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Abstract: We introduce CARLA, an open-source simulator for autonomous driv-
ing research. CARLA has been developed from the ground up to support devel-
opment, training, and validation of autonomous urban driving systems. In ad-
dition to open-source code and protocols, CARLA provides open digital assets
(urban layouts, buildings, vehicles) that were created for this purpose and can
be used freely. The simulation platform supports flexible specification of sensor
suites and environmental conditions. We use CARLA to study the performance
of three approaches to autonomous driving: a classic modular pipeline, an end-
to-end model trained via imitation learning, and an end-to-end model trained via
reinforcement learning. The approaches are evaluated in controlled scenarios of
increasing difficulty, and their performance is examined via metrics provided by
CARLA, illustrating the platform’s utility for autonomous driving research.
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1 Introduction

Sensorimotor control in three-dimensional environments remains a major challenge in machine
learning and robotics. The development of autonomous ground vehicles is a long-studied instan-
tiation of this problem [22, 26]. Its most difficult form is navigation in densely populated urban
environments [21]. This setting is particularly challenging due to complex multi-agent dynamics at
traffic intersections; the necessity to track and respond to the motion of tens or hundreds of other
actors that may be in view at any given time; prescriptive traffic rules that necessitate recognizing
street signs, street lights, and road markings and distinguishing between multiple types of other ve-
hicles; the long tail of rare events — road construction, a child running onto the road, an accident
ahead, a rogue driver barreling on the wrong side; and the necessity to rapidly reconcile conflicting
objectives, such as applying appropriate deceleration when an absent-minded pedestrian strays onto
the road ahead but another car is rapidly approaching from behind and may rear-end if one brakes
too hard.

Research in autonomous urban driving is hindered by infrastructure costs and the logistical diffi-
culties of training and testing systems in the physical world. Instrumenting and operating even one
robotic car requires significant funds and manpower. And a single vehicle is far from sufficient for
collecting the requisite data that cover the multitude of corner cases that must be processed for both
training and validation. This is true for classic modular pipelines [21, 8] and even more so for data-
hungry deep learning techniques. Training and validation of sensorimotor control models for urban
driving in the physical world is beyond the reach of most research groups.

An alternative is to train and validate driving strategies in simulation. Simulation can democratize
research in autonomous urban driving. It is also necessary for system verification, since some sce-
narios are too dangerous to be staged in the physical world (e.g., a child running onto the road ahead
of the car). Simulation has been used for training driving models since the early days of autonomous
driving research [22]. More recently, racing simulators have been used to evaluate new approaches
to autonomous driving [28, 3]. Custom simulation setups are commonly used to train and bench-
mark robotic vision systems [2, 9, 10, 11, 20, 25, 27, 29]. And commercial games have been used
to acquire high-fidelity data for training and benchmarking visual perception systems [23, 24].

While ad-hoc use of simulation in autonomous driving research is widespread, existing simulation
platforms are limited. Open-source racing simulators such as TORCS [28] do not present the com-
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Figure 1: A street in Town 2, shown from a third-person view in four weather conditions. Clock-
wise from top left: clear day, daytime rain, daytime shortly after rain, and clear sunset. See the
supplementary video for recordings from the simulator.

plexity of urban driving: they lack pedestrians, intersections, cross traffic, traffic rules, and other
complications that distinguish urban driving from track racing. And commercial games that simu-
late urban environments at high fidelity, such as Grand Theft Auto V [23, 24], do not support detailed
benchmarking of driving policies: they have little customization and control over the environment,
limited scripting and scenario specification, severely limited sensor suite specification, no detailed
feedback upon violation of traffic rules, and other limitations due to their closed-source commercial
nature and fundamentally different objectives during their development.

In this paper, we introduce CARLA (Car Learning to Act) — an open simulator for urban driving.
CARLA has been developed from the ground up to support training, prototyping, and validation of
autonomous driving models, including both perception and control. CARLA is an open platform.
Uniquely, the content of urban environments provided with CARLA is also free. The content was
created from scratch by a dedicated team of digital artists employed for this purpose. It includes
urban layouts, a multitude of vehicle models, buildings, pedestrians, street signs, etc. The simulation
platform supports flexible setup of sensor suites and provides signals that can be used to train driving
strategies, such as GPS coordinates, speed, acceleration, and detailed data on collisions and other
infractions. A wide range of environmental conditions can be specified, including weather and time
of day. A number of such environmental conditions are illustrated in Figure 1.

