
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Q♯: Provably Optimal Distributional RL for LLM Post-Training

Anonymous Authors1

Abstract

Reinforcement learning (RL) post-training is cru-
cial for LLM alignment and reasoning, but ex-
isting policy-based methods, such as PPO and
DPO, can fall short of fixing shortcuts inherited
from pre-training. In this work, we introduce Q♯,
a value-based algorithm for KL-regularized RL
that guides the reference policy using the optimal
regularized Q function. We propose to learn the
optimal Q function using distributional RL on
an aggregated online dataset. Unlike prior value-
based baselines that guide the model using un-
regularized Q-values, our method is theoretically
principled and provably learns the optimal policy
for the KL-regularized RL problem. Empirically,
Q♯ outperforms prior baselines in math reasoning
benchmarks while maintaining a smaller KL di-
vergence to the reference policy. Theoretically,
we establish a reduction from KL-regularized RL
to no-regret online learning, providing the first
bounds for deterministic MDPs under only realiz-
ability. Thanks to distributional RL, our bounds
are also variance-dependent and converge faster
when the reference policy has small variance. In
sum, our results highlight Q♯ as an effective ap-
proach for post-training LLMs, offering both im-
proved performance and theoretical guarantees.

1. Introduction
Reinforcement learning (RL) post-training is a critical step
in the training process of large language models (LLMs)
that aligns their generations with human preferences (Chris-
tiano et al., 2017) and imbues them with reasoning abilities
(Setlur et al., 2024; Guo et al., 2025). Post-training with RL
typically occurs after the supervised learning stage (next-
token prediction) and the LLM is trained to maximize the
expected cumulative reward while minimizing the KL di-

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

vergence w.r.t. the reference model πref from supervised
learning. This KL penalty is critical as it forces the LLM
to stay close to πref during the optimization process and
mitigates reward hacking and catastrophic forgetting.

Most state-of-the-art LLMs (Ouyang et al., 2022; Dubey
et al., 2024; Team et al., 2024) are currently post-trained
with policy-based RL algorithms, which directly update the
weights of the LLM with stochastic gradient descent via
methods like RLOO (Kool et al., 2019), PPO (Schulman
et al., 2017) and DPO (Rafailov et al., 2024). However, these
methods can suffer from certain shortcuts that are picked
up during pre-training, which fail to generalize for tasks
that involve planning, e.g., the star-graph task (Bachmann
& Nagarajan, 2024). Instead, in this paper, we propose
an RL algorithm that is value-based, where we guide the
generations of the reference policy with a learned value func-
tion, without modifying the weights of the reference policy
model. Indeed, in Section 3.1, we show that value-based
post-training allows us to correct the biases and shortcuts
within the reference policy.

While there are existing value-based RL algorithms for LLM
post-training, namely CD (Mudgal et al., 2023) and VAS
(Han et al., 2024), they all have a major issue which is that
they do not faithfully optimize the KL-constrained RL ob-
jective. Specifically, they propose to guide πref using Qπref

,
the expected reward-to-go under πref without KL regular-
ization, which is not guaranteed to converge to the optimal
policy π⋆,η . Instead, under the classical KL-regularized RL
framework, we show that it is provably optimal to guide
πref using Q⋆,η , the expected reward-to-go under π⋆,η with
KL-regularization, which is guaranteed to converge to π⋆,η .
Thus, these approaches can suffer from sub-optimal reward
and/or large KL deviations, both of which our approach Q♯
provably fixes. We discuss this in more detail in Appendix A.

In summary, our contributions are as follows:

1. We propose Q♯, a principled algorithm for KL-
regularized RL in deterministic MDPs, which includes
LLMs, based on guiding πref with the soft Q⋆ learned
with distributional RL (Section 2.2).

2. We prove variance-dependent PAC bounds for con-
vergence to the optimal policy, which only requires
realizability in the function class (Section 4).

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Q♯: Provably Optimal Distributional RL for LLM Post-Training

Figure 1. (Left) A sketch of our post-training algorithm (Q♯) based on distributional RL. Q♯ alternates between learning Z⋆ – the
reward-to-go distribution of πref – and using the induced policy to collect new data and further improve the distributional estimate. (Right)
Evaluation result on the GSM8K dataset (Cobbe et al., 2021). We see that Q♯ achieves both higher accuracy and lower KL compared to
prior value-based post-training algorithms (Mudgal et al., 2023; Han et al., 2024).

