
ESCIRL: Evolving Self-Contrastive IRL for
Trajectory Prediction in Autonomous Driving

Siyue Wang∗1†, Zhaorun Chen∗2, Zhuokai Zhao2, Chaoli Mao1, Yiyang Zhou3

Jiayu He1†, Albert Sibo Hu1†
1CIDI Lab, 2University of Chicago, 3UNC-Chapel Hill

Abstract: While deep neural networks (DNN) and inverse reinforcement learn-
ing (IRL) have both been commonly used in autonomous driving to predict trajec-
tories through learning from expert demonstrations, DNN-based methods suffer
from data-scarcity, while IRL-based approaches often struggle with generalizabil-
ity, making both hard to apply to new driving scenarios. To address these issues,
we introduce ESCIRL, a novel decoupled bi-level training framework that iter-
atively learns robust reward models from only a few mixed-scenario demonstra-
tions. At the inner level, ESCIRL introduces a self-contrastive IRL module that
learns a spectrum of specialized reward functions by contrasting demonstrations
across different scenarios. At the outer level, ESCIRL employs an evolving loop
that iteratively refines the contrastive sets, ensuring global convergence. Experi-
ments on two multi-scenario datasets, CitySim and INTERACTION, demonstrate
the effectiveness of ESCIRL, outperforming state-of-the-art DNN and IRL-based
methods by 41.3% on average. Notably, we show that ESCIRL achieves superior
generalizability compared to DNN-based approaches while requiring only a small
fraction of the data, effectively addressing data-scarcity constraints. All code and
data are available at https://github.com/SiyueWang-CiDi/EscIRL.
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1 Introduction
Trajectory prediction has been one of the crucial components of autonomous system [1], allowing
the self-driving vehicle to forecast the movements of itself and nearby entities. Given the rise of
modern machine learning (ML) and more specifically deep learning (DL) [2, 3, 4], numerous deep
neural networks (DNN)-based methods [5] have been developed for trajectory prediction tasks [6, 7],
including more recent works based on Long Short-Term Memory (LSTM) [8, 9, 10] and transform-
ers [11, 12, 13], which take advantage of the more complex and capable DNNs to better capture
and understand the intricate temporal and spatial dependencies inherent in various driving scenar-
ios. However, while these approaches can learn a more complex policy representation and are more
robust to diverse driving scenarios, their larger-scaled network architectures often require substan-
tial amounts of data to train [14], which poses concerns in underfitting and limits them from being
adopted under data-scarce environments [15] or low-resourced computation conditions [16, 17].

Meanwhile, inverse reinforcement learning (IRL)-based approaches [18, 19, 20] have also found
great success in predicting trajectories through inferring cost or reward functions from expert demon-
strations, and then using these functions to guide the behavior of self-driving vehicles in unseen driv-
ing environments. More specifically, given the infinite numbers of potential cost functions that could
explain the demonstrations [21], existing IRL approaches typically employ structural priors for these
functions, such as a linear combinations of features [22], or constant derivative regularization [23],
to reduce the large number of possible cost functions [24].

However, under these assumptions, the learned IRL controllers often suffer from the curse of gen-
eralizability and tend to only explain the demonstrations locally, making the learned controllers
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difficult to adapt to new environments [25]. In other words, the inferred cost or reward functions can
only be applied to unseen driving conditions whose types of traffic situations (e.g. left turn at the
red light) must have been included in the demonstrations, hurting the system’s performance and ro-
bustness across a broader range of situations. To handle the real-life complex environments, existing
IRL frameworks often pre-classify the mixed-scenario datasets and learn numerous cost functions
where each corresponds to one driving scenario. Such rule-based strategies not only increase the un-
necessary difficulty in training, but also degrade generalizability, making the system prone to unseen
environments and causing safety concerns. As far as we are concerned, no existing sample-based
IRL method can learn global cost functions for general-purposed trajectory prediction tasks [24].

The limitations of both DNN- and IRL-based approaches highlight the necessity to develop a novel
data-efficient yet robust and generalizable algorithm for trajectory prediction in autonomous driv-
ing. To this end, in this paper we propose ESCIRL: an Evolving Self-Contrastive IRL approach that
utilizes a decoupled bi-level training framework to efficiently learn generalizable cost function from
diverse trajectory distributions without the need of pre-labeled classifications or additional classi-
fiers. More specifically, after initializing with a set of pseudo-controller parameters, on the inner
level, ESCIRL employs a self-contrastive IRL (SCIRL) algorithm to increase the likelihood of ex-
pert demonstrations within similar distributions, i.e., positive set, while reducing expert likelihood in
adverse/dissimilar distributions, i.e., negative set. And on the outer level, ESCIRL utilizes an evolv-
ing framework to iteratively optimize the contrastive sets from the inner level to introduce diversity
while ensuring overall convergence. Finally, a continuous controller network (CCN) is trained to
capture the mapping from specific trajectory context to the earlier initialized pseudo-parameters.

To summarize, four key contributions of this paper include: 1) introducing ESCIRL, a novel ap-
proach that addresses a common challenge in trajectory prediction tasks faced by both DNN- and
IRL-based methods, i.e., to ensure generalizability while being data-efficient; 2) a self-contrastive
IRL (SCIRL) algorithm that learns a spectrum of robust reward functions from contrasted expert
demonstrations without additional labels or classifications, significantly improving generalizabil-
ity; 3) an evolving framework that iteratively refines the positive and negative sets from SCIRL to
enhance convergence while encouraging exploration – we argue that such training framework com-
bining SCIRL and evolving loop may bring benefits to other IRL applications as well; and 4) exten-
sive experiments on two multi-scenario datasets including CitySim [26] and INTERACTION [27],
showing that ESCIRL outperforms existing SOTA methods by an average of 41.3%.

2 Methodology
In this section, we illustrate the details of our proposed Evolving Self-Contrastive IRL (ESCIRL).
Specifically, ESCIRL aims to efficiently learn a generalizable cost function from diverse trajectory
distributions in a self-supervised manner, where it first employs a self-contrastive IRL (SCIRL) algo-
rithm to disentangle similar and dissimilar distributions without requiring any priors. Then ESCIRL
adopts an outer-loop evolutionary algorithm to gradually learn the priors via natural selection [28]
to interpret the multi-scenario distribution for robust trajectory prediction. An overview of the pro-
posed pipeline is shown in Fig. 1. We first summarize the problem statement in §2.1, and then
proceed to explain the two major components of ESCIRL, which are the inner-level self-contrastive
IRL (SCIRL) module and the outer-level evolving loop in §2.2 and §2.3 respectively.