We use CARLA to study the performance of three approaches to autonomous driving. The first is a
classic modular pipeline that comprises a vision-based perception module, a rule-based planner, and
a maneuver controller. The second is a deep network that maps sensory input to driving commands,
trained end-to-end via imitation learning. The third is also a deep network, trained end-to-end via
reinforcement learning. We use CARLA to stage controlled goal-directed navigation scenarios of
increasing difficulty. We manipulate the complexity of the route that must be traversed, the presence
of traffic, and the environmental conditions. The experimental results shed light on the performance
characteristics of the three approaches.

2 Simulation Engine

CARLA has been built for flexibility and realism in the rendering and physics simulation. It is
implemented as an open-source layer over Unreal Engine 4 (UE4) [7], enabling future extensions by



the community. The engine provides state-of-the-art rendering quality, realistic physics, basic NPC
logic, and an ecosystem of interoperable plugins. The engine itself is free for non-commercial use.

CARLA simulates a dynamic world and provides a simple interface between the world and an agent
that interacts with the world. To support this functionality, CARLA is designed as a server-client
system, where the server runs the simulation and renders the scene. The client API is implemented
in Python and is responsible for the interaction between the autonomous agent and the server via
sockets. The client sends commands and meta-commands to the server and receives sensor readings
in return. Commands control the vehicle and include steering, accelerating, and braking. Meta-
commands control the behavior of the server and are used for resetting the simulation, changing the
properties of the environment, and modifying the sensor suite. Environmental properties include
weather conditions, illumination, and density of cars and pedestrians. When the server is reset, the
agent is re-initialized at a new location specified by the client.

Environment. The environment is composed of 3D models of static objects such as buildings, veg-
etation, traffic signs, and infrastructure, as well as dynamic objects such as vehicles and pedestrians.
All models are carefully designed to reconcile visual quality and rendering speed: we use low-weight
geometric models and textures, but maintain visual realism by carefully crafting the materials and
making use of variable level of detail. All 3D models share a common scale, and their sizes reflect
those of real objects. At the time of writing, our asset library includes 40 different buildings, 16
animated vehicle models, and 50 animated pedestrian models.

We used these assets to build urban environments via the following steps: (a) laying out roads
and sidewalks; (b) manually placing houses, vegetation, terrain, and traffic infrastructure; and (c)
specifying locations where dynamic objects can appear (spawn). This way we have designed two
towns: Town 1 with a total of 2.9 km of drivable roads, used for training, and Town 2 with 1.4 km
of drivable roads, used for testing. The two towns are shown in the supplement.

One of the challenges in the development of CARLA was the configuration of the behavior of
non-player characters, which is important for realism. We based the non-player vehicles on the
standard UE4 vehicle model (PhysXVehicles). Kinematic parameters were adjusted for realism.
We also implemented a basic controller that governs non-player vehicle behavior: lane following,
respecting traffic lights, speed limits, and decision making at intersections. Vehicles and pedestrians
can detect and avoid each other. More advanced non-player vehicle controllers can be integrated in
the future [1].

Pedestrians navigate the streets according to a town-specific navigation map, which conveys a
location-based cost. This cost is designed to encourage pedestrians to walk along sidewalks and
marked road crossings, but allows them to cross roads at any point. Pedestrians wander around town
in accordance with this map, avoiding each other and trying to avoid vehicles. If a car collides with
a pedestrian, the pedestrian is deleted from the simulation and a new pedestrian is spawned at a
different location after a brief time interval.

To increase visual diversity, we randomize the appearance of non-player characters when they are
added to the simulation. Each pedestrian is clothed in a random outfit sampled from a pre-specified
wardrobe and is optionally equipped with one or more of the following: a smartphone, shopping
bags, a guitar case, a suitcase, a rolling bag, or an umbrella. Each vehicle is painted at random
according to a model-specific set of materials.

We have also implemented a variety of atmospheric conditions and illumination regimes. These
differ in the position and color of the sun, the intensity and color of diffuse sky radiation, as well as
ambient occlusion, atmospheric fog, cloudiness, and precipitation. Currently, the simulator supports
two lighting conditions — midday and sunset — as well as nine weather conditions, differing in cloud
cover, level of precipitation, and the presence of puddles in the streets. This results in a total of 18
illumination-weather combinations. (In what follows we refer to these as weather, for brevity.) Four
of these are illustrated in Figure 1.

Sensors. CARLA allows for flexible configuration of the agent’s sensor suite. At the time of writing,
sensors are limited to RGB cameras and to pseudo-sensors that provide ground-truth depth and
semantic segmentation. These are illustrated in Figure 2. The number of cameras and their type and
position can be specified by the client. Camera parameters include 3D location, 3D orientation with
respect to the car’s coordinate system, field of view, and depth of field. Our semantic segmentation



Figure 2: Three of the sensing modalities provided by CARLA. From left to right: normal vision
camera, ground-truth depth, and ground-truth semantic segmentation. Depth and semantic segmen-
tation are pseudo-sensors that support experiments that control for the role of perception. Additional
sensor models can be plugged in via the APL

pseudo-sensor provides 12 semantic classes: road, lane-marking, traffic sign, sidewalk, fence, pole,
wall, building, vegetation, vehicle, pedestrian, and other.

