Under review as a conference paper at ICLR 2026

PACE: PART-WISE SLOW-FAST CONDITIONING FOR
DANCE-TO-MUSIC GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Dance-to-Music generation aims to compose music that is rhythmically aligned
with human dance movements. While recent diffusion-based approaches have
achieved promising results, they treat the dancer’s body as a holistic unit when
extracting motion features, thereby overlooking the fine-grained rhythmic contribu-
tions of individual body parts and the heterogeneous temporal dynamics manifested
in both slow and fast motion patterns. In this work, we approach the dance-to-music
generation task from a fresh conditioning encoding viewpoint, where part-wise
motion energy decomposition and a hierarchical slow-fast conditioning encoder
are integrated to generate the conditioning for music latent diffusion. Through
comprehensive subjective and objective evaluations of rhythm synchronization and
generated music quality, experimental results on the AIST++ and TikTok bench-
marks confirm that our framework consistently outperforms existing state-of-the-art
approaches for dance-to-music generation.

1 INTRODUCTION

Recent years have witnessed the unprecedented growth of user-generated content on short-video
platforms (e.g., TikTok{]_-] and YouTubeEl), facilitated by the ubiquity of mobile devices and the
increasing demand for creative self-expression. Among various forms of content, human-centric
dance videos have become one of the most prominent and widely shared media types, attracting
substantial user engagement. As put by the renowned choreographer George Balanchine, “Dance is
music made visible”, a statement that underscores the intrinsic and inseparable relationship between
music and bodily movement. In this context, the choice of background music plays a pivotal role
in shaping the expressive quality of dance videos and substantially influencing the overall user
experience. Accordingly, the intersection of computer vision and audio synthesis has given rise to the
emerging task of dance-to-music (D2M) generation in both academic and industry areas (Gan et al.,
2020; D1 et al., 20215 [Zhu et al., [2022ajb; |Yu et al., 2023; [Han et al., [2024; |L1 et al., 2024} Zhang &
Hual [2024; [Liang et al., 2024} Sun et al., 2025} Ji et al.;[2025)), which aims to exploit deep generative
Al techniques to automatically produce music that exhibits rhythmic and stylistic coherence with the
given human-centric dance sequence.

According to the generative paradigms, existing D2M generation methods can be roughly classified
into two major lines: autoregressive(Di et al.,|2021;Han et al.,2024) and non-autoregressive model-
ing (Zhu et al., [2022b; |Sun et al., [2025)), where autoregressive approaches typically generate musical
sequences frame by frame or token by token conditioned on previously generated outputs, while
non-autoregressive ones generate musical segments in parallel, thereby avoiding sequential depen-
dency. Among non-autoregressive approaches, diffusion-based D2M generative models have recently
attracted increasing attention due to their strong capacity for modeling complex distributions and
producing high-quality, diverse outputs. For example, Zhu et al.[(2022b) improves the input-output
correspondence and achieves higher or competitive general synthesis music quality by introducing a
conditional discrete contrastive diffusion loss, conditioned on the motion and visual features extracted
from human movement sequences and dance video frames through the corresponding motion and
visual encoders. Meanwhile, Yu et al.|(2023) designs a series of context-aware conditioning encoders
to transform video frames, human poses, and categorical labels into visual embeddings, visual rhythm,
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and genre embeddings, and then hierarchically attend these conditionings into the audio diffusion
model. Besides, Sun et al.[(2025)) adopts both positive rhythmic information and negative ones as
conditionings to enhance the quality of generated music and its synchronization with dance videos in a
dual-path diffusion structure. However, although these diffusion-based approaches have demonstrated
notable progress in D2M generation, they share a common limitation regarding the dancer movements
by modeling the dancer’s body as a holistic unit, overlooking the fine-grained, part-level dynamics
inherent in dancer movement. In fact, different body parts often follow distinct rhythmic patterns,
where the torso may align with the global beat through smoother and more sustained dynamics, while
the limbs frequently capture faster or stylistically distinct music variations. By investigating these
patterns at a finer granularity, it becomes possible to uncover subtle but meaningful rhythmic signals
that would otherwise be overshadowed by the stronger and dominant rhythmic signals from other
body parts, thereby enabling a more comprehensive understanding of the dancer’s overall rhythmic
expression. Moreover, even within the same body part, individual joints often manifest heterogeneous
temporal dynamics, where certain joints follow slower and smoother trajectories, whereas others
display faster and more fine-grained motion patterns. Therefore, we ask:

(Q) Can decomposing motion into part-wise slow and fast components, and integrating
them with joint-level semantic features, enable better alignment between heterogeneous dance
movements and musical rhythms?

