
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

REVISITING POSITIONAL INFORMATION IN TRANS-
FORMERS IN THE ERA OF FUSED ATTENTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Imparting positional information has been a crucial component in Transformers
due to attention’s invariance to permutation. Methods that bias attention weights,
like Relative Positional Bias (RPB), have been preferred choice in more recent
transformer-based architectures for vision. In parallel, fused attention has become
the standard implementation for attention, largely thanks to open source solutions
such as Flash Attention and FMHA. However, it is not trivial to fuse explicit biasing
or masking of attention weights into a fused attention kernel without affecting its
performance. In this scenario, position embeddings present themselves as a viable
replacement for attention weight biases. Position embeddings are applied to the
tokens directly, decoupled from the attention mechanism, thereby sidestepping the
problems that arise with attention weight biases in fused kernels. In this work,
inspired by the booming LLM landscape, we analyze the applicability of Rotary
Position Embeddings (RoPE) as a replacement for RPBs in vision models. Unlike
RPB which explicitly biases attention weights, RoPE biases the dot product inputs
(query and key) directly and ahead of the attention operation. We empirically show
the prowess of RoPE over RPBs in terms of accuracy and speed. We study multiple
implementations of RoPE and show that it is sufficient to use only a fraction
of hidden dimensions for RoPE to achieve competitive performance. We also
develop a fast implementation for Axial RoPE. Together with the most performant
fused attention implementations, and our fast RoPE implementation, we observe
inference speedups compared to RPB with improved or similar accuracy. We
foresee RoPE as a replacement for RPBs, paving the way for the widespread
adoption of fused attention in transformer-based vision models.

1 INTRODUCTION

Self attention and transformers Vaswani et al. (2017) have proven to be powerful tools for learning
from large amounts of unstructured data. The inception of Vision Transformers Dosovitskiy et al.
(2021), or ViTs, further propelled the use of transformers for image and video modalities. ViT follows
the isotropic architecture design of the Transformer, with a single downsampling step and identically
shaped encoder layers. On the other hand, hierarchical vision transformers started to incorporate the
CNN-like design Liu et al. (2021); Hassani et al. (2023); Hassani & Shi (2022); Ryali et al. (2023);
Fan et al. (2021); Li et al. (2022), downsampling the token space gradually and increasing the number
of attention heads. They also typically restrict their earlier attention layers to local or sparse patterns
in order to avoid scaling issues resulting from performing global self attention.

The widespread usage of attention in language and vision inspired the creation of fused attention
implementations like Flash Attention Dao et al. (2022); Dao (2023) and FMHA Lefaudeux et al.
(2022). These implementations are functionally equivalent to a BMM-style implementation in a
deep learning framework like PyTorch Paszke et al. (2019), but provide significant improvements in
performance and activation memory footprint by keeping attention weights in fast local memory and
fusing the second half of the operation, instead of storing attention weights as an additional activation
to the relatively slower global memory, thereby reducing the number of expensive global memory
accesses.

In all transformers, tokens are the smallest unit of representation. Since the attention mechanism is
invariant to the permutation of these tokens, additional positional biases are added to inject spatial

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

SLOW

Q K V

Q K V

Outputs

❌
>6x

FASTER

 2017 - 2022 2022 - Today

BMM
Attention

fast-rope
(ours)

Fused Attention
(FlashAttention, Triton, cuDNN, FusedNA)

Position
Embeddings

(RoPE)

Outputs

QKT

BMM

Elem.
Add

Bias
(RPB)

Softmax

Attn.
weights

Bias

BMM

QKT+B

Poor support

Figure 1: Attention weight biases in BMM-style and fused attention: Attention weight biases (like
RPB) are added directly to the attention map. This bottlenecks the backward pass in fused attention
kernels since the update for bias tensor is a reduction operation. Due to this, many implementations
of fused attention implementations do not support explicit biases or attention masks. Using position
embeddings like RoPE will enable less restricted usage of fused attention implementations. We note
that xFormers’ FMHA and some others support explicit attention weights and masking, but they
rarely succeed in hiding the additional and sometimes considerable latency from the bias.

information into the transformer. The original ViT used Absolute Position Embeddings (APE) to
solve this problem. In the years that followed, encoding positional information in the form of attention
weight biases became a popular choice in transformer-based models in vision, among which, Relative
Positional Bias (RPB) Shaw et al. (2018) has been one of the most popular. However, RPB, and
attention weight biases in general, can somewhat greatly hinder the performance of fused attention
implementations. While they are a barely noticeable elementwise operation in forward pass, the
backward pass for attention weight biases is a reduction operation. This makes it non-trivial to fuse the
already complex fused attention backward kernel together with that of position biases. Additionally,
incorporating such biases in newer implementations of fused attention requires an unjustifiably
significant engineering effort. The recently released Flash Attention V2 and V3 Dao (2023); Shah
et al. (2024) never supported explicit masking or biasing. To date, very few implementations, namely
the xFormers’ FMHA, offer such features. In addition to the effort required to implement, hiding
the latency of the softmax operation in pipelined attention kernels such as FAv3 Shah et al. (2024) is
already very challenging, and supporting explicit attention weight biasing or masking will add to that
latency and easily expose it. We illustrate this in Figure 1.

On the other hand, position embeddings are usually decoupled from the attention mechanism and are
applied to the input tokens instead, ahead of the attention operation. Originally these embeddings
were applied to the tokens only once at the very beginning of the model. This approach is commonly
referred to as Absolute Positional Embedding (APE). However, Rotary Position Embeddings (RoPE)
Su et al. (2021) have become the de-facto choice in large language models Touvron et al. (2023a;b);
Chiang et al. (2023), and are slowly making their way into vision models as well Crowson et al.
(2024); Karras et al. (2022). We compare these three methods for introducing positional information
(RPB, APE, and RoPE) in Figure 2. Compared to APE, RoPE can be seen as much more flexible
generalization. Compared to RPB, the advantages of RoPE are threefold: 1. RoPE is a static position
embedding mechanism; RoPE can be interpolated for varying input resolutions without retraining or
finetuning. 2. the forward and backward pass of RoPE are both element-wise operations, for which
developing highly parallelized SIMT implementations and kernel fusions are much easier. Lastly,
since RoPE is agnostic to the dot-product attention operation, one can use the best available fused
attention implementation for their use case, and to its full potential.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Inspired by this, we thoroughly study the applicability of RoPE in transformer-based models for
vision. Our main contributions are as follows:

1. We present the scaling and implementation-related challenges in using RPB, or any explicit
attention bias, in the context of fused attention. Positional biases, while very simple
elementwise operations in their forward pass, are a reduction in their backward pass, making
their fusion into complex fused attention kernels very challenging.

2. We empirically show the improvement from using Rotary Position Embeddings over RPB.
We show consistent improvements across three model families: ViT, Swin, and NAT, with
varying model sizes (19 million to 89 million parameters). These models also cover three
different attention patterns: self attention, windowed attention and neighborhood attention.
We achieve noteworthy gains across all models.

3. We develop an efficient CUDA implementation for RoPE with an easy-to-use Python
wrapper. We carefully benchmark it and show its speedup against using RPB.