3. We show that value-based post-training, which includes
Q♯, can fix biases and shortcuts in a star-graph environ-
ment (Bachmann & Nagarajan, 2024), while popular
policy-based methods cannot (Section 3.1).

4. We provide extensive experiments on math reasoning
tasks that validate the effectiveness of our method at
maximizing reward while maintaining small KL devia-
tions from the reference policy (Section 3.2).

2. Method
2.1. Preliminaries

The goal of this paper is to solve KL-regularized RL in
deterministic Markov Decision Processes (MDPs), where
LLM post-training is a special case and our main focus.
First, we introduce the formal setup. The MDP consists of a
state space X , action space Y , horizon H , transition kernels
(P1, . . . , PH), where Ph : X × Y 7→ ∆(X) and known
reward functions (r1, . . . , rH), where rh : X × Y 7→ R.
To interact with the MDP, we use policies of the form π =
(π1, . . . , πH) s.t. πh : X 7→ ∆(Y), which takes actions
given the current state at each step. For a given η > 0, the
soft value V π,η of a policy π is the expected cumulative
rewards subject to KL regularization, defined as,

Eπ[
∑H

h=1 rh(xh, yh)− η KL(πh(xh) ∥ πref
h (xh))], (1)

where recall the KL divergence is defined as KL(p ∥ q) =
Ez∼p[ln(p(z)/q(z))] for distributions p, q. In Equation (1),
the expectation with subscript π denotes the randomness
is coming from the random trajectory (x1, y1, . . . , xH , yH)
of π interacting with the MDP where the initial state x1 is
sampled from a known distribution d1. Our goal is to learn
the optimal policy π⋆,η = argmaxπ V

π,η .

A classical result is that KL-regularized RL can be solved us-
ing the soft Bellman equations (Ziebart et al., 2008). Specif-
ically, we can compute π⋆,η

h by iterating the following equa-

tions from h = H,H − 1, . . . , 1:

V ⋆,η
H+1(x) = 0,

Q⋆,η
h (x, y) = rh(x, y) + Ex′∼Ph(x,y)[V

⋆,η
h+1(x

′)],

π⋆,η
h (y | x) ∝ πref

h (y | x) exp(η−1Q⋆,η
h (x, y)), (2)

V ⋆,η
h (x) = η lnEy∼πref(x) exp(η

−1Q⋆,η
h (x, y)).

In other words, the optimal action distribution π⋆,η
h (· | x)

is simply the softmax of the Q⋆,η
h function weighted by

πref’s action distribution. Moreover, Q⋆,η
h has a special inter-

pretation: it is the highest achievable expected cumulative
reward with KL regularization starting from state x, ac-
tion y, at time h. Specifically, if we define Qπ,η

h (x, y) =
Eπ[

∑
t≥h rt(xt, yt) − ηI [t > h] KL(πt(xt) ∥ πref

t (xt)) |
xh = x, yh = y], then Q⋆,η

h (x, y) = maxπ Q
π,η
h (x, y) and

the argmax is precisely the π⋆,η
h defined in Equation (2).

Similarly, if we define V π,η
h (x) = Eπ[

∑
t≥h rt(xt, yt) −

η KL(πt(xt) ∥ πref
t (xt)) | xh = x], then V ⋆,η

h (x) =
maxπ V

π,η
h (x).

In this paper, we focus on solving deterministic MDPs
where the transitions Ph are deterministic, which includes
LLM post-training and many other problems (e.g., diffusion,
Domingo-Enrich et al., 2024) as a special case.

Assumption 2.1. The transitions Ph are deterministic.

Under Assumption 2.1, we can greatly simplify the value
function by shedding its recursive dependencies:

exp(η−1V ⋆,η
h (x))

= Ey∼πref
h (x)[exp(η

−1rh(x, y) + η−1V ⋆,η
h+1(x

′))] (3)

= Eπref [exp(η−1
∑

t≥h rt(xt, yt)) | xh = x], (4)

where Equation (3) is due to deterministic Ph, and Equa-
tion (4) is due to unrolling for multiple steps. In sum, we
have shown the following theorem which is a known result
from Piché et al. (2018); Li et al. (2024); Domingo-Enrich
et al. (2024).