In addition to sensor and pseudo-sensor readings, CARLA provides a range of measurements associ-
ated with the state of the agent and compliance with traffic rules. Measurements of the agent’s state
include vehicle location and orientation with respect to the world coordinate system (akin to GPS
and compass), speed, acceleration vector, and accumulated impact from collisions. Measurements
concerning traffic rules include the percentage of the vehicle’s footprint that impinges on wrong-way
lanes or sidewalks, as well as states of the traffic lights and the speed limit at the current location of
the vehicle. Finally, CARLA provides access to exact locations and bounding boxes of all dynamic
objects in the environment. These signals play an important role in training and evaluating driving
policies.

3 Autonomous Driving

CARLA supports development, training, and detailed performance analysis of autonomous driving
systems. We have used CARLA to evaluate three approaches to autonomous driving. The first is
a modular pipeline that relies on dedicated subsystems for visual perception, planning, and control.
This architecture is in line with most existing autonomous driving systems [21, 8]. The second
approach is based on a deep network trained end-to-end via imitation learning [4]. This approach
represents a long line of investigation that has recently attracted renewed interest [22, 16, 4]. The
third approach is based on a deep network trained end-to-end via reinforcement learning [19].

We begin by introducing notation that is common to all methods and then proceed to describe each
in turn. Consider an agent that interacts with the environment over discrete time steps. At each
time step, the agent gets an observation o; and must produce an action a;. The action is a three-
dimensional vector that represents the steering, throttle, and brake. The observation o is a tuple of
sensory inputs. This can include high-dimensional sensory observations, such as color images and
depth maps, and lower-dimensional measurements, such as speed and GPS readings.

In addition to momentary observations, all approaches also make use of a plan provided by a high-
level topological planner. This planner takes the current position of the agent and the location of the
goal as input, and uses the A* algorithm to provide a high-level plan that the agent needs to follow
in order to reach the goal. This plan advises the agent to turn left, turn right, or keep straight at
intersections. The plan does not provide a trajectory and does not contain geometric information. It
is thus a weaker form of the plan that is given by common GPS navigation applications which guide
human drivers and autonomous vehicles in the physical world. We do not use metric maps.

3.1 Modular pipeline

Our first method is a modular pipeline that decomposes the driving task among the following sub-
systems: (i) perception, (ii) planning, and (iii) continuous control. Since no metric map is provided
as input, visual perception becomes a critical task. Local planning is completely dependent on the
scene layout estimated by the perception module.

The perception stack uses semantic segmentation to estimate lanes, road limits, and dynamic objects
and other hazards. In addition, a classification model is used to determine proximity to intersections.



The local planner uses a rule-based state machine that implements simple predefined polices tuned
for urban environments. Continuous control is performed by a PID controller that actuates the
steering, throttle, and brake. We now describe the modules in more detail.

Perception. The perception stack we describe here is built upon a semantic segmentation network
based on RefineNet [17]. The network is trained to classify each pixel in the image into one of the
following semantic categories: C = {road, sidewalk, lane marking, dynamic object,
miscellaneous static}. The network is trained on 2,500 labelled images produced in the
training environment using CARLA. The probability distributions provided by the network are used
to estimate the ego-lane based on the road area and the lane markings. The network output is also
used to compute an obstacle mask that aims to encompass pedestrians, vehicles, and other hazards.

In addition, we estimate the likelihood of being at an intersection by using a binary scene classi-
fier (intersection/no intersection) based on AlexNet [15]. This network is trained on 500 images
balanced between the two classes.

Local planner. The local planner coordinates low-level navigation by generating a set of waypoints:
near-term goal states that represent the desired position and orientation of the car in the near future.
The goal of the planner is to synthesize waypoints that keep the car on the road and prevent colli-
sions. The local planner is based on a state machine with the following states: (i) road-following,
(i) left-turn, (iii) right-turn, (iv) intersection-forward, and (v) hazard-stop. Transitions between
states are performed based on estimates provided by the perception module and on topological in-
formation provided by the global planner. Further details can be found in the supplement. The local
plan in the form of waypoints is delivered to the controller, along with the vehicle’s current pose and
speed.

