
A Likelihood Based Approach to Distribution Regression Using Conditional
Deep Generative Models

Shivam Kumar 1 Yun Yang 2 Lizhen Lin 2

Abstract

In this work, we explore the theoretical proper-
ties of conditional deep generative models un-
der the statistical framework of distribution re-
gression where the response variable lies in a
high-dimensional ambient space but concentrates
around a potentially lower-dimensional manifold.
More specifically, we study the large-sample prop-
erties of a likelihood-based approach for estimat-
ing these models. Our results lead to the conver-
gence rate of a sieve maximum likelihood estima-
tor (MLE) for estimating the conditional distribu-
tion (and its devolved counterpart) of the response
given predictors in the Hellinger (Wasserstein)
metric. Our rates depend solely on the intrin-
sic dimension and smoothness of the true con-
ditional distribution. These findings provide an
explanation of why conditional deep generative
models can circumvent the curse of dimensional-
ity from the perspective of statistical foundations
and demonstrate that they can learn a broader
class of nearly singular conditional distributions.
Our analysis also emphasizes the importance of
introducing a small noise perturbation to the data
when they are supported sufficiently close to a
manifold. Finally, in our numerical studies, we
demonstrate the effective implementation of the
proposed approach using both synthetic and real-
world datasets, which also provide complemen-
tary validation to our theoretical findings.

1Department of Applied and Computational Mathematics
and Statistics, University of Notre Dame, Notre Dame, USA
2Department of Mathematics, University of Maryland, Col-
lege Park, USA. Correspondence to: Shivam Kumar <sku-
mar9@nd.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
Conditional distribution estimation provides a principled
framework for characterizing the dependence relationship
between a response variable Y and predictors X , with the
primary goal of estimating the distribution of Y conditional
on X through learning the (conditional) data-generating
process. Conditional distribution estimation allows one to
regress the entire distribution of Y on X , which provides
much richer information than the traditional mean regres-
sion and plays a central role in various important areas
ranging from causal inference (Pearl, 2009; Spirtes, 2010),
graphical models (Jordan, 1999; Koller & Friedman, 2009),
representation learning (Bengio et al., 2013), dimension re-
duction (Carreira-Perpinán, 1997; Van Der Maaten et al.,
2009), to model selection (Claeskens & Hjort, 2008; Ando,
2010). Their applications span across diverse domains such
as forecasting (Gneiting & Katzfuss, 2014), biology (Kr-
ishnaswamy et al., 2014), energy (Jeon & Taylor, 2012),
astronomy (Zhao et al., 2021), and industrial engineering
(Simar & Wilson, 2015), among others.

There is a rich literature in statistics and machine learning
on conditional distribution estimation including both fre-
quentist and Bayesian methods (Hall & Yao, 2005; Norets
& Pati, 2017). Traditional methods, however, suffer from
the curse of dimensionality and often struggle to adapt to
the intricacies of modern data types such as the ones with
lower-dimensional manifold structures.

Recent methodologies that leverage deep generative mod-
els have demonstrated significant advancements in complex
data generation. Instead of explicitly modeling the data
distribution, these approaches implicitly estimate it through
learning the corresponding data sampling scheme. Com-
monly, these implicit distribution estimation approaches can
be broadly categorized into three types. The first one is
likelihood-based with notable examples including Kingma
& Welling (2013), Rezende et al. (2014), Burda et al. (2015),
and Song et al. (2021) . The second approach, based on ad-
versarial learning, matches the empirical distribution of the
data with a distribution estimator using an adversarial loss.
Representative examples include Goodfellow et al. (2014),
Arjovsky et al. (2017), and Mroueh et al. (2017), among
others. The third approach, which is more recent, reduces
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the problem of distribution estimation to score estimation
through certain time-discrete or continuous dynamical sys-
tems. The idea of score matching was first proposed in
Hyvärinen & Dayan (2005) and Vincent (2011). More re-
cently, score-based diffusion models have achieved state-of-
the-art performance in many applications (Sohl-Dickstein
et al., 2015; Nichol & Dhariwal, 2021; Song et al., 2020;
Lipman et al., 2022; Brehmer & Cranmer, 2020; Han et al.,
2022).

On the theoretical front, recent works such as Liu et al.
(2021), Chae et al. (2023), Altekrüger et al. (2023), Stanczuk
et al. (2024), Pidstrigach (2022) , and Tang & Yang (2023)
demonstrate that distribution estimation based on deep gen-
erative models can adapt to the intrinsic geometry of the data,
with convergence rates dependent on the intrinsic dimen-
sion of the data, thus potentially circumventing the curse of
dimensionality. Such advancement has naturally motivated
us to employ and investigate conditional deep generative
model for conditional distribution estimation. Specifically,
we explore and study the theoretical properties of a new
likelihood-based approach to conditional sampling using
deep generative models for data potentially residing on a
low-dimensional manifold corrupted by full-dimensional
noise. More concretely, we consider the following condi-
tional distributional regression problem:

Y |X = V |X + ε, (1)

where X serves as a predictor in Rp, V |X represents the
(uncorrupted) underlying response supported on a mani-
fold of dimension d ≤ D, Y |X represents the observed
response, and ε ∼ N(0, σ2

∗ID) denotes the noise residing in
the ambient space RD. Our deep generative model focuses
on the conditional distribution V |X by using a (conditional)
generator of the form G∗(Z,X), where G∗ is a function
of a random seed Z and the covariate information X . This
approach is termed ‘conditional deep generative’ because
the conditional generator is modeled using deep neural net-
works (DNNs). Observe that, when d < D, the distribution
of G∗(Z,X) is supported on a lower-dimensional manifold,
making it singular with respect to the Lebesgue measure in
the D-dimensional ambient space. We study the statistical
convergence rate of sieve MLEs in the conditional deep
general model setup and investigate its dependence on the
intrinsic dimension, structure properties of the model as
well as the noise level of the data.

1.1. List of contributions

We briefly summarise the main contributions made in this
paper.

• To the best of our knowledge, our study is the first at-
tempt to explore the likelihood-based approach for distri-
butional regression using a conditional deep generative

model, considering full-dimensional noise and the poten-
tial presence of singular underlying support. We provide
a solid statistical foundation for the approach by prov-
ing the near-optimal convergence rates for this proposed
estimator.

• We derive the convergence rates for the conditional den-
sity estimator of the corrupted data Y with respect to the
Hellinger distance and specialize the obtained rate for two
popular deep neural network classes: the sparse and fully
connected network classes. Furthermore, we characterize
the Wasserstein convergence rates for the induced intrinsic
conditional distribution estimator on the manifold (i.e., a
deconvolution problem). Both rates turn out to depend
only on the intrinsic dimension and smoothness of the
true conditional distribution.

• Our analysis in Corollary 2 suggests the need to inject a
small amount of noise into the data when they are suffi-
ciently close to the manifold. Intuitively, this observation
validates the underlying structural challenges in related
manifold estimation problems with noisy data, as outlined
by Genovese et al. (2012).

• We show that the class of learnable (conditional) distribu-
tions of our method is broad. It encompasses not only the
smooth distributions class, but also extends to the general
(nearly) singular distributions with manifold structures,
with minimal assumptions.

1.2. Other relevant literature

The problem of non-parametric conditional density estima-
tion has been extensively explored in statistical literature.
Hall & Yao (2005), Bott & Kohler (2017), and Bilodeau
et al. (2023) directly tackle this problem with smoothing
and local polynomial-based methods. Fan & Yim (2004)
and Efromovich (2007) explore suitably transformed regres-
sion problems to address this challenge. Other notable ap-
proaches include the nearest neighbor method (Izbicki et al.,
2020; Bhattacharya & Gangopadhyay, 1990), basis function
expansion (Sugiyama et al., 2010; Izbicki & Lee, 2016),
tree-based boosting (Pospisil & Lee, 2018; Gao & Hastie,
2022), and Bayesian optimal transport flow Chemseddine
et al. (2024) among others.

In the context of conditional generation, we highlight re-
cent work by Zhou et al. (2022) and Liu et al. (2021). In
Zhou et al. (2022), GANs were employed to investigate
conditional density estimation. While this work offers a
consistent estimator, it lacks statistical rates or convergence
analysis, and its focus is on a low-dimensional setup. In Liu
et al. (2021), conditional density estimation supported on
a manifold using Wasserstein-GANs was examined. How-
ever, their setup does not account for smoothness across
either covariates or responses, nor do they address how deep
generative models specifically tackle the challenges of high-
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dimensionality. Moreover, their assumption that the data lies
exactly on the manifold can be restrictive. Our study shares
some commonalities with the work of Chae et al. (2023),
as both investigate sieve maximum likelihood estimators
(MLEs). However, the fundamental problems addressed
and the methodologies employed differ significantly, and
our work involves technical challenges that span multiple
scales. While Chae et al. (2023) concentrates exclusively on
unconditional distribution estimation, our theoretical analy-
sis necessitates much more nuanced techniques due to the
conditional nature of our setup. This shift is noteworthy be-
cause it demands a more refined analysis of entropy bounds,
considering two potential sources of smoothness - across
the regressor and the response variables. Furthermore, our
setting accommodates the possibility of an infinite number
of x values, which gives rise to a dynamic manifold struc-
ture, further compounding the intricacy of the problem at
hand.

2. Conditional deep generative models for
distribution regression

We consider the following probabilistic conditional genera-
tive model, where for a given predictor value x, the response
Y is generated by

Y = G∗(Z, x) + ε, x ∈ X ⊂ Rp. (2)

Here, G∗(·, x) : Z → Mx is the unknown generator func-
tion, Z a latent variable with a known distribution PZ and
support Z ⊂ Rd independent of the predictor X . The ex-
istence of the generator G∗ directly follows from Noise
Outsourcing Lemma 3. This lemma enables the transfer
of randomness into the covariate and an orthogonal (inde-
pendent) component through a generating function for any
regression response. We denote M : = ∪x∈XMx ⊂ RD

as the support of the image of G∗(Z,X ) such as a (union
of) d-dimensional manifold. We model G∗(·, ·) : Z × X ⊂
Rd × Rp → Y ⊂ RD using a deep neural network, leading
to a conditional deep generative model for (2).

In the next section, we present a more general result in terms
of the entropy bound (variance) for the true function class
of G∗ and the approximability (bias) of the search class. We
then proceed to a simplified understanding in the context of
conditional deep generative models in subsequent sections.

2.1. Convergence rates of the Sieve MLE

In light of equation (2), it is evident that the distribution of
Y |X = x results from the convolution of two distinct dis-
tributions: the pushforward of Z through G∗ with X = x,
and ε following an independent D-dimensional normal dis-
tribution. The density corresponding to the true distribution

P∗(·|X = x) can thus be expressed as:

p∗(y|x) =
∫

ϕσ∗(y −G∗(z, x)) dPZ ,

where ϕσ∗ is the density of N(0, σ2
∗Id). We define the class

of conditional distributions P as

P =
{
Pg,σ : g(·, x) ∈ F , σ ∈ [σmin, σmax]

}
, (3)

where Pg,σ represents the distribution with density pg,σ =∫
ϕσ(y − g(z, x))dPZ . In this notation, P∗ = PG∗,σ∗ and

p∗ = pG∗,σ∗ . The elements of P comprise two components:
g originating from the underlying function class F , and σ,
which characterizes the noise component. This class enables
us to obtain separate estimates for G∗ and σ∗, furnishing
us with both the canonical estimator for the distribution of
Y |X = x and enhancing our comprehension of the singular
distribution of G∗(Z, x), supported on a low-dimensional
manifold.

Given a data set {(Xi, Yi)}ni=1, the log-likelihood function
is defined as ℓn(g, σ) = n−1

∑n
i=1 log pg,σ(Yi|Xi). For a

sequence ηn ↓ 0 as n → ∞, a sieve maximum likelihood
estimator (MLE) (Geman & Hwang, 1982) is any estimator
(ĝ, σ̂) ∈ F × [σmin, σmax] that satisfies

ℓn (ĝ, σ̂) ≥ sup
σ∈[σmin,σmax]

g∈F

ℓn(g, σ)− ηn. (4)

Here ĝ ∈ F and σ̂ ∈ [σmin, σmax] are the estimators, and ηn
represents the optimization error. The dependence of ĝ and
σ̂ on n illustrates the sieve’s role in approximating the true
distribution when optimization is performed over the class
P . The estimated density p̂ = pĝ,σ̂ provides an estimator
for p∗(·|·), and Qĝ(·|X = x) serve as the estimator for
Q∗(·|X = x).

