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Abstract

Reinforcement learning (RL) post-training is cru-
cial for LLM alignment and reasoning, but ex-
isting policy-based methods, such as PPO and
DPO, can fall short of fixing shortcuts inherited
from pre-training. In this work, we introduce Q♯,
a value-based algorithm for KL-regularized RL
that guides the reference policy using the optimal
regularized Q function. We propose to learn the
optimal Q function using distributional RL on
an aggregated online dataset. Unlike prior value-
based baselines that guide the model using un-
regularized Q-values, our method is theoretically
principled and provably learns the optimal policy
for the KL-regularized RL problem. Empirically,
Q♯ outperforms prior baselines in math reasoning
benchmarks while maintaining a smaller KL di-
vergence to the reference policy. Theoretically,
we establish a reduction from KL-regularized RL
to no-regret online learning, providing the first
bounds for deterministic MDPs under only realiz-
ability. Thanks to distributional RL, our bounds
are also variance-dependent and converge faster
when the reference policy has small variance. In
sum, our results highlight Q♯ as an effective ap-
proach for post-training LLMs, offering both im-
proved performance and theoretical guarantees.

1. Introduction
Reinforcement learning (RL) post-training is a critical step
in the training process of large language models (LLMs)
that aligns their generations with human preferences (Chris-
tiano et al., 2017) and imbues them with reasoning abilities
(Setlur et al., 2024; Guo et al., 2025). Post-training with RL
typically occurs after the supervised learning stage (next-
token prediction) and the LLM is trained to maximize the
expected cumulative reward while minimizing the KL di-
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vergence w.r.t. the reference model πref from supervised
learning. This KL penalty is critical as it forces the LLM
to stay close to πref during the optimization process and
mitigates reward hacking and catastrophic forgetting.

Most state-of-the-art LLMs (Ouyang et al., 2022; Dubey
et al., 2024; Team et al., 2024) are currently post-trained
with policy-based RL algorithms, which directly update the
weights of the LLM with stochastic gradient descent via
methods like RLOO (Kool et al., 2019), PPO (Schulman
et al., 2017) and DPO (Rafailov et al., 2024). However, these
methods can suffer from certain shortcuts that are picked
up during pre-training, which fail to generalize for tasks
that involve planning, e.g., the star-graph task (Bachmann
& Nagarajan, 2024). Instead, in this paper, we propose
an RL algorithm that is value-based, where we guide the
generations of the reference policy with a learned value func-
tion, without modifying the weights of the reference policy
model. Indeed, in Section 3.1, we show that value-based
post-training allows us to correct the biases and shortcuts
within the reference policy.

While there are existing value-based RL algorithms for LLM
post-training, namely CD (Mudgal et al., 2023) and VAS
(Han et al., 2024), they all have a major issue which is that
they do not faithfully optimize the KL-constrained RL ob-
jective. Specifically, they propose to guide πref using Qπref

,
the expected reward-to-go under πref without KL regular-
ization, which is not guaranteed to converge to the optimal
policy π⋆,η . Instead, under the classical KL-regularized RL
framework, we show that it is provably optimal to guide
πref using Q⋆,η , the expected reward-to-go under π⋆,η with
KL-regularization, which is guaranteed to converge to π⋆,η .
Thus, these approaches can suffer from sub-optimal reward
and/or large KL deviations, both of which our approach Q♯
provably fixes. We discuss this in more detail in Appendix A.

In summary, our contributions are as follows:

1. We propose Q♯, a principled algorithm for KL-
regularized RL in deterministic MDPs, which includes
LLMs, based on guiding πref with the soft Q⋆ learned
with distributional RL (Section 2.2).

2. We prove variance-dependent PAC bounds for con-
vergence to the optimal policy, which only requires
realizability in the function class (Section 4).
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Q♯: Provably Optimal Distributional RL for LLM Post-Training

Figure 1. (Left) A sketch of our post-training algorithm (Q♯) based on distributional RL. Q♯ alternates between learning Z⋆ – the
reward-to-go distribution of πref – and using the induced policy to collect new data and further improve the distributional estimate. (Right)
Evaluation result on the GSM8K dataset (Cobbe et al., 2021). We see that Q♯ achieves both higher accuracy and lower KL compared to
prior value-based post-training algorithms (Mudgal et al., 2023; Han et al., 2024).

3. We show that value-based post-training, which includes
Q♯, can fix biases and shortcuts in a star-graph environ-
ment (Bachmann & Nagarajan, 2024), while popular
policy-based methods cannot (Section 3.1).

4. We provide extensive experiments on math reasoning
tasks that validate the effectiveness of our method at
maximizing reward while maintaining small KL devia-
tions from the reference policy (Section 3.2).

2. Method
2.1. Preliminaries

The goal of this paper is to solve KL-regularized RL in
deterministic Markov Decision Processes (MDPs), where
LLM post-training is a special case and our main focus.
First, we introduce the formal setup. The MDP consists of a
state space X , action space Y , horizon H , transition kernels
(P1, . . . , PH), where Ph : X × Y 7→ ∆(X ) and known
reward functions (r1, . . . , rH), where rh : X × Y 7→ R.
To interact with the MDP, we use policies of the form π =
(π1, . . . , πH) s.t. πh : X 7→ ∆(Y), which takes actions
given the current state at each step. For a given η > 0, the
soft value V π,η of a policy π is the expected cumulative
rewards subject to KL regularization, defined as,

Eπ[
∑H

h=1 rh(xh, yh)− η KL(πh(xh) ∥ πref
h (xh))], (1)

where recall the KL divergence is defined as KL(p ∥ q) =
Ez∼p[ln(p(z)/q(z))] for distributions p, q. In Equation (1),
the expectation with subscript π denotes the randomness
is coming from the random trajectory (x1, y1, . . . , xH , yH)
of π interacting with the MDP where the initial state x1 is
sampled from a known distribution d1. Our goal is to learn
the optimal policy π⋆,η = argmaxπ V

π,η .

A classical result is that KL-regularized RL can be solved us-
ing the soft Bellman equations (Ziebart et al., 2008). Specif-
ically, we can compute π⋆,η

h by iterating the following equa-

tions from h = H,H − 1, . . . , 1:

V ⋆,η
H+1(x) = 0,

Q⋆,η
h (x, y) = rh(x, y) + Ex′∼Ph(x,y)[V

⋆,η
h+1(x

′)],

π⋆,η
h (y | x) ∝ πref

h (y | x) exp(η−1Q⋆,η
h (x, y)), (2)

V ⋆,η
h (x) = η lnEy∼πref(x) exp(η

−1Q⋆,η
h (x, y)).

In other words, the optimal action distribution π⋆,η
h (· | x)

is simply the softmax of the Q⋆,η
h function weighted by

πref’s action distribution. Moreover, Q⋆,η
h has a special inter-

pretation: it is the highest achievable expected cumulative
reward with KL regularization starting from state x, ac-
tion y, at time h. Specifically, if we define Qπ,η

h (x, y) =
Eπ[

∑
t≥h rt(xt, yt) − ηI [t > h] KL(πt(xt) ∥ πref

t (xt)) |
xh = x, yh = y], then Q⋆,η

h (x, y) = maxπ Q
π,η
h (x, y) and

the argmax is precisely the π⋆,η
h defined in Equation (2).

Similarly, if we define V π,η
h (x) = Eπ[

∑
t≥h rt(xt, yt) −

η KL(πt(xt) ∥ πref
t (xt)) | xh = x], then V ⋆,η

h (x) =
maxπ V

π,η
h (x).

In this paper, we focus on solving deterministic MDPs
where the transitions Ph are deterministic, which includes
LLM post-training and many other problems (e.g., diffusion,
Domingo-Enrich et al., 2024) as a special case.

Assumption 2.1. The transitions Ph are deterministic.

Under Assumption 2.1, we can greatly simplify the value
function by shedding its recursive dependencies:

exp(η−1V ⋆,η
h (x))

= Ey∼πref
h (x)[exp(η

−1rh(x, y) + η−1V ⋆,η
h+1(x

′))] (3)

= Eπref [exp(η−1
∑

t≥h rt(xt, yt)) | xh = x], (4)

where Equation (3) is due to deterministic Ph, and Equa-
tion (4) is due to unrolling for multiple steps. In sum, we
have shown the following theorem which is a known result
from Piché et al. (2018); Li et al. (2024); Domingo-Enrich
et al. (2024).
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Theorem 2.2. Under Assumption 2.1, we have

V ⋆,η
h (xh) = η lnEπref [exp(η−1

∑
t≥h rt(xt, yt)) | xh],

Q⋆,η
h (xh, yh) = η lnEπref [exp(η−1

∑
t≥h rt(xt, yt)) | xh, yh].

This shows that V ⋆,η and Q⋆,η are simple functionals of
Z⋆ – the cumulative reward distribution of πref – where the
functional is f(P ) = η lnEP exp(X/η). In other words, if
we learn the cumulative reward distribution of πref, then we
can directly compute V ⋆,η and Q⋆,η, without any dynamic
programming. This has several benefits.