4. We carefully study multiple implementations of Rotary Position Embeddings and present
an analysis of using RoPE in transformer-based vision models. We empirically show that
one can use only a fraction of hidden dimensions for RoPE and still achieve competitive
performance. We introduce a hyperparameter krope and analyze its effect on multi-resolution
performance.

2 RELATED WORK

In this section, we review some prominent transformer-based architectures for vision, as well as
current methods for introducing spatial biases, and the effect of using positional biases with fused
attention implementations.

2.1 VISION TRANSFORMERS AND HIERARCHICAL VISION TRANSFORMERS

After the inception of the original Vision Transformer (ViT)Dosovitskiy et al. (2021), a considerable
research effort has been towards understanding Ghiasi et al. (2022); Raghu et al. (2021) and improving
ViTs. Most notably, many works are inspired by the efficient design of CNNs and have transformer
the isotropic ViT into a multi-level hierarchical vision transformer Liu et al. (2021); Fan et al. (2021);
Li et al. (2022). The networks reduce the spatial dimensions of the feature map at every level with
increasing channels (attention heads). Similar to CNNs, many found that tokens in the earlier layers
and levels of these models attend more locally, and those in later layers and levels attend more
globally Raghu et al. (2021). This has propelled the development of hierarchical vision transformers
with restricted local attention Hassani et al. (2023); Hassani & Shi (2022); Ryali et al. (2023).

2.2 ADDING POSITIONAL BIASES TO VISION TRANSFORMERS

Transformers are primarily comprised of linear layers and attention, both of which are invariant to
token permutation, which naturally led to researchers introducing positional information into their
models. After the inception of the original transformer architecture Vaswani et al. (2017), many
new methods were introduced to add position information to transformers Ke et al. (2020); Huang
et al. (2020). ViT Dosovitskiy et al. (2021) used absolute sinusoidal position embeddings used
in the original Transformer Vaswani et al. (2017). Relative Positional Biases (RPBs) Shaw et al.
(2018) quickly became the de facto method used in a plethora of hierarchical vision transformers.
More recently, Rotary Position Embeddings Su et al. (2021) became the norm in billion-parameter
models like LLaMA Touvron et al. (2023a) and its derivatives Touvron et al. (2023b); Chiang et al.
(2023). RoPE enjoys several benefits, like usability in long contexts, better training stability, and
decaying influence with increasing relative distance, to name a few. This makes RoPE a more scalable
alternative to RPBs. However, RoPE has not yet been as widely adopted in vision models, and we
aim to shed light in this direction through this work. We find that 2D RoPE Heo et al. (2024); Jeevan
& Sethi (2022) and AS2DRoPE Chu et al. (2024) are suboptimal extensions of original RoPE in the
context of vision transformers. We illustrate the difference between APE, RPB and RoPE in Figure 2.
We observe a clear trend; newer and larger models often prefer position embeddings over attention
weight biases.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

q k v

Visual Tokens

o

Attention
map

q k v

Visual Tokens

o

Attention
map

Relative
Positional

Bias

q k v

o

Added only once
after patching

Visual Tokens

Attention
map

(a) Absolute Position
Embeddings (APE)

(b) Relative Positional
Biases (RPB)

(c) Rotary Position
Embeddings (RoPE)

RoPE

ViT

2020

MViT v1,
MViT v2

2021

Swin,
Swin v2 CoAtNet LeViT

2021

NAT DiNAT

 Absolute Positional
Embeddings (APE)

 Relative Position
Bias (RPB)

20232022

EVA-02 EVA-CLIP

2024

HDiT

 Rotary Position
Embeddings (RoPE)

Figure 2: Comparison between types of position embeddings. Absolute Position Embeddings are
applied once to the tokens after patchifying, but RPB and RoPE are both applied in every attention
block. RPBs are added to the attention map itself, whereas RoPE is applied to queries and keys. We
observe that prominent models used APE and RPB in the early years of vision transformers. However,
newer models like HDiT and EVA-CLIP, which have been scaled to up to 18 billion parameters, opt
for the more scalable Rotary Position Embeddings. We see a growing trend towards the applying
position embeddings to the tokens themselves in contrast to biasing attention weights.

2.3 FUSED ATTENTION IN VISION TRANSFORMERS

For most of its history, dot-product attention, one of the primary operations in the Transformer,
has been implemented as back-to-back batched matrix multiplications (BMMs), now commonly
referred to as BMM-style attention. The first BMM computes the dot products between query and
key tokens, the softmax of which produces attention weights. Attention weights are then “applied”
to the values by taking their weighted average using the corresponding scores in the weight matrix
through the second BMM. At scale, this implementation can quickly become bounded by memory
bandwidth and capacity. In the case of self attention, in addition to a quadratic time complexity,
the memory footprint is also quadratic. This inspired “fused” attention implementations, the first
practical example of which is Flash Attention Dao et al. (2022), which was later followed by Flash
Attention V2 Dao (2023), FMHA Lefaudeux et al. (2022), and many more implementations. These
methods successfully fuse the two BMMs and the softmax into one kernel by using partial softmax
aggregation (since softmax involves a reduction), allowing them to scale to large sequence lengths.
Through doing so, they improve performance by significantly reducing accesses to global memory,
and instead keeping attention weights on much higher throughput local memory (shared memory).
In addition, the global memory footprint is also reduced significantly. As a consequence, fused
implementations are naturally less flexible in terms of allowing manipulation of attention weights.
This presents a challenge to positional biases, which, even when implemented, can noticeably impact
the performance of fused attention kernels.

In light of this, Rotary Position Embeddings are much better suited for fused attention because
they do not operate on attention weights directly. Instead, RoPE is applied to to the query and
key tensors prior to attention. This decoupling of positional biases and attention computation can
significantly improve model performance. This work exploits this fact further by developing a fast
RoPE implementation suited specifically for vision models.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3 METHOD

In this section, we will outline the usage of position embeddings in vision transformers. First, we
will go over attention weight biases in Section 3.1 and then go on to formalize RoPE in Section 3.2.
We comprehensively explain the existing 2D variants of RoPE in Section 3.3. Lastly, in Section 3.4,
we will discuss some practical implications of using RoPE and present our fused implementation.

3.1 ATTENTION WEIGHT BIASES

Attention weight biases have become a common choice to add spatial biases in vision transformers.
Attention weight biases assign a bias value for every query-key pair in the attention map. Techniques
like Relative Positional Biases (RPB) use the relative position of query and key tokens to add a
specific bias term to them. Attention weight bias is added directly to the raw attention weights
calculated by taking the dot product between queries and keys. Formally, in a feature map of the size
(H,W) we will have queries Q ∈ RHW×d and keys K ∈ RHW×d where d is the channel dimension.
A bias B ∈ RHW×HW will be added to the attention weights as follows:

A = (QKT) +B (1)

In the case of RPB, the bias B is parameterized as a smaller tensor but “viewed" as a tensor with
the same shape as the attention weights. Generally, attention weight biases in vision transformers
are learnable and thus need to be interpolated if the spatial resolution of the input image changes.
Moreover, they cause a bottleneck in the backward pass of any fused attention kernel. We delve into
practical implications of attention weight biases in Section 3.4.