Continuous controller. We use a proportional-integral-derivative (PID) controller [6] due to its
simplicity, flexibility, and relative robustness to slow response times. Each controller receives the
current pose, speed, and a list of waypoints, and actuates the steering, throttle and brake, respectively.
We target a cruise speed of 20 km/h. Controller parameters were tuned in the training town.

3.2 Imitation learning

Our second method is conditional imitation learning, a form of imitation learning that uses high-
level commands in addition to perceptual input [4]. This method utilizes a dataset of driving traces
recorded by human drivers in the training town. The dataset D = {(0;, c;,a;)} consists of tuples,
each of which contains an observation o;, a command c;, and an action a;. The commands are
provided by drivers during data collection and indicate their intentions, akin to turn signals. We use
a set of four commands: follow the lane (default), drive straight at the next intersection, turn left
at the next intersection, and turn right at the next intersection. The observations are images from a
forward-facing camera. To increase the robustness of the learned policies, we inject noise during
data collection. The dataset is used to train a deep network to predict the expert’s action a given an
observation o and a control command c. Further details are provided by Codevilla et al. [4].

We have collected around 14 hours of driving data for training. The network was trained using the
Adam optimizer [14]. To improve generalization, we performed data augmentation and dropout.
Further details are provided in the supplement.

3.3 Reinforcement learning

Our third method is deep reinforcement learning, which trains a deep network based on a reward
signal provided by the environment, with no human driving traces. We use the asynchronous advan-
tage actor-critic (A3C) algorithm [19]. This algorithm has been shown to perform well in simulated
three-dimensional environments on tasks such as racing [19] and navigation in three-dimensional
mazes [19, 13, 5]. The asynchronous nature of the method enables running multiple simulation
threads in parallel, which is important given the high sample complexity of deep reinforcement
learning.

We train A3C on goal-directed navigation. In each training episode the vehicle has to reach a goal,
guided by high-level commands from the topological planner. The episode is terminated when
the vehicle reaches the goal, when the vehicle collides with an obstacle, or when a time budget is
exhausted. The reward is a weighted sum of five terms: positively weighted speed and distance



traveled towards the goal, and negatively weighted collision damage, overlap with the sidewalk, and
overlap with the opposite lane. Further details are provided in the supplement.

The network was trained with 10 parallel actor threads, for a total of 10 million simulation steps. We
limit training to 10 million simulation steps because of computational costs imposed by the realistic
simulation. This correspond to roughly 12 days of non-stop driving at 10 frames per second. This
is considered limited training data by deep reinforcement learning standards, where it is common
to train for hundreds of millions of steps [19], corresponding to months of subjective experience.
To ensure that our setup is fair and that 10 million simulation steps are sufficient for learning to act
in a complex environment, we trained a copy of our A3C agent to navigate in a three-dimensional
maze (task D2 from Dosovitskiy and Koltun [5]). The agent reached a score of 65 out of 100 after
10 million simulation steps — a good result compared to 60 out of 100 reported by Dosovitskiy and
Koltun [5] after 50 million simulation steps for A3C with less optimized hyperparameters.

4 Experiments

We evaluate the three methods — modular pipeline (MP), imitation learning (IL), and reinforcement
learning (RL) — on four increasingly difficult driving tasks, in each of the two available towns, in
six weather conditions. Note that for each of the three approaches we use the same agent on all
four tasks and do not fine-tune separately for each scenario. The tasks are set up as goal-directed
navigation: an agent is initialized somewhere in town and has to reach a destination point. In these
experiments, the agent is allowed to ignore speed limits and traffic lights. We organize the tasks in
order of increasing difficulty as follows:

e Straight: Destination is straight ahead of the starting point, and there are no dynamic objects
in the environment. Average driving distance to the goal is 200 m in Town 1 and 100 m in
Town 2.

e One turn: Destination is one turn away from the starting point; no dynamic objects. Aver-
age driving distance to the goal is 400 m in Town 1 and 170 m in Town 2.

e Navigation: No restriction on the location of the destination point relative to the starting
point, no dynamic objects. Average driving distance to the goal is 770 m in Town 1 and
360 m in Town 2.

e Navigation with dynamic obstacles: Same as the previous task, but with dynamic objects
(cars and pedestrians).

Experiments are conducted in two towns. Town 1 is used for training, Town 2 for testing. We
consider six weather conditions for the experiments, organized in two groups. Training Weather Set
was used for training and includes clear day, clear sunset, daytime rain, and daytime after rain. Test
Weather Set was never used during training and includes cloudy daytime and soft rain at sunset.