First, we do not require temporal difference (TD) learn-
ing (i.e., bootstrapping) which is notoriously unstable
with deep networks (Van Hasselt et al., 2018) and re-
quires completeness-type assumptions to guarantee con-
vergence in theory (Munos & Szepesvári, 2008). Sec-
ond, fitting the reward-to-go distribution Z⋆ or regressing
Eπref [exp(η−1

∑
t≥h rt)] is a standard supervised learning

task with a fixed target, which is much more stable in prac-
tice and well-understood in theory. Notably, there is no boot-
strapping or changing targets which is what renders deep RL
fragile. Third, we can leverage distributional RL (DistRL)
to fit the reward-to-go distribution, which has many benefits
for representation learning (Bellemare et al., 2017; Lyle
et al., 2019), lower variance updates (Rowland et al., 2023),
and second-order bounds (Wang et al., 2024a;b). For Dis-
tRL, our ability to avoid TD is a significant advantage since
the distributional Bellman operator is not even a contraction
for certain metrics (Bellemare et al., 2017).

Applicability to LLMs. For our theoretical framework,
we study the deterministic MDP model since it captures
the LLM post-training problem as a special case (Chris-
tiano et al., 2017). Specifically, the initial state x1 is
the prompt, the intermediate state xh is the current pre-
fix, and the action yh is the next token or next block of
tokens. So, the policy is simply the LLM’s autoregres-
sive generation process. The transition function simply
concatenates the LLM’s continuation to the prefix, i.e.,
Ph(xh, yh) = xhyh, which is a deterministic operation.
In many cases, the reward function is sparse, i.e., only rH
is non-zero, in which case Theorem 2.2 can be simplified
to Q⋆,η

h (xh, yh) = η lnEπref [exp(η−1r(xH , yH)) | xh, yh].
For example, in math tasks, it is the correctness of the solu-
tion; in chat, it is the preference of the response measured
by a (learned) reward model. In sum, our theoretical model
is directly applicable to LLM post-training.

Inference with Cumulative Reward Distribution. Let Z⋆

denote the conditional distribution of cumulative rewards
under roll-outs from πref; that is,

Z⋆
h(x, y)

D
=

∑
t≥h rt(xt, yt) | xh = x, yh = y,

where (xh, yh, . . . , xH , yH) is a random trajectory under

πref and D
= denotes that two random variables have equal

probability laws. Combining Theorem 2.2 and Equation (2),
we have that π⋆,η can be expressed in terms of Z⋆:

π⋆,η
h (y | x) ∝ πref

h (y | x)Ez∼Z⋆
h(x,y)

[exp(z/η)].

This motivates us to define the policy induced by a given
distribution Z : X × Y 7→ ∆(R) as

πZ,η
h (y | x) ∝ πref

h (y | x)Ez∼Zh(x,y)[exp(z/η)]. (5)

Since π⋆,η = πZ⋆,η, this naturally motivates learning a
good estimate Ẑ ≈ Z⋆ via distributional RL and plugging
back into Equation (5) to obtain a good policy, which is the
crux of our Q♯ algorithm.

2.2. Algorithm Q♯

We propose Q-Sharp (Q♯), a distributional value-based algo-
rithm for solving KL-regularized RL in deterministic MDPs.
Q♯ is an iterative algorithm that collects data from progres-
sively better policies to learn the target distribution Z⋆. In
this section, we describe the Q♯ algorithm using practical no-
tation for deep neural networks and LLMs; in Section 4, we
will provide a theoretically grounded version using online
learning oracles and prove convergence guarantees under
the mild assumption of realizability.

Let Zθ
h : X × Y → ∆(R) be a conditional distribution

with parameters θ. For a label R ∈ R (e.g., a sample
from Z⋆) and an estimate Ẑ, let L(R, Ẑ) be a distribu-
tional loss function for learning θ⋆, the optimal parameter
that minimizes the distance between Z⋆ and Zθ. For ex-
ample, if Z⋆

h(x, y)
D
= Ber(p⋆h(x, y)) is always Bernoulli,

then Zθ
h(x, y) can be parameterized by a neural network

that outputs a single scalar estimate of p⋆h. Then the natural
loss is binary cross-entropy (BCE), i.e.,

Lbce(r, p̂) = −r ln p̂− (1− r) ln(1− p̂).

This is useful in tasks like math or multiple choice questions
where the reward is binary. If there is no a priori structure
about the reward distribution, we can use a non-parametric
estimator such as histogram models that discretize the re-
ward space into bins and train with maximum likelihood
(MLE) loss (Bellemare et al., 2017):

Lmle(r, ẑ) = − ln ẑ[idx(r)],

where idx(r) is the index of the bin that r falls into and ẑ[i]
is the i-th bin’s probability estimate. Q♯ is amenable to any
distributional RL loss function (Bellemare et al., 2023).

Then, the key idea is to iteratively update the current pa-
rameters θk using new data collected from the current in-

duced policy πk ← πZθk ,η . Specifically, the data collection

3
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process rolls-in πk for h− 1 steps until xh, finishes the tra-
jectory with πref and collects the cumulative rewards Rh,k

henceforth, which is exactly a sample from Z⋆
h(xh). These

samples are added to the dataset and the parameters are
updated via gradient descent on the distributional loss func-
tion. This procedure is repeated until convergence. The full
algorithm is described in Algorithm 1.

Our iterative data collection process is similar in spirit to
DAgger (Ross et al., 2011) and AggreVaTe (Ross & Bagnell,
2014). A key difference is that DAgger and AggreVaTe are
interactive imitation learning algorithms that require rolling
out with an expert policy, while Q♯ does not require access
to any expert policies and can learn simply from interactions
with the environment.

Algorithm 1 Q♯

1: Input: reference policy πref.
2: Initialize θ1 and dataset Dh = ∅ for all h.
3: for k = 1, 2, . . . until convergence do
4: Let πk ← πZ

θk
,η be policy induced by Zθk .

5: for i = 1, 2, . . . , N do
6: Sample a switching time h ∼ [H].
7: Roll-in with πk for h− 1 steps.
8: Resume trajectory with πref from xh.
9: Let Rt denote cumulative rewards after time t.

10: Add (xt, yt, Rt) to Dt, ∀t ≥ h.
11: end for
12: Update θk by minimizing the distributional loss:

θk+1 ← argminθ
∑

h EDh
[L(Rh, Z

θ(xh, yh))].

13: end for
14: Output: Final θk.

Once we have learned a good parameter θk with Algorithm 1
such that Zθk ≈ Z⋆, we can induce a near-optimal policy
πθk,η via Equation (5). In Section 4, we prove that this
procedure indeed converges to the optimal policy under the
mild realizability assumption.

We remark that CD (Mudgal et al., 2023) and VAS (Han
et al., 2024) are related value-based algorithms for LLM
post-training, but there are at least three shortcomings. First,
CD and VAS use Qπref,0, the non-regularized Q-function
of πref, to guide the generations, which does not solve KL-
regularized RL in general – in Section 4, we indeed show
there are simple MDPs where CD and VAS provably fail to
maximize the reward and/or stay close to πref. In contrast,
Q♯ uses Q⋆,η to guide πref, which is principled and provably
converges to π⋆,η under a mild assumption of realizability.
Second, CD and VAS are offline algorithms that operate
on a fixed dataset, while Q♯ is an online algorithm that
interleaves data collection and parameter updates, which

leads to more robust generalization (Ross et al., 2011; Ross
& Bagnell, 2014). Third, CD and VAS use squared loss
regression to learn Qπref,0, which implicitly assumes that the
cumulative reward distributed as a homoskedastic gaussian.
In contrast, Q♯ uses the distributional RL framework which
is provably more sample efficient (Wang et al., 2023; 2024b)
and often learns better policies in practice (Bellemare et al.,
2017; Lyle et al., 2019).

Inference with many η. The learned reward distribution
Ẑθ does not depend on η, and thus a single distributional
reward network can support a range of η at inference time.

3. Experiments
3.1. Star-Graph

Figure 2. A star-graph G(2, 3) w/ degree d = 2, length ℓ = 3.
The shortcut response picks an incorrect random node from center.

We start with the star-graph task from Bachmann & Nagara-
jan (2024), which is illustrated in Figure 2. A star-graph
G(d, ℓ) consists of d paths of length ℓ connected to a central
node. For this task, the LM’s prompt contains the edges of
a star-shaped graph and the start/goal nodes, and the LM is
required to generate a path from the start to the goal node.
While this task is deceptively easy, Bachmann & Nagarajan
(2024) showed that pre-training a GPT-2 model from scratch
with next-token prediction actually learns an incorrect short-
cut called “Clever Hans”, where the model randomly picks
the first node and follows the wrong path until the final
node. Hence, for a star-graph with degree d, the shortcut
policy only has a success rate of 1/d. Thus, Bachmann &
Nagarajan (2024) showed that next-token prediction does
not generalize well when applied to planning tasks.

A natural question is: can this shortcut be fixed during
post-training? We evaluate Q♯ alongside popular policy-
based algorithms such as REINFORCE and DPO, and report
the final test-set accuracies in Figure 3. We find Q♯ is able
to correct this shortcut, approaching 100% test-set accuracy.
However, we find that policy-based algorithms such as RE-
INFORCE and DPO consistently fail to fix the shortcut and
DPO often worsens the test set performance even further.
This is likely due to the fact that once the neural net has
learned the shortcut, it is difficult to unlearn. Thus, this
synthetic task demonstrates the value in value-based algo-
rithms, such as Q♯ and CD, for post-training LLMs. Please
see Appendix C for implementation details.
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3.2. Math Reasoning

Datasets. We also experiment on mathematical reasoning
datasets, namely GSM8K (Cobbe et al., 2021) and MATH
(Hendrycks et al., 2021). GSM8K consists of grade school
arithmetic word problems and MATH contains high school
mathematical competition problems that are much more
challenging. In addition, we create a 90%-10% split on
the original training set to be our training set for learning
and validation set for hyperparameter tuning. For reporting
test set performance, we use the entire GSM8K test set and
a random subset of MATH test set, MATH-500 which we
follow from several previous work (Lightman et al., 2023;
Wang et al., 2024c).