3.2 ROTARY POSITION EMBEDDINGS

Rotary Position Embeddings (RoPE) Su et al. (2021) were proposed to equip tokens in language
models with stronger positional information. RoPE applies position embeddings based on the global
position of the token in the sequence, but the actual embedding function is derived to keep the relative
distances amongst two tokens intact irrespective of their global positions.

Rotary Position Embeddings impart spatial bias by chunking the feature vector of dimension d into
d/2 chunks of two elements each, and rotating each chunk in the Argand plane. The angle of rotation
is decided based on the token’s position in the sequence. Formally, considering a token x at index t
in a sequence of length N , its resulting embedding xt will be given by

xt
j,k = xj,ke

iθt
j ∀ j

θtj = t ∗ fθ(j, d)
(2)

where j, k are the dimension indices and j ∈ {0, ..., d/2 − 1} and k = j + d/2. Here fθ(j, d)
is the rotation angle generator – it produces an angle for each dimension index, given j and d.
Conventionally, the angle generator is given by fθ(j, d) = 10000−2j/d in LLMs like Llama Touvron
et al. (2023a). Now, consider a query and key qm,kn at the positions m and n respectively with
RoPE applied according to their positions. Their corresponding entry Am,n in the attention matrix
will be given by

Am,n = qm · kn

Am,n =
∑
j

qj,kk
′
j,k ei(θ

m
j −θn

j) (3)

where qj,k is the unmodified j, k chunk of the query vector and k′
j,k is the unmodified complex

conjugate of the j, k chunk of the key vector. "·" represents dot product of two vectors.

We make some key observations from Equation 3. First, the relativity of two tokens is captured
by each chunk in the exponent θmj − θnj . Second, as m − n increases, |

∑
j e

i(θm
j −θn

j)| decreases,
implying decay of influence when the relative distance between the tokens increases. This makes
RoPE a preferred choice for injecting positional bias in both self and local attention mechanisms, as
the property of relativity holds in both cases. We discuss practical benefits of RoPE in Section 3.4.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

H

W
C

Image tensor

Feature vector of a patch
C

R iR R iR

Apply θx Apply θy

Rotation of chunks w.r.t. positions in X and Y axis in the image.

R

iR

θx1

θx2
R

iR

θy1

θy2

Figure 3: Illustration of RoPE for images. In this figure, two elements of the same color denote
a single point on the Argand plane. We interleave the elements to denote that half of the elements
constitute the real part and the other half constitute the complex part of the points. Here krope = 2,
thus, we use only the first half of the feature to encode positional information.

3.3 AXIAL ROTARY POSITION EMBEDDINGS

We introduced RoPE for a one-dimensional sequence of tokens in Section 3.2. We will now extend it
for images, which have a two-dimensional array of tokens. We will elucidate the intricate changes
made to RoPE to make it suitable for multi-resolution 2D settings.

3.3.1 EXTENDING ROPE FOR 2-D TOKEN ARRAYS

Consider a 2-D feature map of the spatial dimensions (H,W). To extend the current approach of
RoPE from the 1-D setting, we will simply decompose the two-dimensional position index into
two one-dimensional positional indices. Naturally, this means that each position will have an index
corresponding to the X-axis and one corresponding to the Y-axis. We will then assign a rotation angle
for each position index in both axes.

Secondly, we will divide the number of dimensions in two parts – one part for one axis each. We
will then proceed to further divide each part into two to represent the real and complex parts each,
creating a total of four parts of the entire feature vector. The first and third chunks are treated as the
real and complex parts for the position in Y-axis, and the second and fourth chunks are treated as the
real and complex parts for the token’s position in X-axis. This is illustrated in Figure 3. Formally, this
can be expressed as follows. Given an unmodified query vector q at the position (y, x), its resulting
embedding qy,x will be given by

qy,x =

{
qj,k eiθ

x
j ∀ j ∈ {0, ..., d/4}

qj,k eiθ
y
j ∀ j ∈ {d/4, ..., d/2}

θxj = x ∗ fθ(j, d)
θyj = y ∗ fθ(j − d/4, d)

(4)

and k = j+d/2. An important thing to note is the angle generator is the same for both axes, however,
we subtract the dimension index by d/4 so that both axes are treated in identical manner. In other
words, the first d/4 indices hold the positional information in Y-axis and the second d/4 indices
do the same for X-axis. The third and fourth d/4 chunks follow the same ordering, and carry the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

2D RoPE Axial RoPE
Position co-ordinates Absolute indices Interpolated between (-1, 1)
Angles of rotation 100−4j/d exp (j ∗ (log(10π)− log(π))/d)
Default krope 1 2
Shared θ for all heads Yes No

Table 1: Comparing the design decisions in 2D RoPE and Axial RoPE. We note these design
decisions are inspired by different applications – 2D RoPE has been inspired by works in the LLM
community whereas Axial RoPE has been inspired by works in the image generation space.

complex parts of the first and second chunks respectively. This way, we can encode a 2-D position in
a single feature vector. Additionally, this approach can be extended to an arbitrary number of spatial
dimensions, n, with the only constraint d (mod 2n) ≡ 0. Since this implementation expands on 1D
RoPE for the 2D case, we henceforth refer to this as 2D RoPE. Scalable vision models use this flavor
of 2D RoPE, and is directly inspired from LLMs like LLaMA.

3.3.2 IMPROVING 2D ROTARY POSITION EMBEDDINGS

Image modality is vastly different from language requires a separate treatment compared to language.
Modern generative models Karras et al. (2022); Nawrot et al. (2021); Crowson et al. (2024) use a
specific variant of 2D RoPE implementation which makes it more suitable for the vision domain. The
following changes are made to 2D RoPE, and we call the resulting variant as Axial RoPE.

Sampling y, x between -1 and 1: Conventionally, the token index is the multiplicative factor that
changes the rotation angle to signify different positions in the sequence. Language is inherently
causal, and thus this approach makes sense in the language domain. However, an image does not
follow the same notion. Thus, we sample the multiplicative factor by linearly interpolating between
-1 and 1 for the spatial dimensions. We later empirically show that this is indeed equivalent than using
the plain token indices as the multiplicative factor.

Bounded log sampling of rotation angles: The original RoPE implementation generates rotation
angles through the function fθ(j, d) = 10000−2j/d (j is the dimension index). We note that using an
bounded log-sampling for the base rotation angle causes the index-specific rotation angle to fluctuate
gracefully. We log-sample our angle between π and 10π. Our angle generator function is given by

fθ(j, d) = exp (j ∗ (log(10π)− log(π))/d) (5)

Applying RoPE to only a fraction of the hidden dimensions: We empirically observe that applying
RoPE to a fraction of hidden dimensions retains, or in some cases exceeds the performance of
applying RoPE to the full feature vector. We hypothesize that this is because applying RoPE to all
dimensions greatly mutilates the actual semantic information in the tokens. Additionally, applying
RoPE to a fraction of hidden dimensions is sufficient to impart the necessary positional information.
We divide the total dimensions by a positive integer divisor and apply RoPE to the resultant number
of dimensions. We will henceforth refer to this divisor as krope. In the following section, we will
present empirical results analyzing krope ∈ {1, 2, 4, 8, 16}. We will also draw correlations between
multi-resolution performance and the fraction of hidden dimensions used.

