
Wolfpack Adversarial Attack for Robust Multi-Agent Reinforcement Learning

Sunwoo Lee 1 Jaebak Hwang 1 Yonghyeon Jo 1 Seungyul Han 1∗

Abstract
Traditional robust methods in multi-agent re-
inforcement learning (MARL) often struggle
against coordinated adversarial attacks in co-
operative scenarios. To address this limitation,
we propose the Wolfpack Adversarial Attack
framework, inspired by wolf hunting strategies,
which targets an initial agent and its assist-
ing agents to disrupt cooperation. Additionally,
we introduce the Wolfpack-Adversarial Learn-
ing for MARL (WALL) framework, which trains
robust MARL policies to defend against the
proposed Wolfpack attack by fostering system-
wide collaboration. Experimental results under-
score the devastating impact of the Wolfpack at-
tack and the significant robustness improvements
achieved by WALL. Our code is available at
https://github.com/sunwoolee0504/WALL.

1. Introduction
Multi-agent Reinforcement Learning (MARL) has gained
attention for solving complex problems requiring agent co-
operation (Oroojlooy & Hajinezhad, 2023) and competition,
such as drone control (Yun et al., 2022), autonomous nav-
igation (Chen et al., 2023), robotics (Orr & Dutta, 2023),
and energy management (Jendoubi & Bouffard, 2023). To
handle partially observable environments, the Centralized
Training and Decentralized Execution (CTDE) framework
(Oliehoek et al., 2008) trains a global value function cen-
trally while agents execute policies based on local obser-
vations. Notable credit-assignment methods in CTDE in-
clude Value Decomposition Networks (VDN) (Sunehag
et al., 2017), QMIX (Rashid et al., 2020), which satisfies
the Individual-Global-Max (IGM) condition ensuring that
optimal joint actions align with positive gradients in global
and individual value functions, and QPLEX (Wang et al.,
2020b), which encodes IGM into its architecture. However,

1Graduate School of Artificial Intelligence, UNIST, Ul-
san, South Korea. Correspondence to: Seungyul Han <sy-
han@unist.ac.kr>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

CTDE methods face challenges from exploration inefficien-
cies (Mahajan et al., 2019; Jo et al., 2024) and mismatches
between training and deployment environments, leading
to unexpected agent behaviors and degraded performance
(Moos et al., 2022; Guo et al., 2022). Thus, enhancing the
robustness of CTDE remains a critical research focus.

To improve learning robustness, single-agent RL methods
have explored strategies based on game theory (Yu et al.,
2021), such as max-min approaches and adversarial learning
(Goodfellow et al., 2014; Huang et al., 2017; Pattanaik et al.,
2017; Pinto et al., 2017). In multi-agent systems, simulta-
neous agent interactions introduce additional uncertainties
(Zhang et al., 2021b). To address this, methods like per-
turbing local observations (Lin et al., 2020), training with
adversarial policies for Nash equilibrium (Li et al., 2023a),
adversarial value decomposition (Phan et al., 2021), and
attacking inter-agent communication (Xue et al., 2021) have
been proposed. However, these approaches often target a
single agent per attack, overlooking interdependencies in
cooperative MARL, making them vulnerable to scenarios
where multiple agents are attacked simultaneously.

To overcome the vulnerabilities posed by coordinated ad-
versarial attacks in MARL, we propose the Wolfpack adver-
sarial attack framework, inspired by wolf hunting strategies.
This approach disrupts inter-agent cooperation by target-
ing a single agent and subsequently attacking the group
of agents assisting the initially targeted agent, resulting in
more devastating impacts. Experimental results reveal that
traditional robust MARL methods are highly susceptible
to such coordinated attacks, underscoring the need for new
defense mechanisms. In response, we also introduce the
Wolfpack-Adversarial Learning for MARL (WALL) frame-
work, a robust policy training approach specifically designed
to counter the Wolfpack Adversarial Attack. By fostering
system-wide collaboration and avoiding reliance on spe-
cific agent subsets, WALL enables agents to defend effec-
tively against coordinated attacks. Experimental evaluations
demonstrate that WALL significantly improves robustness
compared to existing methods while maintaining high per-
formance under a wide range of adversarial attack scenarios.
The key contributions of this paper in constructing the Wolf-
pack Adversarial Attack are summarized as follows:

• A novel MARL attack strategy, Wolfpack Adversarial
Attack, is introduced, targeting multiple agents simul-

1

Wolfpack Adversarial Attack for Robust Multi-Agent Reinforcement Learning

taneously to foster stronger and more resilient agent
cooperation during policy training.

• The follow-up agent group selection method is pro-
posed to target agents with significant behavioral ad-
justments to an initial attack, enabling subsequent se-
quential attacks and amplifying their overall impact.

• A planner-based attacking step selector predicts fu-
ture Q-value reductions caused by the attack, enabling
the selection of critical time steps to maximize impact
and improve learning robustness.

2. Related Works
Robust MARL Strategies: Recent research has focused on
robust MARL to address unexpected changes in multi-agent
environments. Max-min optimization (Chinchuluun et al.,
2008; Han & Sung, 2021) has been applied to traditional
MARL algorithms for robust learning (Li et al., 2019; Wang
et al., 2022). Robust Nash equilibrium has been redefined to
better suit multi-agent systems (Zhang et al., 2020b; Li et al.,
2023a). Regularization-based approaches have also been
explored to improve MARL robustness (Lin et al., 2020;
Li et al., 2023b; Wang et al., 2023; Bukharin et al., 2024),
alongside distributional reinforcement learning methods to
manage uncertainties (Li et al., 2020; Xu et al., 2021; Du
et al., 2024; Geng et al., 2024).

Adversarial Attacks for Resilient RL: To strengthen RL,
numerous studies have explored adversarial learning to train
policies under worst-case scenarios (Pattanaik et al., 2017;
Tessler et al., 2019; Pinto et al., 2017; Chae et al., 2022).
These attacks introduce perturbations to various MDP com-
ponents, including state (Zhang et al., 2020a; 2021a; Everett
et al., 2021; Li et al., 2023c; Qiaoben et al., 2024), action
(Tan et al., 2020; Lee et al., 2021; Liu et al., 2024), and
reward (Wang et al., 2020a; Zhang et al., 2020c; Rakhsha
et al., 2021; Xu et al., 2022; Cai et al., 2023; Bouhaddi &
Adi, 2023; Xu et al., 2024; Bouhaddi & Adi, 2024). Adver-
sarial attacks have recently been extended to multi-agent
setups, introducing uncertainties to state or observation (Han
et al., 2022; He et al., 2023; Zhang et al., 2023; Zhou et al.,
2023), actions (Yuan et al., 2023), and rewards (Kardeş et al.,
2011). Further research has applied adversarial attacks to
value decomposition frameworks (Phan et al., 2021), se-
lected critical agents for targeted attacks (Yuan et al., 2023;
Zhou et al., 2024), and analyzed their effects on inter-agent
communication (Xue et al., 2021; Tu et al., 2021; Sun et al.,
2023; Yuan et al., 2024).

Model-based Frameworks for Robust RL: Model-based
methods have been extensively studied to enhance RL ro-
bustness (Berkenkamp et al., 2017; Panaganti & Kalathil,
2021; Curi et al., 2021; Clavier et al., 2023; Shi & Chi,
2024; Ramesh et al., 2024), including adversarial extensions

(Wang et al., 2020c; Kobayashi, 2024). Transition models
have been leveraged to improve robustness (Mankowitz
et al., 2019; Ye et al., 2024; Herremans et al., 2024), and
offline setups have been explored for robust training (Rigter
et al., 2022; Bhardwaj et al., 2024). In multi-agent systems,
model-based approaches address challenges like construct-
ing worst-case sets (Shi et al., 2024) and managing transition
kernel uncertainty (He et al., 2022).

3. Background
3.1. Dec-POMDP and Value-based CTDE Setup

A fully cooperative multi-agent environment is modeled as
a decentralized partially observable Markov decision pro-
cess (Dec-POMDP) (Oliehoek et al., 2016), defined by the
tuple M = ⟨N ,S,A, P,Ω, O,R, γ⟩. N = 1, . . . , n is the
set of agents, S the global state space, A = A1 × · · · × An

the joint action space, P the state transition probabil-
ity, Ω the observation space, R the reward function, and
γ ∈ [0, 1) the discount factor. At time t, each agent i ob-
serves oit = O(st, i) ∈ Ω and takes action ait ∈ Ai based
on its individual policy πi(·|τ it), where τ it is the agent’s
trajectory up to t. The joint action at = ⟨a1t , . . . , ant ⟩ sam-
pled from the joint policy π := ⟨π1, · · · , πn⟩ leads to the
next state st+1 ∼ P (·|st,at) and reward rt := R(st,at).
MARL aims to find the optimal joint policy that maxi-
mizes

∑∞
t=0 γ

trt. As noted, this paper adopts the central-
ized training with decentralized execution (CTDE) setup,
where the joint value Qtot(st,at) is learned using temporal-
difference (TD) learning. Through credit assignment, indi-
vidual value functions Qi(τ it , a

i
t) are learned, guiding indi-

vidual policies πi to select actions that maximize Qi, i.e.,
πi := argmaxai

t∈Ai Qi(τ it , ·).

3.2. Robust MARL with Adversarial Attack Policy

Among various methods for robust learning in MARL, Yuan
et al. (2023) defined an adversarial attack policy πadv and
implemented robust MARL by training multi-agent policies
to defend against attacks executed by πadv : S ×A× N →
A. A cooperative MARL environment with an adversarial
policy πadv can be described as a Limited Policy Adversary
Dec-POMDP (LPA-Dec-POMDP) M̃, defined as follows:

Definition 3.1 (Limited Policy Adversary Dec-POMDP).
Given a Dec-POMDP M and a fixed adversarial policy
πadv, we define a Limited Policy Adversary Dec-POMDP
(LPA-Dec-POMDP) M̃ = ⟨N ,S,A, P,K,Ω, O,R, γ⟩,
where K is the maximum number of attacks,
πadv(·|st,at, kt) executes joint action ãt to disrupt
the original action at chosen by π, and kt ≤ K indicates
the number of remaining attacks.

Here, if πadv selects an attack action ãt different from the
original action at, the remaining number of attacks kt de-

2

Wolfpack Adversarial Attack for Robust Multi-Agent Reinforcement Learning

𝒕 + 𝟏

Help(Guard)

Help(Heal)

𝒕

Initial
Attack

𝒕

(b)(a)

Wolfpack
Attack

𝒕 → 𝒕 + 𝟏

(c)

Wolfpack
Attack

Responding (follow-up) AgentsInitial Agent Original Action

Figure 1. Visualization of Wolfpack attack strategy during combat in the StarCraft II environment: (a) The initial agent is attacked,
disrupting its original action (b) Responding (follow-up) agents to help the initially attacked agent and (c) Wolfpack adversarial attack that
disrupts help actions of follow-up agents.

creases by 1. Once kt reaches 0, no further attacks can be
performed. In this framework, Yuan et al. (2023) also demon-
strated that the LPA-Dec-POMDP can be represented as an-
other Dec-POMDP induced by πadv, with the convergence
of the optimal policy π∗ under M̃ guaranteed. In particular,
it considers an adversarial attack targeting a chosen agent i
by minimizing its individual value function Qi, as proposed
by (Pattanaik et al., 2017), i.e., ãit = argmina∈Ai Qi(τ it , a).
Additionally, to enhance the attack’s effectiveness, an evolu-
tionary generation of attacker (EGA) approach is proposed,
which combines multiple adversarial policies.

4. Methodology
4.1. Motivation of Wolfpack Attack Strategy

Existing adversarial attackers typically target only a single
agent per attack, without coordination or relationships be-
tween successive attacks. In a cooperative MARL setup,
such simplistic attacks enable non-targeted agents to learn
effective policies to counteract the attack. However, we
observe that policies trained under these conditions are vul-
nerable to coordinated attacks. As illustrated in Fig. 1(a), a
single agent is attacked at time t. In Fig. 1(b), at the next
step t + 1, responding agents adjust their actions, such as
healing or moving to guard, to protect the initially attacked
agent. In contrast, Fig. 1(c) demonstrates a coordinated at-
tack strategy that targets the agents responding to the initial
attack. Such coordinated attacks render the learned policy
ineffective, preventing it from countering the attacks en-
tirely. This highlights that coordinated attacks are far more
detrimental than existing attack methods, and current robust
policies fail to defend effectively against them.

As depicted in Fig. 1(c), targeting agents that respond to
an initial attack aligns with the Wolfpack attack strategy, a
tactic widely employed in traditional military operations, as
discussed in Section 1. To adapt this concept to a cooper-
ative multi-agent setup, we define a Wolfpack adversarial
attack as a coordinated strategy where one agent is attacked

initially, followed by targeting the group of follow-up agents
that respond to defend against the initial attack, as shown
in Fig. 1(c). Leveraging this approach, we aim to develop
robust policies capable of effectively countering Wolfpack
adversarial attack, thereby significantly enhancing the over-
all resilience of the learning process.

4.2. Wolfpack Adversarial Attack

In this section, we formally propose the Wolfpack adver-
sarial attack, as introduced in the previous sections. The
Wolfpack attack consists of two components: initial attacks,
where a single agent is targeted at a specific time step tinit,
and follow-up group attacks, where the group of agents re-
sponding to the initial attack is selected and targeted over
the subsequent steps tinit + 1, · · · , tinit + tWP. Over the
course of an episode, a maximum of KWP Wolfpack attacks
can be executed. Consequently, the total number of attack
steps is given by K = KWP × (tWP + 1). The Wolfpack
adversarial attacker πWP

adv can then be defined as follows:

Definition 4.1 (Wolfpack Adversarial Attacker). A Wolf-
pack adversarial attacker πWP

adv : S × A × N →
A is defined as ãt = πWP

adv (st,at, kt), where ãit =
argminai

t∈Ai Qtot(st, a
i
t,a

−i
t) for all i ∈ Nt,attack, and

ãit = ait otherwise. Here, a−i
t represents the joint actions

of all agents excluding the i-th agent, and Nt,attack denotes
the set of agents targeted for adversarial attack, defined as

Nt,attack =


∅ if kt = 0,
{i} else if t = tinit, i ∼ Unif(N),

Nfollow−up else if t = tinit + 1, · · · , tinit + tWP,
∅ otherwise,

where Unif(·) is the Uniform distribution, Nfollow−up :=
{i1, · · · , im} ⊂ N is the group of agents selected for
follow-up attack, and m is the number of follow-up agents.