Models. We use Llama 3 (Dubey et al., 2024) series of
models since they are competitive in math reasoning and
have a wide range of parameter sizes. Unless otherwise
specified, the Q⋆,η function in Q♯ is parametrized and ini-
tialized with a Llama 3.2 1B model and η = 0.1 is used as
we find it gives good and consistent performance. We run
Q♯ for two iterations and observe performance convergence.
Additional details on models and Q♯ training can be found
in Appendix D and E.

Evaluation metrics. We evaluate performance with single
sample accuracy and majority voting accuracy. For sin-
gle sample accuracy (denoted as pass@1), one generation
is sampled per problem and the correctness is evaluated
against the ground truth final answer. For majority voting
accuracy (denoted as maj1@k), k generations are sampled
and the most common final answer among them is checked
for correctness. In our experiments, we use k = 8 and
all generations are sampled with temperature T = 0.8 and
nucleus sampling p = 0.9. The prompt template used for
evaluation can be found in Appendix F.

Main Results. In Table 1, we show the performance of Q♯
on GSM8K (Top) and MATH (Bottom) when πref is either
Lllama 3 or 3.1 8B. Note that although both Llama 3 and
Llama 3.1 have 8B parameters, Llama 3.1 is significantly

Figure 3. Test-set accuracies for GPT-2 when pre-trained with next-
token prediction, and post-trained with REINFORCE, DPO or
Q♯. Only Q♯ is able to fix the Clever Hans cheat and achieve an
accuracy much higher than 1/d on G(d, ℓ).

Table 1. Comparison of Q♯ with πref and CD baseline on GSM8K
(Top) and MATH (Bottom). For both Llama 3 and Llama 3.1
8B, Q♯ consistently improves both pass@1 and majority voting
accuracy upon baselines while incurring minimal KL deviation.

πref Llama 3 8B Llama 3.1 8B

Methods πref CD Q♯ πref CD Q♯

pass@1 ↑ 69.1 77.8 78.4 82.9 84.5 85.1
maj1@8 ↑ 85.8 87.2 88.1 90.5 90.9 91.4

KL-Divergence ↓ - 6.39 2.65 - 7.43 3.67

πref Llama 3 8B Llama 3.1 8B

Methods πref CD Q♯ πref CD Q♯

pass@1 ↑ 25.4 24.9 27.1 43.9 45.3 46.7
maj1@8 ↑ 34.3 34.3 37.9 57.0 59.0 60.1

KL-Divergence ↓ - 15.27 7.14 - 26.8 8.69

better than Llama 3 for both datasets. Across all settings, we
observe that Q♯ consistently outperforms πref, improving
pass@1 accuracy as much as 9% on GSM8K for Llama
3 8B, with just 1B additional parameters. In addition, we
evaluate the CD baseline (Mudgal et al., 2023; Han et al.,
2024) which guides πref with the incorrect Qπref,0 function
instead. We find that Q♯ consistently improves upon CD on
two accuracy metrics while at the same time incurring lower
KL divergence w.r.t. πref. In sum, Q♯ Pareto-dominates the
baseline for the KL-regularized RL problem where reward
should be higher and KL should be lower.

Larger πref and Q♯ sizes. We also investigate how the per-
formance scales as we vary πref and Q♯ model sizes. In
Table 2, we summarize the results of using 70B versions
of Llama 3 and Llama 3.1 as πref on MATH. Compared to
their 8B counterparts, both Llama 3 and Llama 3.1 are much
stronger reasoning models, reaching pass@1 accuracy of
45.6% and 60.6% for Llama 3 and 3.1 respectively. Given
the significant performance improvement, Q♯ of size 1B
is still capable of guiding and improving the generation of
70B πref, improving Llama 3.1 pass@1 and maj1@8 by
2.5% and 3.5% respectively. As we increase Q♯ size to
3B, pass@1 for both Llama 3 and Llama 3.1 continues
to improve, which suggests the scalability of Q♯. As we
compare with Table 1 (Bottom) for Llama 3.1, we also high-
light that with 9B parameters (8B πref + 1B Q♯), its majority
voting accuracy already catches up with the pass@1 ac-
curacy of the 70B πref model in Table 2, which could be a
low-resource alternative. The pass@1 accuracy increases
but maj1@8 accuracy decreases slightly for Llama 3 model.
We hypothesize that this is because Q♯ leads to more diverse
generations on harder problems which boosts pass@1 but
less consistent correct generations for easier problems.

Q♯ as a reward model. Since Q♯ learns a token-level
Q function, besides guiding πref generation, we can also
re-purpose it as a reward model that efficiently evaluates

5
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Table 2. Performance of πref and Q♯ on MATH with larger πref and
Q♯ model sizes. Q♯ of size 1B is capable of guiding a 70B πref

model. Increasing Q♯ model sizes to 3B also leads to noticeably
better performance for Llama 3.1 70B.

πref Llama 3 70B Llama 3.1 70B

Q♯ Model None Llama 3.2 1B Llama 3.2 3B None Llama 3.2 1B Llama 3.2 3B

pass@1 ↑ 45.6 46.4 46.7 60.6 63.1 64.1
maj1@8 ↑ 55.6 55.5 55.3 69.0 72.5 72.7

KL-Divergence ↓ - 3.12 5.15 - 4.98 4.99

Table 3. Performance of πref and Q♯ on GSM8K and MATH when
using Q♯ also as a reward model to evaluate complete generations.
The reward model can determine the best generation among all
generations for a problem and consistently improves maj1@8 for
πref and Q♯ own generations.

Setting Llama 3 8B GSM8K Llama 3.1 8B MATH

Methods πref Q♯ πref Q♯

pass@1 69.1 78.4 43.9 46.7
maj1@8 85.8 88.1 57.0 60.1

Q♯-RM Best of 8 85.9 86.0 54.0 54.0
Q♯-RM maj1@8 88.5 89.2 59.2 60.6

how good a complete generation is with just one forward
pass. To calculate the reward / score of a generation, we
compute Q(generation,EOS). Since Llama 3 8B and Llama
3.1 8B with Q♯ shows a greater absolute improvement over
πref on GSM8K and MATH respectively, we investigate if
their performance can be further improved with Q♯ reward
model. In Table 3, we tabulate Q♯-RM Best of 8 and Q♯-RM
maj1@8 accuracy on the two settings for both πref and Q♯
generations. Both Q♯-RM metrics use k = 8 generations
where Q♯-RM Best of 8 selects the highest scored sample for
evaluation and Q♯-RM maj1@8 performs majority voting
by aggregating the total score for each unique final answer.
It can be seen that Q♯-RM maj1@8 consistently enhances
vanilla maj1@8 for both GSM8K and MATH, indicating
the general benefit of using Q♯ as a reward model. We also
see that the reward model can be used on both πref and Q♯
own generations to further improve performance, which
suggests the (same) reward model has generalizability for
evaluating diverse generations. Lastly, Q♯-RM Best of 8
also significantly improves upon pass@1 by more than
10% for πref generations on both GSM8K and MATH. We
note that although Best of 8 underperforms maj1@8 or Q♯-
RM maj1@8 for GSM8K and MATH, majority voting is not
a generally applicable approach for all reasoning tasks since
for proof-based questions, how to aggregate final answers
is not immediately obvious. Best of N using reward model,
however, can still be readily applied. Therefore, a large
improvement from pass@1 for Best of 8 is meaningful and
demonstrates the effectiveness of Q♯ reward model.

The effect of η. In Figure 4, we show the performance
and KL divergence tradeoff for CD and Q♯ on the GSM8K
validation set. The left figure shows that the pass@1 ac-
curacy can be improved by incurring more KL penalty for
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Figure 4. Performance tradeoff of CD and Q♯ on the validation
set of GSM8K. (Left) pass@1 accuracy vs. KL divergence. Q♯
dominates CD by achieving higher accuracy with a lower KL
penalty. (Right) Different η leads to different KL for CD and Q♯.
The KL of CD blows up quickly and significantly deviates from
πref whereas Q♯ is more stable.

both CD and Q♯. Q♯ dominates CD by achieving a better
Pareto frontier than CD. In addition, we empirically find
that CD performance is much more sensitive to a proper
choice of η. As seen in the right figure, as η−1 increases,
CD incurs a very large KL and starts to significantly deviate
from πref, which leads to performance that is even worse
than the original πref. Q♯, however, is more stable and does
not require extensive search for η, which provides another
empirical benefit for Q♯.