To address (Q), we study the diffusion- " : : N
based D2M generative model from a wa"i"", ? , I ’ ﬂ Q\ % t\ &\ t\
fresh conditioning encoding viewpoint:
Part-wise slow-fAst Conditioning En-
coding (PACE). Before diving the con-
ditioning encoding process, we first
present an illustrative example to ana-
lyze the essence of our proposed part-
wise slow-fast conditioning strategy.
Given a dance video, starting from 2D
keypoints and reconstructed 3D poses,
we partition the dancer body into five
body parts (e.g., Turso, Left Arm, Right
Arm, Left Leg, and Right Leg), and
obtain the “Slow” and “Fast” Kinetic
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energy components adopting a Butter-
worth filter(Shouran & Elgamlil 2020),
respectively. As shown in Fig.[I| for the
given dance video, the dancer’s torso
remains consistently active due to rota-
tional movements and leg lifts. During
the first 2.5 seconds, the predominant
movement is localized to the right arm
and right leg, indicating asymmetric en-
gagement of the dancer’s body. After

Figure 1: Illustration of our proposed part-wise slow-fast
energy decomposition. Given a dance video, 2D keypoints
are first obtained using AlphaPose (Fang et al.2022)) and
3D poses are then reconstructed through MotionBert (Zhu
et al.l [2023). The dancer body is partitioned into five
body parts (torso, left/right arms, and left/right legs) and
their corresponding normalized kinetic energy are com-
puted in two frequency bands by applying a Butterworth
filter (Shouran & Elgamli} 2020) to decompose the motion
signals into slow and fast components.

approximately 2.5 seconds, the left arm and left leg are gradually activated, while the right arm
exhibits noticeable swinging motions and the right leg primarily remains in a supporting stance
with limited movement amplitude, resulting in a transition toward more coordinated and symmetric
whole-body dynamics. Notable, after about 4 seconds, the entire body demonstrates a pronounced
forward-backward swinging motion, highlighting a global shift in movement dynamics. Apparently,
the variations of the slow and fast energy curves in Fig.[T) are consistent with temporal evolution
of the dance sequence. On the one hand, slow kinetic energy (Beeby et al., 2008) characterizes
the low-frequency components of body motion, demonstrating the smooth, gradual, and sustained
movements such as torso rotation, weight shifting, or steady limb positioning. It is evident that above
temporal pattern of given dance video aligns with the upper plot of Fig.[T[} which depicts the slow
kinetic energy of each four body parts. During the initial 2.5 seconds, the trajectories corresponding
to the left arm (orange) and left leg (red) remain flat, signifying minimal activity in these limbs. After
2.5 seconds, all curves exhibit pronounced fluctuations, reflecting the progressive activation of the
left-side limbs in conjunction with the continuous torso movement and the swinging motions of the
right arm. In contrast, the curve of the right leg tends to flatten after 2.5 seconds, indicating its role as
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a supporting limb with limited dynamic variation. On the other hand, fast energy characterizes the
high-frequency components of body motion, capturing transient and rapid movements such as limb
swings, sudden lifts, and abrupt shifts in posture. As observed from the lower plot of the Fig.[] after
approximately 3 seconds, the right arm swing and the quick lift of the left leg give rise to prominent
peaks in the corresponding curves. Meanwhile, a whole-body displacement occurs after 4 seconds,
and curves of five body parts exhibit peak values simultaneously, reflecting a globally coordinated
burst of motion. In the light of this, existing studies that treat the dancer’s body as a holistic unit
overlook such fine-grained temporal and spatial heterogeneity across different body parts.

To address the aforementioned limita- i Music Latent Diffusion oo
. . . Model « Visual [
tions, we propose a novel diffusion- m»ﬁ. e L ot ooty | 1
based dance-to-music generation frame- Diffusion Model

Hierarchical
Slow-Fast

work that explicitly incorporates Part- - ~ Condioning Encoder
Wise Motion Energy Decomposi- CTTET Stow-Fast Fusion
tion (PMED) and Hierarchical Slow- MM st - .
Fast Conditioning Encoder (HSF- A“’“g’“““f
Enco.der)’ aS' llluStrated H:l Flg'@l‘ Butter Part-Wise Motion Energy Decomposition [[[I
Specifically, given a dance video, we e Righ Leg }
first extract 2D keypoints and recon- "'.‘;‘?.I{:sr[[| [[[| """‘W‘“G“‘;"g
struct 3D poses, which are then pro- [ M 2 [
, e @ I

cessed through PMED Module. Then, 3D Pose : III “I h !I
the resulting part-wise fast-slow tempo- woion| -+ 5 g Wy areWise

Bert Multi-Head Attention

ral features are fed into HSF-Encoder.

Finally, the obtained conditionings are  Fjgure 2: Overview of our diffusion-based D2M genera-
fed into the Music Latent Diffusion (jon framework with PACE, which includes part-wise mo-
module to synthesize music that is thyth-  (jon energy decomposition module and hierarchical slow-
mically aligned with the fine-grained dy-  fast conditioning encoder to guide music latent diffusion

namics Qf the input daflce sequence. We  model for rhythmically aligned musical audio generation.
summarize our contributions below.

e By decomposing motion energy into slow and fast components, we disentangles smooth and global
temporal rhythm from transient and localized bursts of motion, enabling the diffusion-based D2M
generation model to capture dance dynamics at multiple temporal scales.

e We provide fine-grained interpretability of dance temporal rhythm by revealing how different body
parts contribute distinct temporal roles, which is rarely achievable when modeling the body as a
holistic unit.

e We supply diffusion models with part-wise slow-fast motion features, providing complementary
rhythmic cues to enhance the alignment of generated music with both macro-level (slow) and
micro-level (fast) structures of dance.

e We conduct extensive experiments on two dance video datasets, providing both quantitative and
qualitative analyses to demonstrate the competitiveness of our proposed PACE.