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Q♯: Provably Optimal Distributional RL for LLM Post-Training

Theorem 2.2. Under Assumption 2.1, we have

V ⋆,η
h (xh) = η lnEπref [exp(η−1

∑
t≥h rt(xt, yt)) | xh],

Q⋆,η
h (xh, yh) = η lnEπref [exp(η−1

∑
t≥h rt(xt, yt)) | xh, yh].

This shows that V ⋆,η and Q⋆,η are simple functionals of
Z⋆ – the cumulative reward distribution of πref – where the
functional is f(P) = η lnEP exp(X/η). In other words, if
we learn the cumulative reward distribution of πref, then we
can directly compute V ⋆,η and Q⋆,η, without any dynamic
programming. This has several benefits.

First, we do not require temporal difference (TD) learn-
ing (i.e., bootstrapping) which is notoriously unstable
with deep networks (Van Hasselt et al., 2018) and re-
quires completeness-type assumptions to guarantee con-
vergence in theory (Munos & Szepesvári, 2008). Sec-
ond, fitting the reward-to-go distribution Z⋆ or regressing
Eπref [exp(η−1

∑
t≥h rt)] is a standard supervised learning

task with a fixed target, which is much more stable in prac-
tice and well-understood in theory. Notably, there is no boot-
strapping or changing targets which is what renders deep RL
fragile. Third, we can leverage distributional RL (DistRL)
to fit the reward-to-go distribution, which has many benefits
for representation learning (Bellemare et al., 2017; Lyle
et al., 2019), lower variance updates (Rowland et al., 2023),
and second-order bounds (Wang et al., 2024a;b). For Dis-
tRL, our ability to avoid TD is a significant advantage since
the distributional Bellman operator is not even a contraction
for certain metrics (Bellemare et al., 2017).

Applicability to LLMs. For our theoretical framework,
we study the deterministic MDP model since it captures
the LLM post-training problem as a special case (Chris-
tiano et al., 2017). Specifically, the initial state x1 is
the prompt, the intermediate state xh is the current pre-
fix, and the action yh is the next token or next block of
tokens. So, the policy is simply the LLM’s autoregres-
sive generation process. The transition function simply
concatenates the LLM’s continuation to the prefix, i.e.,
Ph(xh, yh) = xhyh, which is a deterministic operation.
In many cases, the reward function is sparse, i.e., only rH
is non-zero, in which case Theorem 2.2 can be simplified
to Q⋆,η

h (xh, yh) = η lnEπref [exp(η−1r(xH , yH)) | xh, yh].
For example, in math tasks, it is the correctness of the solu-
tion; in chat, it is the preference of the response measured
by a (learned) reward model. In sum, our theoretical model
is directly applicable to LLM post-training.

Inference with Cumulative Reward Distribution. Let Z⋆

denote the conditional distribution of cumulative rewards
under roll-outs from πref; that is,

Z⋆
h(x, y)

D
=

∑
t≥h rt(xt, yt) | xh = x, yh = y,

where (xh, yh, . . . , xH , yH) is a random trajectory under

πref and D
= denotes that two random variables have equal

probability laws. Combining Theorem 2.2 and Equation (2),
we have that π⋆,η can be expressed in terms of Z⋆:

π⋆,η
h (y | x) ∝ πref

h (y | x)Ez∼Z⋆
h(x,y)

[exp(z/η)].

This motivates us to define the policy induced by a given
distribution Z : X × Y 7→ ∆(R) as

πZ,η
h (y | x) ∝ πref

h (y | x)Ez∼Zh(x,y)[exp(z/η)]. (5)

Since π⋆,η = πZ⋆,η, this naturally motivates learning a
good estimate Ẑ ≈ Z⋆ via distributional RL and plugging
back into Equation (5) to obtain a good policy, which is the
crux of our Q♯ algorithm.

2.2. Algorithm Q♯

We propose Q-Sharp (Q♯), a distributional value-based algo-
rithm for solving KL-regularized RL in deterministic MDPs.
Q♯ is an iterative algorithm that collects data from progres-
sively better policies to learn the target distribution Z⋆. In
this section, we describe the Q♯ algorithm using practical no-
tation for deep neural networks and LLMs; in Section 4, we
will provide a theoretically grounded version using online
learning oracles and prove convergence guarantees under
the mild assumption of realizability.