In this section, we formulate the main results, which provide
convergence rates in the Hellinger distance for our sieve
MLE estimator. The convergence rate was derived for any
search functional class F , with a brief emphasis on their
entropy and approximation capabilities.

Assumption 1 (True distribution). Denote µ∗
X(x) as the

distribution of X . We denote the true conditional densities
as p∗ = {p∗(·|x), x ∈ Rp}. It is natural to assume that the
data is generated from p∗ from model (2) with some true
generator G∗ and σ∗. We denote Q∗(·|X = x) (or QG∗ ) as
the distribution of G∗(Z, x) for some distribution PZ .

A function g is said to have a composite structure (Schmidt-
Hieber, 2020; Kohler & Langer, 2021) if it takes the form
as

g = fq ◦ fq−1 ◦ · · · ◦ f1 (5)

where fj : (aj , bj)
dj → (aj+1, bj+1)

dj+1 , d0 = p + d

and dq+1 = D. Denote fj = (f
(1)
j , . . . , f

(dj+1)
j ) as
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the components of fj , let tj be the maximal number
of variables on which each of the f

(i)
j depends and let

f
(i)
j ∈ Hβj ((aj , bj)

tj ,K) (see Section 2.4.1 for the def-
inition of the Hölder class Hβ). A composite structure
is very general which includes smooth functions and ad-
ditive structure as special cases. In addition, in the next
section, we show the class of conditional distributions
{QG∗(·|X = x) : x ∈ Rp, G∗ ∈ G} induced by the com-
posite structure is broad.

Assumption 2 (composite structure). Denote G =
G (q,d, t,β,K) as a collection of functions of form (5),
where d = (d0, . . . , dq+1), t = (t0, . . . , tq+1), and β =
(β0, . . . , βq+1). We regard (q,d, t,β,K) as constants in
our setup, and assume that the true generator G∗(·, x) as
in (2) belongs to G, for all x ∈ X . Additionally, we assume
∥|G∗|∞∥∞ ≤ K.

β̃j = βj

q∏
l=j+1

(βl ∧ 1) , j∗ = argmax
j∈{0,...,q}

tj

β̃j

,

β∗ = β̃j∗ , t∗ = tj∗ .

The quantities t∗ and β∗ are called intrinsic dimension and
smoothness of G∗ (or of G).

Remark 1 (Strength of the Composite Structure). The ex-
pression (aj , bj) ⊂ [−K,K] can be intuitively visualized
by setting aj = −K and bj = K. To illustrate the impact
of intrinsic dimensionality and smoothness, consider a func-
tion f : Rd → R defined as f(x) = f1(x1) + . . .+ fd(xd),
where x = (x1, . . . , xd) and fj ∈ Hβ((−K,K),K) for
j = 1, . . . , d. While f ∈ Hβ((−K,K)d,K), its intrin-
sic dimension is t∗ = 1 with intrinsic smoothness β. This
mitigates the curse of dimensionality.

Example (One-dimensional β-Hölder Generator). Let U ∼
Unif(0, 1) and define G(u) = u1/β , u ∈ [0, 1]. Then X =
G(U) has density

d

dx
P
(
U ≤ xβ

)
= β xβ−1, x ∈ [0, 1],

which belongs to the β-Hölder class on [0, 1]. In our nota-
tion one checks t∗ = 1, β∗ = β, and setting β = 1 recovers
Unif(0, 1) case and thus provides a fully explicit illustration
of Assumption 2.

Assumption 3. Let M∗ be the closure of G∗(Z,X ). We
assume that M∗ does not have an interior point, and
reach(M∗) = r∗ with r∗ > 0.

Assumption 2 permits low intrinsic dimensionality within
the learnable function class. Assumption 3 imposes the
strong identifiability condition necessary for efficient esti-
mation, as seen in manifold literature (Aamari & Levrard,
2019; Tang & Yang, 2023).

Given two conditional densities p1(·|x), p2(·|x) and µ∗
X

denoting the density of X , we use integrated distances
for a measure of evaluation. With a slight abuse of no-
tation, we denote d1(p1, p2) = EX [d1(p1(·|x), p2(·|x))]
and dH(p1, p2) = EX [dH(p1(·|x), p2(·|x)], where d1
and dH represent the L1 and the Hellinger distance
as d1(p1(·|x), p2(·|x)) =

∫
|p1(y|x)− p2(y|x)| dy and

dH(p1, p2) = (
∫ ∫

[
√
p1(y|x)−

√
p2(y|x)]2 dy)1/2 respec-

tively. Denote N (δ,F , d) and N[](δ,F , d) as covering and
bracketing numbers of the function class F with respect to
the (pseudo)-metric d.

We first present Lemma 1, which establishes the bracketing
entropy of the functional class P with respect to Hellinger
distance in terms of the covering entropy of the search class
F . This enables us to transfer the entropy control of the
individual components F and σ to the entire P .

Lemma 1. Let F be class of functions from Z × X to
RD such that ∥|g|∞∥∞ ≤ K for every g ∈ F . Let
P = {Pg,σ : g ∈ F , σ ∈ [σmin, σmax]} with σmin ≤ 1.
Then, there exist constants c = c(σmax,K,D) and C =
C(σmax,K,D) and δ∗ = δ∗(D) such that for every δ ∈
(0, δ∗],

logN[](δ,P, dH) ≤ logN (cσD+3
min δ4,F , ∥| · |∞∥∞) + log

(
C

σD+2
min δ4

)
, (6)

The proof of Lemma 1 is provided in the Appendix E. The-
orem 1 presents the convergence rate of the sieve-MLE to
the true distribution (see Appendix F for the proof).

Theorem 1. Let F ,P, σmin and δ∗ = δ∗(D) be
given as in Lemma 1, and n ≥ 1. Suppose that
logN (δ,F , ∥| · |∞∥∞) ≤ ξ

{
A+ 1 ∨ log δ−1

}
for every

δ ∈ (0, δ∗] and some A, ξ > 0. Suppose that there
exists a G ∈ F and some δapprox ∈ (0, δ∗] such that
∥|G−G∗|∞∥∞ ≤ δapprox. Furthermore, suppose that s ≥
1, A ≥ 1, σmin ≤ 1, δapprox ≤ 1 and σ∗ ∈ [σmin, σmax].
Then

P∗ (dH(p̂, p∗) > ε∗n) ≤ 5e−C1nε
∗2
n + C2n

−1 (7)

provided that ηn ≤ nε∗2n /6 and ε∗n ≤
√
2δ∗, where

ε∗n = C3

(√
ξ {A+ log (n/σmin)}

n
∨ δapprox

σ∗

)
, (8)

C1 is an absolute constant, C2 = C2(D) and C3 =
C3(D,K, σmax).

The outlined rate has two components: the statistical com-
ponent, expressed as an upper bound to the metric entropy
of F , and the approximation component, denoted as δapprox.
The statistical error is quantified by measuring the com-
plexity of the class P , as formulated in Lemma 1. The
approximation error is assessed through the ability of the
provided function class to approximate the true distribution.

4



A Likelihood Based Approach to Distribution Regression Using Conditional Deep Generative Models

2.2. Neural network class

We model G∗(·, ·) using a deep neural network. More specif-
ically, we parameterize the true generator G∗ with a deep
neural neural architecture (L, r) of the form

f : Rr0 → RrL+1 , z 7→ f(z) = WLρvLWL−1ρvL− . . .W1ρv1W0z, (9)

where Wj ∈ Rrj+1×rj , vj ∈ Rrj , ρvj (·) = ReLU(· − vj)
and r = (r0, . . . , rL+1) ∈ NL+2. The constant L is the
number of hidden layers and r = (r0, . . . , rL+1) represents
the number of nodes in each layer.

We define the sparse neural architecture class
Fs(L, r, s, B,K) as set of functions of form (9) sat-
isfying

max0≤j≤L |Wj |∞ ∨ |vj |∞ ≤ B,
∑L

j=1 |Wj |0 + |vj |0 ≤ s, ∥|f |∞∥∞ ≤ K,

with r0 = d + p and rL+1 = D, where | · |0 and | · |∞
stand for the L0 and L∞ vector norms, and ∥|f |∞∥∞ =
supx∈Rr0 maxi=1,...,D |fi(x)|, s is sparsity parameter and
K is functional bound.

The fully connected neural architecture class Fc =
Fc (L, r, B,K) is set of functions of form (9) satisfying

max
0≤j≤L

|Wj |∞ ∨ |vj |∞ ≤ B, ∥|f |∞∥∞ ≤ K.

Both classes Fs and Fc for the deep generator will be con-
sidered in our analysis of the resulting sieve maximum like-
lihood estimator. We denote the corresponding sieve-MLE
as p̂s and p̂c, respectively. When we use r instead of r, it
refers to r1 = . . . = rL = r along with r0 = d + p and
rL+1 = D.

We can simplify and visualize the result stated in Theorem 1
in both cases: when the sieve-MLE is obtained with opti-
mization performed over the class Fs and Fc. To fulfill the
conditions stated in the Theorem 1, we need to establish
entropy bounds for these function classes, Fs and Fc, and
gain insight into their approximation capabilities for the
composite structure class described in Assumption 2.

For the sparse neural architecture class Fs(L, r, s,K), the
entropy, formally stated as Proposition 1 in Ohn & Kim
(2019), is bounded as follows.

logN (δ,Fs, ∥| · |∞∥∞) ≲ sL {log(BLr) + log δ−1}.
(10)

From an entropy perspective, the fully connected neural
architecture class Fc(L, r,B,K) can be viewed as Fs with-
out any sparsity constraint, meaning s ≍ r2L. Therefore,
we have

logN (δ,Fc, ∥| · |∞∥∞) ≲ L2r2{log(BLr) + log δ−1}.
(11)

The approximation properties of the sparse and fully con-
nected network are provided in Lemma 4.1 and Lemma 4.2
of the Appendix K, respectively.

Having established the essential components for Fc in (11)
and Lemma 4.2, and for Fs in (10) and Lemma 4.1, re-
spectively, we can simplify Theorem 1 and state Corollary
1.

Corollary 1. Suppose that Assumptions 1 and 2 hold,
and σ∗ ∈ [σmin, σmax] with σmin ≤ 1 and σmax < ∞.
Moreover, assume that the noise σ∗ decays at rate α, i.e.,
σ∗ ≍ n−α, and σmin = n−γ for some γ ≥ α ≥ 0. Then,
for every δapprox ∈ [0, 1], the following holds:

1. Let Fs = Fs (L, r, s, B,K) with δ∗ = δ∗(D) be as
given in Lemma 1, and L ≍ log δ−1

approx, r ≍ δ
−t∗/β∗
approx ,

s ≍ δ
−t∗/β∗
approx log δ−1

approx, B ≍ δ−1
approx. Then the

sieve MLE p̂s satisfies (7) with ε∗n as in (8) with
ξ = δ

−t∗/β∗
approx log2(δ−1

approx) and A = log2(δ−1
approx)

provided that ηn ≤ nε∗2n /6 and ε∗n ≤
√
2δ∗.

2. Let Fc = Fc (L, r,B,K) with δ∗ = δ∗(D) be as
given in Lemma 1, and L ≍ log δ−1

approx, r ≍ δ
−t∗/2β∗
approx ,

B ≍ δ−1
approx. Then the sieve MLE p̂c satisfies (7)

with ε∗n as in (8) with ξ = δ
−t∗/β∗
approx log2(δ−1

approx) and
A = log2(δ−1

approx) provided that ηn ≤ nε∗2n /6 and
ε∗n ≤

√
2δ∗.

In particular, choosing δapprox :=
(
σ2
∗/n

)β∗/(2β∗+t∗) mini-
mizes ε∗n ≍

√
ξ {A+ log (n/σmin)} /n ∨ δapprox/σ∗, and

gives
ε∗n ≍ n− β∗−t∗α

2β∗+t∗ log2(n). (12)

Remark 2. The convergence rate in (12) illustrates the influ-
ence of intrinsic dimensionality, smoothness, and noise level
on the estimation process. Note that α is upper bounded
as ε∗n ≤

√
2δ∗(D). For large values of α, estimation of

G∗ is inherent difficult as the data is very close on the sin-
gular support. To address this, a small noise injection, as
described in Corollary 2, can smooth the estimation and
ensure consistency.

