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ABSTRACT

While Large Language Models (LLMs) excel at in-context learning (ICL) using
just a few demonstrations, their performances are sensitive to demonstration or-
ders. The reasons behind this sensitivity remain poorly understood. In this paper,
we investigate the prompt embedding space to bridge the gap between the order
sensitivity of ICL with inner workings of decoder-only LLMs, uncovering the
clustering property: prompts sharing the first and last demonstrations have closer
embeddings, with first-demonstration clustering usually being stronger in practice.
We explain this property through extensive theoretical analyses and empirical evi-
dences. Our finding suggests that the positional encoding and the causal attention
mask are key contributors to the clustering phenomenon. Leveraging this clustering
insight, we introduce Cluster-based Search, a novel method that accelerates the se-
lection and ordering of demonstrations in self-adaptive ICL settings. Our approach
substantially decreases the time complexity from factorial to quadratic, saving
92% to nearly 100% execution time while maintaining comparable performance to
exhaustive search.

1 INTRODUCTION

In-context Learning (ICL) is a remarkable emergent ability of Large Language Models (LLMs) to
perform few-shot learning. This means they can answer new queries based on just a handful of related
demonstrations, even without explicit training for the specific task (Brown et al., 2020). While highly
effective, research has shown ICL performances can be extremely sensitive to demonstration orders
(Zhao et al., 2021; Liu et al., 2021; Lu et al., 2022; Liu et al., 2023). To the best of our knowledge,
the reasons behind this sensitivity remain unclear.

In this paper, we investigate the prompt embedding space to explain the order sensitivity of decoder-
only LLMs in ICL. Specifically, we focus on the last token embedding in the final LLM layer, which
is the input for the next-token prediction head. Our investigation reveals the clustering property:
prompts with the same first and last demonstrations form clusters in the embedding space (Figure 1),
with first-demonstration clustering usually being stronger in practice. Our finding aligns with recent
research on the special roles of the first and last demonstrations in ICL (Liu et al., 2023; Janik, 2023).
But unlike prior works, our clustering property links the order sensitivity of ICL and inner workings
of LLMs, allowing more systematic insights into LLMs’ behaviors.

We provide extensive analyses to confirm the clustering property. In particular, we visualize prompt
embeddings in 2D spaces using UMAP, run K-Means clustering on high-dimensional embedding
spaces, and quantify the importance of input tokens by their partial derivative norms. Experimental
results consistently support the existence of clusters.

Further, we provide theoretical and empirical explanations for the clustering behaviors. Theoretically,
we prove that first-demonstration clustering is associated with causal attention mask under ideal
conditions. To validate this relationship in practice, we train decoder-only Transformers from scratch
on WikiText2 dataset (Merity et al., 2017) with and without causal attention mask, achieving similar
outcomes: causal attention mask contributes to the importance of beginning tokens. We also perform
similar experiments with and without positional encoding, and find that the interplay of the causal
structure and the positional encoding contributes to the importance of ending tokens.
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Figure 1: Prompts are clustered by first and last demonstrations. We consider prompts with the same query
and demonstrations but in different orders. For each prompt, we show its UMAP 2D projection of the last
embedding in the final LLM layer. Points with the same colors have the same first demonstrations, and points
with the same shapes have the same last demonstrations. Interestingly, points with similar colors and shapes
form cluster. This property holds for various LLMs and ICL tasks.
Finally, we leverage the clustering property to accelerate self-adaptive approaches (Wu et al., 2022)
when dealing with the costly problem of demonstration selection and ordering. Our proposed method,
dubbed Cluster-based Search, substantially decreases the time complexity from the factorial order
of exhaustive search to quadratic order. We apply Cluster-based Search in two selection scenarios:
one with the ideal selection criterion and another with the practical entropy-based criterion (Lu et al.,
2022). In both cases, our proposed method achieves competitive accuracies compared to exhaustive
search while being significantly faster – saving 92% to nearly 100% execution time.

In short, our contributions include: (1) Establishing the clustering property by first & last demonstra-
tions and verifying it from various angles, (2) analyzing its underlying mechanisms both theoretically
and empirically, and (3) leveraging it to propose Cluster-based Search, which significantly accelerates
the selection and ordering of in-context demonstrations in self-adaptive ICL settings.

2 PRELIMINARIES

2.1 TERMINOLOGIES AND NOTATIONS

Transformer We consider decoder-only LLMs built upon the Transformer architecture. The
Transformer takes the input as a sequence of n tokens {xi(0)}ni=1 ∈

(
Rd

)n
. This input sequence

is transformed through T Transformer layers, of which the t-th layer (t = 1, . . . , T ) receives the
sequence {xi(t− 1)}ni=1 ∈

(
Rd

)n
as inputs and outputs another sequence {xi(t)}ni=1 ∈

(
Rd

)n
. We

primarily focus on the last embeddings of Transformer layers, i.e. xn(t), which we will denote as
x−1(t) for t < T and x−1 when t = T . We denote ⟨xi, xj⟩ as the inner product of vectors xi and xj .

In-context learning (ICL) An ICL prompt consists of an ordered sequence of k demonstrations
E = (e1, . . . , ek) and a query q. Each demonstration ei includes an input ein

i (e.g. a sentence) and its
associated output eout

i (e.g. the sentence’s sentiment). The query q only consists of an input qin, and
the LLM will predict its associated output, i.e. q̂out = LLM(E, q). The prediction q̂out is compared
with the ground-truth output qout to determine whether the LLM answers the query correctly. In
Section 3 and Section 4, we investigate LLMs’ behaviors on ICL prompts built upon the same query
and the same set of demonstrations but in different orders.

2.2 TASKS

We consider two types of tasks: classification and reasoning.