Let Zθ
h : X × Y → ∆(R) be a conditional distribution

with parameters θ. For a label R ∈ R (e.g., a sample
from Z⋆) and an estimate Ẑ, let L(R, Ẑ) be a distribu-
tional loss function for learning θ⋆, the optimal parameter
that minimizes the distance between Z⋆ and Zθ. For ex-
ample, if Z⋆

h(x, y)
D
= Ber(p⋆h(x, y)) is always Bernoulli,

then Zθ
h(x, y) can be parameterized by a neural network

that outputs a single scalar estimate of p⋆h. Then the natural
loss is binary cross-entropy (BCE), i.e.,

Lbce(r, p̂) = −r ln p̂− (1− r) ln(1− p̂).

This is useful in tasks like math or multiple choice questions
where the reward is binary. If there is no a priori structure
about the reward distribution, we can use a non-parametric
estimator such as histogram models that discretize the re-
ward space into bins and train with maximum likelihood
(MLE) loss (Bellemare et al., 2017):

Lmle(r, ẑ) = − ln ẑ[idx(r)],

where idx(r) is the index of the bin that r falls into and ẑ[i]
is the i-th bin’s probability estimate. Q♯ is amenable to any
distributional RL loss function (Bellemare et al., 2023).

Then, the key idea is to iteratively update the current pa-
rameters θk using new data collected from the current in-

duced policy πk ← πZθk ,η . Specifically, the data collection

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Q♯: Provably Optimal Distributional RL for LLM Post-Training

process rolls-in πk for h− 1 steps until xh, finishes the tra-
jectory with πref and collects the cumulative rewards Rh,k

henceforth, which is exactly a sample from Z⋆
h(xh). These

samples are added to the dataset and the parameters are
updated via gradient descent on the distributional loss func-
tion. This procedure is repeated until convergence. The full
algorithm is described in Algorithm 1.

Our iterative data collection process is similar in spirit to
DAgger (Ross et al., 2011) and AggreVaTe (Ross & Bagnell,
2014). A key difference is that DAgger and AggreVaTe are
interactive imitation learning algorithms that require rolling
out with an expert policy, while Q♯ does not require access
to any expert policies and can learn simply from interactions
with the environment.

Algorithm 1 Q♯

1: Input: reference policy πref.
2: Initialize θ1 and dataset Dh = ∅ for all h.
3: for k = 1, 2, . . . until convergence do
4: Let πk ← πZ

θk
,η be policy induced by Zθk .

5: for i = 1, 2, . . . , N do
6: Sample a switching time h ∼ [H].
7: Roll-in with πk for h− 1 steps.
8: Resume trajectory with πref from xh.
9: Let Rt denote cumulative rewards after time t.

10: Add (xt, yt, Rt) to Dt, ∀t ≥ h.
11: end for
12: Update θk by minimizing the distributional loss:

θk+1 ← argminθ
∑

h EDh
[L(Rh, Z

θ(xh, yh))].

13: end for
14: Output: Final θk.

Once we have learned a good parameter θk with Algorithm 1
such that Zθk ≈ Z⋆, we can induce a near-optimal policy
πθk,η via Equation (5). In Section 4, we prove that this
procedure indeed converges to the optimal policy under the
mild realizability assumption.

We remark that CD (Mudgal et al., 2023) and VAS (Han
et al., 2024) are related value-based algorithms for LLM
post-training, but there are at least three shortcomings. First,
CD and VAS use Qπref,0, the non-regularized Q-function
of πref, to guide the generations, which does not solve KL-
regularized RL in general – in Section 4, we indeed show
there are simple MDPs where CD and VAS provably fail to
maximize the reward and/or stay close to πref. In contrast,
Q♯ uses Q⋆,η to guide πref, which is principled and provably
converges to π⋆,η under a mild assumption of realizability.
Second, CD and VAS are offline algorithms that operate
on a fixed dataset, while Q♯ is an online algorithm that
interleaves data collection and parameter updates, which

leads to more robust generalization (Ross et al., 2011; Ross
& Bagnell, 2014). Third, CD and VAS use squared loss
regression to learn Qπref,0, which implicitly assumes that the
cumulative reward distributed as a homoskedastic gaussian.
In contrast, Q♯ uses the distributional RL framework which
is provably more sample efficient (Wang et al., 2023; 2024b)
and often learns better policies in practice (Bellemare et al.,
2017; Lyle et al., 2019).