2.1 Problem Statement

Let σ and u represent the states and actions of the vehicle respectively, we formulate the dynamics
f(·) of each vehicle as:

σk+1 = f(σk, uk). (1)

Next, trajectory ξ within the spatial-temporal domain is defined as a sequence of states and actions,
i.e., ξ = {σ0, u0, σ1, u1, . . . , σN−1, uN−1}, where the superscripts indicate the discretized planning
step and N denotes the total length of the planning horizon.

Given a set of driving demonstrations Dp = {ξi} comprising of various individual trajectories as
i = 1, 2, . . . , N , and a set of parameters ω of a reward function R, the probability of the expert
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Figure 1: ESCIRL overview. Given a raw trajectory dataset, we first converts it into Frenet coor-
dinates using a low-dimensional motion extractor. Next, we initialize its population by randomly
sampling a pair of positive and negative set for each trajectory entry in the dataset. Then, we ap-
ply SCIRL to each contrastive set, and obtain a set of IRL parameters w.r.t. each trajectory in the
dataset. With the set of IRL parameters, ESCIRL fits a unified continuous control network (CCN)
to adaptively predict control parameters given the dynamic stacked context (e.g. vehicle states, map
geometry) and select the top 10% of the population for crossover and mutation to produce the subse-
quent population. This evolving process is repeated for a maximum of K times or until convergence.

demonstrations Dp is commonly [29] defined as:

P (Dp | ω) =
1

Zω
eβRω(Dp) =

1

Zω
eβω

TF(Dp) ≈
N∏
i=1

1

Zω
eβRω(ξi) (2)

where Zω denotes the set of feasible trajectories, and β specifies the demonstration proximity [30],
which is set to 1 throughout this paper unless otherwise noted. The goal of an (maximum entropy)
IRL algorithm [29] is to infer the underlying reward function that maximizes Eq. (2), which is the
likelihood of all expert demonstrations, with the assumption that trajectories are exponentially more
likely with higher cumulative rewards [31]. More specifically, assume that the trajectory space can
be approximated with discretized samples Zω ≈

∑M
m=0 e

βRω(ξmi ), where ξmi ∈ Di
m is a candidate

trajectory in the sampled trajectory setDi
m for demonstration ξi. Thus the goal of IRL is to find a set

of parameters ω∗ which maximizes the expert demonstration among the set of sampled trajectories.
Mathematically, we have

ω∗ = argmax
ω

1

N
logP (Dp|ω) = argmax

ω

1

N

N∑
i=1

logP (ξi|ω) (3)

In the context of trajectory planning and prediction, ω∗ will then be used to select the best trajectory
from the sampled trajectory set ξ∗i ∈ Dm.

2.2 Self-Contrastive IRL

Following [19, 32], we employ a linear-structured reward function with respect to F , which is a
chosen feature space. Specifically, we follow [32] and define three categories of features separately
for efficiency, safety and comfort. Besides, we propose two novel interactive features to capture the
driver’s desiderata in complex intersections. Finally, we define twenty-two features in total, more
details on the feature design are in Appendix C.

While existing works typically partition datasets first into specific scenarios that are clearly dis-
tinctive from each other such as dividing the dataset into subsets of in-lane following [22], lane-
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changing [32], or lane-merging [33], so that the inferred reward function (w∗ in Eq. (3)) is stable
across the demonstrations within the in-domain scenario, we instead consider the complete multi-
distribution dataset without any partition to learn a unified controller network that outputs such
w∗ to handle all the diverse driving scenarios. Learning such unified controller network brings more
challenges than simply solving for Eq. (3), which produces only a single vector of the control param-
eters. Notice that this is fine for existing works as they have an implicit assumption that the expert
demonstration obey a unified distribution [22] due to partition. However, such assumption is no
longer valid in our case as we consider multi-distributions in the expert demonstrations. Blindly fol-
lowing such assumption would lead to decreased performance and lower robustness [24]. Therefore,
to handle the multi-modality in terms of driving conditions and preserve the distribution diversity in
the demonstration dataset, we propose a self-contrastive IRL (SCIRL) algorithm. Inspired by [34],
we augment Eq. (2) with an auxiliary contrastive loss term, which can be represented as:

LSCIRL(ω) = LIRL(ω) + γLContrastive(ω) (4)

where γ is a hyper-parameter and is set to 1 throughout this paper unless otherwise noted. Different
from [34], SCIRL considers both positive (similar policy) and negative (dissimilar policy) set, with
LIRL only being conducted on the positive set, i.e.

LIRL(ω) = −
1

K+

K+∑
i=1

(
ωT
i F(ξi)− log

M∑
m=0

eω
T
i F(ξmi )

)
(5)

and we design LContrastive as a hinge loss that seeks to ensure that the expert demonstration has a
higher probability in the positive set than the negative set by a margin ϵ. Mathematically, we have:

LContrastive(ω) = max
(
P− − P+ + ϵ, 0

)
(6)

where P+ and P− are the probability of each expert demonstration in the positive and negative set
respectively. More specifically, for an arbitrary demonstration ξ ∈ Dp, we have

P+
j =

1

K+
j

K+
j∑

i=1

eω
T
i F(ξ+i )∑M

m+=0 e
ωT

i F(ξm
+

i )
, P−

j =
1

K−
j

K−
j∑

i=1

eω
T
i F(ξ−i )∑M

m−=0 e
ωT

i F(ξm
−

i )
(7)

where m+, m−, ξ+i , and ξ−i represent the demonstration m and sampled trajectory ξ in the positive
(+) and negative (−) subset for trajectory ξj . K+

j and K−
j denote the number of demonstrations

in the positive and negative set. Based on a common assumption that each demonstration ξi ∈ Dp

only represents one certain scenario, we define a separate pair of contrastive set for each ξi. In
other words, instead of applying LIRL on the overall dataset as in Eq. (2), we define a specific pair
of positive/negative (contrastive) sets for each demonstration ξj in the dataset DP More details are
illustrated in Algorithm 1. As a result, SCIRL can effectively preserve the multi-modality (multi-
driving conditions) across diverse driving scenarios and optimize expert behaviors on a more fine-
grained subspace. However, considering the general case where no priors are available to pre-
determine these sets, we introduce an evolutionary algorithm to iteratively refine the contrastive sets
in a self-supervised manner.