Here, note that kt decreases by 1 for every attack step such
that ãt ̸= at, as in the ordinary adversarial attack policy, and
the total value function Qtot is used for the attack instead

3

Wolfpack Adversarial Attack for Robust Multi-Agent Reinforcement Learning

𝑺𝒐𝒇𝒕(𝑸𝒊) 𝑺𝒐𝒇𝒕(෩𝑸𝒊)

𝓐𝟐

𝓐𝟑

𝓐𝟏
Heal

Guard

𝑫𝑲𝑳(𝑺𝒐𝒇𝒕(𝑸
𝒊)||𝑺𝒐𝒇𝒕(෩𝑸𝒊))

𝒕
𝓝𝒇𝒐𝒍𝒍𝒐𝒘−𝒖𝒑

= {𝟏, 𝟑}

Guard
𝟏

𝟐

𝟑

Heal

𝒊 = {𝟏, 𝟐, 𝟑, 𝟒}

𝟏 𝟐 𝟑𝟒

Figure 2. Visualization of follow-up agent group selection method:
Agent 4 is initially attacked, and the m agents exhibiting the largest
changes in Qi are selected from {1, 2, 3} (m = 2).

of Qi. The proposed Wolfpack adversarial attacker πWP
adv is

a special case of the adversarial policy defined in Definition
3.1. Consequently, the proposed attacker forms an LPA-Dec-
POMDP M̃ induced by πWP

adv , and as demonstrated in Yuan
et al. (2023), the convergence of MARL within the LPA-
Dec-POMDP can be guaranteed. The proposed Wolfpack
attack involves two key issues: how to design the group of
follow-up agents Nfollow−up and when to select tinit. The
following sections address these aspects in detail.

4.3. Follow-up Agent Group Selection Method

In the Wolfpack adversarial attacker, we aim to identify the
follow-up agent group Nfollow−up that actively responds to
the initial attack πWP

adv (stinit
,atinit

, ktinit
) and target them

in subsequent steps. To do this, we define the difference
between the Q-functions from the original action and the
initial attack at time t as:

∆Qtot
t = Qtot(st,at)−Qtot(st, ãt),

where ∆Qtot
t ≥ 0 for all t such that Nt,attack ̸= ∅, because

ãt minimizes Qtot for the agent indices selected by πWP
adv .

Assuming the i-th agent is the target of the initial attack,
updating Qtot based on ∆Qtot

tinit
adjusts each agent’s indi-

vidual value function Qj to increase Qtot for all j ̸= i ∈ N ,
in accordance with the credit assignment principle in CTDE
algorithms (Sunehag et al., 2017; Rashid et al., 2020), as
shown below:

Q̃i(τ itinit
, ·) = Qi(τ itinit

, ·)− αlr

∂∆Qtot
tinit

∂Qi(τ itinit
,a)

∣∣∣∣
a=ãtinit

,

(1)
where αlr is the learning rate. As agents select actions based
on Qj , changes in Qj indicate adjustments in their policies
in response to the initial attack. Agents with the largest
changes in Qj are identified as follow-up agents, while the
i-th agent is excluded as it is already under attack and cannot
respond immediately.

To identify the follow-up agent group, the updated Q̃j and
original Qj are transformed into distributions using the Soft-
max function Soft(). This transformation softens the de-
terministic policy πj , which directly selects an action to

⋯ ෡𝚫𝑸𝒕+𝑳−𝟏
𝑾𝑷෡𝚫𝑸𝒕+𝟏

𝑾𝑷෡𝚫𝑸𝒕
𝑾𝑷

ො𝒔𝒕+𝒕𝑾𝑷−𝟏 ෥𝒂𝒕+𝒕𝑾𝑷−𝟏ෝ𝒐𝒕+𝒕𝑾𝑷−𝟏 ො𝒔𝒕+𝟏 ෝ𝒐𝒕+𝟏 ෥𝒂𝒕+𝟏

Transformer

⋯

𝒔𝒕 𝒐𝒕 ෥𝒂𝒕

ො𝒔𝒕+𝟏 ෝ𝒐𝒕+𝟏 ො𝒔𝒕+𝟐 ෝ𝒐𝒕+𝟐

⋯

ො𝒔𝒕+𝒕𝑾𝑷
 ෝ𝒐𝒕+𝒕𝑾𝑷

෡𝚫𝑸𝒕
𝑾𝑷

Figure 3. Planning with Transformer

maximize Qj , making distributional differences easier to
compute. The follow-up agent group is determined by se-
lecting the m agents that maximize the Kullback-Leibler
(KL) divergence DKL between these distributions:

Nfollow−up = argmax
N ′⊂N ,|N ′|=m,j∈N ′,j ̸=i

∑
j

DKL

(
Soft(Qj(τ jtinit , ·))||Soft(Q̃

j(τ jtinit , ·))
)
.

(2)

Using the proposed method, the follow-up agent group is
identified as the agents whose policy distributions expe-
rience the most significant changes following the initial
attack. Fig. 2 illustrates this process. After the initial at-
tack, Q-differences are computed for the remaining agents
1, 2, 3, and those with the largest changes in individual value
functions are selected as the follow-up agent group. These
agents are targeted over the next tWP time steps to prevent
them from effectively responding. In Section 5, we analyze
how the proposed method enhances attack criticalness by
comparing it to naive selection methods based solely on
observation distances.

4.4. Planner-based Critical Attacking Step Selection

In the proposed Wolfpack adversarial attacker πWP
adv , the

follow-up agent group is defined, leaving the task of de-
termining the timing of initial attacks tinit, executed KWP

times within an episode. While Random Step Selection in-
volves choosing time steps randomly, existing methods show
that selecting steps to minimize the rewards of the execu-
tion policy π leads to more effective attacks and facilitates
robust learning (Yuan et al., 2023). However, in coordinated
attacks like Wolfpack, targeting steps that cause the greatest
reduction in the Q-function value ∆QWP

t ensures a more
devastating and lasting impact on the agents’ ability to re-
cover and respond. Thus, we propose selecting initial attack
times based on the total reduction in ∆QWP

t , defined as:

∆QWP
t =

t+tWP∑
l=t

∆Qtot
l ,

where the Wolfpack attack is performed from t (initial at-
tack) to t + 1, · · · , t + tWP (follow-up attacks). Initial at-
tack time steps tinit are chosen to maximize ∆QWP

t , which

4

Wolfpack Adversarial Attack for Robust Multi-Agent Reinforcement Learning

Figure 4. Attacking step probabilites

captures the total Q-value reduction caused by the attack
over tWP + 1 steps, enhancing the criticalness of the attack.
However, computing ∆QWP

t for every time step is computa-
tionally expensive as it requires generating attacked samples
through interactions with the environment. To mitigate this,
a stored buffer is utilized to plan trajectories of future states
and observations for the attack.

For planning, we employ a Transformer (Vaswani, 2017),
commonly used in sequential learning, which leverages an
attention mechanism for efficient learning. As shown in
Fig. 3, the Transformer learns environment dynamics P
using replay buffer trajectories to predict future states and
observations (ŝt+1, ôt+1, · · · , ŝt+tWP

, ôt+tWP
), where ot

represents the joint observation used to compute Qtot. Ac-
tions ãl = πWP

adv (ŝl,al, kl) for al ∼ π are generated by
πWP
adv for l = t, · · · , t+ tWP, with ŝt = st. Using the plan-

ner, we estimate the Q-value reduction ∆̂QWP
t caused by

the Wolfpack attack. For L time steps l = t, · · · , t+ L− 1,
we compute future Q-differences ∆̂QWP

l and select tinit
based on the initial attack probability Pt,attack:

Pt,attack =
{
Soft

(
∆̂QWP

t /T, · · · , ∆̂QWP
t+L−1/T

)}
1
,

(3)
where xl indicates the l-th element of x, and T > 0 is the
temperature. In this paper, we set L = 20 as it provides
an appropriate attack period. After selecting KWP initial
attacks, no further attacks are performed. Fig. 4 shows how
step probabilities are distributed for different T values (T =
0.1, 1, 10). At each time t, the planner predicts ∆̂QWP

t for t
to t+L−1, forming soft initial attack probabilities. A larger
T results in more uniform probabilities, while a smaller T
increases the likelihood of targeting critical steps where
∆̂QWP

t is highest. These critical steps are selected with
the highest probabilities for initial attacks. In Section 5,
we analyze the effectiveness of this method in delivering
more critical attacks compared to Random Step Selection
and examine the impact of T on performance in practical

ENV

𝒔𝒕, 𝝉𝒕
Attacking

Step Selector

෡𝚫𝑸𝒕
𝑾𝑷 ෡𝚫𝑸𝒕+𝑳−𝟏

𝑾𝑷⋯

Policy

𝒂𝒕෥𝒂𝒕:𝒕+𝑾𝑷

Wolfpack Adversarial Attack

𝓝𝒇𝒐𝒍𝒍𝒐𝒘−𝒖𝒑 Follow-up Group Selection෥𝒂𝒕+𝟏:𝒕+𝑾𝑷

𝒊 Initial Attack෥𝒂𝒕

𝒕𝒊𝒏𝒊𝒕~𝑷𝒕,𝒂𝒕𝒕𝒂𝒄𝒌

𝒕 = 𝒕𝒊𝒏𝒊𝒕

Figure 5. Illustration of the proposed WALL framework

environments. Since the proposed method involves planning
at every evaluation, we also train a separate model to predict
∆̂QWP

t , significantly reducing computational complexity.
Details of this approach and the Transformer training loss
functions are provided in Appendix B.1.

4.5. WALL: A Robust MARL Algorithm

Similar to other robust MARL methods, we propose the
Wolfpack-Adversarial Learning for MARL (WALL) frame-
work, a robust policy designed to counter the Wolfpack
attack by performing MARL on the LPA-Dec-POMDP M̃
with the Wolfpack attacker πWP

adv . While the proposed Wolf-
pack framework is broadly applicable to most CTDE algo-
rithms, we primarily applied it to well-known value-based
CTDE methods, including QMIX (Rashid et al., 2020),
VDN (Sunehag et al., 2017), and QPLEX (Wang et al.,
2020b). Detailed implementations, including loss functions
for the planner Transformer and the value functions, are
provided in Appendix B.2. The proposed WALL framework
is illustrated in Fig. 5 and summarized in Algorithm 1.

Algorithm 1 WALL framework

1: Initialize: Value function Qtot, Planning Transformer
2: for each training iteration do
3: for each environment step t do
4: Sample the action at: ait ∼ ϵ-greedy(Qi)
5: Compute Pt,attack using Planner and sample tinit
6: if t = tinit then
7: Perform the initial attack: ãt ∼ πWP

adv

8: else if tinit + 1 ≤ t ≤ tinit + tWP then
9: Select the follow-up agent group Nfollow−up

10: Perform the follow-up attack: ãt ∼ πWP
adv

11: else
12: Execute the original action at
13: end if
14: end for
15: Update the Qtot using a CTDE algorithm
16: Update the Planning Transformer
17: end for

5

Wolfpack Adversarial Attack for Robust Multi-Agent Reinforcement Learning

predator
prey
obstacle

(a) (b) (c) (d)

Figure 6. MARL benchmarks used in our experiments: (a) PP 3/1 and (b) PP 6/2 in MPE, and (c) 8m and (d) MMM scenarios in SMAC.

5. Experiments
In this section, we evaluate the proposed methods on two
standard benchmarks in MARL research: the Multi-Agent
Particle Environment (MPE) (Lowe et al., 2017) and the
StarCraft II Multi-Agent Challenge (SMAC) (Samvelyan
et al., 2019), as illustrated in Fig. 6. Specifically, we com-
pare: (1) the impact of the proposed Wolfpack adversarial at-
tack against other adversarial attacks, and (2) the robustness
of the WALL framework in defending against such attacks
compared to other robust MARL methods. Also, an ablation
study analyzes the effect of the proposed components and
hyperparameters on robustness. All results are reported as
the mean and standard deviation (shaded areas for graphs
and ± values for tables) across 5 random seeds. Our code is
available at https://github.com/sunwoolee0504/WALL.

5.1. Environmental Setup

The MPE environment provides a multi-agent setting where
agents interact through simple physical dynamics. We con-
duct experiments on three predator-prey (PP) scenarios
with varying agent-to-target ratios: PP 3/1, PP 6/2, and
PP 9/3. In these tasks, multiple predator agents must co-
ordinate to capture one or more prey agents moving adver-
sarially. The SMAC environment serves as a challenging
benchmark requiring effective agent cooperation to defeat
opponents. We evaluate the proposed method across six sce-
narios: 2s3z, 3m, 3s vs 3z, 8m, MMM, and 1c3s5z. We
perform parameter searches for the number of follow-up
agents m, total Wolfpack attacks KWP, and attack duration
tWP, using optimal settings for comparisons. To ensure re-
alistic constraints, we set m to m <

⌊
n−1
2

⌋
, where n is

the maximum number of allied units. We provide details on
environment setups and experimental configurations, includ-
ing hyperparameter settings, in Appendices A and C. All
MARL methods are evaluated on the QMIX baseline, with
comparison for other CTDE baselines in Appendix E.1.

Adversarial Attacker Baselines: To compare the severity
of different attacks, we consider the following 4 scenarios:
Natural, representing the case where no attacks are per-

Method
Scenario PP 3/1 PP 6/2 PP 9/3 Mean

Natural

Vanilla QMIX 165.4± 1.3 538.8± 5.5 661.9± 5.4 455.4± 2.1
RANDOM 178.3± 1.0 663.8± 4.0 666.9± 3.5 503.0± 1.3

ROMANCE 175.0± 0.7 648.6± 3.9 721.4± 7.5 515.0± 1.4
WALL (ours) 202.9± 1.7 675.0± 3.8 802.5± 5.7 560.1± 1.7

Radom
Attack

Vanilla QMIX 158.9± 2.1 522.6± 2.4 656.4± 3.0 445.9± 2.0
RANDOM 170.1± 1.3 638.7± 2.0 657.9± 2.2 488.9± 1.9

ROMANCE 173.4± 1.4 624.2± 3.5 701.7± 4.0 499.7± 2.4
WALL (ours) 202.9± 1.7 654.0± 2.1 802.5± 2.1 553.1± 1.7

EGA

Vanilla QMIX 153.7± 2.0 499.8± 0.6 585.1± 1.7 412.8± 1.4
RANDOM 157.6± 1.9 604.6± 3.2 589.7± 1.7 450.6± 1.4

ROMANCE 167.1± 2.4 605.1± 2.7 594.4± 1.3 455.5± 1.5
WALL (ours) 166.5± 1.7 685.5± 5.0 682.7± 0.8 511.5± 1.4

Wolfpack
Adversarial

Attack (ours)

Vanilla QMIX 135.7± 1.5 415.6± 8.4 551.7± 7.0 367.6± 5.0
RANDOM 157.5± 1.4 571.0± 9.0 624.3± 7.7 450.9± 8.4

ROMANCE 159.3± 1.5 554.6± 9.9 570.3± 7.5 428.0± 9.4
WALL (ours) 171.5± 1.5 599.0± 9.4 698.1± 9.1 489.5± 0.6

Table 1. Average cumulative rewards of robust MARL policies
under various attack settings in the MPE environments.

formed; Random Attack, where time steps, agents, and
actions are randomly selected to execute attacks; Evolution-
ary Generation of Attackers (EGA) (Yuan et al., 2023),
which combines multiple single-agent-targeted attackers
generated from various seeds as described in Section 3;
and the proposed Wolfpack Adversarial Attack. For a fair
comparison, adversarial attackers are trained on independent
seeds to execute unseen attacks.

Robust MARL Baselines: To compare the severity of at-
tack baselines and the robustness of policies trained under
adversarial attack scenarios, we evaluate QMIX-trained poli-
cies under the following attack conditions: Vanilla QMIX,
assuming no adversarial attacks; RANDOM, using Ran-
dom Attack; RARL (Pinto et al., 2017), where adversarial
attackers tailor attacks to the learned policy; RAP (Vinit-
sky et al., 2020), an extension of RARL that uniformly
samples attackers to prevent overfitting and introduce diver-
sity; ROMANCE (Yuan et al., 2023), an RAP extension
countering diverse EGA attacks; ERNIE (Bukharin et al.,
2024), enhancing robustness via adversarial regularization
in observations and actions; and the proposed WALL. All
robust MARL methods follow author-provided methodolo-
gies and parameters. Further details on the MARL baselines
are available in Appendix D. All policies are trained for 3M
timesteps, starting from a pretrained Vanilla QMIX model
trained for 1M timesteps.