Inference with many η. The learned reward distribution
Ẑθ does not depend on η, and thus a single distributional
reward network can support a range of η at inference time.

3. Experiments
3.1. Star-Graph

Figure 2. A star-graph G(2, 3) w/ degree d = 2, length ℓ = 3.
The shortcut response picks an incorrect random node from center.

We start with the star-graph task from Bachmann & Nagara-
jan (2024), which is illustrated in Figure 2. A star-graph
G(d, ℓ) consists of d paths of length ℓ connected to a central
node. For this task, the LM’s prompt contains the edges of
a star-shaped graph and the start/goal nodes, and the LM is
required to generate a path from the start to the goal node.
While this task is deceptively easy, Bachmann & Nagarajan
(2024) showed that pre-training a GPT-2 model from scratch
with next-token prediction actually learns an incorrect short-
cut called “Clever Hans”, where the model randomly picks
the first node and follows the wrong path until the final
node. Hence, for a star-graph with degree d, the shortcut
policy only has a success rate of 1/d. Thus, Bachmann &
Nagarajan (2024) showed that next-token prediction does
not generalize well when applied to planning tasks.

A natural question is: can this shortcut be fixed during
post-training? We evaluate Q♯ alongside popular policy-
based algorithms such as REINFORCE and DPO, and report
the final test-set accuracies in Figure 3. We find Q♯ is able
to correct this shortcut, approaching 100% test-set accuracy.
However, we find that policy-based algorithms such as RE-
INFORCE and DPO consistently fail to fix the shortcut and
DPO often worsens the test set performance even further.
This is likely due to the fact that once the neural net has
learned the shortcut, it is difficult to unlearn. Thus, this
synthetic task demonstrates the value in value-based algo-
rithms, such as Q♯ and CD, for post-training LLMs. Please
see Appendix C for implementation details.

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Q♯: Provably Optimal Distributional RL for LLM Post-Training

3.2. Math Reasoning

Datasets. We also experiment on mathematical reasoning
datasets, namely GSM8K (Cobbe et al., 2021) and MATH
(Hendrycks et al., 2021). GSM8K consists of grade school
arithmetic word problems and MATH contains high school
mathematical competition problems that are much more
challenging. In addition, we create a 90%-10% split on
the original training set to be our training set for learning
and validation set for hyperparameter tuning. For reporting
test set performance, we use the entire GSM8K test set and
a random subset of MATH test set, MATH-500 which we
follow from several previous work (Lightman et al., 2023;
Wang et al., 2024c).

Models. We use Llama 3 (Dubey et al., 2024) series of
models since they are competitive in math reasoning and
have a wide range of parameter sizes. Unless otherwise
specified, the Q⋆,η function in Q♯ is parametrized and ini-
tialized with a Llama 3.2 1B model and η = 0.1 is used as
we find it gives good and consistent performance. We run
Q♯ for two iterations and observe performance convergence.
Additional details on models and Q♯ training can be found
in Appendix D and E.

Evaluation metrics. We evaluate performance with single
sample accuracy and majority voting accuracy. For sin-
gle sample accuracy (denoted as pass@1), one generation
is sampled per problem and the correctness is evaluated
against the ground truth final answer. For majority voting
accuracy (denoted as maj1@k), k generations are sampled
and the most common final answer among them is checked
for correctness. In our experiments, we use k = 8 and
all generations are sampled with temperature T = 0.8 and
nucleus sampling p = 0.9. The prompt template used for
evaluation can be found in Appendix F.

Main Results. In Table 1, we show the performance of Q♯
on GSM8K (Top) and MATH (Bottom) when πref is either
Lllama 3 or 3.1 8B. Note that although both Llama 3 and
Llama 3.1 have 8B parameters, Llama 3.1 is significantly

Figure 3. Test-set accuracies for GPT-2 when pre-trained with next-
token prediction, and post-trained with REINFORCE, DPO or
Q♯. Only Q♯ is able to fix the Clever Hans cheat and achieve an
accuracy much higher than 1/d on G(d, ℓ).