Shared angles of rotation for all heads: One of the differences between 2D RoPe and Axial RoPE
is the usage of same rotation angles for all heads. Axial RoPE uses different angles for all heads,
and on the other hand, 2D RoPE uses the same rotation angles for all heads. We empirically study
the effects of using shared or non-shared angles of rotation for 2D and Axial RoPE. Note that for
non-shared rotation angles, RoPE is applied to the first d/(heads ∗ krope) dimensions for each head.

We summarize the differences between 2D and Axial RoPE in Table 1. In order to use RoPE to its best,
we encourage practitioners to perform sweeps over krope and using shared or non-shared angles with
Axial and 2D RoPE for their specific use case. In this paper, we will empirically study the effect of
these design choices on the ImageNet-1k dataset. We study the multi-resolution performance of each
variant and draw connections with the implementation specifics and the choice of hyperparameters.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

3.4 HARDWARE EFFICIENCY AND SCALABILITY OF ROPE VS RPB

As mentioned, Rotary Position Embeddings are applied to the query and key tensors, as opposed to
attention weights in the case of RPBs. Moreover, RoPE is a more complex operation: for each of
the two tensors, two elements are read from the feature vector, to which rotation is applied through
reading one more element from the θ tensor, before the elements are stored back into the original
tensor. This operation consists of multiple elementwise operations, all of which can grow quickly
into a memory-bandwidth-bound bottleneck in eager mode. On the other hand, RPB is typically only
a single elementwise operation, leading one to think that in theory RPB is more efficient.

However, there are two key issues with RPB in terms of performance: 1. though it is a single
elementwise operation, we do not always have access to attention weights, a clear example of which
is fused implementations. For example, Flash Attention V2 Dao et al. (2022) does not support
attention biases at all, while FMHA Lefaudeux et al. (2022) only supports when they are fully
materialized in global memory, and padded to meet memory alignment requirements, which can
undo some of the performance improvements, as the positional biases will consume the same amount
of memory that attention weights would. 2. Loading fully materialized attention biases or masks
in fused attention kernels burdens their scalability. Fused attention kernels are typically compute
bound, whereas unfused implementations of attention are heavily bound by memory bandwidth.
Adding O(n2) loads into fused attention kernels can make them memory bandwidth bound again
at scale. FNA Hassani et al. (2024) on the other hand only supports RPB in the forward pass. 3.
RPB’s backward pass is typically not an elementwise operation. Local / sparse attention will turn
the RPB gradient into a reduction operation, which is considerably more difficult to performance
optimize compared to elementwise operations. While fusing an elementwise operation into complex
fused attention kernels such as Flash Attention V2 Dao (2023) is relatively trivial, fusing reduction
operations into any kernel, especially fused attention kernels, is typically non-trivial. RoPE however
is an elementwise operation both in the forward and in the backward pass. In fact, the only difference
between the forward and backward pass is the sign of one element, which means:

• RoPE can be applied efficiently in both the forward pass and backward pass,

• RoPE’s forward and backward pass implementations are almost identical,

• RoPE is completely agnostic to the attention operator, making it compatible with all imple-
mentations out of the box.

Having said that, a vanilla PyTorch implementation made RoPE slower than RPB, even when using
powerful fused attention implementations. This is primarily because multiple elementwise oper-
ations used in RoPE are not automatically fused into a single one, and while using tools such as
torch.compile() does exactly that, they simply do not improve performance enough to justify
switching from RPB. This motivated us to develop fast-rope, a fused CUDA implementation
performing Axial RoPE on feature tensors. The implementation follows HDiT’s specifications Crow-
son et al. (2024): it can read operands of mixed precision levels, but computation is done strictly in
higher precision. This allows us to perform the operation in place on the original tensor, without any
extra type cast operations or kernel calls. We plan to open-source our library and release a Python
package which will make using our library as easy as performing one function call.

4 EXPERIMENTS

We demonstrate the capabilities of Axial RoPE on four model families – ViT Dosovitskiy et al. (2021),
Swin Liu et al. (2021), NAT Hassani et al. (2023) and DiNAT Hassani & Shi (2022) on the ImageNet-
1k dataset Russakovsky et al. (2015). Furthermore, we present the throughput gains obtained by using
fused implementation of Axial RoPE combined with fused attention implementations. Lastly, we
present our analysis on different existing RoPE methods, and discuss why we picked Axial RoPE.

4.1 CLASSIFICATION ON IMAGENET-1K

We evaluate Axial RoPE on the ImageNet-1k dataset and report the validation set accuracy in Table 2.
Specifically, we report the scores for three cases – without using any positional information, with
RPB, and with Axial RoPE (krope = 2). We also report acheived throughput for all these cases. We

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

RPB No bias Axial RoPE
Attention mechanism Model (%) (%) (%)

Mini 81.8 81.3 (-0.5) 82.1 (+0.3)
Tiny 83.1 82.5 (-0.6) 83.2 (+0.1)

Small 83.6 83.3 (-0.3) 83.8 (+0.2)
NAT

Base 84.3 84.0 (-0.3) 84.5 (+0.2)

Mini 81.7 81.5 (-0.2) 81.9 (+0.2)
Tiny 82.7 82.6 (-0.1) 83.0 (+0.3)

Small 83.8 83.6 (-0.2) 83.9 (+0.2)

Neighborhood Attention

DiNAT

Base 84.4 84.1 (-0.3) 84.5 (+0.1)

Tiny 81.2 80.2 (-1.0) 81.5 (+0.3)
Small 83.0 81.9 (-1.1) 83.1 (+0.1)Window Attention Swin
Base 83.5 82.7 (-0.8) 83.7 (+0.2)

Small 81.2 79.0 (-2.2) 81.4 (+0.2)Self Attention ViT Base 82.6 81.2 (-1.4) 82.8 (+0.2)

Table 2: ImageNet-1k top-1 accuracies: We present the top-1 accuracy on the ImageNet-1k
validation split. We observe a accuracy over RPB across all model architectures and sizes.

RPB No bias Axial RoPEModel
BMM-style Fused BMM-style Fused BMM-style Fused

Mini 2664 3774 2871 (+7.8%) 3870 (+2.5%) 2769 (+3.9%) 3772 (-0.1%)
Tiny 1948 2806 2095 (+7.5%) 2898 (+3.3%) 2025 (+4.0%) 2810 (+0.1%)

Small 1335 1935 1436 (+7.6%) 2000 (+3.4%) 1387 (+3.9%) 1931 (-0.2%)
NAT

Base 1029 1511 1113 (+8.2%) 1564 (+3.5%) 1070 (+4.0%) 1517 (+0.4%)

Mini 2558 3948 2802 (+9.5%) 4053 (+2.7%) 2704 (+5.7%) 3922 (-0.7%)
Tiny 1857 2943 2043 (+10.0%) 3028 (+2.9%) 1965 (+5.8%) 2932 (-0.4%)

Small 1342 2223 1485 (+10.7%) 2292 (+3.1%) 1429 (+6.5%) 2200 (-1.0%)
DiNAT

Base 979 1592 1081 (+10.4%) 1638 (+2.9%) 1041 (+6.3%) 1587 (-0.3%)