2.3 Evolving Framework

Since SCIRL does not rely on any priors to pre-define the contrastive sets for each trajectory ξj ,
we propose an evolving framework, which is considered as the outer-level of ESCIRL integrating
SCIRL into an iterative closed-loop optimization. In this way, we can effectively accumulate the pri-
ors to determine contrastive sets for each trajectory via natural selection [28], so that convergence
and global optimality can be guaranteed. As shown in Fig. 1, for each raw trajectory, we first trans-
form it to the Frenet state-space [35] using a rule-based motion extractor. Next, for each instance in
the initial population, we set ξ+i = ξi and ξ−i = ∅ for each trajectory in the dataset and then apply
SCIRL to obtain a set of corresponding reward parameters ωi as initialization.

Continuous control network. To capture the underlying relationship between a specific driving
context including vehicle states (both spatial and kinematic), map geometry, and its expert policy
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Algorithm 1 Updating CCN with ESCIRL

Require: a dataset D = {ξi}Ni=1 with N trajectories ξi; feature function F ; safety-constrained
sample policy πi; number of points in contrastive set K+, K−, learning rate α, convergence
threshold ϵ

Ensure: a global cost function G; sample policy π∗

1: Randomly initialize ωi, πi for all i ∈ {1, . . . , N}
2: Project trajectory ξi into feature space: Fi = F(ξi)
3: for each trajectory τi, i ∈ {1, . . . , N} do
4: Sample M trajectories under policy πi

5: Find K+ closest and K− furthest points by sorting distance matrix {d(ωi, ωj)}Mj=1

6: Compute contrastive IRL loss LSCIRL(ωi) for ωi:
7: Update ωi using gradient descent: ωi ← ωi − α∇ωiLSCIRL(ωi)
8: Update πi using policy gradient (if πi is learnable)
9: end for

10: Fit CCN to predict {ωi}Ni=1 from the initial state{σ0
i }Ni=1 of trajectory {ξi}Ni=1

11: Predict reward parameter ωpred
i with CCN

12: Update CCN using gradient descent with loss function LCCN(ω
pred
i |ωi)

distribution, we propose to learn a unified continuous control network (CCN) to adaptively predict
the corresponding parameters of the reward function (as in Eq. (2)) for the ego vehicle. The architec-
ture of the proposed CCN is shown in Fig. 2a, with three streams of network inputs: the static map
geometry, mapping of vehicle spatial states (e.g. coordinate, heading), and mapping of vehicle kine-
matic states (e.g. velocity, accelerations, jerk). The output is the corresponding control parameters
ωi of the reward function.

Since both the map geometry and vehicle spatial states are static, we stack them to be a dual-channel
mapping input. Then we design a Siamese structure [36] in CCN to separately encode the vehicle
kinematic information (i.e. kinematic input), and the static map with vehicle spatial information (i.e.
spatial input). Notably, we define the intermediate mapping output of the convolution for spatial in-
put to be an attention map [37], indicating which specific parts of the context are more responsible
for the current predictions. On the other hand, the convolution for kinematic input encompasses
a richer representation of the vehicles’ dynamic states. After obtaining both convolution outputs,
we fuse the two mappings using a Hadamard Product and then concatenate it again with the ego
vehicle’s states to further augment the low-dimensional representation of vehicle-environment in-
formation. Finally, the concatenated vector is mapped to the SCIRL parameters space through a
fully-connected layer. During training, the loss of CCN is defined as:

LCCN(ω
pred|ω) = 1

N

N∑
i=1

log(cosh(|ωpred
i − ωi|)) (8)

where ωpred
i and ωi refers to the predicted reward parameter and ground truth respectively. And

cosh(x) = ex+e−x

2 . In general, we argue that this attention-based design allows for an adaptive rep-
resentation of the driving context and establishes an informative mapping from the driving context to
the controller space (i.e. parameter space of reward functions). Furthermore, we provide an analysis
on interpretability for the proposed CCN structure in §4.4. The procedure for updating CCN within
ESCIRL is detailed in Algorithm 1.

Evolving contrastive sets. As shown in Fig. 1, after SCIRL converges in each iteration, we se-
lect the top 10% of the population based on averaged displacement error (ADE) from the in-domain
validation set, and further crossover and mutate them to produce the subsequent populations. Specif-
ically for crossover, we sample IE mutual demonstrations from the intersection set of the top 10%
contrastive sets and sample (K+/−−IE) demonstrations from the difference set of the union and in-
tersection sets. Then we mutate the demonstrations in each contrastive sets by a uniform probability
of 5% to obtain each population in the next generations. This process is repeated until convergence
(the decrease of ADE falls below a threshold) or for a maximum K times, as shown in Fig. 2b.
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Figure 2: (a): we first encode the vehicle state σi into a multi-channel context mapM∈ Rc×W×W

with c channels of size (W,W) to separately involve the spatial and kinematic information of the
vehicles and surrounding map geometry. (b): the white dot represents a candidate of the contrastive
pairs, where each corresponds to a policy; the y-axis shows its corresponding averaged number of
collision after convergence. The red dashed line indicates zero averaged collision.

3 Experiment
Datasets. To evaluate the capability of ESCIRL on complex multi-scenario driving modeling tasks,
we use INTERACTION [27] and CitySim [26] datasets. INTERACTION is a comprehensive dataset
of interactive vehicle trajectories collected from various traffic scenarios (e.g. roundabout, inter-
sections) around the world. And CitySim is a drone-based vehicle trajectory collection featuring
vehicle trajectories extracted from 1,140 minutes of drone videos recorded across 12 different loca-
tions, capturing a variety of road geometries to facilitate comprehensive analysis and applications.
Specifically, we extract 20,000 trajectories in total for both dataset. All the trajectories from both
datasets are converted to Frenet state-space [35] using a rule-based motion extractor.