Table 1. Comparison of Q♯ with πref and CD baseline on GSM8K
(Top) and MATH (Bottom). For both Llama 3 and Llama 3.1
8B, Q♯ consistently improves both pass@1 and majority voting
accuracy upon baselines while incurring minimal KL deviation.

πref Llama 3 8B Llama 3.1 8B

Methods πref CD Q♯ πref CD Q♯

pass@1 ↑ 69.1 77.8 78.4 82.9 84.5 85.1
maj1@8 ↑ 85.8 87.2 88.1 90.5 90.9 91.4

KL-Divergence ↓ - 6.39 2.65 - 7.43 3.67

πref Llama 3 8B Llama 3.1 8B

Methods πref CD Q♯ πref CD Q♯

pass@1 ↑ 25.4 24.9 27.1 43.9 45.3 46.7
maj1@8 ↑ 34.3 34.3 37.9 57.0 59.0 60.1

KL-Divergence ↓ - 15.27 7.14 - 26.8 8.69

better than Llama 3 for both datasets. Across all settings, we
observe that Q♯ consistently outperforms πref, improving
pass@1 accuracy as much as 9% on GSM8K for Llama
3 8B, with just 1B additional parameters. In addition, we
evaluate the CD baseline (Mudgal et al., 2023; Han et al.,
2024) which guides πref with the incorrect Qπref,0 function
instead. We find that Q♯ consistently improves upon CD on
two accuracy metrics while at the same time incurring lower
KL divergence w.r.t. πref. In sum, Q♯ Pareto-dominates the
baseline for the KL-regularized RL problem where reward
should be higher and KL should be lower.

Larger πref and Q♯ sizes. We also investigate how the per-
formance scales as we vary πref and Q♯ model sizes. In
Table 2, we summarize the results of using 70B versions
of Llama 3 and Llama 3.1 as πref on MATH. Compared to
their 8B counterparts, both Llama 3 and Llama 3.1 are much
stronger reasoning models, reaching pass@1 accuracy of
45.6% and 60.6% for Llama 3 and 3.1 respectively. Given
the significant performance improvement, Q♯ of size 1B
is still capable of guiding and improving the generation of
70B πref, improving Llama 3.1 pass@1 and maj1@8 by
2.5% and 3.5% respectively. As we increase Q♯ size to
3B, pass@1 for both Llama 3 and Llama 3.1 continues
to improve, which suggests the scalability of Q♯. As we
compare with Table 1 (Bottom) for Llama 3.1, we also high-
light that with 9B parameters (8B πref + 1B Q♯), its majority
voting accuracy already catches up with the pass@1 ac-
curacy of the 70B πref model in Table 2, which could be a
low-resource alternative. The pass@1 accuracy increases
but maj1@8 accuracy decreases slightly for Llama 3 model.
We hypothesize that this is because Q♯ leads to more diverse
generations on harder problems which boosts pass@1 but
less consistent correct generations for easier problems.

Q♯ as a reward model. Since Q♯ learns a token-level
Q function, besides guiding πref generation, we can also
re-purpose it as a reward model that efficiently evaluates

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Q♯: Provably Optimal Distributional RL for LLM Post-Training

Table 2. Performance of πref and Q♯ on MATH with larger πref and
Q♯ model sizes. Q♯ of size 1B is capable of guiding a 70B πref

model. Increasing Q♯ model sizes to 3B also leads to noticeably
better performance for Llama 3.1 70B.

πref Llama 3 70B Llama 3.1 70B

Q♯ Model None Llama 3.2 1B Llama 3.2 3B None Llama 3.2 1B Llama 3.2 3B

pass@1 ↑ 45.6 46.4 46.7 60.6 63.1 64.1
maj1@8 ↑ 55.6 55.5 55.3 69.0 72.5 72.7

KL-Divergence ↓ - 3.12 5.15 - 4.98 4.99

Table 3. Performance of πref and Q♯ on GSM8K and MATH when
using Q♯ also as a reward model to evaluate complete generations.
The reward model can determine the best generation among all
generations for a problem and consistently improves maj1@8 for
πref and Q♯ own generations.