For text classification, we consider tasks of sentiment classification and language identification. We
use data from SST-2 (Socher et al., 2013) dataset for sentiment classification, where each demon-
stration is a pair of a natural language sentence and its associated sentiment. Prompts in language
identification task are similar, except that each demonstration is a pair of a sentence and its associated
language. Dataset for language identification is taken from HuggingFace (HuggingFace, 2021). We
also consider tasks of symbolic sentiment classification and symbolic language identification. The
labels of demonstrations in symbolic sentiment classification are not “positive” or “negative”, but
replaced by random strings. For example, “positive” becomes “a b c” and “negative” becomes “x y
z”, so the model should predict “a b c” or “x y z” instead of “positive” or “negative”. Similarly for
symbolic language identification.
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For reasoning tasks, we consider symbolic reasoning, common-sense reasoning, and mathematical
arithmetic reasoning. The symbolic reasoning tasks include reverse and repeat. For reverse, the
demonstration input is a string of three random letters, e.g. "a b c", and the output is its reverse
"c b a". For repeat, the input contains possibly duplicated letters, e.g. “a a b b c”, and the output
is the string without duplication, i.e. “a b c”. This kind of letter-string logical tasks remains a
challenge for current AI systems (Mitchell, 2021). For the common-sense reasoning task, we leverage
question-answer pairs from the CommonsenseQA dataset (Talmor et al., 2019), where each pair
forms an ICL demonstration. For the mathematical arithmetic task, we use questions and answers
from the AddSub dataset (Hosseini et al., 2014).

In all tasks, the input and the output in a demonstration is separated by an arrow “→”, e.g. a
demonstration in the reverse task should be “a b c → c b a”. Demonstrations are in turn separated by
“;\n”. Finally, the query consists of the input string and the arrow, e.g. “x y z →”.

2.3 EXPERIMENTAL LLMS

We conduct experiments on various decoder-only open-source LLMs, including GPT-2 (Radford
et al., 2019), GPT-Neo (Gao et al., 2020), Llama-v1 (Touvron et al., 2023a) & Llama-v2 (Touvron
et al., 2023b), MPT (Team, 2023), Phi-2 (Javaheripi et al., 2023), and Qwen-2.5 (Hui et al., 2024).

3 PROMPT CLUSTERING

In this section, we introduce and verify the clustering property: x−1’s of prompts with the same
first and last demonstrations tend to stay closer in the embedding space, with first-demonstration
clustering showing notably stronger effects. This means the embedding space contains clusters, each
of which is associated with prompts with the same first and last demonstrations, though the clustering
by first demonstration is more pronounced. We will show that the clustering property consistently
occurs across different LLMs and ICL tasks.

Figure 2: Histogram of pairwise distances of points in
{xp

−1 : p ∈ P}. Both histograms contains more than
one peak, indicating the existence of clusters.

Formally, consider a set of k demonstrations
{e1, . . . , ek} and a query q. We consider k = 5
in this section. Let P be the permutation set of
{e1, . . . , ek}, hence |P| = k!. Each permuta-
tion p ∈ P and the query q compose a prompt.
Let xp

−1 ∈ Rd be the last-layer embedding of
the last input token of the prompt associated
with permutation p. We verify the clustering
property of the set {xp

−1 : p ∈ P} with different
approaches: low-dimensional visualization (Sec-
tion 3.1), K-Means clustering and quantifying
token importance (Section 3.2). Experimental
results consistently confirm the occurrence of
clusters. We also show that clustering appears
from early layers of LLMs (Section 3.3).

3.1 LOW-DIMENSIONAL VISUALIZATIONS OF CLUSTERING

Figure 1 shows the 2D UMAP (McInnes et al., 2018) projections of xp
−1’s with various LLMs and

ICL tasks (similar results for t-SNE projection are shown in Appendix E). Projections with the same
colors are of permutations sharing the first demonstrations. Similarly, projections with the same
shapes are of permutations sharing the last demonstrations.

We observe a consistent property across different cases: projections are clustered by colors and
shapes, i.e. if p and p′ share the first or last demonstrations, then the projections of xp

−1 and xp′

−1 tend
to stay closer. This also means when p and p′ have different first and last demonstrations, xp

−1 and

xp′

−1 are likely to stay in different clusters and thus far away from each other. Since x−1 is the input
for the prediction head, this indicates the next-token prediction of p is likely to differ from one of
p′. This explains why LLMs’ responses vary with demonstration orders. Interestingly, our analysis
reveals that while both types of clustering are present, the clustering effect tends to be stronger for
shared first demonstrations compared to shared last demonstrations.
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(a) (b)

Figure 3: (a) Percentage frequencies at demonstration positions. The x-axis is the index of demonstration
positions; y-axis is the percentage frequency. We observe U-shapes of the percentage frequency curves across
different tasks and LLMs. This indicates first and last demonstrations of elements in a cluster tend to be the
same. (b) Partial derivative norms of various LLMs on different tasks. The x-axis is the chunk index; y-axis is
the chunk-averaged Frobenius norms of partial derivatives. We can observe consistent U-shapes across different
LLMs and tasks, meaning that beginning tokens and ending tokens play important roles in a prompt.

3.2 CLUSTERING ON HIGH DIMENSIONAL SPACES

We verify the clustering property of x−1’s on Rd. To do so, we employ two different methods:
K-Means clustering, and quantifying token importance. Experimental results consistently support
the clustering property, while also confirming the relatively stronger clustering effect for shared first
demonstrations.

K-Means clustering First, we examine the existence of clusters in {xp
−1 : p ∈ P} based on the

idea in (Steinbach et al., 2004): we plot the histograms of pairwise Euclidean distances between
points in {xp

−1 : p ∈ P}. If the histogram has more than one peak, {xp
−1 : p ∈ P} is likely to

contain clusters. Figure 2a shows the histograms of the reverse task on GPT-2 and the sentiment
classification task on Llama-v2-13B. Both histograms have more than one peak, meaning clusters
exist in {xp

−1 : p ∈ P}.