The proof of Corollary 1 is provided in Appendix G. For
the composite structural class G, the effective smoothness
is denoted by β∗, and the dimension is t∗. This effectively
mitigates the curse of dimensionality. The convergence rate
at (12) also recovers the optimal rate when q = 1 and α = 0,
and there is a small lag of polynomial factor t∗α/(2β∗+ t∗)
when α > 0 (Norets & Pati, 2017). This lag arises due
to the presence of full-dimensional noise in the response
observation Y . Note that when the noise is small, that is α is
large, achieving a sharp estimation of p∗ requires an equally
accurate estimate of G∗. This can be quite challenging.
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Our practically tractable approach attempts to address this
without initially estimating the singular support.

2.3. Wasserstein convergence of the intrinsic
(conditional) distributions

Using Wasserstein distance as a metric for distributions
Qg is meaningful due to their singularity in ambient space:
when d < D, the conditional distribution is singular with
respect to the Lebesgue measure on RD.

The integrated Wasserstein distance, for r ≥ 1, between
P1(·|X) and P2(·|X) is defined as

Wr (P1, P2) = EX

[
infβ∈Γ(P1,P2)

(
E(U1,U2)∼β

[
|U1 − U2|rr

])1/r]
,

where Γ(P1, P2) is the set of all couplings between
P1 and P2 that preserves the two marginals. The
(dual) representation of this norm, Wr(P1, P2) =

EX

[
sup∥f∥Lipr≤1 {EP1

[f ]− EP2
[f ] }

]
(Villani et al.,

2009) with ∥ · ∥Lipr
denoting the r-Lipschitz norm, is par-

ticularly useful in our proofs.

Theorem 2. Suppose that Assumption 3 holds. If
dH(pg,σ, p∗) ≤ ε holds for some ε ∈ [0, 1] and some
pg,σ ∈ P , then we have

W1(Qg, Q∗) ≤ C
(
ε+ σ∗

√
log ε−1

)
,

where C = C(D,K, r∗) depends only on (D,K, r∗).

The proof of Theorem 2 is provided in Appendix H. Theo-
rem 2 guarantees that W1

(
Q̂ĝ, Q∗

)
≲log dH(p̂, p∗) + σ∗,

where ≲log represents less than or equal up to a logarith-
mic factor of n. Following from Corollary 1, the Wasser-
stein convergence rate, n−(β∗−t∗α)/(2β∗+t∗) log2(n) ∨
σ∗ log

1/2(n), comprises two components: the convergence
rate in the Hellinger distance and the standard deviation of
the true noise sequence. It is noteworthy that the first ex-
pression is influenced by the variance of noise by the factor
α. When α is very small, indicating that the data Yj lies
very close to the manifold, the second expression n−α in
the overall rate dominates. Intuitively, this phenomenon
arises from the underlying structural challenges in related
manifold estimation problems with noisy data, as discussed
by Genovese et al. (2012). To address this issue, we pro-
pose a data perturbation strategy by transforming the data
{(Yj , Xj)}nj=1 into {(Ỹj , Xj)}nj=1, where Ỹj = Yj+ϵj and
ϵj ∼ N

(
0D, n−β∗/(β∗+t∗) ID

)
. The resulting estimation

error bound is summarized below, whose proof is provided
in Appendix I.

Corollary 2. Suppose that Assumption 1, 2, and 3 hold,
and σ∗ ∈ [σmin, σmax] with σ∗ = n−α and σmin = n−γ

for some 0 ≤ α ≤ γ. Then for each of the network architec-
ture classes (sparse and fully connected) with the network

parameters specified in Corollary 1, the sieve MLE p̂per and
Q̂per based on the perturbed data {(Ỹj , Xj)}nj=1 satisfies

P∗

[
W1

(
Q̂per, Q∗

)
≥
(
ε∗n + σ∗

√
log ((ε∗n)

−1)
)]

≲ 5e−C1nε
∗
n
2

+ C2

n

where ε∗n can be chosen such that

ε∗n + σ∗
√

log((ε∗n)
−1) ≍

{
n− β∗−t∗α

2β∗+t∗ log2(n), if α < β∗/{2(β∗ + t∗)},
n− β∗

2(β∗+t∗) log2(n), otherwise.

(13)

2.4. Characterization of the learnable distribution class

Section 2.2 focuses on the true generator G∗ within the class
of functions with composite structures. In this subsection,
we show that such a conditional distribution class achieved
by the push-forward map G∗ is broad and includes many
existing distribution classes for Q∗ as special cases.

2.4.1. SMOOTH CONDITIONAL DENSITY

For β > 0, let Hβ(D,M) be the class of all β-Hölder func-
tions f : D ⊂ Rd → R with β-Hölder norm bounded by
M > 0. Let Hβ(D) = ∪M>0Hβ(D,M). See Appendix B
for their formal definitions.

Lemma 2. Suppose that (i) Z × X and Y are uniformly
convex and (ii) pZ ∈ HβZ (Z), µ∗

X ∈ HβX (X ) and q∗ ∈
HβQ(Y) for some βZ , βX , βQ > 0 and are bounded above
and below. Then, there exists a map g(·, ·) : Z × X → Y
such that Q∗(·|·) = Qg and g ∈ Hβmin+1(Z × X ), where
βmin = min{βZ , βX , βQ}.

Lemma 2 establishes that the learnable distribution class in-
cludes Hölder-smooth functions with smoothness parameter
βmin and intrinsic dimension d. As a result, following Corol-
lary 1, the convergence rate for density estimation is given
by ε∗n ≍ n−(βmin+1−dα)/(2βmin+2+d). A push-forward map
is a transport map between two distributions. The well-
established regularity theory of transport map in optimal
transport is directly applicable here [see Villani et al. (2009)
and Villani (2021)]. The proof of Lemma 2 is based on The-
orem 12.50 of (Villani et al., 2009) and Caffarelli (1996),
which establishes the regularity of this transport map and its
existence follows from Brenier (1991). When pZ is selected
as a well-behaved parametric distribution, the regularity of
the transport map is determined by the smoothness of both
µ∗
X and Q∗. For a more detailed discussion on this, please

refer to Appendix C.

2.4.2. A BROADER CONDITIONAL DISTRIBUTION CLASS
WITH SMOOTHNESS DISPARITY

In Appendix L, we present a novel approximation result
for the function class exhibiting smoothness disparity in
Theorem 5. This new result facilitates the study of theo-
retical properties of estimators when the generator G∗ ∈
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HβZ ,βX

d,p (Z,X ,K). Note that such a function class defined
in (16) in Appendix L is much broader compared to the
smoothness class in Section 2.4.1 as Z and X do not have
to be jointly smooth and it allows for smoothness dispar-
ity among them. The subsequent Theorem 3 combines our
approximation result with (11) and enables us to specialize
Theorem 1 to this class (see Appendix J for the proof).

Theorem 3. Let G∗ ∈ HβZ ,βX

d,p (Z,X ,K). Suppose that
Assumption 1 holds and σ∗ ∈ [σmin, σmax] with σmin ≤ 1
and σmax < ∞. Moreover, we assume σ∗ ≍ n−α,
and σmin = n−γ for some 0 ≤ α ≤ γ ≤ (β−1

Z d +
β−1
X p)−1. Then, for every δapprox ∈ [0, 1], we have:

Let Fs = Fs (L, r, s, 1,K) with L ≍ log δ−1
approx, r ≍

δ
−(β−1

Z d+β−1
X p)

approx , s ≍ δ
−(β−1

Z d+β−1
X p)

approx log δ−1
approx. Then the

sieve MLE p̂s satisfies (7) with the rate outlined in (8) with

ξ = δ
−(β−1

Z d+β−1
X p)

approx log2 δ−1
approx and A = log2 δ−1

approx,
provided that ηn ≤ nε∗2n /6. In particular, choosing

δapprox :=
(
σ2
∗/n

)1/(2+β−1
Z d+β−1

X p) ≤ 1 minimizes ε∗n ≍√
ξ {A+ log (n/σmin)} /n ∨ δapprox/σ∗, and gives

ε∗n ≍ n
−

1−α(β
−1
Z

d+β
−1
X

p)

2+β
−1
Z

d+β
−1
X

p log2(n). (14)

The proof of Theorem 3 is provided in Appendix J. In the
special case when α = 0 and d = D, our convergence rate
in (14) recovers the minimax optimal rate for conditional
density estimation based on kernel smoothing, as established
in (Li et al., 2022).

2.4.3. CONDITIONAL DISTRIBUTION ON MANIFOLDS

In this part, we extend Lemma 2 and provide the existence of
the generator when the conditional distribution is supported
on a compact manifold with dimension d∗ ≤ D. Due to
space constraints, we provide only a sketched proof here;
the detailed proof can be found in Appendix D. Specifically,
we first present arguments for the existence of the generator
when Y is covered by a single chart. We then extend this to
the multiple chart case using the technique of partition of
unity.

In the simpler case when there exists a single (Y, φ) cover-
ing Y , where φ : B1(0d∗) → Y is a homeomorphism, we
assume φ ∈ Hβmin+1. In this case, we use the change of
variable formula to transfer the measure on B1(0d∗) (unit
ball in Rd∗) from Y . Following Lemma 2, we can find a
transport map g ∈ Hβmin mapping from Z × X to B1(0d∗).
The map g ◦ φ then serves as our generator.

In the general case where the compact manifold Y needs to
be covered by multiple charts, demonstrating the existence
of a transport or push-forward map is challenging because
Y is not uniformly convex. Suppose that {(Uk, φk)}Kk=1

forms a cover of Y . Due to the compactness of Y , the

number of charts K is finite. Analogous to the single chart
scenario, we first construct gk ◦ φk to transport the measure
on each chart. We then patch these local transport maps
together to construct a global transport map; see Appendix D
for full details. As a result, following Corollary 1, the
convergence rate for density estimation shall be given by
ε∗n ≍ n−(βmin−dα)/(2βmin+d).

3. Numerical Results
In this section, we present numerical experiments to vali-
date and complement our theoretical findings using two syn-
thetic dataset examples. These experiments cover a range
of scenarios, including full-dimensional cases as well as
benchmark examples involving manifold-based data. Ad-
ditionally, we provide a real data example to further enrich
our experimentation and validation process. It is worth not-
ing that, although not significant, the computational cost of
fitting a conditional generative model is higher compared to
fitting an unconditional one, as the input dimension of the
deep neural network (DNN) is p+ d rather than just d.

Learning algorithm to compute sieve MLE. For
the computational algorithm, we adopt a common
conditional variational auto-encoder (VAE) archi-
tecture to maximize the following log-likelihood
term:

∑n
j=1 LVAE(g, σ, ϕ;Yj , Xj), where

LVAE(g, σ, ϕ; y, x) = log

(
pg,σ(y, x, z)

qϕ(Z|y, x)

)
.

The variational distribution qϕ(Z|y, x) is chosen as the stan-
dard normal family N(µϕ(y, x),Σϕ(y, x)).

We examine two classes of datasets: (i) full-dimensional
response and (ii) response residing on a low-dimensional
manifold. The first highlights the generality of our proposed
approach, while the second underscores its efficiency in
terms of the Wasserstein metric and validates the small
noise perturbation strategy outlined in Corollary 2.

Simulation from full dimension distribution. We use the
following models for data generation.

• FD1 : Y = I{U<0.5} N
(
−X, 0.252

)
+

I{U>0.5} N
(
X, 0.252

)
; U ∼ Unif(0, 1), X ∼ N(3, 1).

• FD2 : Y = X2
1 + e(X2+X3/3) + sin(X4 + X5) + ε;

{Xj}5j=1
i.i.d∼ N(0, 1), ε ∼ N(0, 1).

• FD3 : Y = X2
1 +e(X2+X3/3)+X4−X5+0.5 (1+X2

2 +

X2
5 )× ε; {Xj}5j=1

i.i.d∼ N(0, 1), ε ∼ N(0, 1).

These are examples of a mixture model, an additive noise
model, and a multiplicative noise model, respectively. The
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neural architecture for both the encoder and decoder consists
of two deep layers, i.e., L = 2. The hyperparameters are
as follows: renc = (p + 1, 10, 10) for µϕ and Σϕ, and
rdec = (10 + p, 10, 1) for g. The sample size used for
simulation is 5000, with a training-to-testing ratio of 4 : 1.
We employ a batch size of 64 with a learning rate of 10−3.