BMM-style FMHA FAv2 BMM-style FMHA FAv2 BMM-style FMHA FAv2

Tiny 3018 3444 - 3114 (+3.2%) 3535 (+2.6%) 3472 2982 (-1.2%) 3394 (-1.5%) 3329
Small 1902 2173 - 1966 (+3.4%) 2237 (+2.9%) 2196 1875 (-1.4%) 2146 (-1.2%) 2106Swin
Base 1450 1658 - 1501 (+3.5%) 1705 (+2.8%) 1676 1431 (-1.3%) 1639 (-1.1%) 1611

Small 4665 7864 - 5256 (+12.7%) 8207 (+4.4%) 8593 5144 (+10.3%) 7964 (+1.3%) 8337ViT Base 2178 3343 - 2423 (+11.2%) 3468 (+3.7%) 3598 2367 (+8.7%) 3387 (+1.3%) 3519

Table 3: Inference throughput: We present the inference throughput for all models, using different
attention mechanisms. Here “BMM-style” represents attention implemented with native PyTorch,
without any optimizations. “Fused” represents Fused Neighborhood Attention (FNA) Hassani et al.
(2024) in the case of NA-based models. “FMHA” represents xFormers’s implementation Lefaudeux
et al. (2022), and “FAv2” represents Flash Attention V2 Dao (2023). All numbers represent the
throughput in images per second. We report the improvements over RPB in green.

observe consistent accuracy improvements across all model families spanning across a wide range of
parameter counts and FLOPs. Interestingly, we see that larger models with high parameter counts,
like the "Base" variants also enjoy the same performance boosts as the smaller models. We provide
additional evaluations on ImageNet A Djolonga et al. (2021), ImageNet RHendrycks et al. (2021),
ImageNet ReaLBeyer et al. (2020) and ImageNet V2 Recht et al. (2019) in Appendix F. We clearly
observe that RoPE outperforms RPB on all models, irrespective of their size or attention mechanism.

4.2 BENCHMARKING FAST-ROPE

In Table 3, we present throughputs of models with Axial RoPE using our fused implementation
against models with RPB. We report inference throughput (i.e. forward pass throughput) using both
BMM-style and fused attention implementations 1. For Neighborhood Attention, those would be the
GEMM-based and fused kernels from NATTEN. For Swin and ViT, that would be xFormers’ FMHA
and Flash Attention V2. We use Automatic Mixed Precision (AMP) in all tests to do FP16 inference.
We observe considerable gains in almost all models, while being roughly equal in the case of Swin.

1All performance measurements were benchmarked on the A100-SXM4.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

128 px 192 px 224 px 256 px 320 px 384 px 480 px 512 px
krope 2D Axial 2D Axial 2D Axial 2D Axial 2D Axial 2D Axial 2D Axial 2D Axial

RPB 34.19 78.62 81.22 81.21 79.77 77.97 75.19 73.9

1 70.53 62.85 80.09 78.47 81.42 80.85 81.69 80.32 81.31 79.85 80.08 78.57 76.37 75.84 74.73 74.69
2 69.81 65.43 79.89 80.11 81.37 81.43 81.84 81.77 81.29 81.28 79.02 79.90 72.78 77.41 69.78 76.47
4 70.02 65.76 80.18 80.19 81.46 81.47 81.96 81.78 81.20 80.80 77.54 79.45 68.13 76.37 63.80 75.16
8 69.37 41.59 79.81 79.61 81.14 81.51 81.73 81.78 81.68 80.78 80.34 78.77 76.77 76.05 75.48 75.01

16 63.6 56.13 79.19 79.76 80.77 81.34 81.16 81.70 80.32 81.12 78.17 79.78 74.00 76.68 72.36 75.82

Table 4: Multi-resolution performance for different values of krope with shared angles for all
heads. We highlight the best performing entry in every resolution group.

128 px 192 px 224 px 256 px 320 px 384 px 480 px 512 px
krope 2D Axial 2D Axial 2D Axial 2D Axial 2D Axial 2D Axial 2D Axial 2D Axial

RPB 34.19 78.62 81.22 81.21 79.77 77.97 75.19 73.9

1 67.02 62.25 79.17 78.36 80.75 80.91 81.17 80.44 80.28 80.17 78.49 78.95 74.40 76.53 73.10 75.6
2 68.10 67.18 79.45 80.03 81.00 81.41 81.44 81.67 80.44 81.05 77.86 79.64 71.31 77.12 68.86 75.89
4 67.56 65.26 79.41 79.55 80.93 81.41 81.38 81.13 80.62 80.54 78.36 79.14 73.60 75.96 71.32 74.61
8 66.31 51.09 79.41 77.64 81.11 81.42 81.47 79.81 80.79 77.64 79.20 76.23 75.16 74.17 73.37 71.76

16 68.02 53.97 79.73 78.34 81.18 81.16 81.43 80.08 80.55 79.62 78.30 77.81 73.73 73.95 71.64 72.45

Table 5: Multi-resolution performance for different values of krope with non-shared angles for
all heads. We highlight the best performing entry in every resolution group.

We attribute the slowdown in Swin to the nature of θ tensor, as it is larger in Swin due to the presence
of the batch dimension. Even with this disadvantage, RoPE is able to catch up to RPB’s throughput.
Additional benchmarks of fast-rope are included in Appendix A.

4.3 ANALYZING DESIGN DECISIONS IN ROPE

We will now analyze the differences between the two implementations mentioned above – 2D RoPE
and Axial RoPE. We will consider the choices of krope and whether all heads use the same rotation
angles. Through this analysis, we aim to empirically study the effect of these hyperparameters on
RoPE and its multi-resolution performance on a wide range of testing resolutions. We perform all our
ablations on ViT-Small trained with 224 px resolution.

Table 4 presents the performance when all heads share the same rotation angles. We make a striking
observation – 2D RoPE with a high value of krope often performs best. In the case where training
and testing resolution are the same (224 px), we observe Axial RoPE has its best performance at
krope = 8 and is roughly the same for other values of krope. We observe similar effects for resolutions
relatively closer to training resolution, specifically 192 and 256 px. Moving to Table 5, we report
the numbers in the case where all heads have different rotation angles. In most cases, we observe
Axial RoPE to outperform 2D RoPE. We speculate that this is due to the nature of the angle generator
function, and we delve into its specifics in Appendix C. Both of these ablations suggest that only
a fraction of hidden dimensions are enough to impart positional information using RoPE. In both
shared and non-shared angles, we observe that Axial RoPE with a high value of krope is superior to
2D RoPE for most inference resolutions, including the training resolution itself.

5 CONCLUSION

In this work, we propose using Rotary Position Embeddings (RoPE) instead of Relative Positional
Biases (RPB), in order to achieve better performance and better accuracy. We presented empirical
evidence and analysis to support this proposition. Further, to accelerate RoPE compared to RPB,
we developed fast-rope, a fast, CUDA-based implementation of RoPE, and showed its speedup
through careful model-level benchmarking. We conducted empirical analysis on two RoPE methods:
Axial RoPE and 2D RoPE. We introduced a new hyperparameter, krope, to control the fraction of
hidden dimensions used in RoPE for both implementations, and observed that applying RoPE to
only half, 1/4th, or even 1/8th of the hidden dimensions is enough to reasonably introduce positional
information and achieve competitive accuracy. As a result of these findings, we foresee widespread
adoption of RoPE in isotropic and hierarchical vision transformers in the near future.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

ETHICS STATEMENT

This work discusses methods to potential improve and speed up transformer-based vision models.
While such models can be further trained to generate malicious content like deepfakes, we foresee no
direct negative implications of this work.