6

https://github.com/sunwoolee0504/WALL

Wolfpack Adversarial Attack for Robust Multi-Agent Reinforcement Learning

Method
Scenario 2s3z 3m 3s vs 3z 8m MMM 1c3s5z Mean

Natural

Vanilla QMIX 98.0± 1.5 99.2± 1.0 99.2± 1.6 97.6± 2.1 99.2± 0.5 99.1± 1.1 98.7± 0.5
RANDOM 99.7± 0.5 99.1± 1.2 99.0± 0.8 99.2± 1.0 99.6± 0.6 99.3± 1.0 99.3± 0.2

RARL 97.8± 2.0 93.8± 3.2 93.1± 17.4 95.5± 3.7 90.6± 20.8 84.0± 33.7 92.5± 5.3
RAP 98.8± 1.3 95.8± 4.4 99.5± 1.0 94.7± 6.7 95.5± 12.1 84.2± 16.9 94.7± 2.6

ERNIE 98.2± 1.3 99.2± 1.2 99.8± 0.4 99.8± 0.5 98.5± 1.7 99.2± 1.0 99.1± 0.5
ROMANCE 96.4± 2.9 93.6± 13.7 99.7± 0.5 99.6± 0.6 96.4± 6.6 96.5± 4.3 97.0± 2.1
WALL (ours) 99.4± 0.6 99.7± 0.8 99.8± 0.7 99.3± 0.6 99.0± 2.1 99.5± 0.6 99.4± 0.5

Random Attack

Vanilla QMIX 80.4± 3.2 69.6± 10.4 91.4± 4.6 69.0± 7.1 66.4± 20.5 94.8± 3.4 78.6± 2.2
RANDOM 90.8± 3.8 76.4± 17.3 97.4± 0.6 80.2± 4.9 95.4± 5.3 96.0± 2.9 89.4± 2.5

RARL 86.8± 4.0 58.7± 15.4 89.2± 20.4 70.2± 5.8 84.2± 5.4 79.1± 22.2 78.0± 7.2
RAP 91.0± 4.7 69.2± 11.1 97.8± 1.6 85.0± 11.4 86.7± 30.3 86.6± 12.5 83.0± 3.7

ERNIE 83.2± 6.9 65.2± 4.9 90.2± 9.2 76.2± 11.8 86.0± 18.2 95.6± 3.2 82.7± 5.2
ROMANCE 90.2± 2.3 71.6± 10.8 99.6± 0.6 84.8± 5.0 86.8± 16.3 94.0± 1.9 87.8± 2.4
WALL (ours) 94.6± 4.5 87.4± 1.8 99.8± 0.5 95.8± 3.4 99.4± 1.1 98.6± 1.6 95.9± 0.5

EGA

Vanilla QMIX 54.0± 7.6 66.5± 15.5 72.4± 15.1 71.2± 20.0 70.6± 14 83.0± 2.6 69.6± 3.8
RANDOM 65.3± 3.3 70.6± 38.6 68.8± 23.5 87.5± 5.5 84.4± 3.1 84.5± 2.9 76.9± 5.4

RARL 62.6± 9.4 74.4± 12.4 88.4± 17.7 78.4± 9.1 83.4± 11.9 80.1± 11.4 77.9± 10.0
RAP 70.4± 13.0 84.4± 7.3 83.8± 15.8 86.2± 3.8 83.9± 16.4 80.2± 5.4 81.5± 4.3

ERNIE 52.4± 9.6 60.4± 20.1 83.2± 9.7 81.6± 8.5 85.0± 4.6 93.6± 2.2 76.0± 3.0
ROMANCE 79.8± 2.8 85.8± 4.6 91.0± 5.1 90.9± 4.0 87.8± 11.7 89.6± 2.9 87.5± 1.6
WALL (ours) 88.6± 5.4 87.0± 5.4 98.7± 0.8 95.8± 2.9 94.2± 3.8 97.0± 1.3 93.6± 1.5

Wolfpack
Adversarial

Attack (ours)

Vanilla QMIX 39.8± 7.5 31.0± 11.8 84.4± 4.7 11.4± 13.3 10.4± 14.3 59.2± 4.2 39.4± 4.5
RANDOM 60.4± 27.4 57.4± 30.5 91.0± 3.1 40.4± 14.8 63.6± 28.7 68.4± 19.6 63.5± 3.1

RARL 52.4± 15.8 31.1± 20.3 90.0± 17.4 14.2± 9.7 51.1± 36.8 75.9± 13.6 52.5± 8.0
RAP 60.0± 10.3 37.5± 10.4 95.4± 3.9 35.6± 14.4 47.0± 36.9 75.7± 26.1 58.5± 5.7

ERNIE 43.2± 13.0 35.4± 6.2 94.8± 4.4 26.4± 10.4 26.2± 17.3 77.0± 9.3 50.5± 6.6
ROMANCE 62.4± 5.1 34.8± 14.3 98.6± 0.6 28.6± 14.2 48.8± 17.9 81.2± 4.5 59.1± 2.0
WALL (ours) 92.2± 3.7 90.8± 4.9 99.8± 0.5 83.6± 5.0 95.0± 4.5 98.8± 1.6 93.4± 1.1

Table 2. Average test win rates of robust MARL policies under various attack settings in the SMAC environments.

Figure 7. Learning curves of MARL methods for Wolfpack attack

5.2. Performance Comparison in MPE and SMAC

Table 1 presents the average cumulative rewards over the
last 100 episodes under various attack settings in the MPE
environments. The results show that the proposed Wolf-
pack adversarial attack is significantly more disruptive than
existing methods such as EGA and Random Attack. For
example, for Vanilla QMIX, the average cumulative re-
ward across the three predator-prey scenarios drops by
455.4 − 367.6 = 87.8 under the proposed Wolfpack at-
tack, compared to 455.4 − 412.8 = 42.6 under EGA and
455.4− 445.9 = 9.5 under Random Attack. These results
demonstrate that the Wolfpack attack imposes a much more
severe degradation in policy performance. In contrast, the
proposed WALL framework consistently achieves the best
performance across all attack types. Notably, in the MPE
scenarios, WALL outperforms all baselines not only under
adversarial attacks but also in the natural setting, demonstrat-

ing superior policy quality even without external threats.

For SMAC, Table 2 presents the average win rates over
the last 100 episodes of MARL policies under differ-
ent attack baselines. The results show that the proposed
Wolfpack adversarial attack is significantly more pow-
erful than existing methods such as EGA and Random
Attack. For example, EGA reduces the performance of
Vanilla QMIX by 98.7 − 69.6 = 29.1% and RANDOM
by 99.3− 76.9 = 22.4% compared to the natural scenario.
In contrast, the Wolfpack attack reduces Vanilla QMIX
performance by 98.7 − 39.4 = 59.3% and RANDOM by
99.3− 63.5 = 35.8%, demonstrating its greater impact. In
addition, the proposed WALL framework, which is trained
to defend against the Wolfpack attack, outperforms other
robust MARL methods under all attack types, showcasing
its superior robustness. Notably, although RANDOM is
trained specifically against Random Attack and ROMANCE
against EGA, WALL achieves better performance against
both attack types. These results highlight the effectiveness
of WALL in enabling robust learning under diverse adversar-
ial scenarios. Fig. 7 further illustrates this in the 8m and MMM
environments, where performance differences with existing
methods are most pronounced, showing the average win rate
of each policy over training steps under unseen Wolfpack
adversarial attacks. The results reveal that WALL not only
achieves higher robustness but also adapts more quickly to
attacks. Similar trends are observed for other CTDE algo-

7

Wolfpack Adversarial Attack for Robust Multi-Agent Reinforcement Learning

Follow-up AgentsInitial Agent Original ActionOther Ally Agents
Figure 8. Attack comparison on 2s3z task in the SMAC: (a) QMIX/Natural, (b) QMIX/Wolfpack attack, and (c) WALL/Wolfpack attack

rithms, such as VDN and QPLEX, as detailed in Appendix
E.1, confirming the robustness of the proposed method.

To support a more practical evaluation, we assess compu-
tational complexity and general robustness under common
perturbations in Appendix E.4 and Appendix E.5, respec-
tively. WALL incurs about 30% higher training cost than
ROMANCE but achieves substantially better performance
due to its critical step selection. For robustness, we consider
perturbations including Gaussian noise in observations and
test-time parameter shifts such as reduced allied HP, under
which WALL still outperforms existing baselines. These re-
sults demonstrate the practical effectiveness of WALL under
both computational and environmental challenges.

5.3. Visualization of Wolfpack Adversarial Attack

To analyze the superior performance of the Wolfpack attack,
we provide a visualization of its execution in the SMAC en-
vironment. Fig. 8 illustrates a scenario where the proposed
step selector identifies t = 6 as a critical initial step to ini-
tiate the attack. Prior to t = 6, all setups are assumed to
follow the same trajectory. Fig. 8(a) shows Vanilla QMIX
in a Natural scenario without attack, where our agents suc-
cessfully defeat all enemy agents, achieving victory. Fig.
8(b) demonstrates Vanilla QMIX under the Wolfpack adver-
sarial attack, with follow-up agents targeted during t = 7
to t = 9. This leaves other agents unable to effectively
defend against the adversarial attack, resulting in defeat
as all agents are killed by the enemy. Fig. 8(c) highlights
a policy trained with the WALL framework. Despite the
same follow-up agents are targeted during t = 7 to t = 9,
WALL trains non-attacked agents to back up and protect
the attacked agents, enabling ally agents to eliminate enemy
agents and secure victory. This visualization demonstrates
how the Wolfpack attack disrupts agent coordination and
how the WALL framework robustly defends against such
attacks. Visualizations of other SMAC tasks and detailed
follow-up agent selection are provided in Appendix G.

5.4. Ablation Study

To evaluate the impact of each component and hyperpa-
rameter in the proposed Wolfpack adversarial attack, we
conduct an ablation study focusing on the following aspects:
component evaluation, step selection temperature T , and
the number of follow-up agents m. The ablation study is
conducted in the 8m and MMM environments, where the per-
formance differences are most pronounced. Additionally,
more ablation studies on other hyperparameters, such as
the total number of Wolfpack attacks KWP and the attack
duration tWP, are provided in Appendix F.

Component Evaluation: To evaluate the impact of each
proposed component on attack severity and policy robust-
ness, we consider five setups: ‘Default’, which uses all pro-
posed components as designed; ‘Init. agent (min)’, where
the initial target agent i is selected to minimize Qtot, i.e.,
i = argminj minaj Qtot(stinit , a

j
tinit ,a

−j
tinit), instead of

random selection; ‘Follow-up (L2)’, which selects m agents
closest to the initial agent based on L2 distance instead of
the proposed follow-up selection method; ‘Step (Random)’,
which uses random step selection instead of the proposed
step selection method, while keeping the same total number
of attacks; and ‘Agents & Step (Random)’, which randomly
selects both m follow-up agents and attack steps.

For each setup, we train the Wolfpack adversarial attack
and the corresponding robust policy of WALL. Fig. 9(a)
shows the robustness of WALL trained under each setup
when exposed to the default Wolfpack attack, while Fig. 9(b)
illustrates how each attack setup degrades the performance
of ‘Vanilla QMIX’ compared to its ‘Natural’ performance.
Randomly selecting the initial agent yields more robust poli-
cies than selecting the agent minimizing Qtot (‘Init. agent
(min)’), as random selection introduces diversity in attack
scenarios. While selecting the Qtot-minimizing agent may
slightly enhance attack severity in cases like MMM, the added
diversity from random selection generally improves robust-

8

Wolfpack Adversarial Attack for Robust Multi-Agent Reinforcement Learning

8m MMM50
60
70
80
90

100
Te

st
 W

in
 R

at
e

(%
)

(a) Robustness of WALL variations

8m MMM50
60
70
80
90

100

Te
st

 W
in

 R
at

e
(%

)

Default
Init. agent (min)
Follow-up (L2)

Step (Random)
Agents & Step (Random)

(b) Degradation of Vanilla QMIX under each attack setup

Figure 9. Component evaluation of our WALL/Wolfpack attack

ness. Comparing ‘Default’ and ‘Follow-up (L2)’ shows that
the proposed follow-up selection method enables more se-
vere attacks and trains more robust policies than simply
targeting agents closest to the initial agent. Similarly, ‘De-
fault’ outperforms ‘Step (Random)’ in both attack severity
and robustness, demonstrating that the proposed planner
effectively identifies critical steps to minimize Qtot, pro-
ducing stronger policies. Finally, ‘Default’ achieves signifi-
cantly better robustness and more critical attacks compared
to ‘Agents & Step (Random)’, highlighting the combined
effectiveness of the proposed components.

Number of Follow-up Agents m: To analyze the impact
of the hyperparameter m, which determines the number of
follow-up agents, on robustness, Fig. 10 shows how WALL
trained with different values of m defend against the default
Wolfpack attack. To prevent excessive attack that could
cause learning to fail, we assume m <

⌊
n−1
2

⌋
. The results

indicate that in the 8m environment, when m is small, only
a few agents defending against the initial attack are targeted,
leading to reduced robustness. Conversely, when m = 4, too
many agents are attacked, causing learning to deteriorate.
Therefore, m = 3 yields the most robust performance and is
considered the default hyperparameter. Similarly, in the MMM
environment, m = 4 results in the most robust performance
and is set as the default. Notably, when m = 1, the attack
becomes a single-agent attack. As discussed in Section 4.1,
performing coordinated multi-agent attack (m > 1) enables
much more robust learning, demonstrating the effectiveness
and superiority of the proposed Wolfpack attack framework.

Step Selection Temperature T : T is a hyperparameter
in Eq. (3) that controls the temperature of the initial at-
tack probability. A larger T results in more random attacks
across steps, while a smaller T focuses attacks on critical
steps with higher probability. Fig. 11 illustrates the perfor-

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timesteps (106)

0

20

40

60

80

100

Te
st

 W
in

 R
at

e
(%

)

WALL (m = 1)
WALL (m = 2)
WALL (m = 3)
WALL (m = 4)

(a) 8m

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timesteps (106)

0

20

40

60

80

100

Te
st

 W
in

 R
at

e
(%

)

(b) MMM

Figure 10. Number of follow-up agents m

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timesteps (106)

0

20

40

60

80

100

Te
st

 W
in

 R
at

e
(%

)

WALL (T = 0.1)
WALL (T = 0.2)
WALL (T = 0.5)
WALL (T = 1)

(a) 8m

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timesteps (106)

0

20

40

60

80

100

Te
st

 W
in

 R
at

e
(%

)

(b) MMM

Figure 11. Step selection temperature T

mance of WALL policies trained with varying values of T
against the default Wolfpack attack. In both the 8m and MMM
environments, a very small T causes the attack to target only
specific steps, leading to policies that are less robust against
diverse attacks. Conversely, a very large T leads to overly
uniform attacks, failing to target critical steps effectively,
which also results in less robust policies. Based on these
findings, we determined that T = 0.5 strikes a balance be-
tween targeting critical steps and maintaining robustness,
and we set this as the default parameter.