We compare the sieve MLE with CKDE (Hall et al., 2004)
and FlexCode proposed by Izbicki & Lee (2017). To evalu-
ate their performance, we compute the mean squared error
(MSE) for both the mean and the standard deviation. We
use Monte Carlo approximation to compute the mean and
standard deviation for the sieve MLE, and numerical inte-
gration for CKDE and Flexcode. This evaluation strategy
resembles that implemented by Zhou et al. (2022). Table 2
summarizes the findings.

Table 1. MSE for the estimated conditional mean and the standard
deviation.

Sieve MLE CKDE FlexCode

FD1 MEAN 0.0379 ± 0.0170 1.0053 ± 0.1004 1.1660 ± 0.1076
SD 0.0280 ± 0.0045 0.9887 ± 0.0347 1.2000 ± 0.0126

FD2 MEAN 0.1943 ± 0.0427 0.2640 ± 0.0515 0.3954 ± 0.0571
SD 0.2843 ± 0.0093 0.2853 ± 0.0213 5.8278 ± 0.1607

FD3 MEAN 0.2337 ± 0.0453 0.2967 ± 0.0537 1.3419 ± 0.1087
SD 1.6394 ± 0.0861 0.6334 ± 0.0460 11.4898 ± 0.1559

Note that the sieve MLE outperforms all other methods in all
scenarios except for the MSE(SD) for the FD3 dataset. How-
ever, for the FD3 dataset, we found that as the training sam-
ple size increases further, the MSE(SD) of the sieve MLE
achieves performance increasingly comparable to CKDE.

Simulation from distributions on manifolds. We consider
two examples of manifolds with an intrinsic dimension d =
1, while the ambient dimension is D = 2.

• M1 : Y = G∗(Z,U) + ε, G∗ = (G
(1)
∗ , G

(2)
∗ ),

G
(1)
∗ = I{U<0.5} (1− cos(Z)) + I{U>0.5} cos(Z),

G
(2)
∗ = I{U<0.5} (0.5− sin(Z))+I{U>0.5} sin(Z); Z ∼

Unif(0, π), U ∼ Unif(0, 1).

• M2 : Y = G∗(Z,U) + ε, G∗ =
(
G

(1)
∗ , G

(2)
∗

)
,

G
(1)
∗ = I{U<0.5} cos(Z) + I{U>0.5} 2 cos(Z), G(2)

∗ =
I{U<0.5} 0.5 sin(Z)+I{U>0.5} sin(Z); Z ∼ Unif(0, 2π),
U ∼ Unif(0, 1).

The manifold M1 consists of two moons. The mani-
fold M2 comprises ellipses, with conditions distinguish-
ing the inner and outer confocal ellipses. The noise se-
quence follows a two-dimensional centered Gaussian distri-
bution, ε ∼ N(02, σ

2
∗I2). We investigated this setup across

various noise variances σ2
∗. Our neural architecture em-

ployed renc = (p + 2, 100, 100, 2) for µϕ and Σϕ, and

rdec = (2 + p, 100, 100, 2) for g. We utilized a sample size
of 5000 for simulation, with a training-to-testing ratio of
4 : 1. A batch size of 100 was employed, with a learning
rate of 10−3.

Figure 1. Generated samples from manifold M1 and M2 are dis-
played.

Figure 2. Box plots for the empirical Wasserstein distance at dif-
ferent noise levels σ∗.

We computed the empirical W1 distance using the algorithm
proposed by Cuturi (2013) to evaluate the performance.
Figure 2 presents the boxplots of W1 between the true and
learned distribution for M1 and M2 across 20 repetitions.
The left panel highlights the following general behaviors:

• When α is small and close to zero, the noise variance is
large, making estimation challenging due to the singular-
ity of the true data distribution.

• When α is large, the noise variance is small, and the
perturbed data facilitates efficient estimation.

This observed pattern, as emphasized in Corollary 2, closely
aligns with the results achieved in (13). An additional nu-
merical experiment on real data has been performed and can
be found in Appendix A.1.

4. Discussion
We investigated statistical properties of a likelihood-based
conditional deep generative model for distribution regres-
sion in a scenario where the response variable is situated in
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a high-dimensional ambient space but is centered around a
potentially lower-dimensional intrinsic structure. Our anal-
ysis established favorable rates in both the Hellinger and
Wasserstein metrics which are dependent on only the intrin-
sic dimension of the data. Our theoretical findings show that
the conditional deep generative models can circumvent the
curse of dimensionality for high-dimensional distribution
regression. To the best of our knowledge, our work is the
first of its kind.

Given the novelty of emerging statistical methodologies
with intricate structural considerations in the study of deep
generative models, there exist numerous paths for future
exploration. Among these potential directions, we are partic-
ularly interested in investigating controllable generation via
penalized optimization methods, studying statistical proper-
ties of deep generative models trained via matching flows,
as well as delving into the hypothesis testing problem within
the framework of deep generative models, among others.
Another interesting direction is to explore residual neural
network structure for modeling time series of distributions
with interesting temporal dependence structures.

Impact Statement
This paper presents work whose goal is to advance the field
of machine learning theory by understanding the statistical
foundations of deep neural network models. There are many
potential societal consequences of our work, none which we
feel must be specifically highlighted here.
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Supplementary Materials for “A Likelihood Based Approach to Distribution
Regression Using Conditional Deep Generative Models”

A. Additional numerical results
A.1. Numerical result for real data

We utilized the widely used MNIST dataset for two purposes: to demonstrate the generalizability of our approach to a
benchmark image dataset where the intrinsic dimension d is much lesser than the ambient dimension D = 784 and to
underscore the effectiveness of sparse networks as outlined in Lemma 4.1 and Corollary 1.1.

For the fully connected architecture, we set renc = (10+784, 512, 2) for µϕ and Σϕ, and rdec = (10+2, 512, 784) for g. For
the sparse architecture, we use renc = (10 + 784, 608, 432, 256, 2) for µϕ and Σϕ, and rdec = (10 + 2, 256, 432, 608, 784)
for g. The input dimension of 10 for both the encoder and decoder corresponds to the one-hot encoding of the labels. We
employ a batch size of 64 with a learning rate of 10−3.

Figure 3 presents a visual comparison between real and generated images, organized according to their respective labels.
The real images were randomly sampled from the training set along with their corresponding labels, while the generated
images were produced using these labels (conditions) and random seeds.

Figure 3. MNIST images: real images (left panel), generated images with sparse architecture (central panel), and generated images with
fully connected architecture (right panel)

This MNIST example highlights a case where the intrinsic dimension is significantly smaller than the ambient data dimension.
This example serves to validate the proposed methodology in high-dimensional settings.

To quantify sample quality, we computed the Wasserstein-1 distance (W1) between generated and test images. For each
digit, we averaged W1 distances over 50 samples, reporting results as mean ± standard deviation. For reference, the baseline
W1 distance between two test images is 2.0219 ± 0.7450. Table 2 summarizes these distances across different levels of
Gaussian noise added during training.
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Table 2. Mean W1 distance (± SD) between generated and test MNIST images under varying training-data noise.

Noise Sparsely connected Fully connected

0 1.9555± 0.7182 1.8859± 0.7355
0.005 1.9478± 0.7329 1.8663± 0.6251
0.01 1.9503± 0.7291 1.9598± 0.6867
0.02 2.0699± 0.6937 2.0616± 0.7410
0.04 2.2199± 0.6735 2.2117± 0.6627
0.06 2.3487± 0.6576 2.3172± 0.6267
0.08 2.4623± 0.6245 2.4076± 0.6308
0.1 2.5734± 0.6492 2.5002± 0.6337
0.3 3.4931± 0.7012 3.4943± 0.7164
0.5 4.0880± 0.7518 4.0995± 0.7633

As shown in Table 2, at zero noise both architectures achieve W1 distances slightly below the baseline, indicating high-fidelity
sample generation. As noise increases, W1 distances grow steadily, reflecting degradation in sample quality. Both network
types follow similar trends, underlining robustness to architectural choice; minor deviations suggest subtle differences in
sensitivity to noise. These empirical observations accord with our theoretical predictions on the large-sample properties of
manifold-supported data.

A.2. Additional numerical results for distributions on manifold

We extended our analysis to examine how the empirical W1 distance varies with sample size, while keeping the noise level
fixed at σ∗ = 0.01. Below is a summary table showing the median empirical Wasserstein distances for different sample
sizes. The experimental setup remains consistent with the manifold case described in the Section 3.

Table 3. Empirical Wasserstein distance W1 (median) for different sample sizes

Sample Size Two Moon (σ∗ = 0.01) Ellipse (σ∗ = 0.01)

4000 0.251 0.295
6000 0.232 0.285
7000 0.216 0.271
8000 0.214 0.253
9000 0.212 0.259
10000 0.196 0.251

While extracting exact rates through simulation can be challenging, the results in the table validate the large-sample
properties for manifolds. These empirical findings align well with the theoretical expectations, further confirming the
consistency and convergence trends of our framework.

B. Notation
We denote a ∨ b and a ∧ b as the maximum and minimum of two real numbers a and b, respectively. The notation ⌈a⌉
represents the smallest integer greater than or equal to a. The inequality a ≲ b indicates that a is less than or equal to b up
to a multiplicative constant. When we write a ≲log b, it means that a is less than or equal to b up to a logarithmic factor,
specifically log(n). We denote a ≍ b when both a ≲ b and b ≲ a hold. For vector norms, | · |p represents the ℓp norm,
while ∥ · ∥p denotes the Lp-norm of a function for 1 ≤ p ≤ ∞. Lastly, Bϵ(u) signifies the Euclidean open ball with radius ϵ
centered at u.

We use the multi-index notation through the main paper and the appendix. Denote N as the set of natural numbers
and N0 as N ∪ {0}. For a vector x ∈ Rr, we denote the components as x = (x(1), . . . , x(r)). Given a function
f : D ⊂ Rr → R, the operator is defined as ∂α := ∂α(1)

. . . ∂α(r)

with α ∈ Nr
0, where ∂α(j)

f := ∂α(j)

f(x)/∂x(j). For
α ∈ Nr

0, the expression |α| =
∑r

j=1 |α(j)|. Given a function f(·, ·) : D ×D′ ⊂ Rr × Rr′ → R, we denote the operator
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∂α+α′ := ∂α(1)

. . . ∂α(r)

∂α
(1)
′ . . . ∂α

(r′)
′ , with α ∈ Nr

0 and α′ ∈ Nr′
0 , where ∂α(j)

f(x,y) = ∂α(j)

f(x,y)/∂α(j)

x(j) and
∂α

(j)
′ f(x,y) = ∂α

(j)
′ f(x,y)/∂y(j), with x ∈ D and y ∈ D′. This notation allows us to represent the derivative with

variable x and y separately through the vector α and α′ which is required to tackle the smoothness disparity along x and y
variable. The β−Hölder class functions are defined as

Hβ
r (D,M) =

{
f : D ⊂ Rr → R :∑

α:|α|<β

∥∂αf∥∞ +
∑

α:|α|=⌊β⌋

sup
u1,u2∈D
u1 ̸=u2

|∂αf(u1)− ∂αf(u2)|
|u1 − u2|β−⌊β⌋

∞
≤ M

}
,

(15)

We extend this definition to include the Hölder class of functions with differences in smoothness (smoothness disparity)
along two variables. This class is defined as

Hβ,β′
r,r′ (D,D′,M) =

{
f(·, ·) : D ×D′ ⊂ Rr × Rr′ → R :∑

α:|α|<β
α′:|α′|<β′

∥∂α+α′f∥∞ +
∑

α:|α|=⌊β⌋
α′:|α′|=⌊β′⌋

sup
u1,u2∈DX
v1,v2∈DY
u1 ̸=u2
v1 ̸=v2

|∂α+α′f(v1,u1)− ∂α+α′f(v2,u2)|
|u1 − u2|β−⌊β⌋

∞ ∨ |v1 − v2|β′−⌊β′⌋
∞

≤ M
}
. (16)

We denote Hβ
r (D) = ∪M>0Hβ

r (D,M) and Hβ,β′
r,r′ (D,D′) = ∪M>0Hβ,β′

r,r′ (D,D′,M).