Next, we investigate how {xp
−1 : p ∈ P} is clustered. We run K-Means clustering algorithm (Lloyd,

1982) with K = k(k − 1) centers. In each cluster, we compute the percentage frequency of the most
frequent demonstration at each demonstration position. For example, with k = 5, each cluster is
associated with a 5-dimensional array of percentage frequencies, e.g. (80%, 40%, 30%, 30%, 55%).
This means at most 80% of the permutations in the cluster share the same first demonstrations, at
most 40% of them share the same second demonstrations, and so on. We then average the percentage
frequency arrays over all K clusters to come up with a k-dimensional array representing the current
prompt. Finally, we take the average of those k-dimensional arrays over 100 prompts with different
LLMs and tasks. Figure 3a shows the results. Overall, we observe U-shape percentage frequency
curves across different tasks and LLMs, with notably higher percentages for the first position. This
indicates both first and last demonstrations of permutations in a cluster tend to be the same, with a
stronger effect for first demonstrations, which supports our clustering property.

Token importance The property of clustering by first and last demonstrations suggests beginning
and ending tokens play important roles. We thus verify the clustering property by quantifying token
importance. Specifically, we quantify how much x−1 will change when each xi(0) changes: the
more x−1 is affected, the more important xi(0) is. A popular quantity to measure the input-output
sensitivity is the partial derivative norm

∥∥∥ ∂x−1

∂xi(0)

∥∥∥ (Novak et al., 2018), where ∥.∥ is the Frobenius
norm. If the clustering property holds, the partial derivative norms of beginning and ending tokens
should be the highest among all tokens.

We randomly select 50 prompts and compute the partial derivative norms with respect to their tokens.
Here we omit the last input token x−1(0) from consideration, since perturbing it obviously leads to
the most dramatic changes in x−1. As prompt lengths are different, we divide each prompt into 10
chunks: the first chunk includes the first 10% tokens, and so on, to the last chunk including the last
10% tokens. For each chunk, we compute the partial derivative norms with respect to all of its tokens,
then averaging out to obtain a representative norm for that chunk. Doing this way, we always have 10
chunk partial derivative norms for a prompt, regardless of how long the prompt is.
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Figure 4: 2D UMAP projections of x−1(t)’s with t ≥ 0 on reverse task and GPT-2. Layer 0 is the input
for GPT-2, while layer 48-th is the last layer of GPT-2. We observe an interesting property that x−1(t)’s are
clustered from early layers. A theoretical explanation will be given in Section 4.1.

Figure 3b shows the results. We observe consistent U-shapes across LLMs and tasks, indicating that
both beginning and ending tokens play important roles in prompts, with beginning tokens showing
relatively stronger effects. These results again support the existence of clustering in Rd. Note that
these results do not imply that middle tokens are not important (see Table 8 in Appendix F).

3.3 CLUSTERING AT INTERMEDIATE LAYERS

In previous sections, we have merely studied the behaviors of x−1’s and discovered their clustering
property. We wonder if the clustering property still occurs at intermediate Transformer layers. In
this section, we conduct similar experiments with the 2D UMAP projections, this time for the last
input token embeddings at intermediate layers (i.e. x−1(t)’s with t < T ). We report the results of
sentiment classification task on GPT-2 in Figure 4. Interestingly, the clustering property appears from
early Transformer layers, and it is maintained in the afterwards layers.

The emergence of clustering in early LLM layers suggests Transformer operations themselves may
significantly contribute to clustering. In the next section, we provide theoretical and empirical
evidences to support this hypothesis.

4 MECHANISMS BEHIND CLUSTERING PROPERTY

We are motivated by findings in Section 3 to further explore the mechanisms behind the clustering
property. In this section, we provide theoretical analysis (Section 4.1) and empirical experiments
(Section 4.2) to explain the observed behaviors of clustering. Our analysis suggests that while
prompts with shared first or last demonstrations form clusters in the embedding space, the underlying
mechanisms may differ. The first-demonstration clustering appears to be partially explained by the
causal attention mask mechanism. In contrast, the clustering by last demonstrations seems to involve
a more complex interaction between the causal structure and positional encoding. This difference
in mechanisms aligns with our empirical observation that first-demonstration clustering tends to be
more pronounced, though further investigation would be needed for a complete understanding.

4.1 THEORETICAL ANALYSIS

We provide theoretical evidence for the clustering property. More importantly, we would like to point
out that causal attention mask is one important factor leading to clustering by beginning tokens. This,
in turn, results in the property of clustering by the first demonstration.

Suppose xi(t) is on the unit sphere Sd−1 for every i = 1, n and t ≥ 0. The dynamics of Transformer
can be written as

dxi

dt
= Pxi(t)

 1

Zβ,i(t)

n∑
j=1

e⟨Q(t)xi(t),K(t)xj(t)⟩V (t)xj(t)

 , (1)

for i = 1, n and t ≥ 0. Here Q(.),K(.), and V (.) are the query, key, and value matrices, Pxy is the
projection of y ∈ Sd−1 onto the tangent space TxSd−1, and Zβ,i(t) :=

∑n
k=1 e

β⟨Q(t)xi(t),K(t)xk(t)⟩

is the partition function. We further assume V (t) is identity for all t ≥ 0.