6. Limitations
While the proposed WALL significantly improves robust-
ness in MARL, it has a few limitations. The first is the
additional computational overhead introduced by training
the Transformer for identifying critical steps. However, as
shown in our analysis, this overhead is justified given that
other baselines fail to achieve comparable performance even
with extended training. Another limitation is the need for
hyperparameter tuning to construct the Wolfpack attack.
Nevertheless, the method is not highly sensitive to these
hyperparameters, and the provided ablation study offers
practical guidelines for selecting appropriate configurations.

7. Conclusions
In this paper, we propose the Wolfpack adversarial attack, a
coordinated strategy inspired by the Wolfpack tactic used
in military operations, which significantly outperforms ex-
isting adversarial attacks. Additionally, we develop WALL,
a robust MARL method designed to counter the proposed
attack, demonstrating superior performance across various
SMAC environments. Overall, our WALL framework en-
hances the robustness of MARL algorithms.

9

Wolfpack Adversarial Attack for Robust Multi-Agent Reinforcement Learning

Acknowledgment
This work was supported by Institute of Information & Com-
munications Technology Planning & Evaluation (IITP) grant
funded by the Korea government (MSIT) (No.RS-2022-
II220469, Development of Core Technologies for Task-
oriented Reinforcement Learning for Commercialization
of Autonomous Drones), Innovative Human Resource De-
velopment for Local Intellectualization program through
the Institute of Information & Communications Technology
Planning & Evaluation (IITP) grant funded by the Korea
government (MSIT) (IITP-2025-RS-2022-00156361), and
Institute of Information & Communications Technology
Planning & Evaluation (IITP) grant funded by the Korea
government (MSIT) (No.RS-2020-II201336, Artificial In-
telligence graduate school support (UNIST)).

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Berkenkamp, F., Turchetta, M., Schoellig, A., and Krause, A.

Safe model-based reinforcement learning with stability
guarantees. Advances in neural information processing
systems, 30, 2017.

Bhardwaj, M., Xie, T., Boots, B., Jiang, N., and Cheng, C.-
A. Adversarial model for offline reinforcement learning.
Advances in Neural Information Processing Systems, 36,
2024.

Bouhaddi, M. and Adi, K. Multi-environment training
against reward poisoning attacks on deep reinforcement
learning. In SECRYPT, pp. 870–875, 2023.

Bouhaddi, M. and Adi, K. When rewards deceive: Coun-
teracting reward poisoning on online deep reinforcement
learning. In 2024 IEEE International Conference on
Cyber Security and Resilience (CSR), pp. 38–44. IEEE,
2024.

Bukharin, A., Li, Y., Yu, Y., Zhang, Q., Chen, Z., Zuo, S.,
Zhang, C., Zhang, S., and Zhao, T. Robust multi-agent re-
inforcement learning via adversarial regularization: The-
oretical foundation and stable algorithms. Advances in
Neural Information Processing Systems, 36, 2024.

Cai, K., Zhu, X., and Hu, Z. Reward poisoning attacks in
deep reinforcement learning based on exploration strate-
gies. Neurocomputing, 553:126578, 2023.

Chae, J., Han, S., Jung, W., Cho, M., Choi, S., and Sung, Y.
Robust imitation learning against variations in environ-
ment dynamics. In International Conference on Machine
Learning, pp. 2828–2852. PMLR, 2022.

Chen, J., Ma, R., and Oyekan, J. A deep multi-agent re-
inforcement learning framework for autonomous aerial
navigation to grasping points on loads. Robotics and
Autonomous Systems, 167:104489, 2023.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A.,
Laskin, M., Abbeel, P., Srinivas, A., and Mordatch, I. De-
cision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing
systems, 34:15084–15097, 2021.

Chinchuluun, A., Migdalas, A., Pardalos, P. M., and Pit-
soulis, L. Pareto optimality, game theory and equilibria,
volume 17. Springer New York, 2008.

Clavier, P., Pennec, E. L., and Geist, M. Towards minimax
optimality of model-based robust reinforcement learning.
arXiv preprint arXiv:2302.05372, 2023.

Curi, S., Bogunovic, I., and Krause, A. Combining pes-
simism with optimism for robust and efficient model-
based deep reinforcement learning. In International Con-
ference on Machine Learning, pp. 2254–2264. PMLR,
2021.

Du, X., Chen, H., Wang, C., Xing, Y., Yang, J., Philip, S. Y.,
Chang, Y., and He, L. Robust multi-agent reinforcement
learning via bayesian distributional value estimation. Pat-
tern Recognition, 145:109917, 2024.

Everett, M., Lütjens, B., and How, J. P. Certifiable robust-
ness to adversarial state uncertainty in deep reinforcement
learning. IEEE Transactions on Neural Networks and
Learning Systems, 33(9):4184–4198, 2021.

Geng, W., Xiao, B., Li, R., Wei, N., Wang, D., and Zhao,
Z. Noise distribution decomposition based multi-agent
distributional reinforcement learning. IEEE Transactions
on Mobile Computing, 2024.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explain-
ing and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572, 2014.

Guo, J., Chen, Y., Hao, Y., Yin, Z., Yu, Y., and Li, S. Towards
comprehensive testing on the robustness of cooperative
multi-agent reinforcement learning. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pp. 115–122, 2022.

Han, S. and Sung, Y. A max-min entropy framework for
reinforcement learning. Advances in Neural Information
Processing Systems, 34:25732–25745, 2021.

10

Wolfpack Adversarial Attack for Robust Multi-Agent Reinforcement Learning

Han, S., Su, S., He, S., Han, S., Yang, H., Zou, S., and Miao,
F. What is the solution for state-adversarial multi-agent re-
inforcement learning? arXiv preprint arXiv:2212.02705,
2022.

He, S., Wang, Y., Han, S., Zou, S., and Miao, F. A ro-
bust and constrained multi-agent reinforcement learning
framework for electric vehicle amod systems. Dynamics,
8(10), 2022.

He, S., Han, S., Su, S., Han, S., Zou, S., and Miao, F. Robust
multi-agent reinforcement learning with state uncertainty.
arXiv preprint arXiv:2307.16212, 2023.

Herremans, S., Anwar, A., and Mercelis, S. Robust model-
based reinforcement learning with an adversarial auxiliary
model. arXiv preprint arXiv:2406.09976, 2024.

Huang, S., Papernot, N., Goodfellow, I., Duan, Y., and
Abbeel, P. Adversarial attacks on neural network policies.
arXiv preprint arXiv:1702.02284, 2017.

Jendoubi, I. and Bouffard, F. Multi-agent hierarchical re-
inforcement learning for energy management. Applied
Energy, 332:120500, 2023.

Jo, Y., Lee, S., Yeom, J., and Han, S. Fox: Formation-aware
exploration in multi-agent reinforcement learning. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 38, pp. 12985–12994, 2024.

Kardeş, E., Ordóñez, F., and Hall, R. W. Discounted robust
stochastic games and an application to queueing control.
Operations research, 59(2):365–382, 2011.

Kobayashi, T. Lira: Light-robust adversary for model-based
reinforcement learning in real world. arXiv preprint
arXiv:2409.19617, 2024.

Lee, X. Y., Esfandiari, Y., Tan, K. L., and Sarkar, S.
Query-based targeted action-space adversarial policies on
deep reinforcement learning agents. In Proceedings of
the ACM/IEEE 12th international conference on cyber-
physical systems, pp. 87–97, 2021.

Li, R., Wang, R., Tian, T., Jia, F., and Zheng, Z. Multi-agent
reinforcement learning based on value distribution. In
Journal of Physics: Conference Series, volume 1651, pp.
012017. IOP Publishing, 2020.

Li, S., Wu, Y., Cui, X., Dong, H., Fang, F., and Russell, S.
Robust multi-agent reinforcement learning via minimax
deep deterministic policy gradient. In Proceedings of the
AAAI conference on artificial intelligence, volume 33, pp.
4213–4220, 2019.

Li, S., Guo, J., Xiu, J., Xu, R., Yu, X., Wang, J., Liu, A.,
Yang, Y., and Liu, X. Byzantine robust cooperative multi-
agent reinforcement learning as a bayesian game. arXiv
preprint arXiv:2305.12872, 2023a.

Li, S., Xu, R., Guo, J., Feng, P., Wang, J., Liu, A., Yang,
Y., Liu, X., and Lv, W. Mir2: Towards provably robust
multi-agent reinforcement learning by mutual informa-
tion regularization. arXiv preprint arXiv:2310.09833,
2023b.

Li, X., Li, Y., Feng, Z., Wang, Z., and Pan, Q. Ats-o2a:
A state-based adversarial attack strategy on deep rein-
forcement learning. Computers & Security, 129:103259,
2023c.

Lin, J., Dzeparoska, K., Zhang, S. Q., Leon-Garcia, A., and
Papernot, N. On the robustness of cooperative multi-
agent reinforcement learning. In 2020 IEEE Security and
Privacy Workshops (SPW), pp. 62–68. IEEE, 2020.

Liu, Q., Kuang, Y., and Wang, J. Robust deep reinforcement
learning with adaptive adversarial perturbations in action
space. arXiv preprint arXiv:2405.11982, 2024.

Lowe, R., Wu, Y. I., Tamar, A., Harb, J., Pieter Abbeel,
O., and Mordatch, I. Multi-agent actor-critic for mixed
cooperative-competitive environments. Advances in neu-
ral information processing systems, 30, 2017.

Mahajan, A., Rashid, T., Samvelyan, M., and Whiteson, S.
Maven: Multi-agent variational exploration. Advances in
neural information processing systems, 32, 2019.

Mankowitz, D. J., Levine, N., Jeong, R., Shi, Y., Kay, J.,
Abdolmaleki, A., Springenberg, J. T., Mann, T., Hester,
T., and Riedmiller, M. Robust reinforcement learning for
continuous control with model misspecification. arXiv
preprint arXiv:1906.07516, 2019.

Moos, J., Hansel, K., Abdulsamad, H., Stark, S., Clever, D.,
and Peters, J. Robust reinforcement learning: A review
of foundations and recent advances. Machine Learning
and Knowledge Extraction, 4(1):276–315, 2022.

Oliehoek, F. A., Spaan, M. T., and Vlassis, N. Optimal and
approximate q-value functions for decentralized pomdps.
Journal of Artificial Intelligence Research, 32:289–353,
2008.

Oliehoek, F. A., Amato, C., et al. A concise introduction to
decentralized POMDPs, volume 1. Springer, 2016.

Oroojlooy, A. and Hajinezhad, D. A review of coopera-
tive multi-agent deep reinforcement learning. Applied
Intelligence, 53(11):13677–13722, 2023.

Orr, J. and Dutta, A. Multi-agent deep reinforcement learn-
ing for multi-robot applications: A survey. Sensors, 23
(7):3625, 2023.

Panaganti, K. and Kalathil, D. Sample complexity of model-
based robust reinforcement learning. In 2021 60th IEEE

11

Wolfpack Adversarial Attack for Robust Multi-Agent Reinforcement Learning

Conference on Decision and Control (CDC), pp. 2240–
2245. IEEE, 2021.

Pattanaik, A., Tang, Z., Liu, S., Bommannan, G., and
Chowdhary, G. Robust deep reinforcement learning with
adversarial attacks. arXiv preprint arXiv:1712.03632,
2017.

Phan, T., Belzner, L., Gabor, T., Sedlmeier, A., Ritz, F.,
and Linnhoff-Popien, C. Resilient multi-agent reinforce-
ment learning with adversarial value decomposition. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 35, pp. 11308–11316, 2021.

Pinto, L., Davidson, J., Sukthankar, R., and Gupta, A. Ro-
bust adversarial reinforcement learning. In International
conference on machine learning, pp. 2817–2826. PMLR,
2017.

Qiaoben, Y., Ying, C., Zhou, X., Su, H., Zhu, J., and Zhang,
B. Understanding adversarial attacks on observations in
deep reinforcement learning. Science China Information
Sciences, 67(5):1–15, 2024.

Rakhsha, A., Zhang, X., Zhu, X., and Singla, A. Reward
poisoning in reinforcement learning: Attacks against un-
known learners in unknown environments. arXiv preprint
arXiv:2102.08492, 2021.

Ramesh, S. S., Sessa, P. G., Hu, Y., Krause, A., and Bo-
gunovic, I. Distributionally robust model-based reinforce-
ment learning with large state spaces. In International
Conference on Artificial Intelligence and Statistics, pp.
100–108. PMLR, 2024.

Rashid, T., Samvelyan, M., De Witt, C. S., Farquhar, G.,
Foerster, J., and Whiteson, S. Monotonic value function
factorisation for deep multi-agent reinforcement learning.
Journal of Machine Learning Research, 21(178):1–51,
2020.

Rigter, M., Lacerda, B., and Hawes, N. Rambo-rl: Robust
adversarial model-based offline reinforcement learning.
Advances in neural information processing systems, 35:
16082–16097, 2022.

Samvelyan, M., Rashid, T., De Witt, C. S., Farquhar, G.,
Nardelli, N., Rudner, T. G., Hung, C.-M., Torr, P. H.,
Foerster, J., and Whiteson, S. The starcraft multi-agent
challenge. arXiv preprint arXiv:1902.04043, 2019.

Shi, L. and Chi, Y. Distributionally robust model-based
offline reinforcement learning with near-optimal sample
complexity. Journal of Machine Learning Research, 25
(200):1–91, 2024.

Shi, L., Mazumdar, E., Chi, Y., and Wierman, A. Sample-
efficient robust multi-agent reinforcement learning in

the face of environmental uncertainty. arXiv preprint
arXiv:2404.18909, 2024.

Sun, Y., Zheng, R., Hassanzadeh, P., Liang, Y., Feizi, S.,
Ganesh, S., and Huang, F. Certifiably robust policy learn-
ing against adversarial multi-agent communication. In
The Eleventh International Conference on Learning Rep-
resentations, 2023.

Sunehag, P., Lever, G., Gruslys, A., Czarnecki, W. M., Zam-
baldi, V., Jaderberg, M., Lanctot, M., Sonnerat, N., Leibo,
J. Z., Tuyls, K., et al. Value-decomposition networks
for cooperative multi-agent learning. arXiv preprint
arXiv:1706.05296, 2017.

Tan, K. L., Esfandiari, Y., Lee, X. Y., Sarkar, S., et al. Ro-
bustifying reinforcement learning agents via action space
adversarial training. In 2020 American control conference
(ACC), pp. 3959–3964. IEEE, 2020.

Terry, J., Black, B., Grammel, N., Jayakumar, M., Hari, A.,
Sullivan, R., Santos, L. S., Dieffendahl, C., Horsch, C.,
Perez-Vicente, R., et al. Pettingzoo: Gym for multi-agent
reinforcement learning. Advances in Neural Information
Processing Systems, 34:15032–15043, 2021.

Tessler, C., Efroni, Y., and Mannor, S. Action robust rein-
forcement learning and applications in continuous control.
In International Conference on Machine Learning, pp.
6215–6224. PMLR, 2019.