Ablations. We ablate on several of our design choices in
Table 4 on the validation set of GSM8K and MATH for
pass@1 accuracy. The first column (Prefix) is whether we
train on all the prefixes after switching to πref. As seen in
Algorithm 1 Line 10, our default is to train on all t ≥ h
instead of just t = h. From a supervised learning perspec-
tive, this makes training samples no longer IID. However,
we find out the additional large amount of training data
helps Q♯ learning significantly for as much as 4%. We also
experiment with two types of parametrization for learning
Q⋆,η: Q-type and V-type. The Q-type takes input of x and
computes Q⋆,η(x, y) for all y in the vocabulary of the πref

model. The V-type takes input of concatenated x and a
specific token ŷ and outputs a single value that represents
Q⋆,η(x, ŷ). By comparing the results on second row and the
fourth row, we observe that V-type is better than Q-type. We
hypothesize that this is because V-type has fewer number of
parameters than Q-type but performs more computation per
token. More details on Q-type and V-type can be found in
Appendix D. We also compare the distributional version of
Q♯ with direct MSE regression based. The regression based
Q♯ consistently underperforms and this is expected since for
the math reasoning tasks, we know the underlying reward
distribution is Bernoulli (either 0 or 1). Finally, we find
that running Algorithm 1 for more than one iteration can
further boosts the performance of Q♯ slightly. We observe
no major improvement beyond two iterations and therefore
we by default run Q♯ for two iterations.

Qualitative comparison. In Figure 5, we show a few gen-
erations side by side from πref and Q♯ to qualitatively vi-
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Table 4. Ablations of Q♯ (last row) on pass@1 with various con-
figurations on the validation set of GSM8K and MATH. The im-
provement suggests that our design choices all contribute positively
to the final performance.
Prefix Type Opt. # Iter. Llama 3 8B GSM8K Llama 3.1 8B MATH

Single V Dist. 1 80.5 64.5
All Q Dist. 1 81.4 66.4
All V MSE 1 81.4 65.4
All V Dist. 1 82.3 67.4
All V Dist. 2 83.5 68.5

sualize the effect of guidance on math reasoning questions.
We observe that the generations from πref and Q♯ usually
start off with similar prefixes, which is another supporting
evidence for the low KL deviation of Q♯. However, Q♯
can successfully mitigate mistakes from πref and leads to
generally better reasoning chain-of-thought than πref. Full
analysis on more examples can be found in Appendix G.

4. Theory
In this section, we provide theoretical analyses for Q♯ and
prior value-based post-training approaches, including CD
(Mudgal et al., 2023) and VAS (Han et al., 2024).

4.1. CD & VAS are sub-optimal for KL-regularized RL

First, CD and VAS both propose to reweight πref(· | x) with
the unregularized Q-function of πref:

πCD,η(y | x) ∝ πref(y | x) exp(Qπref
(x, y)/η), (6)

where recall that Qπref

h (xh, yh) = Eπref [
∑

t≥h rt | xh, yh].
Comparing with Equation (2), we can already see that πCD,η

does not match the optimal policy π⋆,η, as Qπref
can be

arbitrarily far from Q⋆,η. In particular, πCD may fail to
optimize the KL-regularized RL objective and exhibit two
failure cases, which we demonstrate with a simple MDP.

x1

xL

r = 0.1

1

pL

xR

r = 1

0.05

r = 0

0.95

pR
Z⋆
L = δ(0.1) Z⋆

R = Ber(0.05)

Example 1. A tree MDP where edges are labeled with πref’s action
probability. Specifically, πref goes to the left sub-tree w.p. pL and
the right sub-tree w.p. pR, where pL, pR > 0. The left sub-tree
gives r = 0.1 w.p. 1. In the right sub-tree, πref chooses reward 1
w.p. 0.05 and chooses reward 0 w.p. 0.95.

First, we show that CD fails to maximize expected reward
in this MDP, even as the KL-regularizer η decays to zero.

Theorem 4.1. Under Example 1, CD learns to always select
the left sub-tree as η → 0, which gives a sub-optimal reward
of 0.1, while π⋆,η learns to always select the right sub-tree
and chooses the path that gives reward 1.

Proof. First, for CD, we have Qπref
(x1, aL) = 0.1 and

Qπref
(x1, aR) = 0.05. Hence, CD’s probability of selecting

the left sub-tree is pL exp(0.1/η)
pL exp(0.1/η)+pR exp(0.05/η) , which con-

verges to 1 as η → 0. Next, for Q♯, we have Q⋆,η(x1, aL) =
0.1 and Q⋆,η(x1, aR) = η ln(0.05 exp(1/η) + 0.95).
Hence, Q♯’s probability of selecting the left sub-tree is

pL exp(0.1/η)
pL exp(0.1/η)+pR(0.05 exp(1/η)+0.95) , which converges to 0

as η → 0. Thus, CD learns the sub-optimal path.

Next, we show that CD also incurs a higher KL than Q♯.

Theorem 4.2. Under Example 1, CD’s KL converges to
ln(1/pL) while Q♯’s KL converges to ln(1/pR) as η → 0.
Thus if pL ≪ pR, CD converges to a higher KL than Q♯.

Proof. As shown in Theorem 4.1, CD learns to select the
left sub-tree while Q♯ learns to select the right sub-tree as
η → 0. Then, the KLs simply follow by definition.

In sum, we proved that Example 1, CD both incurs a higher
KL and achieves a lower sub-optimal reward compared to
Q♯. Thus, Q♯ generally Pareto-dominates CD in the reward-
KL trade-off, which matches our empirical findings.

4.2. Performance Guarantee for Q♯

We prove that the learned policy by Q♯ is guaranteed to
converge to the optimal policy with enough samples. This
result holds in rich-observation MDPs where the size of the
state space can be exponentially large or infinite, so long as
the mild realizability assumption holds.

To setup, let F be a distributional function class for mod-
eling Z⋆, the reward-to-go distribution under πref. Each
element of F has type f = (f1, . . . , fH) and fh : X ×Y 7→
∆([0, V max]).1 For purpose of analysis, we assume access
to a no-regret online learning oracle for the maximum like-
lihood (MLE) loss, which proceeds as follows: for each
iteration k = 1, 2, . . . ,K, given any {xh,k, yh,k, Rh,k}Hh=1,
the oracle outputs Ẑk ∈ F s.t.∑K

k=1

∑H
h=1 logZ

⋆
h(Rh,k | xh,k, yh,k)

− log Ẑh,k(Rh,k | xh,k, yh,k) ≤ Regmle(K).

No-regret online learning is well-studied in the literature
(Cesa-Bianchi & Lugosi, 2006; Orabona, 2019) and is a
standard tool when reducing decision making to supervised
learning (Ross et al., 2011; Foster & Krishnamurthy, 2021;

1Suppose rewards-to-go under πref lie in [0, V max] w.p. 1.
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Wang et al., 2023). For example, if F is finite and satisfies
realizability, then Vovk’s aggregating algorithm ensures that
Regmle(K) ≲ ln(|F|) (Vovk, 1995).2

Assumption 4.3 (Realizability). Z⋆ ∈ F .

The following algorithm is a slightly modified version of
Algorithm 1 amenable for theoretical analysis. The only
differences with Algorithm 1 are: (1) we use the MLE oracle
to learn Ẑk, and (2) for purpose of local exploration, we play
a random action at the switching time h before following
πref to the end of the trajectory (Ross & Bagnell, 2014).

Algorithm 2 Q♯ (Theory Version)

1: Input: reference πref, iteration count K, regularizer η.
2: Initialize Ẑ1 randomly.
3: for k = 1, 2, . . . ,K do
4: Let πk ← πẐk,η .
5: for step h = 1, 2, . . . ,H do
6: Roll-in with πk for h− 1 steps and see xh,k.
7: Play random action yh,k and transit to xh+1,k.
8: Resume trajectory with πref from xh+1,k.
9: Let Rh,k be cumulative rewards after time h.

10: end for
11: Input {xh,k, yh,k, Rh,k}h∈[H] to MLE oracle.
12: Receive Ẑk from MLE oracle.
13: end for
14: Output: Ẑ1, . . . , ẐK .

We now state our main PAC bound for Q♯.

Theorem 4.4. Fix any η ∈ (0, V max] and δ ∈ (0, 1). Under
Assumptions 2.1 and 4.3, Algorithm 2 ensures w.p. at least
1− δ, setting β = ln(1/δ) + Regmle(K), we have∑K

k=1 V
⋆,η − V πk,η ≲

AV max(
√∑H

h=1

∑K
k=1 CV2

h,k(x, y) · β +maxh∈[H] Eh · β),

where CVh,k(x, y) :=

√
Var

πk (exp(Z⋆
h(xh,yh)/η))

E
πk [exp(Z⋆

h(xh,yh)/η)]
is the co-

efficient of variation of exp(Z⋆
h(xh, yh)/η), xh, yh ∼ πk,

and Eh := ∥exp((V max−Q⋆,η
h (xh, yh))/η)∥L∞(πref) is the

envelope of exp((V max −Q⋆,η
h (xh, yh))/η) under πref.

We highlight this applies to rich-observation MDPs where
our only requirement for F is realizability. Moreover,
our bound scales with the function class’s complexity, i.e.,
ln(|F|), and does not contain structural complexity mea-
sures. In contrast, prior bounds in RL theory require stronger
assumptions such as Bellman completeness (Chen & Jiang,
2019; Wang et al., 2021; Foster et al., 2021b; Jin et al., 2021;
Chang et al., 2022; Ayoub et al., 2024; Wang et al., 2024b),
even in deterministic MDPs (Wu et al., 2024), and/or scale
with structural complexity measures such as coverability

2a ≲ b is short for a ≤ Cb for some universal constant C.

(Xie et al., 2022; Mhammedi et al., 2024) or eluder dimen-
sion (Russo & Van Roy, 2013; Jin et al., 2021).