Consider an initial states {xi(0)}ni=1 ∈
(
Rd

)n
that satisfies the following hypothesis (H): there exists

w ∈ Sd−1 such that ⟨w, xi(0)⟩ > 0 for all i = 1, n. Under the hypothesis (H), it has been proved that
if {xi(.)}ni=1 ∈ C0

(
R≥0;

(
Sd−1

)n)
is the unique solution of the corresponding Cauchy problem (1),
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Figure 5: Attention weights from the last token to the first token (blue) and last token (orange) with Qwen-
2.5-72B across layers and different tasks. The x-axis shows layer indices ranging 0-80; y-axis shows attention
weights averaged over 100 prompts. Notably, attention to first token dominates early layers (0.8-0.9) aligning
with Proposition 4.1, while attention to last token steadily increases and peaks in final layers (around 0.2).
(Left) Mathematical arithmetic task. (Middle) Reverse task. (Right) Symbolic sentiment classification task.

then there exists x∗ ∈ Sd−1 and constants C, λ > 0 such that ∥xi(t)− x∗∥ ≤ Ce−λt (Geshkovski
et al., 2023). This means all items in the sequence {xi(t)}ni=1 become identical exponentially fast
w.r.t. the depth t under appropriate conditions. We call x∗ the convergence point of the Cauchy
problem corresponding to the initial state {xi(0)}ni=1. The following proposition shows that the
convergence points of two different initial states with the same first token coincide when casusal
attention mask is applied.

Proposition 4.1. Let {xi(0)}ni=1 and {x′
i(0)}n

′

i=1 be different initial states satisfying (H) and
x1(0) = x′

1(0). Note that n may be different from n′. Let x∗ and x′∗ are the convergence points of
the Cauchy problems Eq. (1) corresponding to {xi(0)}ni=1 and {x′

i(0)}n
′

i=1, respectively. If causal
attention mask is applied, then x∗ = x′∗. This means all states of the two Cauchy equations corre-
sponding to {xi(0)}ni=1 and {x′

i(0)}n
′

i=1 eventually coincide, even though they only share the same
first input token.

Proof. The key notice here is if causal attention mask is applied, then x1(t) = x′
1(t) for all t ≥ 0.

This leads to
∥x∗ − x′∗∥ ≤ ∥x∗ − x1(t)∥+ ∥x′

1(t)− x′∗∥

≤ Ce−λt + C ′e−λ′t, ∀t ≥ 0,

which means x∗ = x′∗.

Proposition 4.1 is closely related to the clustering-by-first-demonstration property. Concretely, if two
prompts share the same first demonstrations, they also share the same first token (i.e. x1(0) = x′

1(0).
Under appropriate circumstances as in Proposition 4.1, the convergence points of these prompts
coincide, which means their associated x−1’s also coincide if there are infinitely many Transformer
layers. Moreover, with x∗ = x′∗, we further have

∥x−1(t)− x′
−1(t)∥ ≤ ∥x−1(t)− x∗∥+ ∥x′

−1(t)− x′∗∥

≤ Ce−λt + C ′e−λ′t, ∀t ≥ 0,

which means the last embeddings become identical exponentially fast. This explains why clustering
occurs from early layers of Transformer as shown in Section 3.3.

Proposition 4.1 draws a close theoretical relationship between causal attention mask and first-
demonstration clustering. We further empirically investigate this connection in the next section,
together with the one between positional encoding and last-demonstration clustering.

Does Proposition 4.1 violate last-demonstration clustering? While Proposition 4.1 suggests that
first-token clustering is theoretically possible under ideal conditions, it does not address or contradict
our empirical observation of last-demonstration clustering. Our analysis of attention weights across
layers reveals a more nuanced picture of how positional information is processed in practice.

Figure 5 shows the attention weights from the first token (blue) and last token (orange) to the last
token across different layers, measured on the Qwen-2.5-72B model (Hui et al., 2024). The results are
averaged over 100 different prompts of varying lengths across multiple tasks including mathematical
arithmetic, reverse and symbolic sentiment classification. This comprehensive sampling ensures our
findings are robust across different task types and input lengths. The attention pattern exhibits three
distinct phases:
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(c)(a) (b)

Figure 6: Partial derivative norms w.r.t. chunks in trained-from-scratch Transformers with different types
of positional encodings. The x-axis is chunk indices ranging 0-9; y-axis is the partial derivative norms. (a)
Sinusoidal positional encoding. (b) Rotary positional encoding. (c) Trainable positional encoding.

• Initial Phase (layers 1-40): The first token dominates attention with consistently high weights
(0.8-0.9), showing remarkable stability in early layers. This strong initial convergence
precisely aligns with our theoretical prediction in Proposition 4.1 and reflects the attention
sink phenomenon (Xiao et al., 2024).

• Transition Phase (layers 40-60): We observe a sharp decline in first-token attention, dropping
from 0.8-0.9 to 0.2-0.4. During this phase, attention begins to redistribute across tokens,
marking a shift from the theoretical behavior to practical requirements.

• Final Phase (layers 60-80): The first-token attention exhibits oscillating patterns (between
0.4-0.7), while attention to the last token steadily increases and reaches its peak (0.1-0.2)
in the final layers. This consistent pattern of increasing last-token attention across tasks,
despite variations in first-token attention, suggests a fundamental architectural behavior
aligned with the next-token prediction objective.

This layerwise progression offers insights into how our theoretical and empirical findings coexist:
while the theoretical tendency toward first-token clustering manifests in early layers (with attention
weights of 0.8-0.9), the practical requirements of causal language modeling lead to attention redis-
tribution in later layers, where we observe increased attention to the last token (reaching 0.1-0.2).
This pattern suggests a dynamic balance between the model’s architectural bias toward first-token
clustering and its need to capture sequence-final information for next-token prediction. This observa-
tion aligns with prior findings that causal attention mechanisms can infer positional information even
without explicit positional encoding (Kazemnejad et al., 2024) - a property that emerges naturally
from the causal structure. When combined with positional encodings, this evolving attention pattern
appears to contribute to the observed dual clustering behavior - both first-demonstration and last-
demonstration clustering - though our experiments in Section 4.2 suggest this interaction is complex
and dependent on the specific type of positional encoding used.