Baselines. We compare the performance of ESCIRL against five principled trajectory prediction
approaches, including three IRL-based methods that demonstrate better data-efficiency, and two
DNN-based methods which excel especially in multi-scenario complex driving conditions. More
specifically, the three IRL baselines include Opt-IRL [38], which learns a unified reward function
via maximum entropy objective; CIOC [39], which employs a Laplace approximation to estimate
rewards in a continuous feature space; and GCL [24], a model-free approach that adopts DNN to
learn the reward and policy in an end-to-end manner without predefined heuristics. Additionally,
we compare two DNN-based models that have demonstrated superior performance in trajectory
prediction tasks: RNN-based models, where we use a CNN-LSTM structure in our implementation
(e.g.[40, 41, 42]), and transformer-based (TF-based) models (e.g.[12, 43, 44]). For both model
structures, we adopt the default hyperparameter configurations recommended in respective works.

Metrics. Existing metrics including averaged feature distance (AFD), average displacement error
(ADE), final displacement error (FDE), human probability (HP), and averaged number of collisions
(AC) are used in our experiments. Specifically, HP is evaluated by the likelihood that the predicted
trajectory aligns with the expert trajectory. It is important to note that not all metrics are applicable
to every method. Specifically, AFD is unavailable for GCL, RNN-based, and transformer-based
methods, as these approaches do not rely on feature engineering. Similarly, HP cannot be applied to
DNN-based methods, as they lack a straightforward evaluation for this metric.

Results. To verify ESCIRL’s performance under a scarcely labeled dataset which incorporates
multiple diverse distributions, we randomly sample 2000 trajectories for both dataset and assess
ESCIRL and the five baselines w.r.t. the five aforementioned metrics. The results are shown in Ta-
ble 1. We can denote that ESCIRL outperforms all the other approaches by a significant margin on
both datasets. We attribute the reasons for the strong performance of ESCIRL to the fact that it can
efficiently decompose the mixed-scenario expert distributions under limited priors and adaptively
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Table 1: Results comparing ESCIRL against three IRL-based and two DNN-based approaches in-
cluding Opt-IRL, CIOC, GCL, RNN-based, and transformer-based methods. The result denoted as
SCIRL refers to the first iteration of ESCIRL without the subsequent evolving process.

Method Interaction CitySim

AFD↓ ADE↓ FDE↓ HP↓ AC↓ AFD↓ ADE↓ FDE↓ HP↓ AC↓
Opt-IRL 1.39±0.16 0.76±0.02 2.04±0.13 8.7e-3±0.00 3.33±0.33 2.60±35.8 1.86±0.92 4.28±4.19 1.0e-2±0.00 1.33±0.33
CIOC 1.68±0.47 1.07±0.05 3.10±0.27 8.9e-3±0.00 2.75±0.92 3.32±6.36 3.57±0.79 7.98±3.58 0.01±0.00 1.75±0.92
GCL - 3.08±0.01 7.08±0.03 8.5e-5±0.00 5±2 - 2.89±0.02 5.45±0.04 1.3e-4±0.00 1.75±1.58
RNN-based - 2.32±0.15 5.66±0.42 - 4.20±0.73 - 2.84±0.11 5.98±0.50 - 3.33±0.85
TF-based - 3.59±0.54 7.12±0.88 - 7.33±1.20 - 4.12±0.62 8.30±0.74 - 5.88±1.43

Ours
SCIRL 0.46±0.01 0.53±0.00 1.36±0.015 0.02±0.00 1.24±0.50 1.62±0.02 1.09±0.00 2.60±0.01 0.02±0.00 0.45±0.22
ESCIRL 0.45±0.01 0.48±0.01 1.25±0.00 0.01±0.00 0±0.00 1.51±0.00 1.01±0.00 2.45±0.00 0.02±0.00 0.00±0.

evolve to optimize the control parameters for a spectrum of reward functions, thus better explain-
ing the diverse expert feature space (low AFD), and consequently resulting in low displacement
error (ADE) and averaged collision (AC). Besides, ESCIRL achieves nearly zero safety violation
(in terms of AC) on both dataset while other algorithms frequently collide with the environment ve-
hicles. Notably, even without the evolving framework, SCIRL alone still performs better than all the
baselines, while ESCIRL further improves the results by iteratively improving the contrastive sets.
Additionally, we also note that due to training data scarcity, both the RNN-based and transformer-
based method performs poorly on these datasets due to underfitting, which indicates the superiority
of ESCIRL in efficiently learning the multi-distribution features under the data scarcity challenge.

4 Ablation and Component Interpretation
4.1 Generalizability

Table 2: Comparison analysis of generalizability. We
train each method on the Interaction dataset and test on
the overall CitySim dataset.

Method AFD ADE FDE AC
Opt-IRL 2.74±0.95 3.56±0.62 7.85±0.92 4.16±0.67
CIOC 3.12±0.86 3.44±1.20 7.36±1.65 4.02±0.97
GCL - 3.54±0.75 7.88±1.12 4.55±1.05
TF-based - 4.68±1.42 8.98±1.81 7.11±1.12
RNN-based - 3.43±0.77 7.23±1.13 3.80±0.70
ESCIRL 1.55±0.07 1.52±0.18 2.85±0.54 0.53±0.75

To better assess the generalizability of ES-
CIRL, we conduct an additional experi-
ment where first train a CNN in ESCIRL
on 2000 random samples from the INTER-
ACTION training set, and then test it on
the CitySim test set. The results are re-
ported in Table 2. Results indicate that ES-
CIRL outperforms both baselines includ-
ing the RNN-based and transformer-based
methods which have a much larger net-
work to acquire better robustness. We attribute the efficiency and lightweight of ESCIRL to its
decoupled training process, where we first obtain the ground truth labels between trajectories and
reward function parameters, and fit a CCN to capture this mapping w.r.t. driving context, without
directly learning the intricate relationship between the driving context and outcome trajectories.

4.2 Scalability
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Figure 3: We assess ADE w.r.t. training data scale. We pre-
pare the training set to include random demonstrations from
500 to 12,000 instances from the INTERACTION dataset.
In (a) these models are tested on the in-domain samples
from INTERACTION test set, while in (b) they are tested
on the out-of-domain Citysim test set.