Also, we highlight that Algorithm 2 is model-free and com-
putationally efficient. In contrast, most prior algorithms re-
quire computationally hard exploration with version spaces
(Jiang et al., 2017; Dann et al., 2018; Jin et al., 2021; Xie
et al., 2022; Wang et al., 2024b). Thus, Theorem 4.4 shows
that it is possible to achieve both statistical and computa-
tional efficiency under mild assumptions by simply operat-
ing within the KL-regularized RL framework, which itself
is of great relevance for LLM post-training. We remark that
Uehara et al. (2023) observed similar benefits in offline RL
while we study the harder online setting.

Moreover, thanks to distributional RL, Theorem 4.4
is a second-order bound (Wang et al., 2024a;b) com-
prising of two main terms. The leading term

O(
√∑H

h=1

∑K
k=1 CV2

h,k(x, y)) is the summed coeffi-
cient of variations, which in the worst case scales like√∑H

h=1 E
2
hK. However, in benign cases where Z⋆

h has
small or zero variance, this term vanishes and we are left
with the lower order term O(maxh∈[H] Eh ln(K)) which
only grows logarithmically in K. While in the worst-case,
our envelope term is exponential in η−1, it is interestingly
also instance-dependent. Specifically, our envelope term
is exp((V max −Q⋆,η

h (xh, yh))/η) which involves the opti-
mal policy’s Q-function Q⋆,η. Thus, if the optimal policy
achieves near-maximal reward, i.e., if Q⋆,η ≈ V max, then
the envelope term becomes closer to 1, avoiding the expo-
nential dependence on η−1.

Remark: Modification for Regret Bound. It is possible to
turn Theorem 4.4 into a regret bound by replacing random
action in Line 7 of Algorithm 2 with a no-regret contex-
tual bandit oracle, where “context” is xh, action is yh and
“reward” is Rh. This is alike the steps needed to convert
AggreVaTe’s PAC bound into a regret bound (Ross & Bag-
nell, 2014). Our theory can be interpreted as a regret/PAC
reduction from KL-regularized RL in deterministic MDPs
to no-regret online learning, which mirrors the type of guar-
antees obtained for AggreVaTe (Ross & Bagnell, 2014).

5. Conclusion
We introduce Q♯, a theoretically-grounded distributional RL
algorithm for LLM post-training that provably converges
to the optimal policy under mild assumptions. Through
experiments on both synthetic and math reasoning tasks, we
demonstrated that Q♯ consistently outperforms prior value-
based methods by achieving higher accuracy with lower KL
divergence from the reference policy. Our approach’s suc-
cess in correcting pre-training shortcuts, combined with its
practical advantages, establishes Q♯ as a promising direction
for enhancing LLM capabilities in post-training.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Related Works
From the empirical side, the most relevant works are controlled decoding (CD; Mudgal et al., 2023) and value augmented
sampling (VAS; Han et al., 2024). These two works both propose to guide the reference policy πref with Qπref,0, the expected
reward-to-go under πref without KL regularization. As discussed in Section 4.1, guiding with Qπref,0 is not principled for
the KL-regularized RL problem and can lead to both sub-optimal reward and large KL from πref. In contrast, we propose
to guide πref with Q⋆,η, the expected reward-to-go under the optimal policy with KL regularization, which is the correct
closed-form of the optimal policy.

In terms of reweighting πref with classifier scores, FUDGE (Yang & Klein, 2021) is another closely related work but
their derivation is based on Bayes rule and FUDGE does not solve KL-regularized RL. Sequential Monte Carlo (SMC)
methods (Piché et al., 2018; Zhao et al., 2024) also reweight πref’s distribution with a twist function, where the optimal twist
function is analogous to our Q⋆,η. One key difference is that SMC performs resampling while we directly combine logits
of πref and exp(Q⋆,η) to avoid importance sampling, which has higher variance. Finally, none of these prior works apply
distributional RL losses (Bellemare et al., 2017; Dabney et al., 2018; Farebrother et al., 2024; Ayoub et al., 2024) or online
data aggregation (Ross et al., 2011) to learn Q⋆,η , which we showed to be beneficial in our ablations. Indeed, CD and VAS
both use square loss regression over a fixed offline dataset.

We also cite some tangentially related works. Proxy tuning (Liu et al., 2024) and speculative decoding (Leviathan et al.,
2023) both use a small model to guide the logit distribution of a large πref model. Speculative decoding is focused on
maximizing the large model’s likelihood, which does not relate to any extrinsic rewards. In our framework, the classifier
model can be any size relative to πref, although deeper investigation into the computational benefits of using a small classifier
is a promising direction for future work.

From the theoretical side, KL-regularized RL is closely related to soft RL or maximum entropy RL which are well-studied
(Ziebart et al., 2008; Fox et al., 2015; Haarnoja et al., 2018; Piché et al., 2018). The optimal policy decomposition in
deterministic MDPs is also known in prior works (Li et al., 2024; Domingo-Enrich et al., 2024). Our contribution is an
algorithm that provably learns Q⋆,η using distributional RL (Bellemare et al., 2017) and data aggregation (Ross et al., 2011).
This enables us to prove a reduction of KL-regularized RL (in deterministic MDPs) to no-regret online learning, which
ensures convergence to the optimal policy with realizability being the only assumption for function approximation. Notably
we are able to avoid more stringent conditions such as completeness or structural MDP conditions which are ubiquitous in
the current literature (Wang et al., 2021; Jin et al., 2021; Chang et al., 2022; Wang et al., 2023; 2024b; Ayoub et al., 2024;
Xie et al., 2022). Uehara et al. (2023) observed similar benefits in offline RL, while we provide guarantees for the harder
online RL setting.

We remark that our theoretical guarantees are quite similar in structure to that of AggreVaTe (Ross & Bagnell, 2014), which
is a reduction of imitation learning to no-regret online learning. Besides the obvious difference in problem setting, another
improvement from our work is using distributional RL theory to prove second-order bounds. Notably, we are able to prove
second-order bounds without any completeness assumptions that were required in (Wang et al., 2023; 2024a;b).

B. Proofs
In this section, we provide the full proof for Theorem 4.4.

Theorem 4.4. Fix any η ∈ (0, V max] and δ ∈ (0, 1). Under Assumptions 2.1 and 4.3, Algorithm 2 ensures w.p. at least
1− δ, setting β = ln(1/δ) + Regmle(K), we have

∑K
k=1 V

⋆,η − V πk,η ≲

AV max(
√∑H

h=1

∑K
k=1 CV2

h,k(x, y) · β +maxh∈[H] Eh · β),

where CVh,k(x, y) :=

√
Var

πk (exp(Z⋆
h(xh,yh)/η))

E
πk [exp(Z⋆

h(xh,yh)/η)]
is the coefficient of variation of exp(Z⋆

h(xh, yh)/η), xh, yh ∼ πk, and

Eh := ∥exp((V max −Q⋆,η
h (xh, yh))/η)∥L∞(πref) is the envelope of exp((V max −Q⋆,η

h (xh, yh))/η) under πref.

Proof. Fix any η ∈ (0, V max). Let Qh,k(x, y) = η lnEz∼Ẑh,k(x,y)
exp(z/η) denote the induced soft Q function from the
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distributional estimate Ẑk. Let πk
h(y | x) ∝ πref

h (y | x) exp(Qh,k(x, y)/η) denote the induced policy from Qh,k. Then,

V ⋆,η − V πk,η

(i)
=

∑H
h=1 Eπk [Q⋆,η

h (xh, π
⋆,η
h )−Q⋆,η

h (xh, π
k
h) + ηKL(πk

h(xh) ∥ πref
h (xh))− ηKL(π⋆,η

h (xh) ∥ πref
h (xh))]

=
∑H

h=1 Eπk [Q⋆,η
h (xh, π

⋆,η
h )− ηKL(π⋆,η

h (xh) ∥ πref
h (xh))− (Qh,k(xh, π

k
h)− ηKL(πk

h(xh) ∥ πref
h (xh)))

+Qh,k(xh, π
k
h)−Q⋆,η

h (xh, π
k
h)]

(ii)

≤
∑H

h=1 Eπk [Q⋆,η
h (xh, π

⋆,η
h )− ηKL(π⋆,η

h (xh) ∥ πref
h (xh))− (Qh,k(xh, π

⋆,η
h )− ηKL(π⋆,η

h (xh) ∥ πref
h (xh)))

+Qh,k(xh, π
k
h)−Q⋆,η

h (xh, π
k
h)]

=
∑H

h=1 Eπk [Q⋆,η
h (xh, π

⋆,η
h )−Qh,k(xh, π

⋆,η
h ) +Qh,k(xh, π

k
h)−Q⋆,η

h (xh, π
k
h)]

≤ 2
∑H

h=1 Exh∼πk [maxπ∈{π⋆,πk}
∣∣Q⋆,η

h (xh, π)−Qh,k(xh, π)
∣∣]

≤ 2A
∑H

h=1 Exh∼πk,yh∼Unif(A)

∣∣Q⋆,η
h (xh, yh)−Qh,k(xh, yh)

∣∣,
where (i) is by the performance difference lemma in the soft MDP (Lemma B.2); (ii) is by Donsker-Varadhan (Lemma B.1)
which proves that πk

h(xh) = argmaxπ Eπ[Qh,k(xh, π)− KL(π(xh) ∥ πref
h (xh))]. Now, we bound the difference between

the optimal and learned Q functions:∣∣Q⋆,η
h (x, y)−Qh,k(x, y)

∣∣
= η

∣∣∣lnEz∼Z⋆
h(x,y)

exp(z/η)− lnEz∼Ẑh,k(x,y)
exp(z/η)

∣∣∣
(i)

≲ η(1 + Vmax/η)

(
CVz∼Z⋆

h(x,y)
(exp(z/η))Hh,k(x, y) +

exp(Vmax/η)−1
Ez∼Z⋆

h
(x,y) exp(z/η)

H2
h,k(x, y)

)
= (η + Vmax)

(
CVz∼Z⋆

h(x,y)
(exp(z/η))Hh,k(x, y) +

exp(Vmax/η)
exp(Q⋆,η

h (x,y)/η)
H2

h,k(x, y)
)
,

where (i) is by Lemma B.4 and the fact that Z⋆, Ẑk ∈ [0, V max] and Hh,k(x, y) := H(Z⋆
h(x, y), Ẑh,k(x, y)) is the Hellinger

distance between the learned Ẑh,k and optimal Z⋆
h.