2 RELATED WORK

According to the generative paradigms, existing dance-to-music generation methods can be roughly
divided into two categories: Autoregressive and Non-autoregressive modeling.

Autoregressive Dance-to-Music Generation Modeling. This branch (Huang & Yang, [2020;
Aggarwal & Parikh| 2021} |Su et al.| 2021; [Han et al.,[2024; [Liang et al.,|2024) commonly predicts
music tokens (e.g., MIDI events and discrete audio token) sequentially, conditioned on previously
generated outputs and features derived from the dance videos. For example, |Aggarwal & Parikh
(2021)) propose a preliminary approach for dance-to-music generation, where music is represented as
a sequence of notes from the C major pentatonic scale and dance is processed as a series of human
poses extracted from video frames. To translate human body movements into rhythmic music, [Su
et al.| (2021) take skeleton keypoints extracted from the dance videos as input and follow a sequence
of models to generate synchronized soundtracks, where a transformer model is employed to generate
drum hits and a U-Net model is introduced to predict the velocity and timing offsets of instruments.
Besides, to realize the dance-driven multi-instrument music generation, Han et al.|(2024) design a
BERT-like (Koroteev, 2021)) multi-instrument music generation model, where a Graph Convolutional



Under review as a conference paper at ICLR 2026

Network is adopted to encode dance motion and style from pose sequences and a Transformer with
cross-attention is introduced to decode drum track sequences and capture rhythmic alignment. In a
sense, although existing autoregressive D2M generation models excel at capturing long-term temporal
dependencies and fine-grained structures, their sequential nature often incurs slow inference speed
and limits scalability to long-form audio generation.

Non-autoregressive Dance-to-Music Generation Modeling. In contrast, non-autoregressive ap-
proaches (Zhu et al.l |2022alb; [Yu et al., 2023} [Tan et al., 2023} Zhang & Hual [2024} [Sun et al.|
2025) work on generating music segments in parallel, thereby avoiding the step-by-step dependency
of autoregressive decoding. For example, Zhu et al.| (2022a)) design an adversarial multi-modal
framework and utilize the vector quantized audio representation, where video frames and human
body motions are taken as conditioning input to guide the produced music plausibly aligns with the
movements. Notably, diffusion models have emerged as powerful non-autoregressive paradigms for
D2M generation, owing to their strong capability to model complex multi-modal distributions and
corresponding ability to produce high-quality and diverse music samples. For example, Tan et al.
(2023)) establishe the first attempt to generate dance music directly from 3D human motion data with
genre conditioning, where a UNet-based latent diffusion model is combined with pre-trained VAE
to generate plausible dance music aligning with dynamic movements. Building on the success of
diffusion for cross-modal synthesis, |Sun et al.| (2025) introduce PN-Diffusion, which enhances dance-
music synchronization by incorporating both positive rhythmic information and negative rhythmic
cues as conditionings in the designed dual diffusion and reverse processes. Overall, compared to
autoregressive frameworks, diffusion-based non-autoregressive models provide higher flexibility and
improve the ability to capture diverse rhythmic and stylistic variations.

In spite of the compelling success achieved by these diffusion-based methods in general cases, far too
little attention has been paid to the fine-grained, part-level dynamics of human movement since most
existing approaches treat the dancer’s body as a holistic unit. In fact, different body parts often exhibit
distinct rhythmic patterns and heterogeneous temporal dynamics, which are crucial for achieving
precise alignment between dance movements and generated musical rhythms.

3 PRELIMINARIES ON MUSIC MODALITY AND PROBLEM FORMULATION

Mel-Spectrogram Music Representation. For the musical audio part, while containing rich
expressive and fine-grained temporal details, raw music waveforms are inherently high-dimensional
and computationally expensive to process directly. To address this, musical audio is typically
transformed into time-frequency representations such as Mel-spectrograms (Ustubioglu et al., [2023)),
which compress the signal while preserving perceptually relevant information. The Mel-spectrograms
not only provide structured representation of temporal and spectral dynamics but also facilitate
alignment with motion features that exhibit similar temporal patterns. By operating in this compact
representation space, the complexity of the D2M generation problem is significantly reduced, enabling
models to focus on meaningful correlations rather than redundant raw signal details. Suppose that
we have a dance video V = {M, D}, where D denotes the dance video consisting of 1" frames. For
the raw musical audios, we convert the input musical audio into Mel-spectrograms, with a sampling
rate of 22,050 Hz and a Mel filter bank size of 256, resulting in a audio spectrogram A, where the
dimension of A is 256 x 256. In this way, the complexity of the problem can be reduced while
facilitating the learning of structured correspondences between dance movements and musical signals.