For each combination of a task, a town, and a weather set, testing is carried out over 25 episodes. In
each episode, the objective is to reach a given goal location. An episode is considered successful if
the agent reaches the goal within a time budget. The time budget is set to the time needed to reach
the goal along the optimal path at a speed of 10 km/h. Infractions, such as driving on the sidewalk
or collisions, do not lead to termination of an episode, but are logged and reported.

5 Results

Table 1 reports the percentage of successfully completed episodes under four different conditions.
The first is the training condition: Town 1, Training Weather Set. Note that start and goal locations
are different from those used during training: only the general environment and ambient conditions
are the same. The other three experimental conditions test more aggressive generalization: to the
previously unseen Town 2 and to previously unencountered weather from the Test Weather Set.

Results presented in Table 1 suggest several general conclusions. Overall, the performance of all
methods is not perfect even on the simplest task of driving in a straight line, and the success rate
further declines for more difficult tasks. Generalization to new weather is easier than generalization
to a new town. The modular pipeline and the agent trained with imitation learning perform on
par on most tasks and conditions. Reinforcement learning underperforms relative to the other two
approaches. We now discuss these four key findings in more detail.



Training conditions New town New weather New town & weather

Task MP IL RL MP IL RL MP IL RL MP IL RL
Straight 98 95 89 92 97 74 100 98 86 50 80 68
One turn 82 89 34 61 59 12 95 90 16 50 48 20
Navigation 80 86 14 24 40 3 94 84 2 47 44 6
Nav. dynamic 77 83 7 24 38 2 89 82 2 44 42 4

Table 1: Quantitative evaluation of three autonomous driving systems on goal-directed navigation
tasks. The table reports the percentage of successfully completed episodes in each condition. Higher
is better.

Performance on the four tasks. Surprisingly, none of the methods performs perfectly even on
the simplest task of driving straight on an empty street in the training conditions. We believe the
fundamental reason for this is variability in the sensory inputs encountered by the agents. Training
conditions include four different weather conditions. The exact trajectories driven during training
are not repeated during testing. Therefore performing perfectly on this task requires robust general-
ization, which is challenging for existing deep learning methods.

On more advanced tasks the performance of all methods declines. On the most difficult task of
navigation in a populated urban environment, the two best methods — modular pipeline and imitation
learning — are below 90% success in all conditions and are below 45% in the test town. These
results clearly indicate that performance is far from saturated even in the training conditions, and
that generalization to new environments poses a serious challenge.

Generalization. We study two types of generalization: to previously unseen weather conditions and
to a previously unseen environment. Interestingly, the results are dramatically different for these
two. For the modular pipeline and for imitation learning, the performance in the “New weather”
condition is very close to performance in the training condition, and sometimes even better. How-
ever, generalization to a new town presents a challenge for all three approaches. On the two most
challenging navigation tasks, the performance of all methods falls by at least a factor of 2 when
switching to the test town. This phenomenon can be explained by the fact that the models have been
trained in multiple weather conditions, but in a single town. Training with diverse weather supports
generalization to previously unseen weather, but not to a new town, which uses different textures and
3D models. The problem can likely be ameliorated by training in diverse environments. Overall,
our results highlight the importance of generalization for learning-based approaches to sensorimotor
control.

Modular pipeline vs end-to-end learning. It is instructive to analyze the relative performance
of the modular pipeline and the imitation learning approach. These systems represent two gen-
eral approaches to designing intelligent agents, and CARLA enables a direct controlled comparison
between them.

Surprisingly, the performance of both systems is very close under most testing conditions: the per-
formance of the two methods typically differs by less than 10%. There are two notable exceptions
to this general rule. One is that the modular pipeline performs better under the “New weather” con-
dition than under the training conditions. This is due to the specific selection of training and test
weathers: the perception system happens to perform better on the test weathers. Another difference
between the two approaches is that MP underperforms on navigation in the “New town” condition
and on going straight in “New town & weather”. This is because the perception stack fails system-
atically under complex weather conditions in the context of a new environment. If the perception
stack is not able to reliably find a drivable path, the rules-based planner and the classic controller
are unable to navigate to the destination in a consistent way. The performance is therefore bimodal:
if the perception stack works, the whole system works well; otherwise it fails completely. In this
sense, MP is more fragile than the end-to-end method.