C. More on Smooth conditional density
Theorem 4 ((Villani et al., 2009) Theorem 12.50). Suppose that

(i) A1 and A2 are uniformly convex, bounded, open subsets of Rd with C⌊β⌋+2 (continuously differentiable up to order
⌊β⌋+ 2) boundaries,

(ii) h1 ∈ Hβ(A1) and h2 ∈ Hβ(A2) for some β > 0, are probability densities bounded above and below.

Then, there exists a unique map (up to an additive constant) g : A1 → A2 with g ∈ Hβ+1(A1), such that if U ∼ h1 then
g(U) ∼ h2.

Proof of Lemma 2. Given that Z and X is independent, the product measure on Z ×X is pZµ∗
X . Following the smoothness

from pZ and µ∗
X , the map pZ(·)µ∗

X(·) ∈ Hmin{βZ ,βX}(Z ×X ). This implies that pZ(·)µ∗
X(·) ∈ Hmin{βZ ,βX ,βQ}(Z ×X ).

Again q∗ ∈ HβQ(Y) implies q∗ ∈ Hmin{βZ ,βX ,βQ}(Y). The result now follows directly from Theorem 4.

Many of the problems in the conditional setting have an analog in the joint setup. Our proposed approach has a direct
statistical extension to this setup. The sufficiency of such extension follows from the observation in the subsequent Lemma 3
which is based on Lemma 2.1 and Lemma 2.2 of Zhou et al. (2022) (see also Theorem 5.10 of Kallenberg (1997)).
Lemma 3 (Noise Outsourcing Lemma). Let (Y,X) ∈ Y × X with joint distribution PY,X . Suppose Y is standard
Borel space, then there exists Z ∼ N(0, Im) for any given m ≥ 1, independent of X , and a Borel measurable function
G : Rm ×X → Y such that

(X,G(Z,X)) ∼ (Y,X). (17)

Moreover, the condition (17) is equivalent of
G(Z, x) ∼ PY |X=x.

D. More on Conditional distribution on manifolds
Suppose (Y, φ) is the single chart covering Y , where φ : B1(0d∗) → Y is a homeomorphism. We assume that φ ∈ Hβmin+1,
and that infu∈B1(0d∗ )

|Jφ(u)| is bounded below by a positive constant, where

|Jφ(u)| =

√
det

(
∂φ

∂u⊤
∂φ

∂u

)
14
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is the Jacobian determinant of φ.

Note that when d∗ < D, the distribution Q∗ cannot possess a Lebesgue density because of the singularity of Y . We,
therefore consider a density with respect to the d∗−dimensional Hausdorff measure in RD, denoted by Hd∗ . Suppose that Q
allows the Radon-Nikodym derivative q with respect to Hd∗ . We further assume that q is bounded from above and below
and that q ◦ φ ∈ Hβmin . Then by change of variable formula, the Lebesgue density of Q̃, the push-forward measure on
B1(0d∗) through the map φ−1, is given as

q̃(u) = q(φ(u))|Jφ(u)|.
Following the assumptions on the Jacobian determinant and φ ∈ Hβmin+1, it follows that |Jφ(u)| is bounded from above and
below, and the map u 7→ |Jφ(u)| belongs to Hβmin . Therefore, q̃ is bounded above and below, belongs to Hβmin(B1(0d∗)).
By Lemma 2, assuming βmin ≤ βZ ∧ βX , there exists g ∈ Hβmin+1 such that Q̃ = Qg. Thus, we have Q = Qφ◦g, where
φ ◦ g : Z × X → Y . Following Lemma 4, it is possible to find the appropriate neural network approximating them.

Suppose Y is covered by the charts {(Uk, φk)}Kk=1, with 1 < K < ∞, where φk : B1(0d∗) → Uk is a homeomorphism. As
before, we assume φk ∈ Hβmin+1, |Jφk

(u)| is bounded below by a positive constant, Q possesses density q with respect to
Hd∗ that is bounded above and below, and that q ◦ ϕk ∈ Hβmin . Let Qk(·) = Q(·)/Q(Uk) be the normalized measure of Q
over Uk.

We denote qk as the corresponding density with respect to Hd∗ . For u ∈ Uk ∩ Uℓ, qk(u)Q(Uk) = qℓ(u)Q(Uℓ) = q(u)
holds due to the measure Q(·) being compatible with the charts. This is ensured because the densities Q(Uk)qk(·) and
Q(Uℓ)qℓ(·) are consistent and align with the measure Q over the overlapping regions of the charts. This compatibility is
essential for constructing a coherent global measure from local chart densities.

A compact manifold Y can be covered by a finite partition of unity {τk, k = 1, . . . ,K}, each sufficiently smooth (Lee,
2012). By definition, each function in this partition satisfies τk(u) = 0 for u /∈ Uk and

∑K
k=1 τk(u) = 1 for all u ∈ Y .

Given that q(u) = Q(Uk)qk(u) for each k and u ∈ Uk, we can express q(u) as:

q(u) =

K∑
k=1

Q(Uk)τk(u)qk(u).

To normalize, let ck =
∫
τk(u)dQk(u) and define q′k(u) = τk(u)qk(u)/ck. Thus, we can rewrite q(u) as:

q(u) =

K∑
k=1

πkq
′
k(u),

where πk = ckQ(Uk). This formulation reveals that q is a mixture of the component densities q′k(u), weighted by πk. This
mixture approach ensures compatibility across different charts, providing a unified density representation over the entire
manifold Y .

Since q′k is sufficiently smooth, we can construct a mapping gk : Ṽ → Y such that Q′
k is the distribution of gk(Ṽ ), supported

on Uk, where Ṽ is a uniformly convex set in Rd∗ , and Ṽ follows a uniform distribution on Ṽ . Next, construct a disjoint
partition of the interval (0, 1) into K intervals I1, . . . , IK with lengths π1, . . . , πK , where Ik = [

∑k−1
i=1 πi,

∑k
i=1 πi]. Define

hk as the indicator function on the interval Ik, i.e., hk(u) = 1 if u ∈ Ik and 0 otherwise. For a random variable U following
Uniform(0, 1), it follows that PU(hk(U) = 1) = πk, and PU(hk(U) = 0) = 1 − πk. Now, define v = (u, ṽ), where
u ∼ Uniform(0, 1) and v ∼ Uniform(Ṽ). Using this, construct g(v) =

∑K
k=1 hk(u)gk(v). It is straightforward to observe

that Q = Qg, as the partitioning through hk ensures that the measure is correctly matched to each gk, and gk ensures that
the restricted distributions Q′

k are appropriately supported on Uk.

From an approximation perspective, the indicator functions hk and the localized generators can be effectively approximated
using ReLU neural networks. This also holds for their products and further linear combinations. For details on such
constructions, one may refer to Schmidt-Hieber (2019) for sparse neural networks and Kohler et al. (2023) for dense neural
networks.

It is important to note that we do not guarantee the regularity of the gk maps, as they are not necessarily lower bounded.
However, the partition of unity maps τk vanish only at the boundary of Uk. This property may allows for the construction of
sufficiently smooth maps. For the multiple-chart case, we rely on more stringent results, such as Brenier’s Theorem (see, for
example, Villani et al. (2009)) or the Noise Outsourcing Lemma (Lemma 3), to ensure the existence of the transport maps.

15



A Likelihood Based Approach to Distribution Regression Using Conditional Deep Generative Models

E. Proof of Lemma 1
Proof. For g1(·|x), g2(·|x) ∈ F with ∥|g1 − g2|∞∥∞ ≤ η1. Then

pg1,σ(y|x)− pg2,σ(y|x)

=

∫
ϕσ(y − g1(x, z))

(
1− ϕσ(y − g2(x, z))

ϕσ(y − g1(x, z))

)
dPZ(z)

=

∫
ϕσ(y − g1(x, z))

(
1− exp

{
−|y − g2(x, z)|22 − |y − g1(x, z)|22

2σ2

})
dPZ(z)

≤
∫

ϕσ(y − g1(x, z))

(
|y − g2(x, z)|22 − |y − g1(x, z)|22

2σ2

)
dPZ(z) (18)

=

∫
ϕσ(y − g1(x, z))

(
|g2(x, z)− g1(x, z)|22 − 2(y − g1(x, z))

T (g2(x, z)− g1(x, z))

2σ2

)
dPZ(z)

≤
∫

ϕσ(y − g1(x, z))

(
|g2(x, z)− g1(x, z)|22

2σ2
+

2|y − g1(x, z)|1|g2(x, z)− g1(x, z)|∞
2σ2

)
dPZ(z)

≤
∫

ϕσ(y − g1(x, z))
2KDη1
2σ2

dPZ(z) +
2η1
2σ2

∫
|y − g1(x, z)|1ϕσ(y − g1(x, z))dPZ(z) (19)

≤2KDη1
2σ2

1(√
2πσ2

)D +
η1
σ2

∫ √
D

2πe

1

(
√
2πσ2)D−1

dPZ(z) (20)

≤c1(K,D)σ
−(D+2)
min η1. (21)

For the last line, we use the fact that σmin ≤ 1. The inequality at (18) follows from e−x ≥ (1− x). The ones at (19) follows
using

|g2(x, z)− g1(x, z)|22 ≤ 2K|g2(x, z)− g1(x, z)|1 ≤ 2KD|g2(x, z)− g1(x, z)|∞
≤ 2KD∥|g1 − g2|∞∥∞ ≤ 2KDη1

and |g2(x, z)− g1(x, z)|∞ ≤ η1. The change at (20) follows from ϕσ(y − g1(x, z)) ≤
(√

2πσ2
)−D

and the bound

|v|1ϕσ(v) ≤
√

D

2πe

1

(
√
2πσ2)D−1

.

Now for σ1, σ2 ∈ [σmin, σmax] with |σ1 − σ2| ≤ η2. It holds that
∣∣σ−2

1 − σ−2
2

∣∣ ≤ σ−2
1 σ−2

2 (σ1 + σ2) η2 and
∣∣∣log (σ2

σ1

)∣∣∣ ≤
η2

min{σ1,σ2} . We have

pg,σ1(y|x)− pg2,σ2(y|x)

=

∫
ϕσ1

(y − g(x, z)

(
1−

(
σ1

σ2

)D

exp

{
|y − g(x, z)|22

2

(
1

σ2
1

− 1

σ2
2

)})
dPZ(z)

≤
∫

ϕσ1
(y − g(x, z)

[
|y − g(x, z)|22

2

(
1

σ2
2

− 1

σ2
1

)
−D log

(
σ1

σ2

)]
dPZ(z) (22)

≤
∫

ϕσ1
(y − g(x, z)

[
|y − g(x, z)|22

2

(
σ1 + σ2

σ2
1σ

2
2

)
η2 +

Dη2
min{σ1, σ2}

]
dPZ(z)

≤ 1

(
√

2πσ2
1)

D

σ1 + σ2

eσ2
2

η2 +
1(√

2πσ2
1

)D Dη2
min{σ1, σ2}

(23)

≤c2(D)σ
−(D+1)
min η2. (24)
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The (22) follows from 1− e−α ≤ α. The change at (23) follows from ϕσ1
(y − g(x, z)) ≤

(√
2πσ2

1

)−D

and

|v|22ϕσ(v) ≤
σ2

(
√
2πσ2)D

2

e
.

Let ε > 0. Let {g1, . . . , gN1} be η1−covering of F and {σ1, . . . , σN2} be η2−covering of [σmin, σmax] with respect to
∥| · |∞∥∞ and | · |∞. By (21) and (24), η1 = c−1

1 σD+2
min ε/4 and η2 = c−2

2 σD+1
min ε/4 implies{

Pgi,σj
(·|·) : i = 1, . . . , N1, j = 1, . . . , N2

}
forms an ε/2−covering for P with respect to ∥ · ∥∞. Denote the envelope function of F

H(y, x) = sup
p∈P

p(y|x) ≤ 1

(2πσ2
min)

−D/2
exp

{
−|y|22 − 4K2D

4σ2
max

}

= eK
2D/2σ2

max2D/2

(
σmax

σmin

)D

ϕ√
2σmax

(y).

Following from
∫
|y|∞>t

ϕσ(y)dy ≤ 2De−t2/2σ2

, we have∫ ∫
|y|∞>B

H(y, x)µ(y, x)dydx =

∫ (∫
|y|∞>B

H(y, x)µ(y|x)dy

)
µ∗
X(x)dx < ε,

where

B = 2σmax

(
log

1

ε
+D log

σmax

σmin
+

K2D

2σ2
max

+ log 2D

)1/2

.