4.2 EMPIRICAL ANALYSIS

While our theoretical analysis in Section 4.1 suggests how causal attention mask could enable
first-demonstration clustering under ideal conditions, we need to examine how these mechanisms
manifest in practice without theoretical restrictions. We investigate both first-demonstration and
last-demonstration clustering through empirical experiments, following a similar methodology to
Section 3.2. Our experiments suggest that different architectural components contribute distinctly to
clustering behavior: the causal attention mask appears particularly important for first-demonstration
clustering, while both causal attention mask and positional encoding seem to play roles in last-
demonstration clustering.

To investigate the role of causal attention mask and positional encoding, we train different Trans-
formers with or without those components. Specifically, we train from scratch four Transformers:
one with full components, one without positional encoding, one without causal attention mask, and
one without both. Other Transformer components are always included. Each Transformer has 12
self-attention layers, each with 12 attention heads; the token embedding size is 768, and the hidden
size in MLP layers is 2048. We train the Transformers with different types of positional encodings,
namely the sinusoidal, rotary, and trainable positional encoding, on WikiText2 dataset with SGD
optimizer with learning rate 5 · 10−1 in 100 epochs. For fair comparisons, the training task for all
Transformers is next-token prediction.
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Exhaustive Cluster Relative
decrease

GPT-Neo-2.7B 97.4 (1.8) 94.0 3.5

Llama-v2-7B 98.5 (4.5) 95.6 2.9

MPT-7B 98.7 (11.9) 97.8 0.9

Table 1: Accuracies (%) of Exhaustive and Cluster-based Search with the ideal selecting criterion with
different LLMs on reverse task. The first two columns show accuracies, while the third one shows the relative
decreased percentage of Cluster-based Search compared to Exhaustive Search. Exhaustive Search achieves
the best accuracies on all LLMs, but the performances of Cluster-based Search are comparable. Numbers in
parentheses are accuracies with the dumb selection criterion.

We prepare 100 randomized prompts and compute the partial derivative norms similarly to Section 3.2.
To ensure the prompts are differently distributed to training ones, we build each prompt as a sequence
of 50 to 100 random words, resulting in meaningless sentences. For each prompt, we compute its
chunk partial derivative norms, then average over 100 prompts. Figure 6 shows interesting results. It
reveals a robust correlation between first-demonstration clustering and the utilization of the causal
attention mask. Specifically, the importance of beginning tokens is markedly elevated when, and only
when, the causal attention mask is applied, which aligns with the findings presented in Proposition 4.1.
On the other hand, the case for last-demonstration is more complex. While the importance of ending
tokens remains distinctively high when sinusoidal positional encoding is employed in the absence of
a causal attention mask, this phenomenon is not observed for rotary and trainable positional encoding.
This suggests that the importance of ending tokens is influenced by the interplay between the causal
structure and the choice of positional encoding method.

5 ACCELERATING SELECTION AND ORDERING OF IN-CONTEXT
DEMONSTRATIONS IN SELF-ADAPTIVE ICL SETTINGS

Based on the clustering property, we propose an efficient approach to improve self-adaptive ICL
methods (Wu et al., 2022). In particular, self-adaptive methods aim to optimize the selection and
ordering of demonstrations based on model’s own predictions, without relying on external knowledge
or supervision. However, this process typically suffers from factorial complexity. For example,
when exhaustively selecting and ordering k out of ktotal demonstrations (referred to as Exhaustive
Search), there are Ak

ktotal
:= ktotal!

(ktotal−k)! possibilities. In contrast, the first-demonstration clustering
property suggests that prompts sharing the first demonstration are likely to have the same next-token
prediction. Consequently, our approach, called Cluster-based Search, only requires selecting the first
demonstration, while the rest can be randomly selected, resulting in merely ktotal possibilities.

Formally, consider an LLM, a pool of ktotal demonstrations E and a query q. Any algorithm for
demonstration selection and ordering will construct a set of possible prompts, P(E, q), and uses
a pre-defined criterion C to select among this set a potentially correct prompt, i.e. one with which
the LLM can answer the query correctly. In this section, we consider two types of criterion C: the
ideal criterion and the practical entropy-based one. In both cases, Cluster-based Search achieves
comparable performances with Exhaustive Search while being significantly faster.

We consider ktotal = 6 and k = 4 for as it is feasible to run Exhaustive Search. We also report
results when ktotal = 16 and k = 4 in Appendix D to show the scalability of Cluster-based Search.
Furthermore, in this section, we focus on non-instructed prompt to better align with previous
discussions on the positions of demonstrations. Additional results regarding the instructed-prompt
case are given in Table 7 in Appendix F.

5.1 IDEAL SELECTION CRITERION

In this section, we consider C to be the ideal criterion, which always selects the correct prompt in
P(E, q) if exists. This criterion is alternatively called the oracle (Lu et al., 2022). The accuracy
achieved by this ideal criterion sets an upper bound for any other selecting criterion. We also consider
the dumb criterion, which always select the wrong prompt if exists. In the following, we show
the accuracy upper bounds of Cluster-based Search are comparable to Exhaustive Search while
significantly reducing the search time.
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Classification Reasoning
Avg

SymSen SymLan Rev. Rep. ComSen Math

GPT-Neo-2.7B
Random 51.34.7 65.24.0 56.65.1 49.54.1 17.33.1 1.00.8 40.2
Exhaustive 51.5 77.0 66.5 49.0 18.7 0.5 43.9
Cluster 51.55.5 74.63.3 76.35.1 55.35.6 16.63.5 1.00.8 45.9

Phi-2 (2.7B)
Random 23.13.7 59.34.8 77.94.9 53.03.4 61.24.0 75.14.0 58.3
Exhaustive 31.5 76.0 80.5 71.0 63.5 77.0 66.6
Cluster 30.83.7 72.35.1 77.33.5 65.04.6 64.23.9 77.94.2 64.6

Qwen-2.5-14B
Random 71.73.0 76.32.8 99.10.8 93.32.4 84.33.4 85.13.2 85.0
Exhaustive 78.0 86.0 100.0 96.0 84.2 85.5 88.3
Cluster 82.32.9 87.13.3 99.30.9 97.71.6 84.32.5 87.13.0 89.6

Table 2: Accuracies (%) of Random Selection, Exhaustive Search, and Cluster-based Search with entropy-based
selecting criterion on different LLMs and ICL tasks. The subscript numbers indicate the standard deviation
over 10 runs. Due to computational constraints, we do not report standard deviations for Exhaustive Search.
Bold: best; Underline: second best. Searching is obviously more effective than random selection. Moreover, the
performances of Cluster-based Search are comparable to Exhaustive Search.

