the one that minimizes the least
complex solution that minimizes the empirical risk (under the realizability assumption). This can
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be primarily achieved using two regularization techniques: 1) regularizing the parameters of the
model or 2) regularizing the function output itself. Popular regularizations on NNs, Lasso regression,
Ridge regression etc. fall into the first category, and spline, polynomial regression with regularized
derivatives fall into the second category Reinsch (1967); Kimeldorf and Wahba (1970); Craven and
Wahba (1978); Kohler et al. (2002). A more recent example is Heiss et al. (2019). It should be noted
that both these techniques lead to smooth solutions with bounded (higher-order) derivatives.

The intuition for this partially stems from the fact that reducing the bandwidth of a signal can be
considered as minimizing noise, whereas noise corresponds to higher frequencies in natural signals.
Almost every spectral-bias-related recent work also uses low-frequency solutions, hence solutions
with bounded second-order derivatives, as a proxy for measuring generalization Xu et al. (2019a;b). A
few application-specific examples would be recent Neural Radiance Field works Fridovich-Keil et al.
(2022); Chen et al. (2022), where smooth (tri-linear) interpolation is used to generalize to unseen
coordinates.

10.3 INITIALIZING DEEP NETWORKS WITH HIGHER BANDWIDTHS

Initializing deep classification networks – that consume high dimensional inputs such as images –
such that they have higher bandwidths is not straightforward. Therefore, we explore alternative ways
to initialize networks with higher bandwidths in low-dimensional settings, and extrapolate the learned
insights to higher dimensions.

For all the experiments, we consider a fully connected 4-layer ReLU network with 1-dimensional
inputs. First, we sample a set of values from white Gaussian noise, and train the network with
these target values using MSE loss. In the second experiment, we threshold the sampled values to
obtain a set of binary labels, and then train the network with binary cross-entropy loss. For the third
experiment, we use a network with four outputs. Then, we separate the sampled values into four bins,
and obtain four labels. Then, we train the network with cross-entropy loss. We compute the Fourier
spectra of each of the trained networks after convergence. The results are shown in Fig.5.

As depicted, we can use mean squared error (MSE) or cross-entropy (CE) loss along with random
labels to initialize the networks with higher bandwidth. However, we observed that, in practice,
deep networks take an infeasible amount of time to converge with the MSE loss. Therefore, we use
cross-entropy loss with random labels to initialize the networks in image classification settings.

Figure 5: We visualize the spectra of networks after training them with different loss functions and label
sampling schemes (the rightmost three plots). All shown methods are able to obtain higher bandwidths than
random initialization (leftmost plot). Note that the scale in the y−axis is different for each plot. However, in
practice, deep classification networks take an infeasible amount of time to converge with MSE loss. Hence, we
chose random labels with cross-entropy loss to initialize the deep classification networks with higher bandwidths.

In order to verify that training with random labels indeed induces higher bandwidths on deep
classification networks, we visualize the histograms of their first order gradients of the averaged
outputs w.r.t. the inputs. It is straightforward to show that (similar to second-order gradients) higher
first-order gradients lead to higher bandwidth. For simplicity, consider a function f : R → R. Then,

f(x) =

∫ ∞

∞
f̂(k)e2πikxdk

It follows that,

16



Under review as a conference paper at ICLR 2023

|df(x)
dx

| = |2πi
∫ ∞

∞
kf̂(k)e2πikxdk| (5)

≤ |2π|
∫ ∞

∞
|kf̂(k)|dk. (6)

Therefore,

max
x∈ϵ

|df(x)
dx

| ≤ |2π|
∫ ∞

∞
|kf̂(k)|dk. (7)

This conclusion can be directly extrapolated to higher-dimensional inputs, where the Fourier transform
is also high dimensional. Hence, we feed a batch of images to the networks, and calculate the gradients
of the averaged output layer with respect to the input image pixels. Then, we plot the histograms of
the gradients (Fig. 6). As illustrated, training with random labels induces higher gradients, and thus,
higher bandwidth. Table. 2 compares generalization of deep networks on ImageNet.

Figure 6: The histograms of the first-order gradients of the outputs with respect to the inputs (a batch of training
images) are shown. Low and high bandwidth initializations correspond to Xavier initialization and pre-training
with random labels, respectively. Not that the x−axis scales are different in each plot. As depicted, training with
random labels leads to higher gradients, validating that it indeed leads to higher bandwidths.

ImageNet

Model Random initialization High B/W initialization
Train accuracy Test accuracy Train accuracy Test accuracy

VGG16 100% 68.19% 100% 55.48%
ResNet-18 100% 66.93% 100% 49.17%
ConvMixer 100% 74.19% 100% 45.68%

Table 2: Generalization of deep networks in classification over ImageNet. When the models are
initialized with higher bandwidths (pre-trained on random labels), the test accuracy drops. We do not
use data augmentation in these experiments. We only use three models for this experiment due to the
extensive resource usage when training on random labels over ImageNet.