Besides generalizability, another crit-
ical aspect in evaluating trajectory
prediction methods is the scalability,
which focuses on assessing method’s
performance when the quantity of
available expert demonstrations is
limited (data scarcity) as well as very
large (data abundance). As shown in
Fig. 3, we vary the number of ex-
pert demonstrations in training from
500 to 12,000, and observe both in-
domain (train and test dataset being
the same) and out-of-domain (train
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on INTERACTION and test on CitySim, as in §4.1) performance of the approaches including our
proposed ESCIRL. Results demonstrate that ESCIRL has excellent scalability, especially in the
data-scarcity scenarios, where ESCIRL significantly outperforms other methods. When the number
of available expert demonstrations goes up, ESCIRL is also able to improve its performance. Fur-
thermore, we posit that ESCIRL would further benefit in scenarios of data abundance, particularly
when the CCN is enhanced with a large-scale, possibly transformer-based neural network.

4.3 Evolving Process

The trajectory prediction performance during the evolving process is shown in Fig. 2b. Both average
displacement error (ADE) and average collision (AC) are tracked during this process. The results
demonstrate a progressive increase in safe behaviors throughout the evolving process, affirming the
robustness of our proposed ESCIRL.

4.4 Interpretation Analysis of CCN

Our aim in designing the CCN architecture, as detailed in §2.3, is to maintain the high in-
terpretability characteristic of our proposed ESCIRL. To achieve this, more specifically, we
incorporate the attention mechanism [37] to dynamically adjust the focus on various in-
puts such as map geometry and vehicle kinematic data based on their relevance to the cur-
rent driving scenario, enabling the ego vehicle to accurately predict and adapt its trajectory.

ego vehicle

(a) spatial map (b) kinematic map (c) attended map

Figure 4: Visualization of hidden layers in CCN. (a) and (b)
depicts the first convolution layer of the spatial and kine-
matic input. (c) depicts the attended mapping by fusing
the third hidden layer of both spatial and kinematic streams.
Lighter color indicates greater values. The fused map effec-
tively captures the intention of the ego vehicle by attending
more on the flanking and leading vehicles in the same lane.

In this section, we visualize this at-
tention to interpret the model deci-
sion making. As shown in Fig. 4, we
visualize a scenario from the INTER-
ACTION dataset in which the ego ve-
hicle is on a highway, surrounded by
multiple vehicles, with the road ori-
ented downwards. We can observe
that the CCN utilizes integrated spa-
tial and kinematic maps to discern
critical information such as the po-
sitions and movements of adjacent
and leading vehicles in the same lane,
aligning with the vehicle’s intent to
follow the lane. We believe that this
high level of interpretability in the
CCN is attributed to its structured design, which may include layered networks that process spa-
tial and temporal data separately to optimize response times and accuracy. Additionally, our unique
decoupled training approach allows each component of the system to be trained under varied sce-
narios, enhancing the model’s performance and reliability in complex driving environments.

5 Conclusion and Discussion
In this paper, we present ESCIRL, a novel approach that advances trajectory prediction in au-
tonomous driving through evolving self-contrastive IRL. ESCIRL not only enhances prediction
accuracy and robustness against diverse driving scenarios, outperforming existing methods by a
large margin, but also demonstrates superior generalizability against DNN-based approaches which
are known for better generalizability, while maintaining data efficiency as the other IRL-based ap-
proaches. In other words, ESCIRL demonstrates advantages from both worlds, which have not been
seen in other existing works yet. We attribute the superior performance of ESCIRL to the unique
bi-level optimization framework that blends both self-contrastive IRL and an evolving algorithm to
offer a compelling balance of the trade-off. Moving forward, future work integrating more com-
plex sensor data would be an interesting way to refine ESCIRL’s understanding of more detailed
real-world contexts. Additionally, given the successful demonstration of the feasibility for learning
generalizable reward functions, it would be meaningful to further explore more unified and adaptive
framework for trajectory prediction in the field of autonomous driving.

8



Acknowledgments

We thank Yi Yang at CIDI Lab and all the reviewers for their valuable comments and suggestions.

References
[1] H. Wu, T. Phong, C. Yu, P. Cai, S. Zheng, and D. Hsu. What truly matters in trajectory

prediction for autonomous driving? arXiv preprint arXiv:2306.15136, 2023.

[2] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature, 521(7553):436–444, 2015.

[3] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.

[4] I. H. Sarker. Deep learning: a comprehensive overview on techniques, taxonomy, applications
and research directions. SN Computer Science, 2(6):420, 2021.

[5] Y. Huang and Y. Chen. Autonomous driving with deep learning: A survey of state-of-art
technologies. arXiv preprint arXiv:2006.06091, 2020.

[6] J. Liu, X. Mao, Y. Fang, D. Zhu, and M. Q.-H. Meng. A survey on deep-learning approaches for
vehicle trajectory prediction in autonomous driving. In 2021 IEEE International Conference
on Robotics and Biomimetics (ROBIO), pages 978–985. IEEE, 2021.

[7] V. Bharilya and N. Kumar. Machine learning for autonomous vehicle’s trajectory prediction: A
comprehensive survey, challenges, and future research directions. Vehicular Communications,
page 100733, 2024.

[8] L. Xin, P. Wang, C.-Y. Chan, J. Chen, S. E. Li, and B. Cheng. Intention-aware long horizon
trajectory prediction of surrounding vehicles using dual lstm networks. In 2018 21st Inter-
national Conference on Intelligent Transportation Systems (ITSC), pages 1441–1446. IEEE,
2018.

[9] S. Wang, P. Zhao, B. Yu, W. Huang, and H. Liang. Vehicle trajectory prediction by knowledge-
driven lstm network in urban environments. Journal of Advanced Transportation, 2020:1–20,
2020.

[10] L. Rossi, A. Ajmar, M. Paolanti, and R. Pierdicca. Vehicle trajectory prediction and generation
using lstm models and gans. Plos one, 16(7):e0253868, 2021.

[11] A. Postnikov, A. Gamayunov, and G. Ferrer. Transformer based trajectory prediction. arXiv
preprint arXiv:2112.04350, 2021.