Figure 7: Normalized accuracies and search
times of Exhaustive Search and Cluster-based
Search with the ideal selecting criterion.

Accuracies of different LLMs on reverse task are
reported in Table 1. Here we take the average accu-
racy over 1, 000 tuples of (E, q). See Appendix C
for results of other tasks. While Exhaustive Search
achieves the best accuracies on all LLMs, it is
worth noticing that the performances of Cluster-based
Search are comparable. Concretely, performances
of Cluster-based Search only decrease relatively by
2.4% on average compared to Exhaustive Search,
while search time of Cluster-based Search decreases
by 91.7% (Figure 7). Note that with larger ktotal, the
time saving is almost 100%. Additionally, the performance gaps between the ideal and the dumb
criterion (number in parentheses in Table 1) are huge for all LLMs, further highlighting the efficiency
of Cluster-based Search.

5.2 ENTROPY-BASED SELECTION CRITERION

We consider a more practical selecting criterion C, i.e. the popular entropy-based criterion (Lu et al.,
2022), to show the effectiveness of Cluster-based Search in practice. To be concrete, denote ℓ−1 to be
the logits of the first prediction step. The size of ℓ−1 is equal to the length of the token dictionary, and
it is the output of the prediction head whose input is x−1. We define the confidence score of ℓ−1 to
be c (ℓ−1) := −entropy (softmax (ℓ−1)). A permutation p of demonstrations is more confident than
another permutation p′ if its associated logits ℓ−1 is more confident than ℓ′−1, i.e. c (ℓ−1) > c

(
ℓ′−1

)
.

Among all prompt candidates, we will select the most confident one. See Algorithm 1 in Appendix B
for the pseudocode of this criterion.

We run the Exhaustive Search and Cluster-based Search with Algorithm 1 on various ICL tasks
introduced in Section 2.2. Each task includes 1, 000 tuples (E, q). Average accuracies of different
LLMs are reported in Table 2. On average, the performances of Random Selection are the worst,
with large gaps compared to Exhaustive Search, showing the effectiveness of selecting and ordering.
However, it is interesting to note that performances of Cluster-based Search are comparable to
Exhaustive Search, with a slight absolute performance gap of 0.3% on average. This result once
again highlights the efficiency of Cluster-based Search.

5.2.1 ABLATION STUDIES

We further investigate whether selecting only the first demonstration, rather than both first and last
demonstrations, could maintain performance while improving efficiency. Table 3 presents the results
of this investigation.

The results demonstrate that selecting only the first demonstration for clustering-based search achieves
comparable or sometimes better accuracy compared to selecting both first and last demonstrations.
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Classification Reasoning
Avg

SymSen SymLan Rev. Rep. ComSen Math

GPT-Neo-2.7B
First Cluster 51.5 74.6 76.3 55.3 16.6 1.0 45.9
First-Last Cluster 55.5 75.7 63.7 53.2 17.8 1.0 44.5

Phi-2 (2.7B)
First Cluster 30.8 72.3 77.3 65.0 64.2 77.9 64.6
First-Last Cluster 28.1 72.2 78.9 69.3 62.7 78.5 64.9

Qwen-2.5-14B
First Cluster 82.3 87.1 99.3 97.7 84.3 87.1 89.6
First-Last Cluster 79.3 83.7 99.2 97.0 84.0 86.2 88.2

Table 3: Comparison between First-only and First-Last clustering search strategies across different models and
tasks, showing accuracy (%) on classification and reasoning tasks.

This is particularly evident in GPT-Neo-2.7B where first-only clustering achieves an average accuracy
of 45.9% compared to 44.5% for first-last clustering, and in Qwen-2.5-14B where it achieves 89.6%
versus 88.2%. Most notably, this simpler approach reduces the computational complexity significantly
- from O(ktotal(ktotal − 1)) when selecting both first and last demonstrations to just O(ktotal) when
selecting only the first demonstration. This order of magnitude improvement in efficiency, combined
with the maintained or improved accuracy, makes first-only clustering a clearly superior choice for
demonstration selection.

6 RELATED WORK

Recent research has unveiled the sensitivity to the order of in-context demonstrations in large language
models (LLMs). It has demonstrated that simply reshuffling the examples in a sentiment analysis
prompt can dramatically impact accuracy, ranging from near-random guessing to state-of-the-art
performance (Zhao et al., 2021). Subsequent studies have confirmed this "order sensitivity" is
widespread, affecting models of all sizes and independent of specific examples (Liu et al., 2021).
Further work noted a negative correlation between sensitivity and accuracy, suggesting highly
sensitive outputs are less reliable (Chen et al., 2022). Another study finds that language models’
performance can significantly decline when relevant information appears in the middle of the context,
suggesting they may struggle to effectively utilize long contexts (Liu et al., 2023). To the best of our
knowledge, our paper is the first to investigate the prompt embeddings to explain the order sensitivity
of LLMs in ICL. Furthermore, we also provide theoretical and empirical evidences to support our
findings.