Tu, J., Wang, T., Wang, J., Manivasagam, S., Ren, M., and
Urtasun, R. Adversarial attacks on multi-agent commu-
nication. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 7768–7777, 2021.

Vaswani, A. Attention is all you need. Advances in Neural
Information Processing Systems, 2017.

Vinitsky, E., Du, Y., Parvate, K., Jang, K., Abbeel, P., and
Bayen, A. Robust reinforcement learning using adversar-
ial populations. arXiv preprint arXiv:2008.01825, 2020.

Wang, J., Liu, Y., and Li, B. Reinforcement learning with
perturbed rewards. In Proceedings of the AAAI confer-
ence on artificial intelligence, volume 34, pp. 6202–6209,
2020a.

Wang, J., Ren, Z., Liu, T., Yu, Y., and Zhang, C. Qplex:
Duplex dueling multi-agent q-learning. arXiv preprint
arXiv:2008.01062, 2020b.

Wang, S., Chen, W., Huang, L., Zhang, F., Zhao, Z., and
Qu, H. Regularization-adapted anderson acceleration for
multi-agent reinforcement learning. Knowledge-Based
Systems, 275:110709, 2023.

12

Wolfpack Adversarial Attack for Robust Multi-Agent Reinforcement Learning

Wang, X., Nair, S., and Althoff, M. Falsification-based
robust adversarial reinforcement learning. In 2020 19th
IEEE International Conference on Machine Learning and
Applications (ICMLA), pp. 205–212. IEEE, 2020c.

Wang, Y., Wang, Y., Zhou, Y., Velasquez, A., and Zou, S.
Data-driven robust multi-agent reinforcement learning.
In 2022 IEEE 32nd International Workshop on Machine
Learning for Signal Processing (MLSP), pp. 1–6. IEEE,
2022.

Xu, Y., Zeng, Q., and Singh, G. Efficient reward poisoning
attacks on online deep reinforcement learning. arXiv
preprint arXiv:2205.14842, 2022.

Xu, Y., Gumaste, R., and Singh, G. Reward poisoning attack
against offline reinforcement learning. arXiv preprint
arXiv:2402.09695, 2024.

Xu, Z., Li, D., Bai, Y., and Fan, G. Mmd-mix: Value function
factorisation with maximum mean discrepancy for coop-
erative multi-agent reinforcement learning. In 2021 Inter-
national Joint Conference on Neural Networks (IJCNN),
pp. 1–7. IEEE, 2021.

Xue, W., Qiu, W., An, B., Rabinovich, Z., Obraztsova, S.,
and Yeo, C. K. Mis-spoke or mis-lead: Achieving ro-
bustness in multi-agent communicative reinforcement
learning. arXiv preprint arXiv:2108.03803, 2021.

Ye, C., He, J., Gu, Q., and Zhang, T. Towards robust model-
based reinforcement learning against adversarial corrup-
tion. arXiv preprint arXiv:2402.08991, 2024.

Yu, J., Gehring, C., Schäfer, F., and Anandkumar, A. Robust
reinforcement learning: A constrained game-theoretic
approach. In Learning for Dynamics and Control, pp.
1242–1254. PMLR, 2021.

Yuan, L., Zhang, Z., Xue, K., Yin, H., Chen, F., Guan, C., Li,
L., Qian, C., and Yu, Y. Robust multi-agent coordination
via evolutionary generation of auxiliary adversarial attack-
ers. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pp. 11753–11762, 2023.

Yuan, L., Jiang, T., Li, L., Chen, F., Zhang, Z., and Yu,
Y. Robust cooperative multi-agent reinforcement learn-
ing via multi-view message certification. Science China
Information Sciences, 67(4):142102, 2024.

Yun, W. J., Park, S., Kim, J., Shin, M., Jung, S., Mohaisen,
D. A., and Kim, J.-H. Cooperative multiagent deep
reinforcement learning for reliable surveillance via au-
tonomous multi-uav control. IEEE Transactions on In-
dustrial Informatics, 18(10):7086–7096, 2022.

Zhang, H., Chen, H., Xiao, C., Li, B., Liu, M., Boning, D.,
and Hsieh, C.-J. Robust deep reinforcement learning

against adversarial perturbations on state observations.
Advances in Neural Information Processing Systems, 33:
21024–21037, 2020a.

Zhang, H., Chen, H., Boning, D., and Hsieh, C.-J. Robust
reinforcement learning on state observations with learned
optimal adversary. arXiv preprint arXiv:2101.08452,
2021a.

Zhang, K., Sun, T., Tao, Y., Genc, S., Mallya, S., and Basar,
T. Robust multi-agent reinforcement learning with model
uncertainty. Advances in neural information processing
systems, 33:10571–10583, 2020b.

Zhang, K., Yang, Z., and Başar, T. Multi-agent reinforce-
ment learning: A selective overview of theories and algo-
rithms. Handbook of reinforcement learning and control,
pp. 321–384, 2021b.

Zhang, X., Ma, Y., Singla, A., and Zhu, X. Adaptive reward-
poisoning attacks against reinforcement learning. In In-
ternational Conference on Machine Learning, pp. 11225–
11234. PMLR, 2020c.

Zhang, Z., Sun, Y., Huang, F., and Miao, F. Safe and ro-
bust multi-agent reinforcement learning for connected
autonomous vehicles under state perturbations. arXiv
preprint arXiv:2309.11057, 2023.

Zhou, Z., Liu, G., and Zhou, M. A robust mean-field actor-
critic reinforcement learning against adversarial pertur-
bations on agent states. IEEE Transactions on Neural
Networks and Learning Systems, 2023.

Zhou, Z., Liu, G., Guo, W., and Zhou, M. Adversarial
attacks on multiagent deep reinforcement learning mod-
els in continuous action space. IEEE Transactions on
Systems, Man, and Cybernetics: Systems, 2024.

13

Wolfpack Adversarial Attack for Robust Multi-Agent Reinforcement Learning

A. Environmental Setup
We conduct experiments in the MPE (Lowe et al., 2017) and SMAC (Samvelyan et al., 2019) environments. This section
provides detailed descriptions of their setup and features.

A.1. Multi-Agent Particle Environments (MPE)

(a) PP 3/1 (b) PP 6/2 (c) PP 9/3

Figure A.1. Visualization of PP scenarios in the MPE environment

The Multi-Agent Particle Environment (MPE) (Lowe et al., 2017) is a widely used benchmark suite consisting of multi-agent
scenarios. Agents are modeled as particles capable of movement and interaction, governed by simple physical dynamics.
MPE includes both cooperative and competitive tasks, with each scenario sharing a continuous state space and typically
partial observability. A standardized implementation of MPE is available through the PettingZoo library (Terry et al., 2021).

Scenarios
The MPE benchmark includes a variety of multi-agent scenarios. Among them, we focus on the predator-prey environment,
which is well-suited for analyzing the impact of attacks on the cooperative structures among agents. We consider multiple
variants denoted as PP X/Y , where X represents the number of predator agents and Y the number of prey agents. In all
scenarios, prey agents follow a random policy. Detailed configurations for the three selected variants are summarized in
Table A.1 and Fig. A.1.

State and observation spaces
Each agent in the MPE environment receives a partial observation, which includes its own position and velocity, the relative
positions and velocities of other predators, and the relative positions of landmarks. The global state is constructed by
concatenating the local observations of all agents.

Action space
The action space is discrete. Each agent can choose one of the four cardinal directions or do nothing.

Reward function
The reward function R assigns a positive value to predator agents upon a successful collision with a prey:

R =
∑

g∈prey

I(collision(g, predator))

where I(·) is the indicator function, returning 1 if the condition inside is true and 0 otherwise. Here, collision(i, j) denotes
whether agent i and agent j are in physical contact.

Map Predators Prey State Dimension Obs Dimension Num. of Actions

PP 3/1 3 Agents 1 Agent 48 16 5

PP 6/2 6 Agents 2 Agents 156 26 5

PP 9/3 9 Agents 3 Agents 324 36 5

Table A.1. The number of agents, the dimensions of state and observation spaces, and the number of actions in MPE scenarios

14

Wolfpack Adversarial Attack for Robust Multi-Agent Reinforcement Learning

A.2. The StarCraft Multi-Agent Challenge (SMAC)

(a) 3m (b) 3s vs 3z (c) 2s3z

(d) 8m (e) 1c3s5z (f) MMM

Figure A.2. Visualization of SMAC scenarios

The StarCraft Multi-Agent Challenge (SMAC) serves as a benchmark for cooperative Multi-Agent Reinforcement Learning
(MARL), focusing on decentralized micromanagement tasks. Based on the real-time strategy game StarCraft II, SMAC
requires each unit to be controlled by independent agents acting solely on local observations. It offers a variety of combat
scenarios to evaluate MARL methods effectively.

Scenarios
SMAC scenarios involve combat situations between an allied team controlled by learning agents and an enemy team
managed by a scripted AI. These scenarios vary in complexity, unit composition, and terrain, challenging agents to use
advanced micromanagement techniques such as focus fire, kiting, and terrain exploitation. Scenarios end when all units on
one side are eliminated or when the time limit is reached. The objective is to maximize the win rate of the allied agents.
Detailed descriptions of the scenarios and unit compositions are provided in Table A.2 and Fig. A.2.

State and observation spaces
In the SMAC environment, each agent receives partial observations that contain information about visible allies and enemies
within a fixed sight range of 9. These observations do not include any global state and are specifically designed to support
decentralized decision-making based only on each agent’s local view of the environment.

The global state, which is used during centralized training, is constructed by aggregating the features of all agents and
enemies. It consists of three primary components. The ally state includes each agent’s relative x and y positions, health,
energy, shield (if applicable), and unit type. The enemy state is similar but excludes energy, containing relative positions,
health, shield, and unit type of enemies. The last action component records the most recent action taken by each agent,
represented as a one-hot encoded vector. The full global state is formed by concatenating these components, and its
dimensionality depends on the number of agents, enemies, and available actions.

Each agent’s observation vector is separately constructed from the following elements. The movement features indicate the
four cardinal directions the agent can move in, resulting in a fixed size of 4. The enemy features describe each observed
enemy, including available action flag, distance to the agent, relative x and y positions, health, shield (if applicable), and
unit type. The ally features encode the same types of information for all visible allies, excluding the observing agent. Finally,
the own features contain the observing agent’s own health, shield, and unit type.

The precise dimensions of the observation and state vectors vary depending on the specific map scenario and unit composition,
and are summarized in Table A.2.

Action space
Agents can perform discrete actions, including movement in four cardinal directions (North, South, East, West), attacking
specific enemy units within a shooting range of 6 units, and specialized actions such as healing for units like Medivacs.
Additionally, agents can perform a stop or a no-op action, the latter being restricted to dead units.

The size of the action space varies depending on the scenario and is defined as nactions = 6 + nenemies, where 6 represents
movement, stop, or a no-op action. The inclusion of nenemies accounts for the need to specify which enemy unit is targeted

15

Wolfpack Adversarial Attack for Robust Multi-Agent Reinforcement Learning

when performing an attack action. The exact size of the action space varies across different maps, as summarized in Table
A.2.

Reward function
SMAC uses a shaped reward function R to guide learning, including components for damage dealt (Rdamage), enemy units
killed (Renemy killed), and scenario victory (Rwin). The total reward is defined as:

R =
∑

e∈enemies

∆Health(e) +
∑

e∈enemies

I({Health(e) = 0}) · Rewarddeath + I({win = True}) · Rewardwin

Here, Health(e) represents the health of an enemy unit e, and ∆Health(e) is the reduction in its health during a timestep. The
indicator function I(·) returns 1 if the condition inside is true and 0 otherwise. The parameters Rewarddeath and Rewardwin
are scaling factors for rewards when an enemy unit is killed and when the agents win the scenario, set to 10 and 200,
respectively.

Map Ally Units Enemy Units State Dimension Obs Dimension Num. of Actions

3m 3 Marines 3 Marines 48 30 9

3s vs 3z 3 Stalkers 3 Zealots 54 36 9

2s3z 2 Stalkers, 2 Stalkers, 120 80 11
3 Zealots 3 Zealots

8m 8 Marines 8 Marines 168 80 14

1c3s5z 1 Colossus, 1 Colossus, 270 162 15
3 Stalkers, 3 Stalkers,
5 Zealots 5 Zealots

MMM 1 Medivac, 1 Medivac, 290 160 16
2 Marauders, 2 Marauders,
7 Marines 7 Marines

Table A.2. The number of agents, the dimensions of state and observation spaces, and the number of actions in SMAC scenarios

16

Wolfpack Adversarial Attack for Robust Multi-Agent Reinforcement Learning

B. Implementation Details
In this section, we provide a detailed implementation of the proposed WALL framework. Section B.1 outlines the imple-
mentation of the Transformer used to efficiently identify critical initial steps. Section B.2 elaborates on the components
constituting the Wolfpack attack and provides an in-depth explanation of the reinforcement learning implementation.

B.1. Practical Implementation of Planner Transformer

ො𝒔𝒕+𝒕𝑾𝑷−𝟏 ෥𝒂𝒕+𝒕𝑾𝑷−𝟏ෝ𝒐𝒕+𝒕𝑾𝑷−𝟏 ො𝒔𝒕+𝟏 ෝ𝒐𝒕+𝟏 ෥𝒂𝒕+𝟏

Planning Transformer

⋯

𝒔𝒕 𝒐𝒕 ෥𝒂𝒕

ො𝒔𝒕+𝟏 ෝ𝒐𝒕+𝟏 ො𝒔𝒕+𝟐 ෝ𝒐𝒕+𝟐

⋯

ො𝒔𝒕+𝒕𝑾𝑷
 ෝ𝒐𝒕+𝒕𝑾𝑷

(a) Planning Transformer

𝑸-difference Transformer
𝒔𝒕

⋯ ෡𝚫𝑸𝒕+𝑳−𝟏
𝑾𝑷෡𝚫𝑸𝒕+𝟏

𝑾𝑷෡𝚫𝑸𝒕
𝑾𝑷

𝒔𝒕+𝟏

⋯ ෡𝚫𝑸𝒕+𝑳
𝑾𝑷෡𝚫𝑸𝒕+𝟐

𝑾𝑷෡𝚫𝑸𝒕+𝟏
𝑾𝑷

(b) Q-difference Transformer

Figure B.1. Structure of Transformers

Critical attacking step selection introduced in Section 4.4 requires planning to compute the reduction in Q-function values,
∆QWP

l (l = t, · · · , t+L− 1), over multiple time steps. To facilitate this process, a Transformer model is employed. During
training, the Transformer predicts (ŝt+1, ôt+1, · · · , ŝt+tWP , ôt+tWP) at the current step t to compute the target ∆̂QWP

t .
However, performing this planning process at each evaluation step to calculate the probability of an initial attack, Pt,attack,
is computationally expensive.