Latent-Space Audio Modeling Unlike conventional diffusion models (Ho et al.,[2020; |[Nichol &
Dhariwal, [2021)) that rely on modeling high-dimensional raw data, Latent Diffusion Models (LDMs)
(Rombach et al.| 2022} |Croitoru et al., 2023) conduct the generative process within a compressed
latent space. As shown in the upper-left block of the Fig.[2] we introduce VAE encoder (Kingma et al.,
2019) and VAE decoder to process the spectrograms into the latent space. In our real implementation,
we utilize the music waveforms of the training dance videos to train the VAE encoder and decoder
through the combination of a perceptual loss |[Zhang et al.| (2018) and a patch-based adversarial
objective |Yu et al.[(2021). Once trained, the VAE parameters are frozen, and the encoder-decoder
pair is subsequently employed as a fixed component during the training of the diffusion model.
Formally, given the audio spectrogram A; € [0, 1]256X256, the encoder £ encodes A; into a latent
representation Z; = £(A;), and the decoder D reconstructs the image from the spectrogram latent

space A; = D(Z;), where Z; € R3**32_ This strategy ensures that the diffusion process operates
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within a stable latent space while avoiding potential interference or instability that may arise from
jointly optimizing both modules.

Problem Formulation. The objective of our D2M generation is to learn a conditional diffusion
model as,
pG(Z|SaFaE)7 (1)

where a music spectrogram latent embedding Z is optimized by using part-wise slow motion S, fast
motion F', and part-wise joint-level semantic features F as conditioning.

4 METHODOLOGY

4.1 PART-WISE MOTION ENERGY DECOMPOSITION

To enable rhythmically alignment, it is crucial to design motion representations that capture part-wise
rhythmic nuances of human movement. To solve the limitation that conventional holistic modeling
of the body often fails to account for the heterogeneous temporal dynamics exhibited by different
body parts, we introduce the Part-wise Motion Energy Decomposition, including 3D pose extraction,
part-wise slow-fast motion decomposition, and part-wise joint-level semantic encoding.

3D Pose Extraction. Intuitively, although 2D keypoints can represent skeletal trajectories in the
image plane, they inherently lack depth information and are unable to fully characterize forward-
backward displacements or subtle body rotations. Therefore, in our work, we first extract the
frame-level 2D skeletons of dancer reagrding the dance video D using AlphaPose (Fang et al.|
2022). Formally, given a dance video consisting of [V frames, we have J 2D g RVX24X3 ywhere 24
corresponds to the number of body keypoints and N refer to the dance video frame number, and
each keypoint is represented by a 3-dimensional vector encoding its spatial position together with
the associated confidence score. Then, inspired by the huge success of the MotionBert (Zhu et al.|
2023)) in 3D pose estimation, we reconstruct the 3D skeletal joints J 3D ¢ RN>X17%3 where 17 and 3
refer to the number of reconstructed 3D keyjoints and three spatial coordinates (z, y, z) of each body
keypoint, respectively.

Part-Wise Slow-Fast Motion Energy Decomposition. Typically, most existing approaches take
the dancer’s body as a holistic unit, overlooking the fact that the torso, arms, and legs often follow
distinct temporal rhythms, as can be seen in Fig.[T[} Generally, the torso tends to align with global
beat patterns through smoother and sustained motions, while the arms and legs frequently capture
finer rhythmic accents via rapid and localized movements. Beyond that, even within the same body
part, individual joints can exhibit heterogeneous dynamics, where some follow slow and gradual
trajectories while others display fast and fine-grained oscillations. Therefore, it is desirable to fully
explore the motion diversity at both the part level and joint level, and hence realize the optimal
alignment between dance movement and music rhythms.

Towards this end, we introduce the Part-Wise Slow-Fast Motion Decomposition strategy, which
explicitly disentangles motion signals into frequency-specific energy components across different
body parts. Firstly, regarding previously obtained 3D skeletal joints J32 € RY*17%3 we partition
dancer body into five body parts (e.g., torso, left arm, left leg, right arm, and right leg), and obtain
the part-wise 3D skeletal joints J3P = {J3P ¢ RV*5x3 3D ¢ RNx3x3 3D ¢ RNx3x3 13D
RN >3x3 ] 13D ¢ RN*3%31 " Then, we feed these 5 part-wise 3D skeletal joints to a Butterworth
filter (Shouran & Elgamlil [2020) to decompose these body temporal movement signals into two
frequency bands: (a) slow band, capturing low-frequency dynamics such as torso rotation and gradual
limb positioning, and (b) fast band, characterizing high-frequency dynamics such as sharp arm
gestures or rapid leg kicks. Finally, we have part-wise slow motion S = {S;,, Sia, Si1, Sra, Sri} €
RN 1 and part-wise fast motion F' = {F},, Fia, Fi1, Fra, Fyi} € RVX1L