For each (i, j) define

lij(y, x) = max
{
pgi,σj

(y, x)− ε/2, 0
}

and uij(y, x) = min
{
pgi,σj

(y, x) + ε/2, H(y, x)
}
.

It follows that ∫ ∫
{uij(y, x)− lij(y, x)}µ∗

X(x)dydx

≤
∫ ∫

|y|∞≤B

εµ∗
X(x)dydx+

∫ ∫
|y|∞>B

H(y, x)µ∗
X(x)dydx

≤
{
(2B)D + 1

}
ε.

(25)

Denote δ2 :=
{
(2B)D + 1

}
. With d2H(uij , lij) ≤ d1(uij , lij), we have

N[](δ,P, dH) ≤ N[](δ
2,P, d1) ≤ N1N2 ≤ σmax − σmin

η2
N (η1,F , ∥| · |∞∥∞). (26)

It is possible to write

δ2 = ε ≤ C1(σmax, D)

[
ε(log ε−1)D/2 + εC2(K) + ε

(
log

σmax

σmin

)D/2
]
,

where C1(σmax, D) and C2(K) is a constant. There exists small enough ε∗(D) such that for all ε ∈ (0, ε∗]

δ2 ≤ C3(σmax, D,K)
√
ε

(
log

σmax

σmin

)D/2

.

Consequently, there exists δ∗ = δ∗(D), such that for all δ ≤ δ∗, we have

C2
3 (σmax,K,D)δ4

(
log

σmax

σmin

)−D

≤ ε.
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It lead us to, for all δ ≤ δ∗

η1 ≥ c−1
1 C2

3σ
D+3
min δ4

σmin{log(σmax/σmin)}D
≥ cσD+3

min δ4, (27)

where c(σmax,K,D) is a constant. We use the fact that σmin{log(σmax/σmin)}D is bounded above by some constant
depending only upon σmax as σmin ≤ 1. Similar to (27), it is possible to write for all δ > δ∗

η2 ≥ c′σD+2
min δ4, for all δ ≤ δ∗, (28)

where c′(σmax,K,D) is some constant.

The result now follows directly (28) and (27) with (26).

F. Proof of Theorem 1
Proof. Choose four absolute constants c1, . . . , c4 as in Theorem 1 of Wong & Shen (1995). Define c and C in the statement
of Lemma 1. The proof closely follows Chae et al. (2023). We have therein the proof of Theorem 3 that∫ √

2ε

ε2/28

√
logN[](δ/c3,P, dH)dδ

≤
√
2ε

√
ξA+ (D + 3)(s+ 1) log σ−1

min + c5ξ +
√
2ε
√

4(ξ + 1)
√

log(28/ε2),

(29)

for every ε ≤
√
2 ≤ c3δ∗/

√
2, where c5 = c5(c, C, c3). Observe that c4

√
nε2n is upper bound to (29) and Eq. (3.1) of Wong

& Shen (1995) is satisfied.

Using B.12 of Ghosal & van der Vaart (2017), we have

K(pG∗,σ∗ , pg,σ∗) ≤
∫ ∫

K
(
N
(
G∗(z, x), σ

2
∗
)
, N
(
g(z, x), σ2

∗
) )

µ∗
X(x) dx dPZ(z)

=

∫ ∫
|G∗(z, x)− g(z, x)|22

2σ2
∗

µ∗
X(x) dx dPZ(z) ≤

Dδ2approx
2σ2

∗
=: δn.

One may easily see that∫ (
log

ϕσ(x)

ϕσ(x− y)

)2

ϕσ(x)dx =

∫
|y|42 + 4|xT y|2

4σ2
ϕσ(x)dx ≤ |y|42

4σ2
+ |y|22

∫
|x|22
σ2

ϕσ(x)dx.

Combining this with Example B.12, (B.17) and Exercise B.8 of Ghosal & van der Vaart (2017), we have∫ ∫ (
log

pG∗,σ∗(y|x)
pg,σ∗(y|x)

)2

dP∗(y|x)µ∗
X(x)dx

≤
∫ ∫ ∫ (

log
ϕσ(y −G∗(z, x)

ϕσ(y −G(z, x)

)2

ϕσ(y −G∗(z, x)) dy dPZ(z)µ
∗
X(x)dx

≤
D2δ4approx

4σ2
∗

+Dδ2approx

∫
|x|22
σ2
∗
ϕσ∗(y)dy +

2Dδ2approx
σ2
∗

≤ c7
δ2approx
σ2
∗

=: τn,

where c7 = c7(D). We are using δn and τn, although they are independent of n, for notational consistency with Theorem 4
of Wong & Shen (1995). Let ε∗n = εn ∨

√
12δn. Then, using Theorem 4 of Wong & Shen (1995), we have

P∗ (dH(p̂, p∗) > εn) ≤ 5e−c2nε
∗2
n +

τn
nδn

= 5e−c2nε
∗2
n +

2c27
Dn

.

The proof is complete after redefining constants.
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G. Proofs of Corollary 1
Proof. For the sparse case in 1.1, utilizing the entropy bound from (10), we observe that

ξ{A+ log(n/σmin)} ≍ δ−t∗/β∗
approx log3(δ−1

approx),

which naturally leads to the required convergence rate.

Similarly for the fully connected case 1.2, utilizing the entropy bound from (11) , we observe that

ξ{A+ log(n/σmin)} ≍ δ−t∗/β∗
approx log3(δ−1

approx),

which naturally leads to the required convergence rate.

H. Proof of Theorem 2
Proof. It is suffice to assume that ε and σ∗

√
log ε−1 are sufficiently small. If not, let ε + σ∗

√
log ε−1 ≥ c0, where

c0(K,D, r∗). Then Theorem 2 holds trivially by taking a large enough constant depending just on D, K, and r∗.

Let V ∼ Q(·|X = x), V∗ ∼ Q(·|X = x), ϵ ∼ N(0D, σ2Id) and ϵ∗ ∼ N(0D, σ2
∗Id) be independent with underlying

probability density ν. We truncate the random variable ϵ and ϵ∗ componentwise as (ϵK)j = max{−K,min{K, ϵj}} and

(ϵ∗K)j = max{−K,min{K, (ϵ∗)j}} respectively. We denote Pg,σ as P , Qg as Q, P̃ as distribution of V + ϵK and P̃∗

as the distribution of V∗ + ϵ∗K . One may note that W1(P̃∗, Q∗) ≤ W2(P̃∗, Q∗) ≤
√

E
[
|ϵ∗K |22

]
≤
√
E
[
|ϵ∗|22

]
≤ σ∗

√
D.

Similarly, W1(P̃ , Q) ≤ σ
√
D. The ℓ1 diameter of [−2K, 2K]D, where the support of P̃ and P̃∗, is 4KD. Observe that

W1

(
P̃∗, P̃

)
≤ 4KDd1

(
P̃∗, P̃

)
≤ 4KDd1(P∗, P ) ≤ 8KDdH(P∗, P ),

where the first inequality follows from Theorem 4 of Gibbs & Su (2002), the second inequality follows from the fact the
distance between two truncated distributions is always lesser than the original distributions and the last inequality follows
from d1 ≤ 2dH . Hence,

W1 (Q∗, Q) ≤ W2

(
Q∗, P̃∗

)
+W1

(
P̃∗, P̃

)
+W2

(
P̃ , Q

)
≤ σ∗

√
D + 8KDε+ σ

√
D.

Now it is suffice to show that σ ≤ c σ∗
√
log ε−1, where c = c(D,K, r∗) is a constant, because we have assumed that ε is

small enough. We establish this in the rest of the proof. Let t∗ =
[
2σ2

∗ D log
(
2D
ε

)]1/2
. Observe that∫

|x|2>t∗

ϕσ∗(x)dx ≤
∫
|x|∞>t∗/

√
D

ϕσ∗(x)dx ≤ 2De−t2∗/2Dσ2

≤ ε.

Let Mt∗
∗ = M∗ ⊕ Bt∗(0D). We may write

1− P∗
(
Mt∗

∗
)
= ν

(
Y∗ + ϵ∗ /∈ Mt∗

∗
)
≤ ν (|ϵ∗|2 > t∗)

=⇒ P
(
Mt∗

∗
)
≥ 1− 2ε,

(30)

the implication in the last line follows from supB |P (B)− P∗(B)| ≤ dH(P, P∗) ≤ ε. For the sake of contradiction, let
σ ∈ [2t∗, r

∗/2] ∪ (r∗/2,∞) (t∗ is sufficiently small, from the assumption we made at the beginning of this proof). If
σ > r∗/2, then

2ε ≥ 1− P
(
Mt∗

∗
)
≥ 1− P

(
[−K,K]D

)
≥ c2(K,D, r∗)

where c2 is some positive constant. It is a contradiction following from the smallness of ε. Lets make a claim that if
σ ∈ [2t∗, r∗/2], then for every y ∈ RD, there is some z ∈ RD such that |z − y|2 ≤ σ and Bσ/2(z) ∩Mt∗

∗ = ∅.

Following from the claim, we have

ν
(
Y + ϵ /∈ Mt∗

∗
∣∣Y = y

)
≥ ν

(
ϵ ∈ Bσ/2(z − y)

)
.
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Since |z − y|2 ≤ σ, the right hand side is bounded below by a positive constant depending just on D which is again a
contradiction to (30). This proves the assertion made in the theorem.

The proof of the claim is divided into three cases. Let ρ (y,M∗) = inf{|y − y′|2 : y′ ∈ M∗} be the ℓ2 set distance.

Case 1. ρ(y,M∗) ≥ σ : We may choose z = y.

Case 2. ρ(y,M∗) ∈ (0, σ) : Let y0 be the unique Euclidean projection of y onto M∗. Such a unique projection exists
because σ < r∗ is within the reach and y ∈ M∗, since M∗ is closed. Suppose yt = y0 + t(y − y0). We shall define two
continuous functions d0(t) = |yt−y0|2 and d(t) = ρ(yt,M∗). It is obvious that d(t) ≤ d0(t). For t ∈

[
0, 1+σ/|y−y0|2

]
,

d0(t) ≤ d(t) because y0 is the unique projection for all the points that lie on the line segment including the farthest point
with t = 1 + σ/|y − y0|2. Otherwise, say d(t) = ρ(yt, z) and

|y − y0|2 = |y − yt|2 + |yt − y0|2 > |y − yt|+ |yt − z| ≥ |y − z|2

which contradicts y0 being a unique projection. The claim holds for the point z = y1+σ/|y−y0|2 . To see this, observe
|z − y| = σ and Bσ/2(z) ∩Mt∗

∗ = ∅ because t∗ ≤ σ/2 and the ball Bσ/2(z) ⊂ Mr∗
∗ is within the reach of the manifold.

Case 3. ρ(y,M∗) = 0 : Because M∗ has empty interior, for all γ > 0, we always find a point yγ , which in Bγ(y) which
away from M∗. For small enough γ, we reduce to case 2 by taking γ → 0, the limit point of yγ has the required behavior.

I. Proof of Corollary 2
Proof. The effective noise variance after the perturbation would be

σ̃∗ = n−α + n−β∗/2(β∗+t∗) ≍

{
n−α, α < β∗/{2(β∗ + t∗)}
nβ∗/2(β∗+t∗), otherwise.

Following this and the Theorem 2, for the rate we have

ε∗n + σ∗
√

log((ε∗n)
−1) ≍

(
n− β∗−t∗α

2β∗+t∗ + n−α
)
log2(n)

≍

{
n− β∗−t∗α

2β∗+t∗ log2(n), if α < β∗/{2(β∗ + t∗)},
n− β∗

2(β∗+t∗) log2(n), otherwise.

J. Proof of Theorem 3

Proof. With m = ⌈log2(n)⌉ and N =
(
n(β−1

Z d+β−1
X p)[1+α(β−1

Z d+β−1
X p)]/[2+β−1

Z d+β−1
X p]

)
in Theorem 5, we can find a

network G with the mentioned architecture such that

∥|G−G∗|∞∥∞ ≤ δapprox.

Following the entropy bound from (10), we have

logN (δ,Fs, ∥| · |∞∥∞) ≲ sL {log(rL) + log δ−1}

≲ δ
−(β−1

Z d+β−1
X p)

approx log2 δ−1
approx

{
log
(
δ−1
approx log

(
δ−1
approx

))
+ log

(
δ−1
approx

)}
.