Thus, if we let xh, yh ∼ πk ◦h Unif(A) denote the distribution of rolling in with πk until xh and taking a random
yh ∼ Unif(A), then we have:∑K

k=1 V
⋆,η − V πk,η

≤ 2A
∑H

h=1

∑K
k=1 Eπk◦hUnif(A)

∣∣Q⋆,η
h (xh, yh)−Qh,k(xh, yh)

∣∣
≲ AVmax

∑H
h=1

∑K
k=1 Eπk◦hUnif(A)

[
CVz∼Z⋆

h(x,y)
(exp(z/η))Hh,k(xh, yh) +

exp(Vmax/η)
exp(Q⋆,η

h (xh,yh)/η)
H2

h,k(x, y)
]

≤ AVmax

√∑H
h=1

∑K
k=1 Eπk◦hUnif(A)[CV2

h,k(xh, yh)]
√∑H

h=1

∑K
k=1 Eπk◦hUnif(A)[H

2
h,k(xh, yh)]

+AVmax

∥∥∥ exp(Vmax/η)
exp(Q⋆,η

h (xh,yh)/η)

∥∥∥
L∞(πk◦hUnif(A))

·
∑H

h=1

∑K
k=1 Eπk◦hUnif(A)[H

2
h,k(xh, yh)].

The final step is to bound the summed Hellinger square terms. This can be done via Multiplicative Azuma’s inequality
and Foster et al. (2021a, Lemma A.14), which shows that for any δ ∈ (0, 1), we have

∑
h,k Eπk◦hUnif(A)[H

2
h,k(xh, yh)] ≲∑

h,k H
2
h,k(xh,k, yh,k) + ln(1/δ) ≲ Regmle(K) + ln(1/δ), which recall is exactly the definition of β. This finishes the

proof of Theorem 4.4.

Lemma B.1 (Donsker-Varadhan’s Variational Formula; Donsker & Varadhan, 1983). For any prior p ∈ ∆(Θ), consider the
KL-regularized optimization:

π⋆ = argmaxπ∈∆(Θ) V (π) := Eπ[Q(θ)− ηKL(π(θ) ∥ p(θ))].

The optimal policy π⋆ is given by π⋆(θ) ∝ p(θ) exp(Q(θ)/η) and it has value V (π⋆) = η lnEθ∼p exp(Q(θ)/η).
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Lemma B.2 (Soft Performance Difference Lemma (PDL)). For any f and π,

V π − f1(x1, π) =

H∑
h=1

Eπ[(T π
h fh+1 − fh)(xh, yh)]− ηKL(π1(x1) ∥ πref

1 (x1)).

For any π, π′,

V π − V π′
=

H∑
h=1

Eπ[Q
π′

h (xh, yh)−Qπ′

h (xh, π
′) + ηKL(π′

h(xh) ∥ πref
h (xh))− ηKL(πh(xh) ∥ πref

h (xh))].

Proof. Let KL(πh(xh)) := KL(πh(xh) ∥ πref
h (xh)) denote KL-divergence w.r.t. πref. Then,

V π − V π′

=
∑H

h=1 Eπ[rh − ηKL(πh(xh))]− (Qπ′

1 (x1, π
′)− ηKL(π′

1(x1)))

=
∑H

h=1 Eπ[rh − ηKL(π′
h+1(xh+1)) + ηKL(π′

h+1(xh+1)) +Qπ′

h+1(xh+1, π
′)−Qπ′

h (xh, π
′)− ηKL(πh(xh))] + ηKL(π′

1(x1))

=
∑H

h=1 Eπ[rh − ηKL(π′
h+1(xh+1)) +Qπ′

h+1(xh+1, π
′)−Qπ′

h (xh, π
′) + ηKL(π′

h(xh))− ηKL(πh(xh))]

=
∑H

h=1 Eπ[T π′

h Qπ′

h+1(xh, yh)−Qπ′

h (xh, π
′) + ηKL(π′

h(xh))− ηKL(πh(xh))]

=
∑H

h=1 Eπ[Q
π′

h (xh, yh)−Qπ′

h (xh, π
′) + ηKL(π′

h(xh))− ηKL(πh(xh))].

Lemma B.3. For any two numbers x, y ∈ [exp(a), exp(b)], we have

|ln(x)− ln(y)| ≤ (1 + b− a)

∣∣∣∣x− y

y

∣∣∣∣.
If b− a ≥ 1

2 , then max(1, b−a
1−exp(a−b) ) ≤ 3(b− a).

Proof. If x ≥ y, then ln(x)− ln(y) = ln(1+(x−y)/y) ≤ (x−y)/y. If x < y, then ln(y)− ln(x) = − ln(1+(x−y)/y).
By premise, we have 0 ≥ x−y

y ≥ exp(a − b) − 1. Note that − ln(1 + z) is convex and is thus upper bounded by the
line connecting (0, 0) and (exp(a− b)− 1, b− a), i.e., − ln(1 + z) ≤ b−a

1−exp(a−b) |z| for 0 ≥ z ≥ exp(a− b)− 1. Thus,

− ln(1 + (x− y)/y) ≤ b−a
1−exp(a−b)

∣∣∣x−y
y

∣∣∣. Thus, we’ve shown that |ln(x)− ln(y)| ≤ max
(
1, b−a

1−exp(a−b)

)
|x−y

y |. Finally,

since x
1−exp(−x) ≤ 1 + x when x ≥ 0, we have max(1, b−a

1−exp(a−b) ) ≤ max(1, 1 + b− a) = 1 + b− a.

Lemma B.4. For any distributions p, q on [a, b], we have

|ln
∑

z p(z)e
z − ln

∑
z q(z)e

z| ≲ (1 + b− a)

(√
Varq(ez)

Eqez
H(p, q) + exp(b)−exp(a)

Eqez
H2(p, q)

)
,

where H2(p, q) = 1
2

∑
z(
√
p(z)−

√
q(z))2 is the squared Hellinger distance.

Proof. By Lemma B.3, we have |ln
∑

z p(z)e
z − ln

∑
z q(z)e

z| ≤ (1 + b− a)
∣∣∣∑z(p(z)−q(z))ez∑

z q(z)ez

∣∣∣. By Lemma B.5, we have

that the numerator is bounded by
√
Varq(ez)H(p, q) + (exp(b)− exp(a))H2(p, q).

Lemma B.5 (Second-Order Lemma). Suppose p, q are distributions on the interval [a, b]. Then, we have

|p̄− q̄| ≲
√
Var(p)H(p, q) + (b− a)H2(p, q).
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Proof. Define p′, q′ as the normalized distributions on [0, 1], i.e., p′ is the law of X ′ = (X − a)/(b − a) where X ∼ p.
Then, we have

|p̄− q̄| = (b− a)|p̄′ − q̄′|

≲ (b− a)(
√

Var(p′)H(p′, q′) +H2(p′, q′))

=
√
Var(p)H(p, q) + (b− a)H2(p, q),

where the ≲ step is due to the second-order lemma of Wang et al. (2024a).
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C. Additional Details for Star-Graph Experiments
Following Bachmann & Nagarajan (2024), we used the GPT-2 Small architecture with nlayers = 12, edim = 768, nheads = 12
(Radford et al., 2019). We used the same custom tokenizer from Bachmann & Nagarajan (2024). Starting from a randomly
initialized model, we train the model with next-token prediction on a training set of 200k randomly generated graphs and
correct responses – this is called the “pre-trained” model. As observed by Bachmann & Nagarajan (2024), the pre-trained
model learns a Clever Hans shortcut, which randomly generates a path from the central node (although the first and last
nodes always match start and goal nodes). We highlight that this is a failure in generalization, since the pre-trained model
achieves 100% accuracy on the training set and 1/d accuracy on the test set. Thus, in a graph G(d, ℓ), the pre-trained model
only outputs the correct path with 1/d accuracy.

Then, we perform post-training with the pre-trained model as πref, on a newly generated training set of 200k random graphs.
The reward function we consider is simply 1 if the whole response is correct and 0 otherwise. We evaluate three post-training
algorithms: REINFORCE, DPO and Q♯. For DPO, we generate pairwise responses with ychosen being the correct response
and yreject being the Clever Hans shortcut. For Q♯, we evaluate the setting where η → 0. We used AdamW with weight
decay 0.01 and learning rate 3e− 5, and batch size 256. All models were trained until convergence.