Part-Wise Joint-Level Semantic Encoding. While frequency-based motion energy decomposition
captures rhythmic intensity, it lacks the ability to encode higher-level semantics of joint coordination
that preserves rich contextual and temporal dependencies. Towards this end, we adopt the pre-trained
human-centric motion encoder of MotionBert (Zhu et al.|[2023)) to obtain more powerful joint-level
semantic representations for each body part. In particular, after feeding part-wise 3D skeletal joints to
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the motion encoder, we have part-wise semantic features £ = { Ey, Eja, Ejj, Era, By} € RV 512,
In a sense, E provide semantically enriched features that complement the part-wise slow-fast motion
S and F, enabling a more comprehensive conditioning representation for dance-to-music generation.

4.2 HIERARCHICAL SLOW-FAST CONDITIONING ENCODER

To transform part-wise slow and fast motion energies and joint-level semantic features into condi-
tioning representations for diffusion-based music generation, as the major novelty, we introduce the
Hierarchical Slow-Fast Conditioning Encoder, which consists of intra-frame part-wise multi-head
attention, part-wise gating, frame-level aggregation, and slow-fast fusion components.

Input Preparation. (a) Projection of Semantic Features. While high-dimensional embeddings
contain rich semantic information, the high-dimensional semantic features F are not optimal for
direct integration into downstream conditioning due to redundancy and the mismatch with the
target feature space of D2M diffusion model. To this end, we first process the semantic features
E ={E,Eja, Ey, Eyq, B} € RT*512 a5 follows,

E; = fs12-4(LN(Ep)) € RN, @)

where p € {to,la,ll,ra,rl}, f512-4 refer to the linear projection layer, and LN denotes the Layer
Normalization.

(b) z-score Normalization. To eliminate the magnitude bias and ensure consistent scaling across video
sequences, we apply the z-score normalization to the slow-fast motion and feed them into MLP layers
as follows,

SI; = MLP(zscore(S,)) € RV*¢, F; = MLP(zscore(F},)) € RV*?, 3)

where p € {to,la,ll,ra,rl}. In a sense, the normalized slow-fast motion highlights meaningful
temporal dynamics, enabling the model to more effectively align heterogeneous dance movements
with musical rhythms.

Intra-Frame Part-Wise Multi-Head Attention. As stated earlier, the obtained slow-fast motion
captures the rhythmic intensity at different frequency bands, while the semantic features contain rich
contextual and structural information about the dancer’s pose (e.g., coordination, articulation, and
joint dependencies). To explicitly model the interactions among different body parts and ground
rhythmic signals in meaningful joint-level semantics, we introduce the intra-frame part-wise multi-
head attention, where slow and fast motions play the role of query, respectively, and semantic features
are placed as Key and Value. Essentially, instead of treating all slow-fast motion features equally, we
expect to utilize a network to dynamically learn how different body parts influence each other under
slow and fast motion dynamics. In this way, slow motion can be used to highlight the stable body
parts, and fast motion can be adopted to emphasize the rapid gestures. For t-frame, the part-wise
multi-head attention is performed as follows,

H;,n = MHAP;”(W;(Sp,n)’WI:(Ep,n)7WJ(E )) € RNXd’

p,n
’ ’ ’ (4)
HI{,n = MHAP,”(qu(Sp,n)’ Wlic(Ep,n)7 Wtf(Ep,'rL)) S IRNXd7

where W;, Wi, Wj,qu ,ka ,WJ denote corresponding learnable projection matrices.

Part-wise Gating and Frame-Level Aggregation. Intuitively, the torso may sometimes dominate
through smooth global motions, whereas at other times the arms or legs may play a more significant
role through rapid and accentuated movements. Therefore, different body parts contribute unequally
to rhythmic expression at different time steps, and simply averaging or concatenating operations fail
to reflect such dynamic importance. Towards this end, we introduce part-wise gating and frame-level
aggregation to adaptively learns the relative importance of each anatomical part per frame and unify
the information from multiple body parts into a single holistic representation for each frame. The
details are as follows,

S — s s d [ — I ogf d
Hy,= ZQPJLH:DJL eRY H; = ng,an,n € R%, (5)
p p

where g, ,, and g};n refer to the part-wise gate with regard to frame n.
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Slow-fast Fusion. Above, we have obtained the slow and fast motion representations capturing
complementary aspects of dance dynamics, where the slow branch reflects smooth and stable temporal
patterns, and the fast branch emphasizes rapid and transient movements. However, if these two
branches are processed independently, the conditioning signals will be fragmented since how these
two rhythms interact within the same time frame is unknown. Thus, we obtain a unified conditioning
representation by introducing a lightweight gating mechanism. Formally, given the aggregated
representations H,. and H, ;’;, the fusion process is defined as,

oy = 0 (fassa(LN([HS; HL)))), (©6)

H, = a,H: + (1 — a, HY), (7

where «,, denotes the learned gate that adaptively balances slow and fast contributions. Finally, by
averaging over all inter-frame representations, we obtain the final diffusion conditioning H.