To address this, the single Transformer is split into two components: a planning Transformer and a Q-difference Transformer.
The planning Transformer predicts (ŝt+1, ôt+1) and is used only during training, while the Q-difference Transformer predicts
∆QWP

l (l = t, · · · , t+L− 1) and is employed exclusively during evaluation. This separation enables efficient computation
of Pt,attack during evaluation, significantly reducing computational costs. Both Transformers adopt the Decision Transformer
structure (Chen et al., 2021), consisting of Transformer decoder layers. The planning Transformer is parameterized by
ϕplanning, and the Q-difference Transformer by ϕqdiff . Their respective loss functions are defined as:

Lplanning(ϕplanning) = E
[
∥st+1 − ŝt+1(ϕplanning)∥2 + ∥ot+1 − ôt+1(ϕplanning)∥2

]
, (B.1)

Lqdiff(ϕqdiff) = E
[
∥∆QWP

t − ∆̂QWP
t (ϕqdiff)∥2

]
, ∀t. (B.2)

As shown in Fig. B.1, the estimated state ŝt+1 and observations ôt+1 are generated by the planning Transformer, which takes
previous trajectories as input. Similarly, the estimated Q-difference ∆̂QWP

t is produced by the Q-diff Transformer, using
previous states as input. The loss function Lplanning minimizes the prediction error for the next state st+1 and observation
ot+1, while Lqdiff minimizes the prediction error for ∆QWP

l resulting from the Wolfpack attack. Fig. B.1 illustrates the
architectures of the Transformers, where (a) represents the planning Transformer and (b) represents the Q-diff Transformer.

B.2. Detailed Implementation of WALL

The WALL framework trains robust MARL policies to counter the Wolfpack adversarial attack by employing a Q-learning
approach within the CTDE paradigm. Each agent computes its individual Q-values, Qi(τ it , a

i
t), i = 1, · · · , n, using separate

Q-networks. These individual values, along with the global state, are combined through a mixing network to produce
the total Q-value, Qtot

θ , parameterized by θ. This joint value function ensures effective coordination among agents under
adversarial scenarios.

17

Wolfpack Adversarial Attack for Robust Multi-Agent Reinforcement Learning

To achieve robustness, the training process minimizes the temporal difference (TD) loss, which incorporates the observed
rewards, state transitions, and target Q-values parameterized by a separate target network, θ−. By leveraging this target
network, the CTDE frameworks stabilize learning and mitigate the impact of the Wolfpack attack. The TD loss is defined as:

LTD(θ) = Es,a,r,s′

[(
rt + γmax

a′
Qtot

θ−(st+1,a
′)−Qtot

θ (st,at)
)2

]
, (B.3)

where the target network parameter θ− is updated by applying the exponential moving average (EMA) to θ. This training
mechanism allows agents to adapt and develop robust policies capable of resisting the coordinated disruptions caused by
the Wolfpack adversarial attack, ensuring enhanced performance and resilience in MARL scenarios. In addition, we use 3
value-based CTDE algorithms as baselines for the WALL framework: QMIX, VDN, and QPLEX. Below, we provide an
outline of the key details of these baseline algorithms:

Value-Decomposition Networks (VDN)
VDN (Sunehag et al., 2017) is a Q-learning algorithm designed for cooperative MARL. It introduces an additive decomposi-
tion of the joint Q-value into individual agent Q-values, enabling centralized training and decentralized execution. The joint
action-value function, Qtot, is expressed as:

Qtot(st,at) =

n∑
i=1

Qi(τ it , a
i
t), (B.4)

allowing agents to act independently during execution by relying only on their local Qi values.

QMIX
QMIX (Rashid et al., 2020) extends VDN by introducing a more expressive, non-linear representation of the joint Q-
value, while maintaining a monotonic relationship between Qtot and individual agent Q-values, Qi(τ i, ai). This ensures
individual-global-max (IGM) condition:

∂Qtot

∂Qi
≥ 0,∀i, (B.5)

guaranteeing consistency between centralized and decentralized policies. Specifically:

argmax
a

Qtot(st,at) =

argmaxa1 Q1(τ1t , a
1
t),

...
argmaxan Qn(τnt , a

n
t)

 . (B.6)

QMIX combines agent networks, a mixing network, and hypernetworks, where hypernetworks dynamically parameterize the
mixing network based on the global state st. The weights generated by the hypernetworks are constrained to be non-negative
to enforce the monotonicity constraint.

QPLEX
QPLEX (Wang et al., 2020b) introduces a duplex dueling architecture to enhance the representation of joint action-value
functions while adhering to the IGM principle. QPLEX reformulates the IGM principle in an advantage-based form:

argmax
a

Atot(τ,a) =

argmaxa1 A1(τ1, a1),
...

argmaxan An(τn, an)

 , (B.7)

where Atot and Ai are the advantage functions for joint and individual action-value functions, respectively. The joint
action-value function is expressed as:

Qtot(τ,a) =

n∑
i=1

Qi(τ, ai) +

n∑
i=1

(λi(τ,a)− 1)Ai(τ, ai). (B.8)

where λi(τ,a) > 0 are importance weights generated using a multi-head attention mechanism to enhance expressiveness.

Here, VDN and QMIX are implemented using the PyMARL codebase https://github.com/oxwhirl/pymarl, while QPLEX is
implemented using its official codebase https://github.com/wjh720/QPLEX.

18

https://github.com/oxwhirl/pymarl
https://github.com/wjh720/QPLEX

Wolfpack Adversarial Attack for Robust Multi-Agent Reinforcement Learning

C. Experimental Details
All experiments in this paper are conducted on a GPU server equipped with an NVIDIA GeForce RTX 3090 GPU and
AMD EPYC 7513 32-Core processors running Ubuntu 20.04 and PyTorch. We follow the implementations and loss scales
provided by the CTDE algorithms and focus on parameter searches for hyperparameters related to the proposed Wolfpack
adversarial attack. Comparisons are performed using the optimal hyperparameter setup, with an ablation study available in
Appendix F.

C.1. Hyperparameter Setup

We conduct parameter search for the number of Wolfpack attacks KWP ∈ [1, 2, 3, 4], the attack duration tWP ∈ [1, 2, 3, 4],
the number of follow-up agents m, and the temperature T ∈ [0.1, 0.2, 0.5, 1.0]. The total number of attacks K is then
determined based on K = KWP × (tWP + 1), separated into training and testing setups. During training, K is selected
through hyperparameter sweeping to ensure optimal performance. For testing, K is unified across all adversarial attack
setups, including Random Attack, EGA, and the Wolfpack Adversarial Attack, to ensure fair comparisons. Additionally, the
attack period L is chosen based on the average episode length of SMAC scenarios and the total number of attacks, with
L = 20 is fixed as appropriate. Transformer hyperparameters, shared between the Planning Transformer and Q-difference
Transformer, such as the number of heads, decoder layers, embedding dimensions, and input sequence length, are selected
to balance accuracy and computational efficiency.

The Q-learning hyperparameters (shared across all CTDE methods) and those specific to the CTDE algorithms are detailed
in Table C.1 and Table C.2, respectively. The Wolfpack adversarial attack-related hyperparameters for the WALL framework,
shared across all SMAC scenarios and scenario-specific setups, are presented in Table C.3.

Hyperparameter Value
Epsilon 1.0 → 0.05
Epsilon Anneal Time 50000 timesteps
Train Interval 1 episode
Gamma 0.99
Critic Loss MSE Loss
Buffer Size 5000 episodes
Batch Size 32 episodes
Agent Learning Rate 0.0005
Critic Learning Rate 0.0005
Optimizer RMSProp
Optimizer Alpha 0.99
Optimizer Eps 1e-5
Gradient Clip Norm 10.0
Num GRU Layers 1
RNN Hidden State Dim 64
Double Q True

Table C.1. Common Q-learning hyperparameters

19

Wolfpack Adversarial Attack for Robust Multi-Agent Reinforcement Learning

Hyperparameter VDN QMIX QPLEX
Mixer VDN QMIX QPLEX
Mixing Embed Dim. - 32 32
Hypernet Layers - 2 2
Hypernet Embed Dim. - 64 64
Adv Hypernet Layers - - 1
Adv Hypernet Embed Dim. - - 64
Num. Kernel - - 2

Table C.2. VDN, QMIX, QPLEX hyperparameters

Common Hyperparameters Value
Attack duration (tWP) 3
Temperature (T) 0.5
Attack Period (L) 20
Num. Transformer Head 1
Num. Transformer Decoder Layer 1
Transformer Embed Dim. 64
Input Sequence Length 20

Scenario PP 3/1 PP 6/2 PP 9/3
Num. Total Attacks (Train) (K) 4 4 4
Num. Total Attacks (Test) (K) 4 4 4
Num. Wolfpack Attacks (KWP) 1 1 1
Num. Follow-up Agents (m) 1 3 5

Scenario 3m 3s vs 3z 2s3z 8m 1c3s5z MMM
Num. Total Attacks (Train) (K) 8 16 12 8 16 16
Num. Total Attacks (Test) (K) 8 4 8 4 8 8
Num. Wolfpack Attacks (KWP) 2 4 3 2 4 4
Num. Follow-up Agents (m) 1 1 2 3 4 4

Table C.3. Wolfpack hyperparameters shared across scenarios and scenario-specific values

20

Wolfpack Adversarial Attack for Robust Multi-Agent Reinforcement Learning

D. Details of Other Robust MARL Methods
In this section, we detail various robust MARL methods compared against the proposed WALL framework, as below:

Robust Adversarial Reinforcement Learning (RARL)
RARL (Pinto et al., 2017) enhances policy robustness by training a protagonist agent and an adversary in a two-player
zero-sum Markov game. At each timestep t, the agents observe state st and take actions a1t ∼ µ(st) and a2t ∼ ν(st), where
µ is the protagonist’s policy, and ν is the adversary’s policy. The state transitions follow:

st+1 = P (st, a
1
t , a

2
t). (D.9)

The protagonist maximizes its cumulative reward R1, while the adversary minimizes it:

R1
∗ = min

ν
max
µ

R1(µ, ν) = max
µ

min
ν

R1(µ, ν). (D.10)

Robustness via Adversary Populations (RAP)
RAP (Vinitsky et al., 2020) improves robustness by training agents against a population of adversaries, reducing overfitting
to specific attack patterns. During training, an adversary is sampled uniformly from the population πϕ1

, πϕ2
, . . . , πϕn

. The
objective is:

max
θ

min
ϕ1,...,ϕn

Ei∼U(1,n)

[
T∑

t=0

γtr(st, at, αa
i
t)

∣∣∣∣∣πθ, πϕi

]
, (D.11)

where πθ is the agent’s policy, πϕi
is the i-th adversary, and α controls adversary strength.

Robust Multi-Agent Coordination via Evolutionary Generation of Auxiliary Adversarial Attackers (ROMANCE)
ROMANCE (Yuan et al., 2023) generates diverse auxiliary adversarial attackers to improve robustness in CMARL. Its
objective combines attack quality and diversity:

Ladv(ϕ) =
1

np

np∑
j=1

Lopt(ϕj)− αLdiv(ϕ), (D.12)

where Lopt minimizes the ego-system’s return, Ldiv promotes diversity using Jensen-Shannon Divergence, and np is the
number of adversarial policies. ROMANCE uses an evolutionary mechanism to explore diverse attacks.

We implement RARL and RAP for multi-agent systems, as well as ROMANCE with EGA, using the ROMANCE codebase
available at https://github.com/zzq-bot/ROMANCE.

ERNIE
ERNIE (Bukharin et al., 2024) improves robustness by promoting Lipschitz continuity through adversarial regularization. It
minimizes discrepancies between policy outputs under perturbed and non-perturbed observations:

Rπ(ok; θk) = max
∥δ∥≤ϵ

D(πθk(ok + δ), πθk(ok)), (D.13)

where ok is the agent’s observation, δ is a bounded perturbation, and D measures divergence (e.g., KL-divergence). ERNIE
reformulates adversarial training as a Stackelberg game and extends its framework to mean-field MARL for scalability in
large-agent settings. We evaluate ERNIE using its official codebase at https://github.com/abukharin3/ERNIE.

21

https://github.com/zzq-bot/ROMANCE
https://github.com/abukharin3/ERNIE

Wolfpack Adversarial Attack for Robust Multi-Agent Reinforcement Learning

E. Additional Experiments Results
This section presents additional experimental results. E.1 reports comparison results for other CTDE algorithms, E.2
provides learning curves across additional SMAC scenarios, E.3 presents a performance comparison for EGA, E.4 discusses
computational cost, and E.5 includes general robustness experiments.

E.1. Comparison Results for Other CTDE Algorithms

Our proposed Wolfpack attack is compatible with various value-based MARL algorithms. Experimental results in this
section demonstrate its significant impact on robustness, not only in QMIX, as discussed in the main text, but also in
VDN and QPLEX. The hyperparameters used in these experiments follow those outlined in Appendix C.1, with WALL
hyperparameters remaining consistent across all algorithms, including QMIX.

VDN Results: Table E.1 shows the average win rates for various robust MARL methods with VDN against attacker baselines.
Both models and attackers are trained using the VDN-based algorithm. Results indicate that the proposed Wolfpack attack is
more detrimental than Random Attack or EGA for VDN. For example, while EGA reduces Vanilla VDN’s performance by
95.6%− 73.8% = 21.8%, the Wolfpack attack causes a larger reduction of 95.6%− 44.1% = 51.5%, demonstrating its
severity. Additionally, the WALL framework outperforms other baselines under both Natural conditions and adversarial
attacks, showcasing its robustness.

Method
Scenario

2s3z 3m 3s vs 3z 8m MMM 1c3s5z Mean

Natural

Vanilla VDN 98.5± 1.4 96.0± 3.0 99.3± 0.5 97.8± 2.0 98.3± 0.5 83.5± 9.5 95.6± 1.7
RANDOM 99.0± 0.1 99.8± 0.1 99.4± 0.5 98.9± 0.1 98.8± 1.0 97.6± 0.5 98.9± 0.4

RARL 95.3± 0.5 92.5± 3.4 99.3± 0.5 96.3± 1.5 93.2± 1.5 91.8± 0.3 94.7± 0.6
RAP 93.4± 1.3 96.8± 1.8 99.3± 0.5 98.7± 1.0 97.3± 0.5 97.3± 0.5 97.1± 0.4

ERNIE 94.6± 3.9 99.4± 0.5 97.1± 0.5 98.4± 1.4 98.8± 0.8 96.5± 1.7 97.5± 0.9
ROMANCE 98.2± 0.1 97.9± 1.1 99.4± 0.5 93.5± 5.4 97.9± 1.0 93.0± 3.1 96.6± 0.8
WALL (ours) 99.8± 0.1 99.4± 0.5 99.9± 0.1 96.9± 2.0 99.4± 0.5 100.0± 0.1 99.2± 0.2

Random Attack

Vanilla VDN 80.5± 1.5 65.5± 6.5 96.5± 0.5 52.5± 10.5 95.0± 1.0 76.5± 7.5 77.8± 1.9
RANDOM 83.0± 1.0 94.5± 1.5 96.0± 0.7 88.5± 0.5 95.5± 2.5 93.5± 1.5 91.8± 0.5

RARL 81.0± 4.2 64.5± 8.4 97.3± 0.5 72.9± 0.1 76.3± 7.5 92.0± 0.2 80.7± 2.1
RAP 89.8± 3.1 75.8± 37.9 97.7± 1.9 81.2± 0.5 95.2± 2.6 92.3± 0.5 88.7± 1.6

ERNIE 80.2± 2.0 66.9± 2.8 93.1± 1.7 67.1± 4.9 89.1± 2.1 90.4± 4.5 81.1± 1.2
ROMANCE 91.0± 5.0 79.0± 6.0 98.4± 0.4 54.0± 5.0 97.5± 0.5 92.0± 3.0 85.3± 0.6
WALL (ours) 95.5± 1.5 86.0± 6.0 99.4± 0.4 90.0± 3.0 98.5± 0.5 98.1± 0.1 94.6± 1.4