D. Additional Model Details
πref models. All models we use in the experiments are the ”Instruct” versions. That is, Llama 3 8B refers to
meta-llama/Meta-Llama-3-8B-Instruct and we use the default chat template and system message from Meta
to interact with them.

Q♯ models. Two variants for Q♯ are implemented and experimented: Q-type and V-type. Specifically, the Q-type takes input
of a partial generation x and computes Q⋆,η(x, y) for all y in the vocabulary of the πref model whereas the V-type takes
input of concatenated x and a specific token ŷ and outputs a single value that represents Q⋆,η(x, ŷ). Because of the key
difference, Q-type therefore can efficiently calculate Q⋆,η with just one forward pass and its model architecture can also be
identical to the original LLM. V-type, however, has a prohibitive inference cost with a naive implementation since it requires
making |V | forward passes at every decoding step to calculate the full Q function. In the paragraph below, we discuss our
efficient implementation to address this issue. For Q-type, we initialize the model directly from Llama 3.2 1B and for V-type,
we replace the last layer of Llama 3.2 1B with a randomly initialized fully connected layer with output size of 1. Therefore,
V-type Q♯ also has slightly fewer number of parameters than Q-type. We by default use V-type Q♯ in our experiments.

Efficient inference with V-type. To speed up inference for V-type, we note that not all tokens in the vocabulary are worth
computing its value since for any partial generation x, most tokens have extremely low probability from πref as the next
token candidate. In our preliminary experiments, we have found that only computing the values for the top 20 tokens ranked
by πref give similar performance compared to computing for all tokens. Additionally, we also note that the values for these
tokens can be computed in one forward pass. To accomplish this, we input a partial generation x and the top 20 candidate
next tokens together, modify the attention mask so that the candidate tokens do not attend to each other but still to x. This
allows us to compute the values for these top tokens in just one additional forward pass without any approximation.

E. Q♯ Training Settings
We collect 16 samples for each question in the training set and label every sample either as correct (1) or incorrect (0) based
on the final answer. The first round of training data is collected with just πref. For training Q♯ model, we filter out samples
from questions where all samples are either correct or incorrect. we use a learning rate of 2e− 5 and weight decay of 0.01
with AdamW optimizer (Loshchilov et al., 2017). The model is trained for 5 epochs. We train Q♯ for two iterations as we
observe performance converges. In the second iteration, we repeat the above data collection procedure and concatenate the
training data from the first round. The model is always trained from scratch between iterations.

F. Additional Evaluation Details
We evaluate all methods and models with zero-shot prompting. The prompt template is ’Problem:\n\n{0} Write
your answer inside \\boxed{{}}.\n\nSolution:’ where {0} is replaced by the actual question from the
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dataset. The MATH-500 dataset can also be found at Huggingface 3.

G. Qualitative Examples
In Figure 5 and the ones below it, we qualitative visualize side by side generation results from πref and Q♯ on Llama 3 8B
GSM8K and Llama 3.1 8B MATH settings. In the first example of Figure 5, we observe πref and Q♯ start off similarly by
calculating the total number of cookies Shannon eat but πref starts to roughly guess the answer (highlighted in red) without
calculating the answer precisely, where Q♯ calculates the answer step by step (in blue). In the second MATH example,
πref first states some confusing statement (highlighted in orange) and then makes a mistake of addition (5 + 5) instead of
multiplication when calculating all the possibilities. Q♯, however, correctly solves the problem by multiplying the options
(5 ∗ 5) for Paul and Jesse and then adds the single case when using the number of 2, arriving at the correct answer.

More examples can be found in subsequent pages with various levels of difficulty. We highlight that Q♯ can still make
confusing statements similar to πref even in solution that arrives at the correct final answer. For example, in the Cecilia
puppy example (the first after Figure 5), similar to πref, Q♯ also makes a division of 1 when it should be multiplication.

Problem from GSM8K: Shannon makes her own madeleine cookies and eats 2 a night as a treat. She wants to make enough
cookies to last her for 30 days by storing them in the freezer. Her recipe makes 1 dozen madeleine cookies. How many dozens of
cookies will she need to make so she has enough for 30 days?

Incorrect Solution from πref: Since Shannon eats 2 cookies per night, she will eat 2 · 30 = 60 cookies over 30 days. She will
need 7 dozen cookies, since 7 · 12 = 84 > 60.
Final Answer: The final answer is 7. I hope it is correct.

Correct Solution from Q♯: Shannon eats 2 cookies per night, so she will eat 2 * 30 = 60 cookies in 30 days. Since 1 dozen
cookies is 12, we can divide 60 by 12 to find out how many dozens she needs. 60 ÷ 12 = 5. The answer is 5 dozens.

Counting & Probability Problem from MATH: Paul and Jesse each choose a number at random from the first six primes.
What is the probability that the sum of the numbers they choose is even?

Incorrect Solution from πref: To find the probability that the sum of the numbers Paul and Jesse choose is even, we need to
consider the possible combinations of even and odd numbers. The first six primes are 2, 3, 5, 7, 11, and 13. Since 2 is the only
even prime number, we will always have one even number and one or more odd numbers. For the sum to be even, both numbers
must be either even or odd. If Paul chooses the even number (2), Jesse can choose any of the 5 odd numbers (3, 5, 7, 11, 13),
resulting in 5 possibilities. If Paul chooses any of the 5 odd numbers, Jesse can choose the even number (2), resulting in 5 more
possibilities. Therefore, there are 5 + 5 = 10 possibilities where the sum is even. The total number of possible combinations is 6 *
6 = 36 (6 choices for Paul and 6 choices for Jesse). The probability that the sum of the numbers Paul and Jesse choose is even is

10/36, which simplifies to 5/18. The answer is:
5

18

Correct Solution from Q♯: The first six primes are 2, 3, 5, 7, 11, and 13. For the sum of the numbers Paul and Jesse choose to
be even, they must either both choose even numbers or both choose odd numbers. There is only one even prime number, which
is 2. Paul has 6 options, and Jesse also has 6 options. The total number of possibilities is 6 * 6 = 36. For the case where both
choose the even number, there is only one possibility (2, 2). For the case where both choose odd numbers, there are 5 options for
Paul and 5 options for Jesse. The total number of possibilities is 5 * 5 = 25. So, the total number of possibilities where the sum is

even is 1 + 25 = 26. The probability that the sum of the numbers they choose is even is 26/36 = 13/18. The answer is
13

18
.

Figure 5. Example generations from πref and Q♯ on GSM8K and MATH questions. πref consistently fails to solve the problems compared
to Q♯. The generations from πref and Q♯ usually start off with similar reasoning chain-of-thought but πref gradually makes unjustified
reasoning leap or simply a guess of the answer whereas Q♯ tends to be more logical for solving the problems. Colors are manually added
for ease of visualization. Blue represents correct reasoning steps or answers, red represents clearly incorrect ones and orange represents
ambiguous or minor mistake that could potentially lead to clearly incorrect steps or answers.

3https://huggingface.co/datasets/HuggingFaceH4/MATH-500
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Problem from GSM8K: Cecilia just bought a new puppy. According to her veterinarian, she has to feed the puppy 1 cup of dog
food every day for the first 180 days. Then she has to feed the puppy 2 cups of dog food every day for the rest of its life. If one
bag of dog food contains 110 cups, how many bags of dog food will Cecilia use in the first year?

Incorrect Solution from πref: For the first 180 days, Cecilia needs 180
1

= 180 cups of dog food. For the rest of the year, she
needs 365−180

2
= 92.5 cups of dog food. So in total she needs 180 + 92.5 = 272.5 cups of dog food. If one bag of dog food

contains 110 cups, then she will need 272.5
110

= 2.5 bags of dog food. Final Answer: The final answer is 2.5. I hope it is correct.

Correct Solution from Q♯: The first 180 days, she will need to feed her puppy 180
1

= 180 cups of dog food. After that, she will
need to feed her puppy 365-180=185 days of 2 cups each, for a total of 2 · 185 = 370 cups of dog food. So, the total amount of
dog food needed in the first year is 180 + 370 = 550 cups. Since each bag of dog food contains 110 cups, the number of bags

needed is
550

110
= 5 .

Problem from GSM8K: According to its nutritional info, a bag of chips has 250 calories per serving. If a 300g bag has 5
servings, how many grams can you eat if your daily calorie target is 2000 and you have already consumed 1800 calories?

Incorrect Solution from πref: Let’s break this down step by step!
1. The bag of chips has 5 servings, and each serving has 250 calories. To find the total calories in the bag, multiply the number of
servings by the calories per serving:
5 servings × 250 calories/serving = 1250 calories
2. You have already consumed 1800 calories, and your daily calorie target is 2000. To find out how many more calories you can
consume, subtract the calories you’ve already had from your daily target:
2000 - 1800 = 200 calories
3. Since each serving of chips has 250 calories, you can consume:
200 calories ÷ 250 calories/serving = 0.8 servings
4. Since there are 5 servings in the bag, you can eat:
0.8 servings × 300g/bag = 240g
So, you can eat up to 240g of the bag of chips.
Here’s the answer:

240 g

Correct Solution from Q♯: A delicious problem!
Let’s break it down step by step:
1. The bag of chips has 250 calories per serving, and there are 5 servings in the bag.
2. The total calories in the bag are: 250 calories/serving × 5 servings = 1250 calories.
3. You have already consumed 1800 calories, so you have 2000 - 1800 = 200 calories left for the day.
4. Since each serving of chips has 250 calories, you can consume: 200 calories / 250 calories/serving = 0.8 servings.
5. Since there are 5 servings in the bag, you can eat: 0.8 servings × 300g/5 servings = 0.8 × 60g = 48g.
So, you can eat up to 48g of the bag of chips.
Enjoy your snacking, but don’t overdo it!