REPRODUCIBILITY STATEMENT

We provide all relevant implementation details of experiments in this paper in Appendix E. We use
open-sourced libraries for our experiments (timm, xFormers, CUTLASS) and use the official model
implementations (NAT and Swin), while only making changes to accommodate RoPE. Our models
can be easily trained through timm by modifying the relevant configuration files. For evaluations on
ImageNet-A, R, V2 and ReaL, we use timm’s validation script with relevant TensorFlow Datasets
dataloaders.

REFERENCES

Lucas Beyer, Olivier J. Hénaff, Alexander Kolesnikov, Xiaohua Zhai, and Aäron van den Oord. Are
we done with imagenet? arXiv preprint arXiv: 2006.07159, 2020.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https:
//lmsys.org/blog/2023-03-30-vicuna/.

Xiangxiang Chu, Jianlin Su, Bo Zhang, and Chunhua Shen. Visionllama: A unified llama interface
for vision tasks. arXiv preprint arXiv:2403.00522, 2024.

Katherine Crowson, Stefan Andreas Baumann, Alex Birch, Tanishq Mathew Abraham, Daniel Z.
Kaplan, and Enrico Shippole. Scalable high-resolution pixel-space image synthesis with hourglass
diffusion transformers. arXiv preprint arXiv: 2401.11605, 2024.

Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. arXiv,
2023.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast and
memory-efficient exact attention with IO-awareness. In Advances in Neural Information Processing
Systems, 2022.

Josip Djolonga, Jessica Yung, Michael Tschannen, Rob Romijnders, Lucas Beyer, Alexander
Kolesnikov, Joan Puigcerver, Matthias Minderer, Alexander D’Amour, Dan Moldovan, Syl-
vain Gelly, Neil Houlsby, Xiaohua Zhai, and Mario Lucic. On robustness and transferability
of convolutional neural networks. CVPR, 2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
ICLR, 2021.

Haoqi Fan, Bo Xiong, Karttikeya Mangalam, Yanghao Li, Zhicheng Yan, Jitendra Malik, and
Christoph Feichtenhofer. Multiscale vision transformers. In ICCV, 2021.

Amin Ghiasi, Hamid Kazemi, Eitan Borgnia, Steven Reich, Manli Shu, Micah Goldblum, An-
drew Gordon Wilson, and Tom Goldstein. What do vision transformers learn? a visual exploration.
arXiv preprint arXiv: 2212.06727, 2022.

Ali Hassani and Humphrey Shi. Dilated neighborhood attention transformer. arXiv, 2022. URL
https://arxiv.org/abs/2209.15001.

Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi. Neighborhood attention
transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 6185–6194, June 2023.

11

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://arxiv.org/abs/2209.15001

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ali Hassani, Wen-Mei Hwu, and Humphrey Shi. Faster neighborhood attention: Reducing the O(n2)
cost of self attention at the threadblock level. arXiv preprint arXiv: 2403.04690, 2024.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, Dawn Song, Jacob Steinhardt, and Justin Gilmer.
The many faces of robustness: A critical analysis of out-of-distribution generalization. ICCV,
2021.

Byeongho Heo, Song Park, Dongyoon Han, and Sangdoo Yun. Rotary position embedding for vision
transformer. arXiv preprint arXiv:2403.13298, 2024.

Zhiheng Huang, Davis Liang, Peng Xu, and Bing Xiang. Improve transformer models with better
relative position embeddings. FINDINGS, 2020. doi: 10.18653/v1/2020.findings-emnlp.298.

Pranav Jeevan and Amit Sethi. Resource-efficient hybrid x-formers for vision. In 2022 IEEE/CVF
Winter Conference on Applications of Computer Vision (WACV), pp. 3555–3563, 2022. doi:
10.1109/WACV51458.2022.00361.

Tero Karras, M. Aittala, Timo Aila, and S. Laine. Elucidating the design space of diffusion-based
generative models. Neural Information Processing Systems, 2022. doi: 10.48550/arXiv.2206.
00364.

Guolin Ke, Di He, and Tie-Yan Liu. Rethinking positional encoding in language pre-training.
International Conference on Learning Representations, 2020.

Benjamin Lefaudeux, Francisco Massa, Diana Liskovich, Wenhan Xiong, Vittorio Caggiano, Sean
Naren, Min Xu, Jieru Hu, Marta Tintore, Susan Zhang, Patrick Labatut, Daniel Haziza, Luca
Wehrstedt, Jeremy Reizenstein, and Grigory Sizov. xformers: A modular and hackable transformer
modelling library. https://github.com/facebookresearch/xformers, 2022.

Yanghao Li, Chao-Yuan Wu, Haoqi Fan, Karttikeya Mangalam, Bo Xiong, Jitendra Malik, and
Christoph Feichtenhofer. Mvitv2: Improved multiscale vision transformers for classification and
detection. In CVPR, 2022.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), 2021.

Piotr Nawrot, Szymon Tworkowski, Michał Tyrolski, Lukasz Kaiser, Yuhuai Wu, Christian Szegedy,
and H. Michalewski. Hierarchical transformers are more efficient language models. NAACL-HLT,
2021. doi: 10.18653/v1/2022.findings-naacl.117.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning
library. arXiv preprint arXiv: 1912.01703, 2019.

Maithra Raghu, Thomas Unterthiner, Simon Kornblith, Chiyuan Zhang, and Alexey Dosovitskiy.
Do vision transformers see like convolutional neural networks? Advances in neural information
processing systems, 34:12116–12128, 2021.

B. Recht, R. Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers generalize to
imagenet? International Conference on Machine Learning, 2019.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet
Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115
(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

Chaitanya Ryali, Yuan-Ting Hu, Daniel Bolya, Chen Wei, Haoqi Fan, Po-Yao Huang, Vaibhav
Aggarwal, Arkabandhu Chowdhury, Omid Poursaeed, Judy Hoffman, Jitendra Malik, Yanghao
Li, and Christoph Feichtenhofer. Hiera: A hierarchical vision transformer without the bells-and-
whistles. ICML, 2023.

12

https://github.com/facebookresearch/xformers

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, and Tri Dao.
Flashattention-3: Fast and accurate attention with asynchrony and low-precision, 2024. URL
https://arxiv.org/abs/2407.08608.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position repre-
sentations. In Marilyn Walker, Heng Ji, and Amanda Stent (eds.), Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 2 (Short Papers), pp. 464–468, New Orleans, Louisiana,
June 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-2074. URL
https://aclanthology.org/N18-2074.

Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng Liu. Roformer: Enhanced transformer with
rotary position embedding, 2021.