EGA

Vanilla VDN 69.5± 7.5 54.5± 12.5 94.5± 1.5 59.5± 12.5 90.5± 2.5 74.5± 9.5 73.8± 1.0
RANDOM 56.0± 6.0 73.0± 6.0 84.0± 13.0 84.5± 6.5 85.5± 1.5 86.5± 3.5 78.3± 2.4

RARL 58.0± 1.2 79.0± 2.9 96.5± 0.7 76.7± 4.0 75.9± 8.2 81.3± 4.5 77.9± 1.9
RAP 79.9± 3.1 93.0± 4.6 97.3± 0.5 85.7± 1.3 91.8± 3.8 87.2± 1.5 89.3± 0.2

ERNIE 62.0± 14.9 62.5± 8.2 89.1± 6.6 74.7± 1.6 89.3± 2.5 82.2± 1.9 76.6± 3.6
ROMANCE 86.5± 2.5 93.8± 3.0 98.0± 0.2 76.5± 0.5 95.5± 2.5 92.0± 0.1 90.3± 0.6
WALL (ours) 91.5± 0.5 91.0± 2.0 99.0± 1.0 90.0± 4.0 97.5± 0.5 95.5± 0.5 94.1± 0.1

Wolfpack
Adversarial

Attack (ours)

Vanilla VDN 54.0± 4.0 20.5± 5.5 91.5± 0.5 24.5± 12.5 18.5± 9.5 55.5± 2.5 44.1± 1.1
RANDOM 47.0± 4.0 89.0± 1.0 90.0± 5.0 41.0± 14.0 18.5± 5.5 83.5± 0.5 61.5± 2.7

RARL 59.5± 8.7 41.3± 16.4 96.8± 0.9 13.1± 2.0 24.3± 6.5 61.6± 11.7 49.4± 1.8
RAP 64.3± 3.5 67.7± 33.8 98.9± 0.1 23.9± 6.1 53.3± 2.5 82.1± 5.4 65.0± 1.7

ERNIE 33.1± 3.6 25.8± 6.5 93.0± 4.5 17.2± 9.5 23.5± 9.3 66.4± 13.5 43.2± 1.7
ROMANCE 63.0± 10.0 46.5± 20.5 97.5± 0.5 19.5± 7.5 38.0± 5.0 83.0± 4.0 57.9± 3.1
WALL (ours) 91.5± 2.5 91.5± 2.5 100.0± 0.0 71.5± 1.5 98.0± 1.0 93.5± 4.5 91.0± 0.8

Table E.1. Average test win rates of robust MARL policies under various attack settings (VDN)

22

Wolfpack Adversarial Attack for Robust Multi-Agent Reinforcement Learning

QPLEX Results: Similarly, Table E.2 reports the average win rates various robust MARL methods with QPLEX against
attacker baselines. Both models and attackers are trained using the QPLEX-based algorithm. Results reveal that the
Wolfpack attack is also more detrimental for QPLEX compared to Random Attack and EGA. For instance, EGA reduces
Vanilla QPLEX’s performance by 98.4% − 57.2% = 41.2%, whereas the Wolfpack attack results in a larger reduction
of 98.4%− 33.1% = 65.3%. The WALL framework again demonstrates superior robustness, performing well against all
attacks, including the Wolfpack attack.

Method
Scenario

2s3z 3m 3s vs 3z 8m MMM 1c3s5z Mean

Natural

Vanilla QPLEX 97.1± 1.3 99.2± 0.5 99.4± 0.5 97.4± 0.3 99.5± 0.5 97.1± 0.9 98.4± 0.1
RANDOM 97.7± 2.1 98.7± 0.8 99.6± 0.1 99.1± 0.9 98.2± 1.2 98.5± 1.3 98.7± 0.5

RARL 94.4± 4.5 89.7± 2.0 88.4± 6.8 97.8± 1.6 98.8± 0.8 94.6± 1.6 94.0± 1.4
RAP 96.5± 1.7 96.6± 2.5 93.2± 0.9 99.1± 0.5 98.8± 0.8 97.8± 0.8 97.7± 0.4

ERNIE 96.7± 2.5 98.8± 0.8 99.7± 0.1 98.8± 1.4 99.1± 0.5 98.4± 1.0 98.6± 0.6
ROMANCE 97.1± 2.9 93.2± 5.9 98.8± 0.8 94.7± 3.2 99.7± 0.1 99.0± 1.1 96.8± 1.2
WALL (ours) 99.5± 0.5 97.7± 2.1 99.9± 0.1 99.8± 0.1 99.0± 0.7 99.5± 0.6 99.2± 0.3

Random Attack

Vanilla QPLEX 75.2± 2.5 36.2± 6.6 81.9± 16.0 40.0± 9.8 65.3± 6.2 75.0± 2.8 62.3± 5.6
RANDOM 85.9± 0.9 69.0± 5.8 96.2± 1.6 89.0± 7.7 91.2± 2.4 95.5± 1.2 87.8± 0.7

RARL 81.2± 13.6 61.3± 13.9 74.7± 12.6 73.7± 21.6 92.0± 0.8 92.0± 2.9 79.1± 4.3
RAP 90.8± 2.8 78.0± 7.0 92.1± 10.3 65.3± 4.5 95.0± 1.4 95.7± 1.9 85.0± 1.9

ERNIE 82.0± 2.0 59.0± 9.0 93.0± 1.6 80.0± 1.4 91.3± 0.9 93.0± 0.8 83.1± 1.9
ROMANCE 89.2± 2.1 64.9± 13.4 93.7± 2.1 51.6± 5.3 92.2± 4.1 95.2± 1.0 76.0± 2.8
WALL (ours) 97.4± 0.9 85.4± 2.5 99.4± 0.5 92.9± 3.5 98.3± 1.2 98.6± 1.2 95.3± 0.7

EGA

Vanilla QPLEX 48.1± 3.4 16.0± 5.1 72.5± 15.1 58.5± 16.8 71.0± 4.2 76.9± 1.5 57.2± 6.2
RANDOM 60.5± 6.8 61.4± 14.9 82.0± 6.6 86.2± 3.4 85.3± 2.5 88.8± 2.5 77.4± 3.1

RARL 63.4± 0.5 65.7± 6.2 71.0± 8.2 86.0± 6.5 89.7± 1.9 84.7± 2.1 76.7± 1.0
RAP 78.5± 4.0 83.3± 0.9 85.4± 5.3 89.0± 2.2 92.7± 1.7 96.7± 0.5 88.0± 0.7

ERNIE 64.4± 7.0 67.3± 10.3 51.7± 9.5 86.7± 4.7 86.0± 5.0 89.3± 4.5 74.2± 3.0
ROMANCE 79.5± 6.0 80.3± 1.7 90.3± 1.3 80.7± 8.3 95.2± 2.0 92.5± 1.3 85.6± 1.0
WALL (ours) 89.0± 3.8 83.9± 2.9 99.6± 0.6 94.4± 1.2 96.4± 1.2 96.1± 0.7 93.2± 0.7

Wolfpack
Adversarial

Attack (ours)

Vanilla QPLEX 30.8± 4.3 11.8± 7.5 63.7± 24.3 30.7± 11.1 20.0± 12.5 41.9± 6.1 33.1± 7.1
RANDOM 50.5± 2.9 16.8± 6.8 89.5± 5.7 45.6± 18.0 34.0± 14.1 82.5± 11.3 53.2± 4.9

RARL 55.5± 2.1 27.3± 9.2 78.0± 4.3 46.0± 14.9 21.3± 14.4 79.7± 6.9 51.3± 2.8
RAP 59.0± 4.7 50.3± 14.7 86.7± 8.2 33.7± 3.1 45.0± 7.0 93.7± 2.4 56.3± 3.2

ERNIE 52.9± 6.3 49.0± 9.9 76.0± 9.9 42.7± 10.6 20.7± 10.4 78.7± 6.7 53.3± 3.6
ROMANCE 57.3± 8.4 38.5± 13.9 89.7± 1.3 28.6± 1.1 46.2± 10.6 83.5± 5.5 50.8± 0.9
WALL (ours) 88.3± 1.2 87.6± 4.7 99.7± 0.5 84.5± 1.7 96.3± 3.9 99.3± 0.9 92.6± 1.3

Table E.2. Average test win rates of robust MARL policies under various attack settings (QPLEX)

23

Wolfpack Adversarial Attack for Robust Multi-Agent Reinforcement Learning

Learning Curves for VDN and QPLEX: We also analyze training curves and average test win rates across different CTDE
algorithms. Graphs for the 8m and MMM environments illustrate the average win rates of each policy over training steps under
unseen Wolfpack adversarial attacks. Fig. E.1 presents training curves for VDN, while Fig. E.2 shows results for QPLEX.
These curves highlight that WALL not only achieves greater robustness but also adapts more quickly to attacks across VDN
and QPLEX, further confirming its effectiveness beyond QMIX.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timesteps (106)

0

20

40

60

80

100

Te
st

 W
in

 R
at

e
(%

) WALL
VDN
RANDOM
RARL
RAP
ERNIE
ROMANCE

(a) 8m

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timesteps (106)

0

20

40

60

80

100

Te
st

 W
in

 R
at

e
(%

)
(b) MMM

Figure E.1. Learning curves of MARL methods for Wolfpack attack (VDN)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timesteps (106)

0

20

40

60

80

100

Te
st

 W
in

 R
at

e
(%

) WALL
QPLEX
RANDOM
RARL
RAP
ERNIE
ROMANCE

(a) 8m

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timesteps (106)

0

20

40

60

80

100

Te
st

 W
in

 R
at

e
(%

)

(b) MMM

Figure E.2. Learning curves of MARL methods for Wolfpack attack (QPLEX)

24

Wolfpack Adversarial Attack for Robust Multi-Agent Reinforcement Learning

E.2. Learning Curves Across Additional SMAC Scenarios

In this section, we provide the training performance of WALL under Wolfpack adversarial attack across additional SMAC
scenarios beyond the 8m and MMM environments, which are emphasized in the main text for their significant performance
differences. Fig. E.3 illustrates the training curves for 6 scenarios: 3m, 3s vs 3z, 2s3z, 8m, MMM, and 1c3s5z. The
results demonstrate that WALL consistently outperforms baseline methods, achieving superior win rates across all scenarios.
Additionally, policies trained with WALL adapt more quickly to the challenges posed by Wolfpack attack, showing robust
and efficient performance across environments of varying complexity. These findings highlight the effectiveness of WALL
in enhancing the robustness of MARL policies against coordinated adversarial attacks.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timesteps (106)

0

20

40

60

80

100

Te
st

 W
in

 R
at

e
(%

) WALL
QMIX
Random
RARL
RAP
ERNIE
ROMANCE

(a) 3m

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timesteps (106)

0

20

40

60

80

100

Te
st

 W
in

 R
at

e
(%

)

(b) 3s vs 3z

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timesteps (106)

0

20

40

60

80

100

Te
st

 W
in

 R
at

e
(%

)

(c) 2s3z

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timesteps (106)

0

20

40

60

80

100

Te
st

 W
in

 R
at

e
(%

)

(d) 8m

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timesteps (106)

0

20

40

60

80

100

Te
st

 W
in

 R
at

e
(%

)

(e) MMM

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timesteps (106)

0

20

40

60

80

100

Te
st

 W
in

 R
at

e
(%

)

(f) 1c3s5z

Figure E.3. Learning curves of MARL methods for Wolfpack attack across 6 SMAC scenarios (QMIX)

25

Wolfpack Adversarial Attack for Robust Multi-Agent Reinforcement Learning

E.3. Performance Comparison for EGA

This section presents the training performance of WALL under the existing Evolutionary Generation-based Attackers (EGA)
(Yuan et al., 2023) method across six SMAC scenarios, as shown in Fig. E.4. The results demonstrate that WALL consistently
achieves superior robustness across all scenarios, even against unseen EGA adversaries that are not included in its training
process.

The EGA framework generates a diverse and high-quality population of adversarial attackers. Unlike single-adversary
methods, EGA maintains an evolving archive of attackers optimized for both quality and diversity, ensuring robust evaluations
against various attack strategies. During training, attackers are randomly selected from the archive to simulate diverse attack
scenarios. The archive is iteratively updated by replacing low-quality or redundant attackers with newly generated ones. For
evaluation, an attacker policy is randomly selected from the archive. The chosen attacker identifies critical attack steps and
targets specific victim agents, introducing action perturbations to reduce their individual Q-values. WALL demonstrates
strong resilience in these challenging environments, effectively mitigating the impact of EGA adversaries and maintaining
high performance across all evaluated scenarios.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timesteps (106)

0

20

40

60

80

100

Te
st

 W
in

 R
at

e
(%

) WALL
QMIX
Random
RARL
RAP
ERNIE
ROMANCE

(a) 3m

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timesteps (106)

0

20

40

60

80

100

Te
st

 W
in

 R
at

e
(%

)

(b) 3s vs 3z

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timesteps (106)

0

20

40

60

80

100

Te
st

 W
in

 R
at

e
(%

)
(c) 2s3z

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timesteps (106)

0

20

40

60

80

100

Te
st

 W
in

 R
at

e
(%

)

(d) 8m

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timesteps (106)

0

20

40

60

80

100

Te
st

 W
in

 R
at

e
(%

)

(e) MMM

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timesteps (106)

0

20

40

60

80

100

Te
st

 W
in

 R
at

e
(%

)

(f) 1c3s5z

Figure E.4. Learning curves of MARL methods for EGA across 6 SMAC scenarios (QMIX)

26

Wolfpack Adversarial Attack for Robust Multi-Agent Reinforcement Learning

E.4. Computational Cost

We measured the total training time (for 3M steps) required for each algorithm in the SMAC environments. The results are
summarized in Table E.3. WALL requires approximately 30% more time than ROMANCE, primarily due to the use of the
Transformer. However, despite this additional cost, the Transformer-based critical step selection plays an essential role in the
effectiveness of our method, as it enables precise identification of attack timing where coordinated perturbations are most
disruptive. This capability allows the robust policy to anticipate and defend against strategically timed adversarial threats,
ultimately resulting in stronger robustness. In general, training on the MMM map takes longer than on the 8m map due to the
increased number of agents, which leads to higher computational costs as a result of scalability.

Method
Scenario

8m MMM

Training Time

Vanilla QMIX 6h 30m 7h 30m
RANDOM 6h 30m 7h 35m

RARL 11h 10m 15h 50m
RAP 14h 35m 17h 25m

ERNIE 16h 30m 20h 55m
ROMANCE 16h 35m 18h 45m
WALL (ours) 21h 05m 23h 30m

Table E.3. Training time comparison on 8m and MMM

E.5. General Robustness Experiments

We conducted additional experiments to evaluate robustness under other commonly used criteria in the 8m and MMM
environments. Specifically, we considered: (1) Gaussian observation noise: Standard Gaussian noise (mean 0, standard
deviation 1) is injected into agents’ local observations, where attack steps (total attack steps : 8 for 8m, 16 for MMM) and
the attack group are selected randomly; and (2) Different parameterization in the SMAC test environment: Robustness is
evaluated under perturbed unit attributes by reducing the initial health of allied units by 10%, 15%, and 20% in the test
setup, compared to the training configuration. These types of noise and perturbations are standard in robustness evaluations
and enable us to assess how well the proposed method generalizes beyond action-level perturbations. The Table E.4 below
summarizes the results. In both settings, WALL demonstrates consistently stronger performance than existing baselines,
suggesting that it generalizes well to broader forms of distributional shift.