Imitation learning vs reinforcement learning. We now contrast the performance of the two end-
to-end trained systems: imitation learning and reinforcement learning. On all tasks, the agent trained
with reinforcement learning performs significantly worse than the one trained with imitation learn-
ing. This is despite the fact that RL was trained using a significantly larger amount of data: 12 days



Training conditions New town New weather New town & weather

Task MP IL RL MP IL RL MP IL RL MP IL RL
Opposite lane 10.2 334 0.18 0.45 112 0.23 16.1  57.3  0.09 0.40 078 0.21
Sidewalk 183 129 0.75 0.46 0.76 0.43 242 >57 0.72 0.43 081 048
Collision-static 100 538 0.42 0.44 0.40 0.23 16.1 4.05 0.24 045 028 0.25
Collision-car 164 3.26 0.58 0.51 059 041 202 1.86 0.85 047 044 0.37
Collision-pedestrian 189 6.35 17.8 1.40 1.88 2.55 204  11.2  20.6 1.46  1.41 299

Table 2: Average distance (in kilometers) traveled between two infractions. Higher is better.

of driving, compared to 14 hours used by imitation learning. Why does RL underperform, despite
strong results on tasks such as Atari games [18, 19] and maze navigation [19, 5]? One reason is that
RL is known to be brittle [12], and it is common to perform extensive task-specific hyperparameter
search, such as 50 trials per environment as reported by Mnih et al. [19]. When using a realistic
simulator, such extensive hyperparameter search becomes infeasible. We selected hyperparameters
based on evidence from the literature and exploratory experiments with maze navigation. Another
explanation is that urban driving is more difficult than most tasks previously addressed with RL.
For instance, compared to maze navigation, in a driving scenario the agent has to deal with vehicle
dynamics and more complex visual perception in a cluttered dynamic environment. Finally, the poor
generalization of reinforcement learning may be explained by the fact that in contrast with imitation
learning, RL has been trained without data augmentation or regularization such as dropout.

Infraction analysis. CARLA supports fine-grained analysis of driving policies. We now examine
the behavior of the three systems on the hardest task: navigation in the presence of dynamic objects.
We characterize the approaches by average distance traveled between infractions of the following
five types: driving on the opposite lane, driving on the sidewalk, colliding with other vehicles,
colliding with pedestrians, and hitting static objects. Details are provided in the supplement.

Table 2 reports the average distance (in kilometers) driven between two infractions. All approaches
perform better in the training town. For all conditions, IL strays onto the opposite lane least fre-
quently, and RL is the worst in this metric. A similar pattern is observed with regards to veering
onto the sidewalk. Surprisingly, RL collides with pedestrians least often, which could be explained
by the large negative reward incurred by such collisions. However, the reinforcement learning agent
is not successful at avoiding collisions with cars and static objects, while the modular pipeline gen-
erally performs best according to this measure.

These results highlight the susceptibility of end-to-end approaches to rare events: breaking or swerv-
ing to avoid a pedestrian is a rare occurrence during training. While CARLA can be used to increase
the frequency of such events during training to support end-to-end approaches, deeper advances
in learning algorithms and model architectures may be necessary for significant improvements in
robustness [3].

6 Conclusion

We have presented CARLA, an open simulator for autonomous driving. In addition to open-source
code and protocols, CARLA provides digital assets that were created specifically for this purpose
and can be reused freely. We leverage CARLA’s simulation engine and content to test three ap-
proaches to autonomous driving: a classic modular pipeline, a deep network trained end-to-end via
imitation learning, and a deep network trained via reinforcement learning. We challenged these
systems to navigate urban environments in the presence of other vehicles and pedestrians. CARLA
provided us with the tools to develop and train the systems and then evaluate them in controlled
scenarios. The feedback provided by the simulator enables detailed analyses that highlight partic-
ular failure modes and opportunities for future work. We hope that CARLA will enable a broad
community to actively engage in autonomous driving research. The simulator and accompanying
assets will be released open-source at http://carla.org.
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Supplementary Material

S.1 Simulator Technical Details

S.1.1 Client and Server Information Exchange

CARLA is designed as a client-server system. The server runs and renders the CARLA world. The
client provides an interface for users to interact with the simulator by controlling the agent vehicle
and certain properties of the simulation.

Commands. The agent vehicle is controlled by 5 types of commands sent via the client:

Steering: The steering wheel angle is represented by a real number between -1 and 1, where
-1 and 1 correspond to full left and full right, respectively.

Throttle: The pressure on the throttle pedal, represented as a real number between 0 and 1.
Brake: The pressure on the brake pedal, represented as a real number between 0 and 1.
Hand Brake: A boolean value indicating whether the hand brake is activated or not.
Reverse Gear: A boolean value indicating whether the reverse gear is activated or not.

Meta-commands. The client is also able to control the environment and the behavior of the server
with the following meta commands:

Number of Vehicles: An integer number of non-player vehicles to be spawned in the city.
Number of Pedestrians: An integer number of pedestrians to be spawned in the city.