Vijay Thakkar, Pradeep Ramani, Cris Cecka, Aniket Shivam, Honghao Lu, Ethan Yan, Jack Kosaian,
Mark Hoemmen, Haicheng Wu, Andrew Kerr, et al. Cutlass, 2023. URL https://github.
com/NVIDIA/cutlass/tree/v3.0.0.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models. ARXIV, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models.
arXiv preprint arXiv: 2307.09288, 2023b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

A IMPLEMENTATION AND EVALUATION DETAILS FOR FAST-ROPE

A.1 PROBLEM SIZES FOR EVALUATION

Here we note the problem size space used for benchmarking all kernels. We assume our input feature
tensor to have the shape [B, Nh, H * W, C] and our θ tensor to have the shape [Nh, H *
W, C/4], where B represents batch size, Nh represents number of heads, H, W represent the height
and width respectively and C is the hidden dimension. Our implementation does not expect inputs to
be contiguous except in the last (i.e. channel) dimension. We list down the problem size space in
Table 7. Note that our ablations are for the case where krope = 2. We will achieve better speedups
with a higher krope value.

A.2 ADDITIONAL INFORMATION ABOUT FAST-ROPE

In Table 6, we present the average improvement in latency of performing RoPE with the generated
fused kernel using torch.compile() and our fused implementation over eager PyTorch. The

13

https://arxiv.org/abs/2407.08608
https://aclanthology.org/N18-2074
https://github.com/NVIDIA/cutlass/tree/v3.0.0
https://github.com/NVIDIA/cutlass/tree/v3.0.0
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Compiled over eager Fused over eager Fused over compiledPrec. Avg. Min. Max. Avg. Min. Max. Avg. Min. Max.

16-16 ↑ 2 % ↓ -6 % ↑ 975 % ↑ 1121 % ↑ 709 % ↑ 1905 % ↑ 1117 % ↑ 33 % ↑ 1900 %
16-32 ↑ 2 % ↓ -5 % ↑ 850 % ↑ 1091 % ↑ 727 % ↑ 1700 % ↑ 1088 % ↑ 33 % ↑ 1700 %
32-32 ↑ 1 % ↓ -8 % ↑ 650 % ↑ 598 % ↑ 333 % ↑ 1033 % ↑ 596 % ↑ 33 % ↑ 1033 %

Table 6: Gains using our fused kernel. We present minimum, maximum and average gains in speed
over a wide range of problem sizes. The first column signifies the precision of the feature vector
and rotation angle tensor respectively. For example, 16-32 implies that the feature vector is in
float16 and the rotation angle tensor is in float32. Measured on A100-SXM4-80G.

full range of problem sizes is presented in Appendix A.1. Our implementation enjoys a speedup of 10
to 11× in the case where the input features are in float16, and a speedup of almost 6× when the
features are in float32. Note that the math precision is still in float32 in our implementation.
Our implementations provide an average speedup of 9.34× over torch.compile().

Akin to xFormers, we do not need our inputs to be contiguous in memory, we just expect the stride
of the last dimension to be 1. Our implementation supports float16, bfloat16, float32,
float64 data-types for the feature vector and rotation angles tensor. We use CUTLASS Thakkar
et al. (2023) constructs to perform vectorized memory reads and to perform math on the accumulated
arrays. For the purposes of our testing, we set the number of dimensions for RoPE to be half the
dimensions in the feature vector. Intuitively, the speed benefits will increase as the fraction of
dimensions decreases.

Dimension Possible values

B [1, 16, 32, 64, 128]
Nh [1, 3, 4, 6, 8]
H, W [56, 28, 14, 7]
C [32, 64, 128]

Table 7: Problem sizes used for evaluation. We test over a wide range of problem sizes. We take
the outer product of all these parameters to generate our problem size space. The speedup reported in
the main section are average, minimum and maximum speedups of all problem sizes.

B ADDITONAL ABLATIONS ON DESIGN DECISIONS IN ROPE VARIANTS

B.1 ABLATION ON ANGLE GENERATOR AND POSITION CO-ORDINATES

We perform additional ablations on the angle generator function and position co-ordinates in RoPE.
Since it is computationally prohibitive to experiment with all possible combinations, we choose two
settings – one with shared angles and krope = 1 and another with non-shared angles and krope = 2,
akin to 2D and Axial RoPE respectively. With these settings, we experiment with the two angle
generators, and the two position co-ordinate systems. We present the results in Tables 8 and 9.

B.2 ABLATION WITH THE BEST PERFORMING SETTING IN TABLES 4 AND 5

We observe that non-shared angles with krope = 8 performs the best across all combinations in Tables
4 and 5, on the resolution of 224 px. Motivated by this, we experiment with this configuration on all
models. We present the results in Table 10

C ANALYSIS OF ROTATION ANGLES IN 2D ROPE AND AXIAL ROPE

In Sec 3.3, we outline the differences between 2D RoPE and Axial RoPE. Through our ablations in
Table 4 and 5, we eliminate the practical differences in the two variants. We now turn our attention
towards the two fundamental and theoretical differences – namely the angle generators. In Figure

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Position co-ordinates
Absolute indices Between -1 and 1

Exponential decay 81.0 80.7
Angle generator Bounded log-sampling 81.2 81.4

Table 8: Ablation on angle generator and position co-ordinates with non-shared angles and krope = 2.

Position co-ordinates
Absolute indices Between -1 and 1

Exponential decay 81.4 81.0
Angle generator Bounded log-sampling 81.0 80.9

Table 9: Ablation on angle generator and position co-ordinates with shared angles and krope = 1.

4, we plot the dimension-wise angles of rotation for d = 256 and d = 512. The plots give us some
intuitive explanation about the disparity in multi-resolution performance of the two variants. We
make the following observations:

1. Angles in Axial RoPE are higher in magnitude throughout all dimensions than 2D RoPE.

2. Angles in Axial RoPE occur in chunks, and are repeated multiple times to cover the entire
feature vector.

3. Angles for 2D RoPE are monotonically decreasing in magnitude.

4. For the latter dimensions in 2D RoPE, the angles of rotation are orders of magnitude lower
than for the former dimensions.

From these observations, we make two hypotheses: first, higher rotation angles imply a stronger
injection of information. This explains the consistent performance of Axial RoPE, even when krope
is reduced to 8 or 16, but where the angles of rotation are still large in magnitude. Second, in the
cases where testing resolution is higher than training resolution, we observe that Axial RoPE is
roughly equal or surpasses 2D RoPE. We attribute this to the position co-ordinates assigned in Axial
RoPE. Specifically, we speculate that interpolating indices to be between (−1, 1), coupled with the
repeating, high-magnitude angles of rotation results in a better encoding of positions in the tokens for
higher test-time resolutions.

D NAT-S AND DINAT-S WITH AXIAL ROPE

Here, we report the accuracies for NAT-s and DiNAT-s in Table 11. We observe that both these model
families enjoy the same accuracy and throughput improvements as the other models.

E OTHER IMPLEMENTATION DETAILS

In this section, we will report the implementation details for all models trained in the paper.

We use the official NAT2 and Swin3 implementations, with the only changes being to the attention
module to accommodate RoPE. For the Mini, Tiny and Small variants, we follow the hyperparameters
in Table 12. For the Base variants, we follow the hyperparameters in Table 13. One can easily plug
these values into the corresponding fields in timm’s .yml files and obtain the same results. We use
timm 4 training and evaluation scripts. We use a single node with 8 A100-SXM4 GPUs for our
experiments.