Oversmoothing is a problem where information is lost and representations become identical. As
explored in Section 3.2, this issue is closely related to the clustering property of LLMs. Previous work
shows Transformer is prone to oversmoothing during training, especially with deep architectures, and
this ultimately lowers model performance (Chen et al., 2022). Further research finds the underlying
cause of oversmoothing in Transformer, and hypothesizes that layer normalization plays a crucial
role in oversmoothing (Shi et al., 2022) . Recently, a phenomenon called attention sink has been
discovered, which states that a large portion of the attention weights stays at the first token, starting
from early layers of the Transformer (Xiao et al., 2024) . This may partly explain the oversmoothing
problem in Transformer.

The feature importance in neural networks can be assessed by the Jacobian matrix, which maps minor
input changes to output shifts. This sensitivity measure has motivated research on model robustness
and knowledge transfer. Recent work reveal that even the simple optimization algorithm SGD subtly
regularizes the model’s sensitivity (Lee et al., 2023) , while other studies manipulate the Jacobian to
boost noise and attack resistance (Hoffman et al., 2019) . Beyond robustness, it has been highlighted
how Jacobian regularization supports more realistic dynamics in the system (Finlay et al., 2020).

The serial-position effect, a fascinating psychological phenomenon where first and last items in a
sequence are recalled best, has been a fruitful area of study. Pioneering work highlights how position
influences recall, suggesting more rehearsal for beginning and ending items (Murdock and Bennet,
1962). Later research identifies two driving forces: the primacy effect, boosting recall for initial items,
and the recency effect, favoring recent ones (Glanzer and Cunitz, 1966). We give a brief discussion
on the connection between the serial-position effect and our clustering property in Appendix A, and
we believe that this research direction is interesting to explore further.
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7 CONCLUSION AND LIMITATIONS

We study the prompt embedding space to understand the order sensitivity of ICL in decoder-only
LLMs. Our analysis reveals that prompts sharing first or last demonstrations tend to form clusters
in the embedding space, with first-demonstration clustering showing notably stronger effects. Our
theoretical analysis suggests this asymmetry may be partially explained by the causal structure,
as first-token information is reused O(n2) times in a self-attention layer. The last-demonstration
clustering appears to emerge through a more complex interaction between the causal structure and
positional encoding, though its precise mechanisms warrant further investigation. Based on these
insights, we introduce Cluster-based Search for demonstration selection and ordering in self-adaptive
ICL methods, achieving comparable performances to exhaustive search while reducing computational
complexity from factorial to quadratic.

Our work contributes to understanding the operational mechanisms of LLMs, an area that would
benefit from increased research attention. The clustering property we identify may represent one of
several important characteristics that could enhance our comprehension of these models. Such insights
can lead to practical improvements in LLM applications, as demonstrated by our Cluster-based Search
method.

Several limitations of this study should be acknowledged. First, while Cluster-based Search shows
promise in self-adaptive settings, its effectiveness in other contexts requires further evaluation. Second,
our theoretical framework primarily addresses first-demonstration clustering, while the mechanisms
behind last-demonstration clustering remain incompletely understood. Third, verifying the clustering
property poses challenges in black-box models where internal representations are not accessible.
Future research should focus on developing techniques to better understand these behaviors and
extend our findings to broader contexts.
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APPENDIX

A RELATION OF CLUSTERING PROPERTY AND SERIAL-POSITION EFFECT

Analyses in Section 4.1 and 4.2 allow us to link the clustering property with the well-known serial-
position effect (Murdock and Bennet, 1962), which has two components: primacy effect and recency
effect. The primacy effect means that the first item in a sequence is remembered better than middle
ones. Previous research attributes this to the long-term memory: the first item gets more rehearsal
when the person tries to recall the sequence, and thus it is more likely to be stored in the long-term
memory (Rundus, 1971). This is similar to causal attention mask, where all tokens attend to the
first one for updating. Moreover, it has been shown that that the primacy effect weakens with longer
sequences (Murdock and Bennet, 1962). We see the same pattern in LLMs: the ratio between the
importance of beginning tokens and ending tokens shrinks as the prompts get longer (see Figure 8).
On the other hand, the recency effect means that the last item in a sequence is remembered better
than middle ones. This is due to the short-term memory, which keeps a few recent items (Craik et al.,
1970). Recent work suggests that positional encoding adds this locality to language models (Chen
et al., 2023). Following Secion 4.2, this implies that the last-demonstration clustering property is
very similar to the recency effect.

Figure 8: Ratio of the first and last token chunk importance. The x-axis is the number of demonstra-
tions. The ratios consistently decrease with different LLMs and ICL tasks.

B ENTROPY-BASED SELECTION CRITERION PSEUDO-CODE

Here we give the pseudo-code for the entropy-based selection criterion presented in Section 5.2.
The algorithm computes the confidence score for each permutation of demonstrations based on the
entropy of the softmax output of the first prediction step’s logits. It then selects the permutation with
the highest confidence score, i.e., the lowest entropy, as the most confident prompt candidate. This
approach allows for the identification of the optimal demonstration order that maximizes the model’s
confidence in its predictions.

Algorithm 1 Entropy-Based Selecting Criterion
Input: set of prompt candidates P
set cBest = −inf
set pBest = None
for p in P do

compute logits ℓ−1

compute confidence score c (ℓ−1)
if c (ℓ−1) > cBest then
cBest = c (ℓ−1)
pBest = p

end if
end for
Output: pBest
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Classification Reasoning
Avg

Sent. Lang. Sym.Sen.Sym.Lan. Rev. Rep.

GPT-Neo-2.7B
Exhaustive 99.9 100.0 52.0 100.0 97.4 94.6 90.7
Cluster 99.6 99.8 51,9 100.0 94.0 90.3 89.3

Llama-v2-7B
Exhaustive 99.7 100.0 100.0 100.0 98.5 92.6 98.5
Cluster 99.4 99.9 100.0 99.8 95.6 89.0 97.3

MPT-7B
Exhaustive 99.7 99.9 52.0 100.0 98.7 97.8 91.4
Cluster 99.2 99.9 52.0 99.9 97.8 96.0 90.8

Table 4: Accuracies (%) of Exhaustive and Cluster Search with the ideal selecting criterion with
different LLMs on various task. The case ktotal = 6 and k = 4.