Method
Scenario

8m MMM Mean

Gaussian Obs. Noise

Vanilla QMIX 62.6± 2.3 75.3± 3.1 69.0± 2.1
RANDOM 72.3± 4.2 79.3± 3.9 75.8± 7.2

ROMANCE 69.6± 11.2 76.6± 7.5 73.1± 6.6
WALL (ours) 91.3± 3.3 97.3± 1.7 94.3± 3.3

Ally HP ↓ 10%

Vanilla QMIX 52.8± 4.8 88.4± 2.7 70.6± 1.8
RANDOM 50.8± 8.2 95.4± 2.5 73.1± 5.2

ROMANCE 56.8± 16.0 92.4± 4.5 74.6± 8.5
WALL (ours) 73.2± 7.5 98.6± 1.1 85.9± 3.7

Ally HP ↓ 15%

Vanilla QMIX 47.4± 6.9 69.0± 5.4 58.2± 5.8
RANDOM 49.2± 4.5 81.4± 5.5 65.3± 4.6

ROMANCE 57.6± 15.7 81.2± 3.5 69.4± 7.8
WALL (ours) 69.2± 10.5 94.0± 3.2 81.6± 5.7

Ally HP ↓ 20%

Vanilla QMIX 0.3± 0.4 41.2± 4.5 20.8± 2.1
RANDOM 0.0± 0.0 65.0± 2.7 32.5± 1.3

ROMANCE 2.3± 0.4 57.0± 8.9 29.7± 4.3
WALL (ours) 4.3± 1.9 89.6± 5.6 47.0± 3.3

Table E.4. Average test win rates of robust MARL policies under various perturbation settings

27

Wolfpack Adversarial Attack for Robust Multi-Agent Reinforcement Learning

F. Additional Ablation studies
In this section, we provide additional ablation studies on the number of Wolfpack adversarial attacks KWP and the attack
duration tWP in the 8m and MMM environments, where the performance differences between WALL and other robust MARL
methods are most pronounced.

Number of Wolfpack Attacks KWP: The hyperparameter KWP determines the number of Wolfpack attacks, with each
attack consisting of an initial attack and follow-up attacks over tWP = 3 timesteps. The total number of attack steps K for
Wolfpack attack is then calculated as K = 4×KWP. In this section, we conduct a parameter search for KWP ∈ [1, 2, 3, 4].
Fig. F.1 illustrates the robustness of WALL policies trained with different KWP values under the default Wolfpack attack in
8m and MMM. In both environments, having too small KWP results in insufficiently severe attacks, which leads to reduced
robustness of the WALL framework. Conversely, in the 8m environment, excessively large KWP values create overly
devastating attacks, making it difficult for CTDE methods to learn strategies to counter the Wolfpack attack, which degrades
learning performance. Therefore, an optimal KWP exists in both environments: KWP = 2 for 8m and KWP = 4 for MMM,
which we choose as the default hyperparameters.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timesteps (106)

0

20

40

60

80

Te
st

 W
in

 R
at

e
(%

) WALL (KWP = 1)
WALL (KWP = 2)
WALL (KWP = 3)
WALL (KWP = 4)

(a) 8m

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timesteps (106)

0

20

40

60

80

Te
st

 W
in

 R
at

e
(%

)

(b) MMM

Figure F.1. Number of Wolfpack attacks (KWP)

Attack duration tWP: The hyperparameter tWP determines the duration of follow-up attacks after the initial attack. To
analyze its impact on robustness, Fig. F.2 compares performance for tWP ∈ [1, 2, 3, 4] in the 8m and MMM environments. As
shown in the figure, similar to the case of KWP, setting tWP too low results in insufficient follow-up attacks on assisting
agents, reducing the severity of the attack and lowering the robustness of WALL. On the other hand, excessively high tWP

values lead to overly severe attacks, making it challenging for WALL to learn effective defenses against the Wolfpack attack.
Both environments demonstrate that tWP = 3 yields optimal performance and is selected as the best hyperparameter.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timesteps (106)

0

20

40

60

80

Te
st

 W
in

 R
at

e
(%

)

WALL (tWP = 1)
WALL (tWP = 2)
WALL (tWP = 3)
WALL (tWP = 4)

(a) 8m

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timesteps (106)

0

20

40

60

80

Te
st

 W
in

 R
at

e
(%

)

(b) MMM

Figure F.2. Attack duration (tWP)

28

Wolfpack Adversarial Attack for Robust Multi-Agent Reinforcement Learning

G. Additional Visualizations of Wolfpack Adversarial Attack
G.1. Visualization of Wolfpack Adversarial Attack Across Additional SMAC Scenarios

DEFEATKilled by Enemy
Killed by
Enemy

Killed by
Enemy

Wolfpack Attack

Hit Enemy

VICTORY
Kill Enemy

Kill Enemy

(a) 𝒕 = 𝟓 (𝒕𝒊𝒏𝒊𝒕) 𝒕 = Terminal𝒕 = 𝟐𝟎~𝟐𝟗𝒕 = 𝟔~𝟖
(𝒕𝒊𝒏𝒊𝒕 + 𝟏, ⋯ , 𝒕𝒊𝒏𝒊𝒕 + 𝒕𝑾𝑷)

𝒕 = 𝟏𝟎~𝟏𝟗

EnemyAlly Kill Enemy

VICTORY

Guard

Wolfpack Attack

Guard

Hit Enemy

Kill Enemy
Kill Enemy

(b)

Initial Attack

Move to Hit

(c)

Initial Attack

Move to Hit

Kill Enemy

Figure G.1. Attack comparison on 8m task in the SMAC: (a) QMIX/Natural, (b) QMIX/Wolfpack attack, and (c) WALL/Wolfpack attack

To analyze the superior performance of the Wolfpack attack, we provide a visualization of its execution in various SMAC
environments. Fig. 8 illustrates the 2s3z task, while Fig. G.1 visualizes the 8m task, and Fig. G.2 presents the MMM task.

Fig. G.1(a) illustrates Vanilla QMIX operating in a natural scenario without any attack, where the agents successfully
defeat all enemy units and achieve victory. In this scenario, agents with low health continuously move to the backline to
avoid enemy attacks, while agents with higher health position themselves at the frontline to absorb damage. This dynamic
coordination enables the team to manage their resources effectively, withstand enemy attacks, and secure a successful
outcome.

Fig. G.1(b) depicts Vanilla QMIX under the Wolfpack adversarial attack, where an initial attack is launched at t = 5, and
follow-up agents are targeted between t = 6 and t = 8. Agents with higher remaining health are selected as follow-up
agents, preventing them from guarding the targeted ally or engaging the enemy effectively. Between t = 10 and t = 19,
the initial agent continues to take focused enemy fire, eventually succumbing to the attacks and being eliminated. This
disruption renders the remaining agents ineffective in defending against the adversarial attack, leading to a loss as all agents
are defeated.

Fig. G.1(c) shows the policy trained with the WALL framework. During t = 6 to t = 8, the same agents as in (b) are
selected as follow-up agents and subjected to the Wolfpack attack, limiting their ability to guard or engage the enemy.
Nevertheless, the non-attacked agents adjust by forming a wider formation vertically, effectively dispersing enemy firepower
while delivering coordinated attacks. Additionally, agents with higher health move forward to guard the initial agents,
ensuring that the initial agents do not die. This tactical adaptation enables the team to eliminate enemy units and secure
victory.

29

Wolfpack Adversarial Attack for Robust Multi-Agent Reinforcement Learning

DEFEAT

VICTORY

VICTORY

𝒕 = 𝟔 (𝐭𝒊𝒏𝒊𝒕) 𝒕 = 𝟐𝟎~𝟐𝟗𝒕 = 𝟕~𝟗
(𝒕𝒊𝒏𝒊𝒕 + 𝟏, ⋯ , 𝒕𝒊𝒏𝒊𝒕 + 𝒕𝑾𝑷)

𝒕 = 𝟏𝟎~𝟏𝟗 𝒕 = Terminal

EnemyAlly

(a)

Hit
Enemy

Kill
Enemy

Initial Attack

Hit
Enemy

Guard
Wolfpack Attack

Heal
Ally

Heal
Ally

Wolfpack Attack

Hit
Enemy

Killed by Enemy

Killed by
Enemy

Killed by
Enemy

Kill
Enemy

Kill Enemy

Hit
Enemy

Hit Enemy

(b)

Move to Hit

(c)

Move to Hit
Guard

Figure G.2. Attack comparison on MMM task in the SMAC: (a) QMIX/Natural, (b) QMIX/Wolfpack attack, and (c) WALL/Wolfpack attack

Fig. G.2(a) showcases Vanilla QMIX operating in a natural scenario without any adversarial interference, where all enemy
units are successfully eliminated, leading to a decisive victory. During this process, agents with lower health retreat to the
back while the Medivac agent provides healing, and agents with higher health move forward to absorb enemy attacks. This
coordinated strategy enables the team to secure victory efficiently.

Fig. G.2(b) illustrates Vanilla QMIX under the Wolfpack adversarial attack. An initial attack is launched at t = 6, followed
by the targeting of four follow-up agents between t = 7 and t = 9. The follow-up agents selected include one healing
agent attempting to heal the initial agent, one guarding agent positioned to protect the initial agent, and two agents actively
engaging the enemy targeting the initial agent. Due to the Wolfpack attack, the initial agent failed to receive critical healing
or guarding support at t = 10 and t = 19, leading to its elimination. This disruption severely hinders the remaining agents’
ability to defend against the adversarial attack, ultimately resulting in a loss as all agents are defeated.

Fig. G.2(c) illustrates the policy trained with the WALL framework. During t = 7 to t = 9, the same agents as in (b) are
selected as follow-up agents and subjected to the Wolfpack attack, restricting their actions such as healing, guarding, or
targeting the enemy effectively. However, the non-attacked agents adapt by positioning themselves ahead of the initial agent
to provide protection and focus their fire on the enemies targeting the initial agent. This strategic adaptation enables the team
to successfully repel the adversarial attack, eliminate enemy units, and secure victory. Notably, in the terminal timesteps,
more agents survive under the WALL framework compared to the natural scenario depicted in (a), highlighting the enhanced
robustness and stability of the policy learned with WALL.

30

Wolfpack Adversarial Attack for Robust Multi-Agent Reinforcement Learning

G.2. Additional Analysis of Follow-up Agent Group Selection

Initial Attack

Hit Enemy
𝟖

(a) Initial attack

Hit Enemy

Wolfpack Attack

Heal
Ally

Guard

𝟖
𝟑

𝟒𝟕
𝟗

𝟐

𝟏𝟎

(b) Follow-up (L2)

Killed
by Enemy

Heal
Ally

GuardWolfpack Attack

𝟖

𝟏𝟎

𝟐

𝟗

𝟔

(c) Follow-up agent group selection

Figure G.3. Visualization of follow-up agent group selection comparison for the MMM task in SMAC

In this section, we demonstrate that the proposed Follow-up Agent Group Selection method effectively identifies responding
agents that protect the initially attacked agent. Fig. G.3 visualizes the process of selecting the follow-up agent group after an
initial attack. By comparing the proposed method with a baseline method, Follow-up (L2), which selects m agents closest to
the initial agent based on observation L2 distance, we show that our method better identifies responding agents, enabling a
more impactful Wolfpack attack.

Fig. G.3(a) illustrates an initial attack on agent 8, preventing it from performing its original action of hitting the enemy and
forcing it to move forward, exposing it to enemy attacks. Fig. G.3(b) shows the Follow-up (L2) method selecting agents
3, 4, 7, 9 as the follow-up agents based on their proximity to the initial agent. Despite the follow-up attack, non-attacked
agents, which is far from the initial agent in terms of observation L2 distance, such as agent 10, heal the initial agent, while
agent 2 guards it, effectively protecting the initial agent from the attack.

Fig. G.3(c) illustrates the follow-up agents selected using our proposed Follow-up Agent Group Selection method. The
selected group includes agents 2 and 10, which are responsible for healing and guarding the initial agent, and agents 6 and 9,
which are hitting enemies targeting the initial agent. These agents are subjected to the follow-up attack, preventing them
from performing their protective actions. As a result, the initial agent is left vulnerable, succumbs to enemy attacks, and is
ultimately eliminated.

31

Wolfpack Adversarial Attack for Robust Multi-Agent Reinforcement Learning

2 4 6 8 10 12 14 16
Actions

0

5

10

15

20

25
Pr

ob
ab

ilit
y

(%
) Soft(Q i)

Soft(Qi)
Difference

(a) Agent=1

2 4 6 8 10 12 14 16
Actions

0

5

10

15

20

25

Pr
ob

ab
ilit

y
(%

)

(b) Agent=2 (selected)

2 4 6 8 10 12 14 16
Actions

0

5

10

15

20

25

Pr
ob

ab
ilit

y
(%

)

(c) Agent=3

2 4 6 8 10 12 14 16
Actions

0

5

10

15

20

25

Pr
ob

ab
ilit

y
(%

)

(d) Agent=4

2 4 6 8 10 12 14 16
Actions

0

5

10

15

20

25

Pr
ob

ab
ilit

y
(%

)

(e) Agent=5

2 4 6 8 10 12 14 16
Actions

0
5

10
15
20
25

Pr
ob

ab
ilit

y
(%

)

(f) Agent=6 (selected)

2 4 6 8 10 12 14 16
Actions

0

5

10

15

20

25
Pr

ob
ab

ilit
y

(%
)

(g) Agent=7

2 4 6 8 10 12 14 16
Actions

0

5

10

15

20

25

Pr
ob

ab
ilit

y
(%

)

(h) Agent=8

2 4 6 8 10 12 14 16
Actions

0

5

10

15

20

25

Pr
ob

ab
ilit

y
(%

)

(i) Agent=9 (selected)

2 4 6 8 10 12 14 16
Actions

0

5

10

15

20

25

Pr
ob

ab
ilit

y
(%

)

(j) Agent=10 (selected)

Figure G.4. Soft(Qi) and Soft(Q̃i) for each agent, along with the difference between the two distributions.

1 2 3 4 5 6 7 8 9 10
Agents

0.00

0.01

0.02

0.03

0.04

0.05

0.06

D
KL

Figure G.5. KL divergence values for each agent, representing the difference between Soft(Qi) and Soft(Q̃i) distributions.

Fig. G.4 illustrates the Soft(Qi) distribution and the updated Soft(Q̃i) distribution based on Equation 1, highlighting
the differences between the two distributions. It is evident that agents 2, 6, 9, 10 exhibit the largest differences in their
distributions. This suggests that, following the initial attack, these agents show noticeable policy changes to adapt and defend
against it. Additionally, Fig. G.5 presents the KL divergence values between these two distributions, further confirming that
agents 2, 6, 9, 10 have the highest KL divergence values.

Consequently, based on Equation 2, agents 2, 6, 9, 10 are selected as the follow-up agent group. This aligns with the
visualization results shown in Fig. G.3, demonstrating consistency in the SMAC environment.

32