Weather 1d: An index of the weather/lighting presets to use. The following are currently
supported: Clear Midday, Clear Sunset, Cloudy Midday, Cloudy Sunset, Soft Rain Midday,
Soft Rain Sunset, Medium Rain Midday, Cloudy After Rain Midday, Cloudy After Rain
Sunset, Medium Rain Sunset, Hard Rain Midday, Hard Rain Sunset, After Rain Noon,
After Rain Sunset.

Seed Vehicles/Pedestrians: A seed that controls how non-player vehicles and pedestrians
are spawned. It is possible to have the same vehicle/pedestrian behavior by setting the same
seed.

Set of Cameras: A set of cameras with specific parameters such as position, orientation,
field of view, resolution and camera type. Available camera types include an optical RGB
camera, and pseudo-cameras that provide ground-truth depth and semantic segmentation.

Measurements and sensor readings. The client receives from the server the following information
about the world and the player’s state:

Player Position: The 3D position of the player with respect to the world coordinate system.
Player Speed: The player’s linear speed in kilometers per hour.

Collision: Cumulative impact from collisions with three different types of objects: cars,
pedestrians, or static objects.

Opposite Lane Intersection: The current fraction of the player car footprint that overlaps
the opposite lane.

Sidewalk Intersection: The current fraction of the player car footprint that overlaps the
sidewalk.

Time: The current in-game time.

Player Acceleration: A 3D vector with the agent’s acceleration with respect to the world
coordinate system.

Player Orientation: A unit-length vector corresponding to the agent car orientation.
Sensor readings: The current readings from the set of camera sensors.

Non-Client-Controlled agents information: The positions, orientations and bounding boxes
for all pedestrians and cars present in the environment.

Traffic Lights information: The position and state of all traffic lights.
Speed Limit Signs information: Position and readings from all speed limit signs.
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S.1.2 Environment

CARLA provides two towns: Town 1 and Town 2. Figure S.1 shows maps of these towns and repre-
sentative views. A large variety of assets were produced for CARLA, including cars and pedestrians.
Figure S.2 demonstrates this diversity.

S.2 Driving Systems Technical Details

In this section we provide additional technical details for the autonomous driving systems we have
tested.

S.2.1 Modular Pipeline

Perception module. Training of the semantic segmentation network was performed using
Adam [14] with learning rate Ay = 106 for 300 epochs with batch size 2. The back-end ResNet is
pre-trained on ImageNet and frozen during training. No data augmentation is used.

The intersection classifier network is trained on 500 images balanced between the two classes. We
used Adam with learning rate Ao = 10~2 for 500 epochs with batch size 5. No pre-training or data
augmentation are used.

Local planning for modular pipeline. In the road-following state, the local planner uses
the ego-lane mask computed from the semantic segmentation to select points that maintain a fixed
distance with the right edge of the road. The left-turn at intersections is more complex due
to the temporary absence of lane markings, the longer distance to the target lane, and the limited
field of view of the forward-facing camera. To deal with these challenges, we first compute way-
points towards the center of the intersection with a predefined skew angle; this helps improve the
visibility of the target lane. An auxiliary camera (along with its computed semantic segmentation
map) is used to determine the shape and alignment of the vehicle with respect of the target lane.
In the second step, the waypoints are laid out to yield a smooth trajectory from the center of the
intersection to the target lane. The right—turn state uses a similar strategy. However, as turning
right is easier given the target lane proximity, the number of waypoints needed is lower and only the
forward-facing information is required. The intersection-forward state is handled similarly
to road-following. The hazard-stop mode is activated when the dynamic obstacle map presents
a cumulative probability of obstacle above a predefined threshold. In this case, the system generates
a special waypoint to request an emergency break from the controller.

S.2.2 Imitation Learning

Architecture. Table S.1 details the configuration of the network used in the imitation learning
approach [4]. The network is composed of four modules: a perception module that is focused on
processing image inputs, a measurement module that processes the speed input, a joint input module
that merges the perception and measurement information, and a control module that produces motor
commands from the joint input representation. The control module consists of 4 identical branches:
command-conditional modules for predicting the steering angle, brake, and throttle — one for each
of the four commands. One of the four command-conditional modules is selected based on the input
command. The perception module is implemented by a convolutional network that takes a 200 x 88
image as input and outputs a 512-dimensional vector. All other modules are implemented by fully-
connected networks. The measurement module takes as input a measurement vector and outputs a
128-dimensional vector.