[12] T. Gilles, S. Sabatini, D. Tsishkou, B. Stanciulescu, and F. Moutarde. Home: Heatmap output
for future motion estimation. In 2021 IEEE International Intelligent Transportation Systems
Conference (ITSC), pages 500–507. IEEE, 2021.

[13] Z. Li and H. Yu. Trajectory prediction for autonomous driving using a transformer network.
arXiv preprint arXiv:2402.16501, 2024.

[14] M. Gheisari, G. Wang, and M. Z. A. Bhuiyan. A survey on deep learning in big data. In 2017
IEEE international conference on computational science and engineering (CSE) and IEEE in-
ternational conference on embedded and ubiquitous computing (EUC), volume 2, pages 173–
180. IEEE, 2017.

[15] S. Datar. Navigating data scarce environments in computer vision. ITNOW, 65(4):60–61, 2023.

[16] L. Liu, S. Lu, R. Zhong, B. Wu, Y. Yao, Q. Zhang, and W. Shi. Computing systems for
autonomous driving: State of the art and challenges. IEEE Internet of Things Journal, 8(8):
6469–6486, 2020.

9



[17] J. Qian, L. Zhang, Q. Huang, X. Liu, X. Xing, and X. Li. A self-driving solution for resource-
constrained autonomous vehicles in parked areas. High-Confidence Computing, 4(1):100182,
2024.

[18] S. Arora and P. Doshi. A survey of inverse reinforcement learning: Challenges, methods and
progress. Artificial Intelligence, 297:103500, 2021.

[19] J. Fischer, C. Eyberg, M. Werling, and M. Lauer. Sampling-based inverse reinforcement learn-
ing algorithms with safety constraints. In 2021 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pages 791–798. IEEE, 2021.

[20] S. Adams, T. Cody, and P. A. Beling. A survey of inverse reinforcement learning. Artificial
Intelligence Review, 55(6):4307–4346, 2022.

[21] Q. Zou, H. Li, and R. Zhang. Inverse reinforcement learning via neural network in driver
behavior modeling. In 2018 IEEE Intelligent Vehicles Symposium (IV), pages 1245–1250.
IEEE, 2018.

[22] Z. Huang, J. Wu, and C. Lv. Driving behavior modeling using naturalistic human driving data
with inverse reinforcement learning. IEEE transactions on intelligent transportation systems,
23(8):10239–10251, 2021.

[23] R. Boney, N. Di Palo, M. Berglund, A. Ilin, J. Kannala, A. Rasmus, and H. Valpola. Regu-
larizing trajectory optimization with denoising autoencoders. Advances in Neural Information
Processing Systems, 32, 2019.

[24] C. Finn, S. Levine, and P. Abbeel. Guided cost learning: Deep inverse optimal control via
policy optimization. In International conference on machine learning, pages 49–58. PMLR,
2016.

[25] L. Chen, P. Wu, K. Chitta, B. Jaeger, A. Geiger, and H. Li. End-to-end autonomous driving:
Challenges and frontiers. arXiv preprint arXiv:2306.16927, 2023.

[26] O. Zheng, M. Abdel-Aty, L. Yue, A. Abdelraouf, Z. Wang, and N. Mahmoud. Citysim: A
drone-based vehicle trajectory dataset for safety oriented research and digital twins. arXiv
preprint arXiv:2208.11036, 2022.

[27] W. Zhan, L. Sun, D. Wang, H. Shi, A. Clausse, M. Naumann, J. Kummerle, H. Konigshof,
C. Stiller, A. de La Fortelle, et al. Interaction dataset: An international, adversarial and co-
operative motion dataset in interactive driving scenarios with semantic maps. arXiv preprint
arXiv:1910.03088, 2019.
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Appendix
A Related Works
A.1 Driving Behavior Modeling

Driving behavior modeling is essential in autonomous driving, focusing on trajectory prediction and
encompassing various methodologies and assumptions [45]. Key areas include behavioral inten-
tion prediction (BIP) [46], motion prediction [5, 47], and pattern analysis [48]. BIP predicts future
road user actions using historical and contextual data, utilizing parametric models like the intelli-
gent driver model (IDM) [49, 50, 51] and data-driven methods [52, 53, 54]. Parametric models are
simple and efficient [55] but may not capture complex dynamics [56], while data-driven approaches
handle complex patterns well [46] but struggle with interpretability and adaptability to new data sce-
narios [57]. Motion prediction enables autonomous vehicles to anticipate other users’ movements,
enhancing safety and efficiency [47, 58]. It involves physics-based models [59] for simple scenarios
and DL methods for complex environments [60, 61]. Pattern analysis extracts features from human
driving data to identify driving traits and styles [62], integrating advanced techniques like game the-
ory [63] for deeper insights. Our research advances these concepts by mathematically formulating
decision-making in self-driving cars as reward functions, which aid in control and planning, and
deriving parameters from driving data to improve trajectory prediction accuracy and interpretability.

A.2 Trajectory Prediction

Trajectory prediction in autonomous systems is classified into model-based and data-driven ap-
proaches [64]. Model-based methods use physics equations and stochastic models [65], such as
Bayesian networks [66], Monte Carlo simulations [67], and Gaussian mixture models [68], to predict
vehicle movements. While highly interpretable, their application is often limited to less uncertain
environments like highways [69]. Data-driven methods, on the other hand, learn from historical and
spatial data using recurrent [70, 71], convolutional [40], graph [72, 73] neural networks, transform-
ers [11, 12, 13], and generative adversarial networks [74], which excel in handling complex temporal
and spatial data. Recent studies also explore self-supervised contrastive learning [34], proven effec-
tive in supervised [75] and unsupervised [34, 76, 77] settings, to improve trajectory prediction. This
work introduces an action-based contrastive loss that incorporates pedestrian action data, enhancing
the accuracy and context-sensitivity in complex environments.