The rest directly follows from the Theorem 1

K. Approximation properties of the sparse and fully connected DNNs
The approximability of the sparse network is detailed in Lemma 4.1, which restates Lemma 5 from Chae et al. (2023). For
the fully connected network, Lemma 4.2 demonstrates its approximation capabilities, derived directly from Theorem 2 and
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the proof of Theorem 1 in Kohler & Langer (2021). Additionally, the inclusion of the class G in the fully connected setup is
supported by the discussion in Section 1 of Kohler & Langer (2020).

Lemma 4. Suppose that G∗ ∈ G. Then, for every small enough δ ∈ (0, 1),

1. there exists a sparse network G ∈ Fs = Fs (L, r, s,K ∨ 1) with L ≲ log δ−1, r ≲ δ−t∗/β∗ , s ≲ δ−t∗/β∗ log δ−1

satisfying ∥|G−G∗|∞∥∞ ≤ δ.

2. there exists a fully connected network G ∈ Fc with L ≲ log δ−1, r ≲ δ−t∗/2β∗ , B ≲ δ−1 satisfying ∥|G−G∗|∞∥∞ ≤
δ.

L. A new approximation result for functions with smoothness disparity
In this section, we prove the approximability of the sparse neural network for the Hölder class of function f ∈
Hβ,β′

r,r′ (D,D′,K).

Theorem 5. Let f ∈ Hβ,β′
r,r′ ([0, 1]r, [0, 1]r′ ,K). Denote rsum = r + r′ and βsum = β + β′. Then for any integers m ≥ 1

and N ≥ (βsum + 1)rsum ∨ (K + 1)ersum , there exists a network

f̃ ∈ Fs

(
L,
(
rsum, 6(rsum + ⌈βsum⌉)N, . . . , 6(rsum + ⌈βsum⌉)N, 1

)
, s,∞

)
with depth

L = 8 + (m+ 5)
(
1 +

⌈
log2

(
rsum ∨ βsum

)⌉)
and the number of parameters

s ≤ 109
(
rsum + βsum + 1

)3+rsum
N(m+ 6),

such that

∥f̃ − f∥L∞([0,1]rsum ) ≤ (2K + 1)
(
1 + r2sum + β2

sum

)
6rsum N 2−m +K 3rsum/(β−1r+β−1

′ r′) N−1/(β−1r+β−1
′ r′).

We denote β̃ = (β + β′)
−1ββ′ and r̃ = (β + β′)

−1(rβ + r′β′). Before presenting the proof of Theorem 5, we formulate
some required results.

We follow the classical idea of function approximation by local Taylor approximations that have previously been used for
network approximations in (Yarotsky, 2017) and (Schmidt-Hieber, 2020). For a vector a ∈ [0, 1]r define

P β,β′
a,b f(u,v) =

∑
0≤|α|<β
0≤|α′|<β′

(∂α+α′f)(a,b)
(u− a)α(v − b)α′

α!α′!
. (31)

We use the notation the u = (u(j))j to represent the component of the vector when the index j is well understood.
Accordingly we have v = (v(j))j , a = (a(j))j and b = (b(j))j . By Taylor’s theorem for multivariate functions, we have
for a suitable ξ ∈ [0, 1],

f(u,v) =
∑

α:|α|<β−1
α′:|α′|<β′−1

(∂α+α′f)(a,b)
(u− a)α(v − b)α′

α!α′!

+
∑

β−1≤|α|<β
β′−1≤|α′|<β′

(∂α+α′f)(a+ ξ(u− a),b+ ξ(v − b))
(u− a)α(v − b)α′

α!α′!
.
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We have |(u−a)α| =
∏r

j=1 |uj −aj |α
(j) ≤ |u−a||α|

∞ and |(v−b)α′ | =
∏r′

j=1 |vj − bj |α
(j)
′ ≤ |v−b||α′|

∞ . Consequently,
for f ∈ Hβ,β′

r,r′ ([0, 1]r, [0, 1]r′ ,K),∣∣f(u,v)− P β,β′
a,b f(u,v)

∣∣
≤

∑
β−1≤|α|<β

β′−1≤|α′|<β′

(
∂α+α′f(a+ ξ(u− a),b+ ξ(v − b))− ∂α+α′f(a,b)

) (u− a)α(v − b)α′

α!α′!
(32)

≤K
(
|u− a|β∞ ∨ |v − b|β′

∞
)

We may also write (31) as a linear combination of monomials

P β,β′
a,b f(u,v) =

∑
0≤|γ|<β
0≤|γ′|<β′

cγ,γ′u
γvγ′ , (33)

for suitable coefficients cγ,γ′ . For convenience, we omit the dependency on a and b in cγ,γ′ . Since
∂γ,γ′P β,β′

a,b f(u,v) |(u=0,v=0) = γ!γ′! cγ,γ′ , we must have

cγ,γ′ =
∑

γ≤α&|α|<β
γ′≤α′&|α′|<β′

(∂α+α′f)(a,b)
(−a)α−γ (−b)α′−γ′

γ!γ′! (α− γ)! (α′ − γ′)!
.

Notice that since a ∈ [0, 1]r, b ∈ [0, 1]r′ , and f ∈ Hβ,β′
r,r′ ([0, 1]r, [0, 1]r′ ,K),

|cγγ′ | ≤ K/(γ!γ′!) and
∑
γ≥0
γ′≥0

|cγ,γ′ | ≤ K

r∏
i=1

r′∏
j=1

∑
γ(i)≥0

∑
γ
(j)
′ ≥0

1

γ(i)!

1

γ
(j)
′ !

= Ker+r′ , (34)

where γ = (γ(1), . . . , γ(r)) and γ′ = (γ
(1)
′ , . . . , γ

(r′)
′ ).

Consider the set of grid points

D(M) := {uℓ(1) =(ℓ
(1)
j /M1)j=1,...,r and vℓ(2) = (ℓ

(2)
j /M2)j=1,...,r′

: ℓ(1) = (ℓ
(1)
1 , . . . , ℓ(1)r ) ∈ {0, 1, . . . ,M1}r,

ℓ(2) = (ℓ
(2)
1 , . . . , ℓ(2)r ) ∈ {0, 1, . . . ,M2}r′ ,M1 = M β̃/β ,M2 = M β̃/β′}.

The cardinality of this set is (M1 + 1)r · (M2 + 1)r′ . We write uℓ(1) = (u
(j)

ℓ(1)
)j=1,...,r and vℓ(2) = (v

(j)

ℓ(2)
)j=1,...,r′

to denote the components of uℓ(1) and vℓ(2) respectively. With slight abuse of notation we denote w = (u,v) =

(u(1), . . . , u(r), v(1), . . . , v(r′)), ℓ = (ℓ(1), ℓ(2)) = (ℓ
(1)
1 , . . . , ℓ

(1)
r , ℓ

(2)
1 , . . . , ℓ

(2)
r′ ) and wℓ = (w

(j)
ℓ )j=1,...,r+r′ =

(uℓ(1) ,vℓ(2)) = (u
(1)

ℓ(1)
, . . . , u

(r)

ℓ(1)
, v

(1)

ℓ(2)
, . . . , u

(r′)

ℓ(2)
). Define

P β,β′f(u,v)

=P β,β′f(w)

:=
∑

wℓ∈D(M)

P β,β′
wℓ

f(w)

r+r′∏
j=1

(1−Mj |w(j) − w
(j)
ℓ |)+

=
∑

u
ℓ(1)

,v
ℓ(2)

∈D(M)

P β,β′
u

ℓ(1)
,v

ℓ(2)
f(u,v)

 r∏
j=1

(1−M1|u(j) − u
(j)

ℓ(1)
|)+

 r′∏
j=1

(1−M2|v(j) − v
(j)

ℓ(2)
|)+

 ,

where Mj = M1 for j = 1, . . . , r and Mj = M2 for j = r + 1, . . . , r + r′.
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Lemma 5. If f ∈ Hβ,β′
r,r′ ([0, 1]r, [0, 1]r′ ,K), then ∥P β,β′f − f∥L∞[0,1]r+r′ ≤ KM−β̃ .

Proof. Since for all w = (w(1), . . . , w(r+r′)) ∈ [0, 1]r+r′ ,

∑
wℓ∈D(M)

r+r′∏
j=1

(1−Mj |w(j) − w
(j)
ℓ |)+ =

r+r′∏
j=1

Mj∑
ℓ=0

(1−Mj |w(j) − ℓ/Mj |)+ = 1, (35)

we have

f(w) = f(u,v)

=
∑

u
ℓ(1)

,v
ℓ(2)

∈D(M):

∥u−u
ℓ(1)

∥∞≤1/M1

∥v−v
ℓ(2)

∥∞≤1/M2

f(u,v)

 r∏
j=1

(1−M1|u(j) − u
(j)

ℓ(1)
|)+

 r′∏
j=1

(1−M2|v(j) − v
(j)

ℓ(2)
|)+



and with (32), ∣∣P β,β′f(u,v)− f(u,v)
∣∣ ≤ max

u
ℓ(1)

,v
ℓ(2)

∈D(M):

∥u−u
ℓ(1)

∥∞≤1/M1

∥v−v
ℓ(2)

∥∞≤1/M2

∣∣P β,β′
u

ℓ(1)
,v

ℓ(2)
f(u,v)− f(u,v)

∣∣

≤ K
(
M−β

1 ∨M−β′
2

)
= KM−β̃ .

In the next few steps, we describe how to build a network that approximates P β,β′f .

Lemma 6. Let M,m, be any positive integer. Denote M1 = M β̃/β , M2 = M β̃/β′ , M = (M1 + 1)r(M2 + 1)r′ and
rsum = r + r′. Then there exists a network

Hatrsum ∈ F (2 + (m+ 5)⌈log2(rsum)⌉, rsum, 2rsumM, rsumM, 6rsumM, . . . , 6rsumM,M), s, 1)

with s ≤ 37rsum
2M(m+ 5)⌈log2(rsum)⌉, such that Hatr ∈ [0, 1]M and for any u = (u(1), . . . , u(j)) ∈ [0, 1]r and for any

v = (v(1), . . . , v(j)) ∈ [0, 1]r′∣∣∣∣∣Hatrsum(u,v)−

{( r∏
j=1

(1/M1 − |u(j) − u
(j)

ℓ(1)
|)+
)
×

( r′∏
j=1

(1/M2 − |v(j) − v
(j)

ℓ(2)
|)+
)}

u
ℓ(1)

,v
ℓ(2)

∈D(M)

∣∣∣∣∣
∞

≤ rsum
22−m.

For any uℓ(1) ,vℓ(2) ∈ D(M), the support of the function (u,v) 7→ (Hatr+r′(u,v))u
ℓ(1)

,v
ℓ(2)

is moreover contained in the
support of the function

(u,v) 7→


( r∏

j=1

(1/M − |u(j) − u
(j)

ℓ(1)
|)+
)( r′∏

j=1

(1/M − |v(j) − v
(j)

ℓ(2)
|)+
) .

Proof. Step 1: (For r + r′ = 1) Without loss of generality we consider the case when r = 1 and r′ = 0. We compute the
functions {(u(j) − ℓ/M1)+}r,M1

j=1,ℓ=0 and {(ℓ/M1 − u(j))+}r,M1

j=1,ℓ=0 for the first hidden layer of the network. This requires
2r(M1 + 1) units (nodes) and 2r(M1 + 1) non-zero parameters.
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For the second hidden layer we compute the functions (1/M1 − |u(j) − ℓ/M1|)+ = (1/M1 − (u(j) − ℓ/M1)+ − (ℓ/M1 −
u(j))+)+ using the output (u(j) − ℓ/M1)+ and (ℓ/M1 − u(j))+ from the output of the first hidden layer. This requires
r(M1 + 1) + r′(M2 + 1) units (nodes) and 2r(M1 + 1) non-zero parameters. This proves the result for the base case when
r + r′ = 1.

Step 2: For r + r′ > 1, we compose the obtained network with networks that approximately compute the following
 r∏

j=1

(1/M1 − |u(j) − u
(j)

ℓ(1)
|)+

 r′∏
j=1

(1/M2 − |v(j) − v
(j)

ℓ(2)
|)+


u

ℓ(1)
,v

ℓ(2)
∈D(M)

.