Visual Conditioning Notably, beyond skeletal trajectories, we also incorporate I3D (Inflated 3D
ConvNet|Yadav & Kumar](2022))-based visual conditioning G to complement motion features with
richer temporal dynamics and visual context. In the real implementation, we concatenate them
together as C' = [H, G].

4.3 MusIC LATENT DIFFUSION

After obtaining the part-wise slow-fast conditioning /1, we inject it into the U-Net backbone of the
diffusion model. The details of the latent diffusion can be found in Appendix [A] At each timestep ¢,
the model predicts the noise as €p(Z;, t, H). Meanwhile,the latent diffusion model can be trained via
denoising objective function as,

Le = Eeono).zos ll€ — €0(Zi,t, O)J2 . (®)

5 EXPERIMENT

5.1 DATASETS

‘We conduct experiments on two dance video benchmark datasets: AIST++ (Tsuchida et al.,[2019)
and TikTok (Zhu et al.,2022a). For a fair comparison with prior work, we strictly follow the dataset
partitions and evaluation protocols adopted in|Sun et al.|(2025).

AIST++. It consists of 1,020 videos across 10 dance genres, each paired with its corresponding mu-
sical style. All recordings were captured in professional studio environments with clean backgrounds
and calibrated camera poses, making it suitable for controlled evaluation. The music tracks cover 10
distinct categories (e.g., lock, pop and breaking), with 6 pieces for each style. In our experiments, we
use the official training/validation/testing split with 980, 20, and 20 videos, respectively. Following
Sun et al.|(2025), each video is segmented into 5-second clips, resulting in a total of 20,140 training
instances and 234 testing instances.

TikTok. It is curated from real-world short video content, containing 445 dance clips paired with
85 unique songs. Following Sun et al.|(2025)), we divide the dataset into 392 videos for training and
53 for testing. In the same manner as AIST++ dataset, we also segment each video into 5-second
clips, yielding 775 training and 103 testing samples. Compared with AIST++, TikTok provides more
in-the-wild scenarios, making it a complementary resource for testing model generalization.

5.2 BASELINES AND EVALUATION PROTOCOLS

Baselines. In our work, we include six recent state-of-the-art approaches: FoleyMusic (Gan et al.,
2020), D2M-GAN (Zhu et al.l[20223), CMT (Di et al} 2021)), CDCD (Zhu et al.,[2022b), LORIS (Yu
et al.,|2023), and PN-Diffuison (Sun et al.,|2025)). These methods are selected because they are highly
relevant to our D2M problem setting and provide publicly available implementations, pretrained
weights, and hyper-parameters, which ensures reproducibility and fair comparison.

Evaluation Protocols. (a)Objective Evaluation. To evaluate the alignment between generated music
and dance movements, following prior works (Zhu et al.l 2022b; |Sun et al.| |2025), two core metrics
are the Beats Coverage Score (BCS) and Beats Hit Score (BHS). Additionally, we also report F1
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Dataset | Method | BCST CSDL BHST HSD| Fit | FADw| FAD_p| FAD.c|

FoleyMusic (Gan et al.|[2020) | 92.00 13.33 85.63 18.87 88.70 8.01 19.50 1.10
D2M-GAN (Zhu et al.|[2022a)| 88.67 10.49 82.73 16.86 85.60 11.29 27.76 1.48

CMT (Di et al.[[2021) 95.92 8.19 61.70 24.66 75.41 12.57 13.24 1.02
AIST++| CDCD (Zhu et al.[[2022b) 92.18 14.66 80.50 21.16 85.95 7.47 18.06 1.25
LORIS (Yu et al.|[2023) 95.84 7.89 95.09 16.09 96.45 7.71 50.27 0.77

PN-Diffusion(Sun et al.|[[2025)| 97.64 5.85 99.31 4.48 98.46 6.32 4.35 0.65
\ PACE (Ours) 98.39 5.01 99.36 4.63 98.67 | 5.18 3.81 0.55

D2M-GAN (Zhu et al.|2022a)| 83.22 30.03 80.45 30.66 81.81 27.30 13.26 1.46

CMT (Di et al.[[2021) 85.42 32.56 60.03 31.07 70.52 20.45 15.56 1.30
TikTok | CDCD (Zhu et al.|[2022b) 85.66 27.23 85.83 27.17 85.75 26.53 3.07 1.11
IPN-Diffusion (Sun et al.|[2025) 89.51 17.11 91.73 13.33 90.60 16.37 1.14 1.25

‘ PACE (Ours) ‘ 91.31 14.20 92.10 11.23 91.50 ‘ 14.25 1.11 1.05

Table 1: The quantitative comparison between PACE and baseline music generation models con-
ducted on both AIST++ and TikTok testing set.

scores as well as the standard deviations of BCS and BHS, referred to as CSD and HSD to assess
stability. Beyond rhythm metrics, we also introduce the Fréchet Audio Distance (FAD) (Kilgour
et al.,[2018)) to measure distribution-level similarity between generated and original paired music,
where three feature extractors: VGGish (Diwakar & Gupta, 2024) (FAD_v), PANNs (Kong et al.,
2020) (FAD_p), and CLAP (Elizalde et al., 2023) (FAD_c) are adopted simultaneously.