Problem from GSM8K: Nate’s dog can dig six holes a day. He digs for 14 days while Nate is on vacation. When Nate gets
home, he starts filling in 9 holes a day, but the dog keeps digging 6 new holes every night. How many weeks does it take him to
fill in all the holes?

Incorrect Solution from πref: Nate’s dog digs 6 holes a day for 14 days, so the total number of holes dug is 6 x 14 = 84. After
Nate gets home, he starts filling in the holes, and the dog keeps digging 6 new holes every night. So the number of holes to fill is
always 84 + 6. Nate fills 9 holes a day, so the number of days it takes to fill all the holes is:⌈

84 + 6

9

⌉
= 11

Correct Solution from Q♯: The dog digs 6 holes a day, and Nate is away for 14 days, so the dog digs 6 * 14 = 84 holes. Then,
Nate starts filling in 9 holes a day, but the dog digs 6 new holes every night, so 9 - 6 = 3 holes are filled in each day. So, each day
3 more holes are filled in. The number of holes filled in after x days is 84 - 3x. We want to find the smallest x such that 84 - 3x is
0, so we want to find the smallest x such that 3x = 84. 3x = 84 is true when x = 28, so it takes 28 days to fill in all the holes. Since
there are 7 days in a week, it takes 28 / 7 = 4 weeks to fill in all the holes.
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Prealgebra Problem from MATH: A bookcase has 3 shelves with a total of 24 books. The top shelf has 8 mystery books. The
middle shelf has 10 math books. The bottom shelf has 6 science books. Two books are now taken off each shelf. What fraction of
the books remaining on the three shelves are math books? Express your answer as a common fraction.

Incorrect Solution from πref: To find the fraction of the books remaining on the three shelves that are math books, we first need
to find the total number of books remaining on the three shelves.
Initially, the bookcase had 24 books. Two books are taken off each shelf. Since there are 3 shelves, a total of 6 books are taken
off.
So, the total number of books remaining on the three shelves is:
24 (initial books) - 6 (books removed) = 18 books.
The middle shelf had 10 math books. Since no math books were removed, the number of math books remaining is still 10.
Now, we can find the fraction of the books remaining on the three shelves that are math books. To do this, we divide the number
of math books remaining by the total number of books remaining.
Fraction of math books = Number of math books / Total number of books
= 10 / 18
We can simplify this fraction by dividing both the numerator and denominator by their greatest common divisor, which is 2.
Simplified fraction = 5 / 9
So, the fraction of the books remaining on the three shelves that are math books is: 5/9

Correct Solution from Q♯: To find the fraction of the remaining books that are math books, we first need to find the total
number of books remaining on the shelves after two books are taken off each shelf.
Top shelf initially had 8 books. After removing 2 books, it has 8 - 2 = 6 books.
Middle shelf initially had 10 books. After removing 2 books, it has 10 - 2 = 8 books.
Bottom shelf initially had 6 books. After removing 2 books, it has 6 - 2 = 4 books.
So the total number of books remaining is 6 + 8 + 4 = 18 books.
Initially, there were 10 math books. Since only the middle shelf has math books, the number of math books remains the same at 8
books.
The fraction of the remaining books that are math books is the number of math books (8) divided by the total number of remaining
books (18).
Fraction = 8 / 18 = 4 / 9

So the answer is:
4

9
.
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Intermediate Algebra Problem from MATH: The asymptotes of a hyperbola are y = 2x − 3 and y = 17 − 2x. Also, the
hyperbola passes through the point (4, 7). Find the distance between the foci of the hyperbola.

Incorrect Solution from πref: To find the distance between the foci of the hyperbola, we first need to determine the center and the
standard form of the hyperbola. The asymptotes are given by y = 2x−3 and y = 17−2x. Their point of intersection will be the
center of the hyperbola. To find the intersection point, we set the two equations equal to each other: 2x− 3 = 17− 2x 4x = 20
x = 5 Then substitute the value of x into one of the asymptote equations to find the corresponding y value: y = 2(5) − 3
y = 10− 3 y = 7 So, the center of the hyperbola is (5, 7). Next, we need to find the standard form of the hyperbola. The slopes
of the asymptotes are ±2, so the standard form of the hyperbola is given by:

(y − 7)2

a2
− (x− 5)2

b2
= 1

Since the slopes of the asymptotes are ±2, we know that b/a = 2. We can use the point (4, 7), which the hyperbola passes
through, to find the values of a and b.

(7− 7)2

a2
− (4− 5)2

b2
= 1

(−1)2

b2
= 1

1

b2
= 1

b2 = 1

b = 1

Since b/a = 2, we have a = b/2 = 1/2. Now we can find the values of a2 and b2.

a2 = (1/2)2 = 1/4

b2 = 12 = 1

Now that we have the values of a2 and b2, we can find the distance between the foci of the hyperbola using the equation:

c2 = a2 + b2

c2 = 1/4 + 1

c2 = 5/4

c =
√

5/4 =
√
5/2

The distance between the foci of the hyperbola is 2c = 2
√
5/2 =

√
5. Therefore, the distance between the foci of the hyperbola

is
√
5 .

Correct Solution from Q♯: To find the equation of the hyperbola, we first need to find the center and the standard form of the
hyperbola. The center is the point of intersection of the two asymptotes. To find it, we can set the two equations equal to each
other and solve for x: 2x− 3 = 17− 2x Combine like terms: 4x = 20 Divide by 4: x = 5 Now substitute this value of x into
one of the asymptote equations to find y: y = 2x− 3 y = 2(5)− 3 y = 7 So, the center of the hyperbola is at (5,7). Since the
slopes of the asymptotes are 2 and -2, the standard form of the hyperbola is: (y−k)2

a2 − (x−h)2

b2
= 1 where (h,k) is the center of

the hyperbola. To find the values of a and b, we can use the fact that the slopes of the asymptotes are 2 and -2. The slopes of
the asymptotes are given by ±a

b
. Therefore: a

b
= 2 We also know that the point (4,7) is on the hyperbola. We can substitute

this point into the equation to get: (7−7)2

a2 − (4−5)2

b2
= 1 This simplifies to: 1

b2
= 1 b2 = 1 Now we can substitute this value

of b2 into the equation a
b
= 2 to get: a

1
= 2 a = 2 Now we can substitute the values of a and b into the standard form of the

hyperbola to get: (y−7)2

4
− (x−5)2

1
= 1 The distance between the foci of a hyperbola is given by 2c, where c is the distance

from the center to each focus. The relationship between a, b, and c is given by: c2 = a2 + b2 c2 = 22 + 12 c2 = 5 c =
√
5 The

distance between the foci is: 2c = 2
√
5 So, the distance between the foci of the hyperbola is 2

√
5 .
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Algebra Problem from MATH: Simplify the following expression to a simplified fraction:√√√√√ 5√
80

+

√
845

9
+

√
45

√
5

.

Incorrect Solution from πref: To simplify the expression

√√√√√ 5√
80

+

√
845

9
+

√
45

√
5

, we need to follow the order of operations.

First, we simplify the terms inside the square root:
5√
80

=
5√

16× 5
=

5

4
√
5
=

5

4
√
5
×

√
5√
5
=

5
√
5

4× 5
=

√
5

4√
845 =

√
13× 65 =

√
13× 13× 5 = 13

√
5√

45 =
√
9× 5 =

√
9×

√
5 = 3

√
5

Now, we can rewrite the expression as:

√√√√√
√
5

4
+

13
√
5

9
+ 3

√
5

√
5

We can simplify the numerator by finding a common denom-

inator:
√
5

4
+

13
√
5

9
+ 3

√
5 =

9
√
5

36
+

52
√
5

36
+

108
√
5

36
=

169
√
5

36
Now, we can rewrite the expression as:

√√√√√ 169
√
5

36√
5

To

simplify the expression, we can multiply the numerator and denominator by
√
5:

169
√
5

36√
5

=
169

√
5

36
×

√
5√
5
=

169× 5

36
=

845

36

Now, we can rewrite the expression as:

√
845

36
We can simplify the square root by finding the square root of the numerator and

denominator:

√
845

36
=

√
5× 132

62
=

√
5× 13√
62

=

√
5× 13

6
So, the simplified fraction is

13
√
5

6
.

Correct Solution from Q♯: To simplify the given expression, we first simplify the terms within the square root in the numerator.
5√
80

=
5√
16 · 5

=
5

4
√
5
=

√
5

4√
845 =

√
13 · 65 =

√
13 · 13 · 5 = 13

√
5√

45 =
√
9 · 5 = 3

√
5

Now, we substitute these simplified expressions back into the original expression:√√√√√ 5√
80

+

√
845

9
+

√
45

√
5

=

√√√√√
√
5

4
+

13
√
5

9
+ 3

√
5

√
5

We can simplify the expression further by combining like terms in the numerator:

√
5

4
+

13
√
5

9
+ 3

√
5

√
5

=

9
√
5 + 52

√
5 + 108

√
5

36√
5

=

169
√
5

36√
5

=
169

36

Finally, we take the square root of the fraction: √
169

36
=

√
169√
36

=
13

6

The answer is
13

6
.
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