For fixed uℓ(1) and vℓ(2) , and from the use of Lemma 8 there exist Multr+r′
m networks in the class

F (2 + (m+ 5)⌈log2(r + r′)⌉, (r + r′, 2(r + r′), r + r′, 6(r + r′), 6(r + r′), . . . , 6(r + r′), 1))

computing (
∏r

j=1(1/M1−|u(j)−uℓ(1) |)+)×(
∏r′

j=1(1/M2−|v(j)−vℓ(2) |)+) up to an error that is bounded by (r+r′)
2 2−m.

Observe that we have two extra hidden layers to compute (1/M1 − |u(j) − uℓ(1) |)+) and (1/M2 − |v(j) − vℓ(2) |)+) for
fixed uℓ(1) and vℓ(2) respectively, before we enter into the multinomial computation by regime invoking Lemma 8. Observe
that the number of parameters in this network is upper bounded by 37(r + r′)

2(m+ 5)⌈log2(r + r′)⌉.

Now we use the parallelization technique to have (M1 + 1)r · (M1 + 1)r parallel architecture for all elements of D(M).
This provides the existence of the network with the number of non-zero parameters bounded by 37(r+ r′)

2(M1+1)r(M2+
1)r′(m+ 5)⌈log2(r + r′)⌉

By Lemma 8, for any x ∈ Rr, Multrm(x) = 0 if one of the components of x is zero. This shows that for any uℓ(1) ,vℓ(2) ∈
D(M), the support of the function (u,v) 7→ (Hatr+r′(u,v))u

ℓ(1)
,v

ℓ(2)
is contained in the support of the function (u,v) 7→(∏r

j=1(1/M − |u(j) − u
(j)

ℓ(1)
|)+
∏r′

j=1(1/M − |v(j) − v
(j)

ℓ(2)
|)+
)

.

Proof of Theorem 5. All the constructed networks in this proof are of the form F(L,p, s) = F(L,p, s,∞) with F = ∞.
Denote M1 = M β̃/β , M2 = M β̃/β′ , βsum = β + β′, and rsum = r + r′. Let M be the largest integer such that
M = (M1 + 1)r(M2 + 1)r′ ≤ N and define L∗ := (m+ 5)⌈log2(βsum ∨ rsum)⌉. Thanks to (34), (33) and Lemma 9, we
can add one hidden layer to the network Monrsum

m,βsum
to obtain a network

Q1 ∈ F
(
2 + L∗, (r, 6⌈β⌉Crsum,βsum

, . . . , 6⌈β⌉Crsum,βsum
, Crsum,βsum

,M)
)
,

such that Q1(u,v) ∈ [0, 1]M and for any u ∈ [0, 1]r and for any v ∈ [0, 1]r′∣∣∣Q1(u,v)−
(P β,β′f(u,v)

B
+

1

2

)
u

ℓ(1)
,v

ℓ(2)
∈D(M)

∣∣∣
∞

≤ β2
sum2

−m (36)

with B := ⌈2Kersum⌉. The total number of non-zero parameters in the Q1 network is 6rsum(βsum + 1)Crsum,βsum
+

42(βsum + 1)2C2
rsum,βsum

(L∗ + 1) + Crsum,βsum
M.

Recall that the network Hatrsum computes the products of hat functions (splines) (
∏r

j=1(1/M1 − |u(j) −
uℓ(1) |)+)(

∏r′
j=1(1/M2 − |v(j) − vℓ(2) |)+) up to an error that is bounded by r2sum2

−m. It requires at most 37r2sumNL∗

active parameters. Observe that Crsum,βsum
≤ (βsum + 1)rsum ≤ N by the definition of Cr,β and the assumptions on N. By

Lemma 6, the networks Q1 and Hatrsum can be embedded into a joint parallel network (Q1,Hatrsum) with 2 + L∗ hidden
layers of size (rsum, 6(rsum + ⌈βsum⌉)N, . . . , 6(rsum + ⌈βsum⌉)N, 2M). Using Cr,β ∨ (M + 1)r ≤ N again, the number
of non-zero parameters in the combined network (Q1,Hatr) is bounded by

6rsum(βsum + 1)Crsum,βsum
+ 42(βsum + 1)2C2

rsum,βsum
(L∗ + 1) + Crsum,βsum

M+ 37r2sumNL∗

≤ 42(rsum + βsum + 1)2Crsum,βsumN(1 + L∗)

≤ 84(rsum + βsum + 1)3+rsumN(m+ 5),

(37)
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where for the last inequality, we used Crsum,βsum
≤ (βsum + 1)rsum , the definition of L∗ and that for any x ≥ 1,

1 + ⌈log2(x)⌉ ≤ 2 + log2(x) ≤ 2(1 + log(x)) ≤ 2x.

Next, we pair the (uℓ(1) ,vℓ(2))-th entry of the output of Q1 and Hatr and apply to each of the M pairs the Multm network
described in Lemma 7. In the last layer, we add all entries. By Lemma 7 this requires at most 24(m+5)M+M ≤ 25(m+5)N
active parameters for the M multiplications and the sum. Using Lemma 7, Lemma 6, (36) and triangle inequality, there exists
a network Q2 ∈ F(2 +L∗ +m+ 6, (rsum, 6(rsum + ⌈βsum⌉)N, . . . , 6(rsum + ⌈βsum⌉)N, 1)) such that for any u ∈ [0, 1]r

and for any v ∈ [0, 1]r′

∣∣∣∣∣Q2(u,v)−
∑

u
ℓ(1)

,v
ℓ(2)

∈D(M)

(P β,β′f(u,v)

B
+

1

2

)( r∏
j=1

(1/M1 − |u(j) − u
(j)

ℓ(1)
|)+
)

( r′∏
j=1

(1/M2 − |v(j) − v
(j)

ℓ(2)
|)+
)∣∣∣∣∣

≤
∑

u
ℓ(1)

,v
ℓ(2)

∈D(M):

∥u−u
ℓ(1)

∥∞≤1/M1

∥v−v
ℓ(2)

∥∞≤1/M2

(1 + r2sum + β2
sum)2

−m

≤ (1 + r2sum + β2
sum)2

r−m. (38)

Here, the first inequality follows from the fact that the support of (Hatr+r′(u,v))u
ℓ(1)

,v
ℓ(2)

is contained in the support of(∏r
j=1(1/M − |u(j) − u

(j)

ℓ(1)
|)+
∏r′

j=1(1/M − |v(j) − v
(j)

ℓ(2)
|)+
)

(see Lemma 6). Because of (37), the network Q2 has at
most

109(rsum + βsum + 1)3+rsumN(m+ 5) (39)

non-zero parameters.

To obtain a network reconstruction of the function f , it remains to scale and shift the output entries. This is not entirely trivial
because of the bounded parameter weights in the network. Recall that B = ⌈2Ker⌉. The network x 7→ BMr

1M
r′
2 x is in the

class F(3, (1,Mr
1M

r′
2 , 1, ⌈2Ker⌉, 1)) with shift vectors vj are all equal to zero and weight matrices Wj with all entries equal

to one. Because of N ≥ (K+1)ersum , the number of parameters of this network is bounded by 2Mr
1M

r′
2 +2⌈2Ker⌉ ≤ 6N .

This shows existence of a network in the class F(4, (1, 2, 2Mr
1M

r′
2 , 2, 2⌈2Ker⌉, 1)) computing a 7→ BMr

1M
r′
2 (a− c) with

c := 1/(2Mr
1M

r′
2 ). This network computes in the first hidden layer (a− c)+ and (c− a)+ and then applies the network

x 7→ BMr
1M

r′
2 x to both units. In the output layer, the second value is subtracted from the first one. This requires at most

6 + 12N active parameters.

Because of (38) and (35), there exists a network Q3 in

F
(
(m+ 13) + L∗, (rsum, 6(rsum + ⌈βsum⌉)N, . . . , 6(rsum + ⌈βsum⌉)N, 1)

)
such that∣∣∣∣∣Q3(u,v)−

∑
u

ℓ(1)
,v

ℓ(2)
∈D(M)

P β,β′f(u,v)
( r∏

j=1

(1/M1 − |u(j) − u
(j)

ℓ(1)
|)+
)

( r′∏
j=1

(1/M2 − |v(j) − v
(j)

ℓ(2)
|)+
)∣∣∣∣∣

≤ (2K + 1)Mr
1M

r′
2 (1 + r2sum + β2

sum)(2e)
rsum2−m, for all (u,v) ∈ [0, 1]rsum .
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With (39), the number of non-zero parameters of Q3 is bounded by

109(rsum + βsum + 1)3+rsumN(m+ 6).

Observe that by construction M = (M1 + 1)r(M2 + 1)r′ ≤ N ≤ (3M1)
r(3M2)

r′ = 3rsumM r̃ and hence M−β̃ ≤
N−β̃/r̃3rsumβ̃/r̃. Together with Lemma 5, the result follows.

L.1. Embedding properties of neural network function classes

We denote F(L,p) as the class of neural networks with L hidden layers and p ∈ NL+2 nodes per layer. The class F(L,p)
is subset of F(L,p) with the sparsity parameter s.

For the approximation of a function by a network, we first construct smaller networks computing simpler objects. Let
p = (p0, . . . , pL+1) and p′ = (p′0, . . . , p

′
L+1). To combine networks, we make frequent use of the following rules.

Enlarging: F(L,p, s) ⊆ F(L,q, s′) whenever p ≤ q componentwise and s ≤ s′.

Composition: Suppose that f ∈ F(L,p) and g ∈ F(L′,p′) with pL+1 = p′0. For a vector v ∈ RpL+1 we define the
composed network g ◦σv(f) which is in the space F(L+L′+1, (p, p′1, . . . , p

′
L′+1)). In most of the cases that we consider,

the output of the first network is non-negative and the shift vector v will be taken to be zero.

Additional layers/depth synchronization: To synchronize the number of hidden layers for two networks, we can add
additional layers with an identity weight matrix, such that

F(L,p, s) ⊂ F(L+ q, (p0, . . . , p0︸ ︷︷ ︸
q times

,p), s+ qp0). (40)

Parallelization: Suppose that f, g are two networks with the same number of hidden layers and the same input dimension,
that is, f ∈ F(L,p) and g ∈ F(L,p′) with p0 = p′0. The parallelized network (f, g) computes f and g simultaneously in a
joint network in the class F(L, (p0, p1 + p′1, . . . , pL+1 + p′L+1)).

L.2. Technical lemmas for the proof of Theorem 5

We use F(L, r) to denote a fully connected network with L deep layers and r ∈ NL+2
0 representing the nodes in each layer.

The following technical lemmas are required for the proof of Theorem 5. Lemma 7, Lemma 8, and Lemma 9 restate Lemma
A.2, Lemma A.3, and Lemma A.4 from (Schmidt-Hieber, 2020), respectively.

Lemma 7. For any positive integer m, there exists a network Multm ∈ F(m + 4, (2, 6, 6, . . . , 6, 1)), such that
Multm(x, y) ∈ [0, 1], ∣∣Multm(x, y)− xy

∣∣ ≤ 2−m, for all x, y ∈ [0, 1],

and Multm(0, y) = Multm(x, 0) = 0.

Lemma 8. For any positive integer m, there exists a network

Multrm ∈ F((m+ 5)⌈log2 r⌉, (r, 6r, 6r, . . . , 6r, 1))

such that Multrm ∈ [0, 1] and

∣∣∣Multrm(x)−
r∏

i=1

xi

∣∣∣ ≤ r22−m, for all x = (x1, . . . , xr) ∈ [0, 1]r.

Moreover, Multrm(x) = 0 if one of the components of x is zero.

The number of monomials with degree |α| < γ is denoted by Cr,γ . Obviously, Cr,γ ≤ (γ + 1)r since each αi has to take
values in {0, 1, . . . , ⌊γ⌋}.
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Lemma 9. For γ > 0 and any positive integer m, there exists a network

Monrm,γ ∈ F
(
1 + (m+ 5)⌈log2(γ ∨ 1)⌉, (r, 6⌈γ⌉Cr,γ , . . . , 6⌈γ⌉Cr,γ , Cr,γ)

)
,

such that Monrm,γ ∈ [0, 1]Cr,γ and∣∣∣Monrm,γ(x)− (xα)|α|<γ

∣∣∣
∞

≤ γ22−m, for all x ∈ [0, 1]r.
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