(b)Subjective Evaluation. Same as existing work (Sun et al.l |2025), we conduct a user study on
AIST++ samples, where volunteers are invited to rate each generated music sample from 1 to 5 for
overall quality (OVL) and cross-modal relevance to the dance video (REL). The averaged scores
yield the Mean Opinion Score (MOS) (Streijl et al., 2016) and higher MOS indicates better quality
and alignment. We also perform a Turing Test, asking volunteers to distinguish between generated
and real music. The proportion of generated samples identified as real reflects perceptual realism.

Implementation Details. All musical audios are sampled at 22,050 Hz and segmented into 5-
second segments, and the Mel-spectrogram resolution is 256. During training,we use a batch size
of 64 and train the model for 200 iterations with 1,000 diffusion steps for inference. The model
contains 159.66M parameters, and training one epoch on AIST++ requires approximately 7 minutes
on a single NVIDIA RTX A6000 GPU.

5.3 MOoODEL COMPARISON

To thoroughly assess the cross-modal correspondence between dance videos and generated music,
in Tab.[I] we report quantitative results across eight evaluation metrics. We highlight two key
observations below. First, our proposed PACE consistently outperforms other baselines on both
AIST++ and TikTok datasets, highlighting the advantage of the PACE in modeling the temporal
rhythm of the musical audio. By incorporating part-wise slow-fast motion conditioning, PACE
enables a more fine-grained representation of body movements, thereby capturing joint-level temporal
rhythms that are closely aligned with musical cues. Second, in terms of FAD_v, FAD_p and FAD_c,
the performance of PACE is significantly better than all baselines and the numerical results are
largely smaller than the baseline methods, which confirms the effectiveness of our designed part-wise
slow-fast conditioning strategy. Besides, the user study can be found in Appendix [B]

5.4 ABLATION STUDY

To better explain the benefit of incorporating 13D conditioning features, we conducted the comparative
experiment with two derivative of our model, namely, “PACE-G” and “PACE-H”, where only visual
conditioning G or hierarchical slow-fast conditioning is adopted as the supervision of the music latent
diffusion model. Meanwhile, we also explored the scenarios where either the slow motion or the fast
motion branch is individually combined with visual conditioning, denoted as “PACE-Slow-G” and
“PACE-Fast-G”, respectively. These comparative settings allow us to disentangle the contributions of
different conditioning signals and demonstrate the advantage of our full PACE framework. Moreover,
we explored a variant termed “PACE-concat”, where the slow motion features and fast motion features
are directly concatenated as the conditioning input. The comparative experimental results for these
five variants of PACE can be found in Tab.2] As can be seen, (i) PACE consistently outperforms
other model variants, which well validates the necessity of taking into account the part-wise slow-
fast motion conditioning and 13D visual conditioning. (ii) Notably, we found that “PACE-H” also
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Dataset| Method | BCSt CSD, BHST HSD|  FIt |FADw| FADp| FAD.c|

PACE-G 91.60 15.67 85.30 23.42 88.34 9.13 15.25 1.65
PACE-H 98.13 5.29 99.23 5.01 98.66 6.19 5.50 2.35
AIST++PACE-Slow-G| 97.92 5.54 98.20 7.53 98.06 6.15 7.20 2.50
PACE-Fast-G| 96.72 6.63 98.54 6.65 97.41 6.14 7.14 2.10

PACE 98.39 5.01 99.36 4.63 98.67 5.18 3.81 0.55

PACE-G 84.10 28.75 81.05 29.80 82.40 25.80 12.90 1.42
PACE-H 86.25 26.90 63.15 28.10 76.30 21.75 14.85 1.28
TikTok [PACE-Slow-G| 85.95 25.80 84.55 26.40 85.10 24.60 3.25 1.14
PACE-Fast-G| 88.35 18.20 91.20 14.25 90.15 17.10 1.28 1.21

PACE 91.31 14.20 92.10 11.23 91.50 14.25 1.11 1.05

Table 2: Ablation on the diffusion conditioning.

achieves competitive performance performance compared to the baselines in Tab.[T} demonstrating
the effectiveness of hierarchical slow-fast motion conditioning even without additional visual cues.
(iii) While this simple fusion strategy provides a straightforward way of combining different temporal
dynamics, it fails to fully exploit the complementary relationships and hierarchical dependencies
between slow and fast motion signals. In contrast, our proposed hierarchical slow-fast conditioning
encoder adaptively balances and integrates these two branches at multiple levels, thereby capturing

more fine-grained rhythmic correlations between dance movements and musical audio.