Classification Reasoning
Avg

SymSen SymLan Rev. Rep. ComSen Math

GPT-Neo-2.7B
Random 51.0 54.0 58.0 47.0 13.0 2.0 37.5
Cluster 55.5 80.0 82.0 56.5 17.0 1.5 48.8

Phi-2 (2.7B)
Random 22.5 53.0 77.0 53.5 57.5 80.0 57.3
Cluster 36.0 82.0 78.5 69.5 62.5 76.5 67.5

Qwen-2.5-14B
Random 65.0 74.0 98.0 98.5 86.5 88.0 85.0
Cluster 88.0 96.0 100.0 99.5 85.5 86.0 92.5

Table 5: Accuracies (%) of Random Selection, Exhaustive Search, and Cluster Search with entropy-
based selecting criterion on different LLMs and ICL tasks. The case ktotal = 16 and k = 4.

C SEARCH WITH IDEAL SELECTION CRITERION

We report in Table 4 results of similar experiments as in Section 5.1 on different LLMs and ICL
tasks. By comparing the performance of Cluster-based Search with Exhaustive Search, we can
assess the effectiveness of our proposed method in finding optimal demonstration orders. Overall,
the performances of Cluster-based Search are comparable to Exhaustive Search, while significantly
reducing the search time complexity.

D CLUSTER SEARCH WITH kTOTAL = 16 AND k = 4

We report in Table 5 results of similar experiments as in Section 5.2 with ktotal = 16 and k = 4. The
table presents the average accuracies of different LLMs on various ICL tasks using the entropy-based
selection criterion. By comparing the performances of Cluster-based Search and Random Selection,
we can assess the effectiveness and scalability of our proposed method when the total number of
demonstrations is increased to 16. Moreover, comparing to Table 2, we observe that the performance
of Cluster-based Search is better when the pool is larger. These results provide further evidence
for the efficiency of Cluster-based Search in selecting and ordering demonstrations for in-context
learning, even when dealing with a larger pool of available demonstrations.

We further conduct similar experiments with ktotal = 16 and k = 10 to show the scalability of our
proposed Cluster Search. In this case, the Exhaustive Search is clearly infeasible. Experimental
results are reported in Table 6. On average, the Cluster Search method is better than Random Search
by 1.5% to 5.9%.

E LOW-DIMENSIONAL PROJECTIONS WITH T-SNE

We re-build Figure 1 with UMAP projection replaced by t-SNE projection. The t-SNE projections,
shown in Figure 9, exhibit similar clustering patterns as observed in the UMAP projections. Permuta-
tions sharing the first demonstrations (indicated by colors) or the last demonstrations (indicated by
shapes) tend to form distinct clusters in the low-dimensional space. This consistency across different
dimensionality reduction techniques further supports our clustering property.
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Classification Reasoning
Avg

SymSen SymLan Rev. Rep. ComSen Math

GPT-Neo-2.7B
Random 54.1 75.1 78.9 62.1 20.6 2.7 48.9
Cluster 52.6 82.1 85.8 62.0 19.1 2.9 50.8

Phi-2 (2.7B)
Random 28.3 71.2 77.4 62.7 67.0 79.4 64.3
Cluster 38.3 84.8 80.3 68.1 67.6 82.0 70.2

Qwen-2.5-14B
Random 84.6 90.4 99.8 99.3 85.8 87.8 91.3
Cluster 88.5 95.9 99.6 99.2 85.5 88.0 92.8

Table 6: Accuracies (%) of Random Selection, Exhaustive Search, and Cluster Search with entropy-
based selecting criterion on different LLMs and ICL tasks. The case ktotal = 16 and k = 10.

Figure 9: t-SNE 2D projections of x−1’s with different tasks and LLMs. Points with the same color
and shape tend to form clusters.

F OTHER PROBLEMS REGARDING PROMPT DESIGN

Prompt with instruction In this paper, we only focus on prompts without instructions to highlight
the clustering property with respect to the orders of in-context examples. However, when an instruc-
tion is included, i.e., when the first token of the prompt is a part of the instruction, our theoretical
result in Proposition 4.1 still holds. Furthermore, Figure 3 also gives us evidences that the first and
last demonstrations are still more important than the other ones even when the prompt starts with an
instruction rather than a demonstration. We provide additional empirical evidence in Table 7 for the
case of reverse task with instructed prompt. Overall, the performances of our cluster-based method
are comparable to the costly exhaustive method.

GPT-2 GPT-Neo-2.7B Llama-v2-13B

Random 30.3 67.2 94.3
Exhaustive 37.0 83.8 94.8

Cluster 35.3 82.7 95.1

Table 7: Performances of diferent methods with different LLMs in the reverse task with instructed
prompt. Here we consider ktotal = 6 and k = 4. The cluster-based method is still comparable to the
exhautive method.

About the importance of middle in-context demonstrations The clustering property does not
imply that the middle in-context demonstrations are not important. Indeed, it only shows that first
and last demonstrations are more important than the others. However, the middle demonstrations still
play a role in shaping the model’s understanding of the task and the context. They provide additional
examples and variety, which can help the model generalize better. Empirical evidence is given in
Table 8, in which we run different LLMs on the reverse task with 4 and 8 demonstrations, respectively.
The performances of the case of 8 demonstrations are consistently better, showing the importance of
middle demonstrations.
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GPT-2 Llama-v1-7B Llama-v2-13B Llama-v1-30B

4 demonstrations 32.0 19.7 95.1 80.4
8 demonstrations 44.4 27.5 98.0 86.7

Table 8: Performances of diferent LLMs on reverse task with different number of demonstrations.
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