A.3 Robust IRL

Both model-based and data-driven trajectory prediction methods struggle with complexity and re-
quire extensive data, often producing only average predictions that miss the variability in human
driving [78]. Multimodal methods address this by considering multiple possible paths [79, 80, 81],
but they can be unstable and overlook specific driving characteristics. IRL and imitation learn-
ing aim to more closely mimic human driving by learning from observed behaviors, yet they are
limited by their reliance on environmental models for simulating interactions [22, 82, 33]. Robust
IRL, developing from robust Markov Decision Process (MDP) frameworks [83, 84, 85, 86, 87], fo-
cuses on enhancing decision-making robustness. Our work diverges from traditional approaches by
addressing dynamics mismatches rather than just learner-expert mismatches, a significant issue in
Generative Adversarial Imitation Learning (GAIL) [88] and its variants [89, 90]. On the other hand,
ESCIRL offers a robust, generalizable solution that enhances policy robustness and applicability by
handling these mismatches effectively.

B Experiment Settings
B.1 Maximum Entropy Inverse Reinforcement Learning (MaxEnt-IRL)

Recalling the definition in Eq. (1), σ and u represent the states and actions of the vehicle respec-
tively, we formulate the dynamics f(·) of each vehicle as defined in Eq. (1). A driving trajec-
tory ξ within the spatial-temporal domain comprises a sequence of states and actions, such that
ξ = {σ0, u0, σ1, u1, . . . , σN−1, uN−1}, where N denotes the length of the planning horizon. Given
a set of driving demonstrations Dp = {ξi}, indexed by i = 1, 2, . . . , N , the maximum-entropy
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IRL [29] problem seeks to infer the underlying reward function that maximizes the likelihood of
these expert demonstrations, under the assumption that trajectories are exponentially more likely
with higher cumulative rewards. This assumption is formalized by the Boltzmann noisily-rational
model P (ξ) [31] as shown in (10), where ω is the parameters of reward function R and β is a
hyper-parameter to specify demonstration proximity [30], which we consistently adopt β = 1 in
this study. Notably, while previous works typically partition datasets into particular scenarios such
as in-lane following [22], lane-changing [32], and merging [33] to assume a stable reward function
across demonstrations, we engage with the complete dataset instead. In our study, the dataset con-
tains multi-modal driving policies with distinguished distributions, and we aim to learn a continuous
controller network to handle diverse driving scenarios presented in the dataset.

Our methodology employs a linear-structured reward function that is characterized by a specifically
chosen feature space F(·), which is defined in relation to the trajectories ξ:

R(ξ;ω) = ωTF(ξ) (9)

As a result, the probability, or likelihood, of the demonstration set is given by:

P (Dp|ω) =
N∏
i=1

eβRω(ξi)

Zω
=

N∏
i=1

1

Zω
eβRω(ξi) (10)

In this context, Zω denotes the set of all feasible trajectories that correspond to the initial and termi-
nal conditions delineated by ξ. The primary objective is to ascertain the optimal parameter vector
ω∗ that enhances the average log-likelihood of the observed demonstrations, as shown below:

ω∗ =argmax
ω

1

N
logP (Dp|ω) (11)

=argmax
ω

1

N

N∑
i=1

logP (ξi|ω) (12)

From (4) and (5), we can see that the key step in solving the optimization problem in (5) is the
calculation of the partition factors Zω . In sampling-based methods, Zω for each demonstration is
approximated via the sum over samples in the sample set {ξmi }, m = 1, 2, . . . ,M , and ξi is denoted
as ξ0i :

Zω ≈
M∑

m=0

eβRω(ξmj ) (13)

Thus, the objective function in (5) becomes:

L(ω) = − 1

N

N∑
i=1

logP (ξi|ω)

= − 1

N

N∑
i=1

log
eβRω(ξi)∑M

m=0 e
βRω(ξmi )

= − 1

N

N∑
i=1

(
βRω(ξi)− log

M∑
m=0

eβRω(ξmi )

) (14)

The derivative is thus given by:

∇ωL =
β

N

N∑
i=1

(
F(ξi)− F̂(ξi)

)
(15)

F̂(ξi) =
∑M

m=0 e
βRω(rmi )F(ξmi )∑M

m=0 e
βRω(ξmi )

(16)

where F(ξ) defines the expected feature counts over all samples given ω.

Note that an additional l1 regularization over the parameter vector ω is introduced in the training
process to compensate for possible errors induced via the selected set of features.

16



C Feature Design for ESCIRL

For any trajectory ξ = σi
T−1
i=0 with T frames of states, where σi = [xi, yi, θi, si, di, vi], we project

it into feature space as follows.

C.1 Features for comfort

f1 =
1

T − 1

T−2∑
i=0

(vi+1 − vi)
2 (17)

f2 =
1

T − 2

T−3∑
i=0

(vi+2 − vi)
2 (18)

We introduce f1, f2 to prevent dramatic velocity changes. Essentially, f1 calculates the average sum
of squared differences in velocity between consecutive states, which is a measure of the smoothness
of velocity over time. f2 is similar to f1, but it takes the average squared difference in velocity over
every two time steps instead of every one. This means it measures the change in velocity over a
longer time span. By minimizing these two features, we can avoid jerky movements which may
cause uncomfortable riding experience.

f3 =
1

T − 1

T−2∑
i=0

(Wrap(θi+1 − θi))
2 (19)

Wrap(θ) = θ − 2π⌊θ + π

2π
⌋ (20)

f3 sums up the average squared change of heading angles over consecutive steps. Here, the Wrap
function ensures the heading angle change is bounded in [−π, π]. It is minimized to ensure a smooth
trajectory.

C.2 Features for efficiency

f0 =
1

T

T−1∑
i=0

vi
2 (21)

f0 sums up the squared velocity over the whole trajectory. By minimizing f0, the model penal-
izes abnormally high velocity, thus ensuring a more fuel efficient and environment friendly driving
dynamic.

f6 =
1

T

T−1∑
i=0

(
vi − vlimit

vlimit
)2 (22)

vlimit is the velocity limitation of the current road. To ensure the high efficiency of trajectory plan-
ning, we may want the vehicle’s speed to be fast without violating traffic rules. By minimizing f6,
we can ensure the vehicle’s speed is close to the speed limit.

f4 =
1

T − 1

T−2∑
i=0

(sT−1 − si)
2 (23)

f5 =
1

T − 1

T−2∑
i=0

(Wrap(arctan(
yT−1 − yi
xT−1 − xi

)− θi))
2 (24)

f9 =
1

T

T−1∑
i=0

IL
i (25)
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f10 =
1

T

T−1∑
i=0

IR
i (26)

IL and IR represent the ego vehicle whether to merge left or right, according to its destination.

f11 =
1

T

T−1∑
i=0

(ed
targetL
i − 1)(max(smargin − send

i , 0) + 1) (27)

f12 =
1

T

T−1∑
i=0

(ed
targetR
i − 1)(max(smargin − send

i , 0) + 1) (28)

dtargetL and dtargetR are the distance from the ego vehicle to the left or right road’s center line if it
should merge left or right. smargin is a constant distance to measure the urgency of changing lanes.
send is the distance from the current pose to the endpoint of the current road.