10.4 CONVERGENCE-DECAY RATES OF FREQUENCIES MATTER FOR GENERALIZATION

Earlier, we showed that although all neural networks admit spectral bias, the convergence-decay rates
of frequencies change across network types and initialization schemes. Below, we show that these
decay rates play an essential role in generalization.

We use a Gaussian network for this experiment. We initialize two instances of the network by 1) using
a weight distribution N (0, 0.03), and 2) pre-training the network on a DC signal. In both instances,
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the network has low bandwidth. Then, we train the network on sparse training data sampled from
3sin(0.4πx) + 5sin(0.2πx). The results are shown in Fig. 7. Observe that although both networks
start from low bandwidth, they exhibit different generalization properties. This is because, having
a lower convergence-decay hinders smooth interpolations even in cases where the networks have
low initial bandwidth. This is expected, since then, the optimization will begin to affect the higher
frequencies before the lower frequencies are converged.

Figure 7: The effect of convergence-decay rate of frequencies on generalization. Left block: We pre-train a
Gaussian network on a DC signal to obtain low initial bandwidth. Nevertheless, the network still converges to a
non-smooth solution. Right block: The Gaussian network is initialized using a random Gaussian distribution
(N (0, 0.03)). This method also leads to lower bandwidth. However, in this scenario, the network is able
to converge to a smooth solution. At the top, the convergence of frequency components – starting from the
corresponding initialization – is shown when training on a signal g(x) =

∑6
n=1 sin(10πnx). Note that a lower

convergence decay rate leads to bad generalization.

To further verify this, we conduct another experiment; see Fig. 8.

Figure 8: The top block shows sparsely sampled training points from sin(πx) and the corresponding lowest
frequency solution that fits the training data. The bottom block shows the spectra of a Gaussian network
initialized by pre-training on a DC signal. Even though the network adds a spike at the lowest frequency solution,
higher frequencies are also added to the spectrum due to the low convergence-decay rate. This results in a
non-smooth interpolation.
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10.5 ANALYZING THE LOSS LANDSCAPES

The flat minima conjecture has been studied since the early work of Hochreiter and Schmidhuber
(1994) and Hochreiter and Schmidhuber (1997). More recently, empirical works showed that the
generalization of deep networks is related to the flatness of the minima it is converged to during
training (Chaudhari et al., 2019; Keskar et al., 2016). In order to measure the flatness of loss
landscapes, different metrics have been proposed (Tsuzuku et al., 2020; Rangamani et al., 2019;
Hochreiter and Schmidhuber, 1994; 1997). In particular, Chaudhari et al. (2019) and Keskar et al.
(2016) showed that minima with low Hessian spectral norm generalize better. In this paper also, we
use Hessian-related metrics to measure the flatness. Since the spectral norm alone is not ideal for
analyzing the loss landscape of models with a large number of parameters, we also compute the trace
and the expected eigenvalue of the Hessian. For computing the Hessian, we use the library provided
by Yao et al. (2020). Fig 9 and Table 3 depict a comparison of loss landscapes in several deep models.
Note that our proposed high B/W initialization scheme provides an ideal platform to compare the
loss landscapes with different generalization properties.

Figure 9: Loss landscapes of deep networks trained on CIFAR10. The proposed high B/W initialization
scheme provides an ideal platform to compare the flatness of minima with different generalization properties.
Note that ReLU networks exhibit behaviour consistent with the flat minima conjecture.

Model Hessian-trace Spectral norm
ResNet-18 (low B/W) 13560.76 2805.47
ResNet-18 (high B/W) 28614.19 4121.36

VGG-16 (low B/W) 10102.51 1112.07
VGG-16 (high B/W) 14483.90 3214.57

ConvMixer (low B/W) 0.3242 0.028
ConvMixer (high B/W) 3.49 0.445

Table 3: Quantitative comparison of the flatness of minima in deep networks. Note that Note that ReLU
networks exhibit behaviour consistent with the flat minima conjecture.
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Model Initialization Hessian trace E[ϵ] Spectral norm
ReLU High B/W 134213.36 0.95 257875.23
ReLU Low B/W 31110.73 0.04 49781.58

Gaussian High B/W 40478.82 0.21 12596.89
Gaussian Low B/W 59447.46 0.32 26519.66

Table 4: The trace, expected eigenvalue (E[ϵ)], and the spectral norm of the loss-Hessian are shown (averaged
over 20 signals). Higher values indicate a sharper minimum. As illustrated, while the ReLU network obeys the
flat minima conjecture, the Gaussian network behaves oppositely.
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