5.5 VISUALIZATION OF RHYTHM CURVES

While quantitative metrics such as BCS, BHS, and FAD prov1de an objective evaluatlon of music

Rhythm Curves (0-5.05) | Glob Rhythm Curves (0-5.05) | Global Tempo = 89.1 8PM

generation quality, they do not dlrectly 0 ;
reveal how well the generated music :
captures the fine-grained rhythmic struc- o
tures present in dance videos. To bridge

this gap, we visualize the rhythmic e I L
curves of generated music by plotting S s 020 i
the normalized RMS energy and onset z
strength over time, which reflects the = »
amplitude envelope of the music audio ™"
signal, and characterizes the local tem- AL S A L T /804 T i R S S
poral changes and beat positions, respec- Jr— J!{Z?ZL
tively. In a sense, such visualization can
qualitatively examine whether the rhyth- s
mic fluctuations of generated music are t
consistent with the temporal dynamics o0
of the original dance video paired mu-

sic. As shown in Fig.[3| we select the Figure 3: Visualization of rhythmic curves (normalized
competitive baseline PN-Diffuison as  RMS energy and onset strength) for original paired music,

comparison. i For PN-Diffusion (mid- PN-Diffusion, and our proposed PACE.
dle row), although the generated curves capture certain rhythmic fluctuations, they often exhibit

noisy patterns with excessive oscillations, leading to unstable alignment with the dance dynamics. In
contrast, our PACE model (bottom row) produces rhythm curves that are smoother and more coherent,
with onset peaks better synchronized with energy rises. ii the global tempo of music generated
by PACE is closer to the ground truth compared to PN-Diffusion, highlighting the effectiveness of
part-wise slow-fast conditioning in modeling fine-grained dance rhythms.

Normalized Amplitude

Rhythm Curves (0-5.05) | Global

Normalized Amplitude

Rhythm Curves (0-5.0s) | Global 89.18PM
WS (Energy)
Normlind Opeet ot
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6 CONCLUSION

In this paper, we introduce PACE, a novel part-wise slow-fast conditioning encoder for dance-to-
music generation. Unlike prior approaches that treat the dancer’s body as a holistic unit, we explicitly
decomposes part-wise motion signals into slow and fast dynamics. Meanwhile, we introduce a
hierarchical slow-fast conditioning encoder to transform part-wise slow and fast motion energies and
joint-level semantic features into conditioning representations for diffusion-based music generation.
Our method demonstrates superior performance over two widely-used dance video datasets through
objective and subjective evaluations. We refer readers to Appendix [C] for the details of LLM usage.
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APPENDIX

A LATENT DIFFUSION MODEL

In this work, we aim to devise an end-to-end diffusion-based framework for music generation
conditioned on dance motion. The music audio is first converted into Mel-spectrograms and then
is mapped to the compact latent space Z;. Within this latent space, we perform diffusion processes
by progressively adding noise during the forward process and subsequently applying the reverse
denoising steps to iteratively recover the data distribution. Formally, by gradually adding Gaussian
noise € ~ N(0, I) to Zy according to a variance schedule {31, - - , 87}, we have

Q(Zt|Zt—1) = N(Zt; VA 5tZt—1,5tI)7

T
q(leT‘ZO) = H q(Zt|Zt_1).
t=1

Then, to recover Z; from a probability der:sity p(Zr), the random noise is iteratively denoised
through a fixed Markov Chain of length 7" by a sequence of denoising autoencoders 6 in the reverse

process. That is,
P(Zi-11Zt) = N(Zi—15 p1o(Zi, 1), Bo(Z1, 1)),

T
p<Z0¢T) :p(ZT)HPG(thllzt), (10)

t=1

€))

where 19 denotes the Gaussian mean value.

B USER STUDY

Similar to (Sun et al) [2025), we conducted a user study focusing on both mu-
sic quality and dance-music synchronization. Specifically, We invited 10 par-
ticipants to evaluate the generated samples, where each participant was ran-
domly presented with 10 generated music clips from the AIST++ dataset,

produced by three different methods LORIS, PN-Diffuison and PACE. AISTor
or each clip, participants were asked to rate on a five-point Likert Method OVLT  RELT

scale two aspects: (1) the overall quality of the music (OVL), and PN{*SE‘EM g:g gf

(2) the relevance between the music and the dance video (REL). The PACE (Ours) 4.2 45

average results are summarized in Tab.[AT] s shown, our PACE ”
method obtains the highest scores on both metrics, with an OVL of Table Al: Mean opinion
4.2 and a REL of 4.5, which are substantially higher than those of ~score on AIST++.

baseline methods, indicating that PACE consistently produces music that better matches the temporal
and stylistic patterns of the dance, confirming the effectiveness of our hierarchical slow-fast motion
conditioning.

C LLM USAGE

We used a large language models (LLMs) solely for minor editing purposes, including grammar
checking, wording refinement, and clarity improvement. The LLMs were not involved in research
ideation, experimental design, analysis, or result interpretation.
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