C.3 Features for safety

f7 =
1

T

T−1∑
i=0

(di)
2 (29)

f8 =
1

T

T−1∑
i=0

(Wrap(θi − θroad))
2 (30)

f8 measures the deviance of vehicle’s heading angle from the road’s angle. Minimizing this feature
keeps the vehicle on the right track.

f13 =
1

T

T−1∑
i=0

e−|d(E−SF )

i | (31)

f14 =
1

T

T−1∑
i=0

e−|d(E−SL)

i | (32)

f15 =
1

T

T−1∑
i=0

e−|d(E−SR)

i | (33)

d(E−SF ), d(E−SL), and (E − SR), is the distance from the ego vehicle to the nearest surrounding
vehicle in front, left, or right region respectively, and denoted as inf if no surrounding vehicle exits
in such region.

f16 =
1

T

T−1∑
i=0

e−|d(E−CF )

i −d
(SF −CF )

i | (34)

f17 =
1

T

T−1∑
i=0

e−|d(E−CL)

i −d
(SL−CL)

i | (35)

f18 =
1

T

T−1∑
i=0

e−|d(E−CR)

i −d
(SL−CR)

i | (36)

A collision point between the ego vehicle and the nearest surrounding vehicle in the front, left, or
right region would be predicted respectively. We chose the Constant Velocity model as our prediction
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Figure 5: Interactive feature design
.

method, which is the simplest method. d(E−CF ), d(E−CL), and d(E−CR) is the distance from ego
vehicle to the collision point with the nearest surrounding vehicle in the front, left, and right region,
while d(SL−CF ), d(SL−CL), and d(SL−CR) is the distance of the surrounding vehicle. A sample is
shown in Figure 5.

f19 =
1

T

T−1∑
i=0

N coll
i (37)

N coll is the number of collisions between ego vehicle and surrounding vehicles.

D Continuous Controller Network (CCN)
D.1 Structure Design

Given a trajectory (τi), a parameter ωi would be calculated through Contrastive IRL. We designed
a Continuous Control Network (CCN) to map the relationship between the first states of trajectories
and CIRL parameters, which provides a continuous mapping method for any given state.

Let D̂ = {(σ0
i , ωi)}Ni=1 be a dataset for state-parameter pairs, where the σ0

i is the initial state of
each trajectory. We first encode the initial state into a multi-channel context mapM∈ Rc×200×200

with c channels and size (200, 200). The first channel is road information near the ego vehicle; the
second channel is the spatial information about the ego vehicle and surrounding vehicles, containing
their positions, headings, and shapes; other channels are the kinematic information about the ego
vehicle and surrounding vehicles, containing velocity, acceleration, distance to road center, etc. The
kinematic information about the ego vehicle is also collected as ego kinematic data.

The structure of the Continuous Control Network is shown in Figure 2a. The kinematic channels
of the context map are fed into two layers’ 2D convolutional neural network with kernel size (6, 6),
stride 2, and padding 2, and a 2D max pooling layer in the middle with kernel size (2, 2) and stride
2. The output of the last layer is 32 channels with the size (25, 25), denoted as an attention map. The
context map’s road channel and spatial channel are fed into three layers’ 2D convolutional neural
network with kernel size (4, 4), stride 2, and padding 1. The output of the last layer (original map)
is also 32 channels with the size (25, 25) and fused with the attention map by Hadamard Product.
The original and fusion maps are extracted into feature vectors through the fully connected layers.
The ego kinematic data is also extracted into a feature vector and concatenated with the other two
feature vectors. Finally, the prediction of reward parameters ωpred mapping to the given initial state
is predicted from the final FC layer by feeding the concatenated feature vector as input.

To update the parameters of CCN, the loss function is denoted as follows:

LCCN(ω
pred|ω) = 1

N

N∑
i=1

log(cosh(|ωpred
i − ωi|)) (38)
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Figure 6: The interactive scenarios of CitySim dataset (e.g. intersection, roundabout) that we inves-
tigate in this study [26].

D.2 Dataset

While a vast array of datasets exists for autonomous vehicles, they often encompass a restricted
range of real-world scenarios. To address the limitations in variety and depth of data, particularly
acute in regions with less technological infrastructure, our model incorporates a contrastive process
that enhances its capability to handle diverse real-world driving conditions with limited feature sets.

To realize this, the datasets selected for training are characterized by extensive variability and a
rich set of annotations necessary for accurately generating labels for subsequent training stages.
Adhering to these selection criteria, we have curated a suite of datasets that provide comprehensive
coverage of the myriad situations encountered on the roads.

INTERACTION. The INTERACTION dataset encompasses four categories of interactive driving
scenarios collected from 11 different locations, provides a rich, diversified backdrop that reflects the
variability of driving behaviors across the globe with driving scenarios from different countries and
cultural contexts. This inclusivity ensures that models developed or tested against this dataset can
be more easily adapted to the unique conditions of developing countries, mitigating the bias often
found in datasets predominantly sourced from high-resource environments.

CitySim. The selection of the CitySim dataset is predicated on its unparalleled contribution to
safety-oriented research and applications within the domain of autonomous driving, particularly un-
der the constraints of developing countries where safety-critical events and infrastructure limitations
pose unique challenges. CitySim’s comprehensive and meticulously curated vehicle trajectory data
set the stage for innovative machine learning approaches that are both resource-efficient and highly
applicable to real-world scenarios.

These datasets are instrumental in overcoming the prevalent data scarcity and contribute to a more
robust and versatile model training process. They ensure that the resulting algorithms are capa-
ble of interpreting and reacting to a wide array of traffic scenarios, making the advancements in
autonomous vehicle technology more accessible and effective across different regions.
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