2NAT
3Swin
4timm

15

https://github.com/SHI-Labs/Neighborhood-Attention-Transformer
https://github.com/microsoft/Swin-Transformer/tree/0ae00c97cb34ac03d40683c8319ccddd1b36ad8d
https://github.com/huggingface/pytorch-image-models/tree/main/timm

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Original Shared PE, krope = 8

NAT-small 83.8 83.8
DiNAT-small 83.9 83.9
Swin-small 83.1 82.8
ViT-small 81.4 81.5

Table 10: Ablation with shared PE and krope = 8.

0 100 200 300 400 500
Dimension index

0

1

2

3

4

5

6

A
ng

le
 o

f r
ot

at
io

n
in

 r
ad

ia
ns

Dimension­wise angle of rotation in Axial RoPE

dim = 256
dim = 512

0 100 200 300 400 500
Dimension index

0.0

0.2

0.4

0.6

0.8

1.0

A
ng

le
 o

f r
ot

at
io

n
in

 r
ad

ia
ns

Dimension­wise angle of rotation in 2D RoPE

dim = 128
dim = 512

Figure 4: Comparing rotation angles for Axial and 2D RoPE. We illustrate the dimension-wise
rotation angles for Axial and 2D RoPE for d = 256 and d = 512.

F ADDITIONAL EVALUATIONS ON IMAGENET VARIANTS

We have included additional evaluations on ImageNet-A, ImageNet-R, ImageNet-V2 and ImageNet-
ReaL in this section.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

RPB No bias Axial RoPE
Accuracy Thru. Accuracy Thru. Accuracy Thru.Model

(%) (imgs/sec.) (%) (imgs/sec.) (%) (imgs/sec.)

GEMM Fused GEMM Fused GEMM Fused

Tiny 81.7 2687 3773 80.6 (-0.9) 2884 (+7.3%) 3894 (+3.2%) 82.1 (+0.4) 2779 (+3.4%) 3759 (-0.4%)
Small 83.3 1700 2430 82.0 (-1.3) 1830 (+7.6%) 2516 (+3.5%) 83.4 (+0.1) 1764 (+3.8%) 2429 (0.0%)NAT-s
Base 83.6 1295 1851 82.7 (-0.9) 1395 (+7.7%) 1914 (+3.4%) 83.7 (+0.1) 1343 (+3.7%) 1861 (0.5%)

Tiny 81.8 2553 3992 80.7 (-1.1) 2801 (+9.7%) 4088 (+2.4%) 81.9 (+0.1) 2705 (+6.0%) 3941 (-1.3%)
Small 83.4 1611 2572 82.8 (-0.6) 1774 (+10.1%) 2641 (+2.7%) 83.7 (+0.3) 1711 (+6.2%) 2552 (-0.8%)DiNAT-s
Base 83.8 1226 1962 83.0 (-0.8) 1350 (+10.1%) 2010 (+2.4%) 84.0 (+0.2) 1303 (+6.3%) 1951 (-0.6%)

Table 11: ImageNet-1k classification top-1 accuracy with inference throughput. We present
the top-1 accuracy of NAT-s and DiNAT-s model families on the ImageNet-1k validation split. We
observe a accuracy boost and comparable throughput with respect to RPB across both model families.

Hyperparameter Value
Total epochs 310

Warmup epochs 20
Cooldown epochs 10

Per GPU batch size 128
Warmup LR 1e− 6

Minimum LR 5e− 6
Base LR 1e− 3

LR schedule Cosine annealing with linear warmup
Weight decay 5e− 2

EMA False

Table 12: Hyperparameters for Mini, Tiny and Small variants.

Hyperparameter Value
Total epochs 310

Warmup epochs 50
Cooldown epochs 10

Per GPU batch size 128
Warmup LR 1e− 6

Minimum LR 5e− 6
Base LR 1e− 3

LR schedule Cosine annealing with warmup
Weight decay 5e− 2

EMA True

Table 13: Hyperparameters for Base variant.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Model ImageNet ReaL ImageNet V2
RPB No bias Axial RoPE RPB No bias Axial RoPE

NAT

Mini 87.20 86.90 87.51 70.82 70.31 71.55
Tiny 87.70 87.41 87.96 72.00 72.24 73.27
Small 88.03 87.91 88.14 73.23 72.62 73.76
Base 88.58 88.34 88.70 74.11 73.72 74.34

DiNAT

Mini 87.02 86.74 87.22 71.23 70.47 71.07
Tiny 87.51 87.45 87.66 71.95 71.65 72.43
Small 87.91 87.74 88.17 73.57 72.95 73.70
Base 88.58 88.24 88.55 74.05 73.65 74.51

Swin
Tiny 86.55 85.95 86.89 69.40 68.45 70.29
Small 87.64 86.86 87.77 71.93 70.68 72.52
Base 87.94 87.32 88.02 72.52 71.89 72.98

ViT Small 86.64 84.91 86.77 70.25 67.56 70.64
Base 86.94 85.77 87.15 70.89 69.51 71.33

Table 14: Top-1 accuracies on ImageNet ReaLBeyer et al. (2020) and ImageNet V2 Recht et al.
(2019).

Model ImageNet A ImageNet R
RPB No bias Axial RoPE RPB No bias Axial RoPE

NAT

Mini 12.77 10.89 13.27 29.60 28.71 31.36
Tiny 17.12 14.95 18.81 31.59 30.65 32.35
Small 19.27 18.07 20.51 33.41 32.36 33.73
Base 22.03 20.35 23.68 35.11 34.52 35.76

DiNAT

Mini 13.20 11.32 13.36 30.77 29.21 30.81
Tiny 16.12 16.24 17.48 31.40 30.94 32.26
Small 20.35 19.97 22.04 32.97 32.26 34.16
Base 22.41 21.35 23.93 36.04 34.48 36.96

Swin
Tiny 10.03 7.73 10.00 27.29 24.58 28.06
Small 16.43 12.57 17.09 31.13 27.80 32.25
Base 18.77 15.81 19.32 31.96 29.20 32.84

ViT Small 11.27 7.93 11.99 28.87 22.24 31.24
Base 14.00 9.96 13.92 31.70 24.87 33.40

Table 15: Top-1 accuracies on ImageNet A Djolonga et al. (2021) and ImageNet RHendrycks et al.
(2021).

18

	Introduction
	Related work
	Vision Transformers and Hierarchical Vision Transformers
	Adding positional biases to vision transformers
	Fused attention in vision transformers

	Method
	Attention weight biases
	Rotary Position Embeddings
	Axial Rotary Position Embeddings
	Extending RoPE for 2-D token arrays
	Improving 2D Rotary Position Embeddings

	Hardware efficiency and scalability of RoPE vs RPB

	Experiments
	Classification on ImageNet-1k
	Benchmarking fast-rope
	Analyzing design decisions in RoPE

	Conclusion
	Implementation and evaluation details for fast-rope
	Problem sizes for evaluation
	Additional information about fast-rope

	Additonal ablations on design decisions in RoPE variants
	Ablation on angle generator and position co-ordinates
	Ablation with the best performing setting in Tables 4 and 5

	Analysis of rotation angles in 2D RoPE and Axial RoPE
	NAT-s and DiNAT-s with Axial RoPE
	Other implementation details
	Additional evaluations on ImageNet variants