Training details. We trained all networks with Adam [14]. We used mini-batches of 120 samples.
We balanced the mini-batches, using the same number of samples for each command. Our starting
learning rate was 0.0002 and it was multiplied by 0.5 every 50,000 mini-batch iterations. We trained
for 294,000 iterations in total. Momentum parameters were set to 81 = 0.7 and 85 = 0.85. We used
no weight decay, but performed 50% dropout after hidden fully-connected layers and 20% dropout
on convolutional layers. To further reduce overfitting, we performed extensive data augmentation by
adding Gaussian blur, additive Gaussian noise, pixel dropout, additive and multiplicative brightness
variation, contrast variation, and saturation variation. Before feeding a raw 800 x 600 image to
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Town 2 Map

Figure S.1: The two CARLA towns. Left: views and a map of CARLA Town 1. Right: views and
a map of CARLA Town 2.
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Figure S.2: Diversity of cars and pedestrians currently available in CARLA.
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| module | inputdimension channels kernel stride |

200 x 88 x 3 32 5 2

98 x 48 x 32 32 3 1

96 x 46 x 32 64 3 2

47 x 22 x 64 64 3 1

Perception 45 x 20 x 64 128 3 2
22 x 9 x 128 128 3 1

20 x 7 x 128 256 3 2

9 x 3 x 256 256 3 1

7-1-256 512 — —

512 512 — —

1 128 — —

Measurement 128 128 — —
128 128 — —

Joint input 512 + 128 512 — —
512 256 — —

Control 256 256 — —
256 1 — —

Table S.1: Exact configurations of all network modules for the imitation learning approach.

the network, we cropped 171 pixels at the top and 45 at the bottom, and then resized the resulting
800 x 384 image to a resolution of 200 x 88.

Training data. The expert training data was collected from two sources: an automated agent and
human driver data. The automated agent has access to privileged information such as locations of
dynamic objects, ego-lane, states of traffic lights. 80% of the demonstrations were provided by the
automated agent and 20% by a human driver.

In order to improve the robustness of the learned policy, we injected noise into the expert’s steering
during training data collection. Namely, at random points in time we added a perturbation to the
steering angle provided by the driver. The perturbation is a triangular impulse: it increases linearly,
reaches a maximal value, and then linearly declines. This simulates gradual drift from the desired
trajectory, similar to what might happen with a poorly trained controller. The triangular impulse is
parametrized by its starting time ¢, duration 7 € R*, sign 0 € {—1, +1}, and intensity v € RT:

Sperturs(t) = oy max (O, (1 — M — 1‘)) . (D

Every second of driving we started a perturbation with probability pperturs. We used pperturs = 0.1
in our experiments. The sign of each perturbation was sampled at random, the duration was sampled
uniformly from 0.5 to 2 seconds, and intensity was fixed to 0.15.

S.2.3 Reinforcement Learning

We base our A3C agent on the network architecture proposed by Mnih et al. [18]. The input to
the network consists of two most recent images observed by the agent, resized to 84 x 84 pixels,
as well as a vector of measurements. The measurement vector includes the current speed of the
car, distance to goal, damage from collisions, and the current high-level command provided by
the topological planner, in one-hot encoding. The inputs are processed by two separate modules:
images by a convolutional module, measurements by a fully-connected network. The outputs of the
two modules are concatenated and further processed jointly. We trained A3C with 10 parallel actor
threads, for a total of 10 million environment steps. We used 20-step rollouts, following Jaderberg et
al. [13], with initial learning rate 0.0007 and entropy regularization 0.01. Learning rate was linearly
decreased to zero over the course of training.

The reward is a weighted sum of five terms: distance traveled towards the goal d in km, speed v in
km/h, collision damage c, intersection with the sidewalk s (between 0 and 1), and intersection with
the opposite lane o (between 0 and 1).

Ty = 1000 (dt—l _df)+005 (Ut—’Ut_l)—0.0000Q (Ct—Ct_l)—Q (St—St_l)—z (Ot_ot—l)- (2)
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S.3 Experimental Setup

S.3.1 Types of Infractions

We characterize the approaches by average distance travelled between infractions of the following
five types:

Opposite lane: More than 30% of the car’s footprint is over wrong-way lanes.

Sidewalk: More than 30% of the car’s footprint is over the sidewalk.

Collision with static object: Car makes contact with a static object, such as pole or building.
Collision with car: Car makes contact with another car.

Collision with pedestrian: Car makes contact with a pedestrian.

The duration of each violation is limited to 2 seconds, so if the car remains on the sidewalk for 10
seconds, this will be counted as 5 violations, not one.

16



	Introduction
	Simulation Engine
	Autonomous Driving
	Modular pipeline
	Imitation learning
	Reinforcement learning
	Experiments

	Results
	Conclusion

	Simulator Technical Details
	Client and Server Information Exchange
	Environment


	Driving Systems Technical Details
	Modular Pipeline
	Imitation Learning
	Reinforcement Learning

	Experimental Setup
	Types of Infractions