Setting Llama 3 8B GSM8K Llama 3.1 8B MATH

Methods πref Q♯ πref Q♯

pass@1 69.1 78.4 43.9 46.7
maj1@8 85.8 88.1 57.0 60.1

Q♯-RM Best of 8 85.9 86.0 54.0 54.0
Q♯-RM maj1@8 88.5 89.2 59.2 60.6

how good a complete generation is with just one forward
pass. To calculate the reward / score of a generation, we
compute Q(generation,EOS). Since Llama 3 8B and Llama
3.1 8B with Q♯ shows a greater absolute improvement over
πref on GSM8K and MATH respectively, we investigate if
their performance can be further improved with Q♯ reward
model. In Table 3, we tabulate Q♯-RM Best of 8 and Q♯-RM
maj1@8 accuracy on the two settings for both πref and Q♯
generations. Both Q♯-RM metrics use k = 8 generations
where Q♯-RM Best of 8 selects the highest scored sample for
evaluation and Q♯-RM maj1@8 performs majority voting
by aggregating the total score for each unique final answer.
It can be seen that Q♯-RM maj1@8 consistently enhances
vanilla maj1@8 for both GSM8K and MATH, indicating
the general benefit of using Q♯ as a reward model. We also
see that the reward model can be used on both πref and Q♯
own generations to further improve performance, which
suggests the (same) reward model has generalizability for
evaluating diverse generations. Lastly, Q♯-RM Best of 8
also significantly improves upon pass@1 by more than
10% for πref generations on both GSM8K and MATH. We
note that although Best of 8 underperforms maj1@8 or Q♯-
RM maj1@8 for GSM8K and MATH, majority voting is not
a generally applicable approach for all reasoning tasks since
for proof-based questions, how to aggregate final answers
is not immediately obvious. Best of N using reward model,
however, can still be readily applied. Therefore, a large
improvement from pass@1 for Best of 8 is meaningful and
demonstrates the effectiveness of Q♯ reward model.

The effect of η. In Figure 4, we show the performance
and KL divergence tradeoff for CD and Q♯ on the GSM8K
validation set. The left figure shows that the pass@1 ac-
curacy can be improved by incurring more KL penalty for

101 102

KL-Divergence

0.50

0.55

0.60

0.65

0.70

0.75

0.80

pa
ss

@
1

Pass@1 vs. KL-Divergence
CD
Q#

101 102

KL-Divergence

100

101

1

1 vs. KL-Divergence

CD
Q#

Figure 4. Performance tradeoff of CD and Q♯ on the validation
set of GSM8K. (Left) pass@1 accuracy vs. KL divergence. Q♯
dominates CD by achieving higher accuracy with a lower KL
penalty. (Right) Different η leads to different KL for CD and Q♯.
The KL of CD blows up quickly and significantly deviates from
πref whereas Q♯ is more stable.

both CD and Q♯. Q♯ dominates CD by achieving a better
Pareto frontier than CD. In addition, we empirically find
that CD performance is much more sensitive to a proper
choice of η. As seen in the right figure, as η−1 increases,
CD incurs a very large KL and starts to significantly deviate
from πref, which leads to performance that is even worse
than the original πref. Q♯, however, is more stable and does
not require extensive search for η, which provides another
empirical benefit for Q♯.

Ablations. We ablate on several of our design choices in
Table 4 on the validation set of GSM8K and MATH for
pass@1 accuracy. The first column (Prefix) is whether we
train on all the prefixes after switching to πref. As seen in
Algorithm 1 Line 10, our default is to train on all t ≥ h
instead of just t = h. From a supervised learning perspec-
tive, this makes training samples no longer IID. However,
we find out the additional large amount of training data
helps Q♯ learning significantly for as much as 4%. We also
experiment with two types of parametrization for learning
Q⋆,η: Q-type and V-type. The Q-type takes input of x and
computes Q⋆,η(x, y) for all y in the vocabulary of the πref

model. The V-type takes input of concatenated x and a
specific token ŷ and outputs a single value that represents
Q⋆,η(x, ŷ). By comparing the results on second row and the
fourth row, we observe that V-type is better than Q-type. We
hypothesize that this is because V-type has fewer number of
parameters than Q-type but performs more computation per
token. More details on Q-type and V-type can be found in
Appendix D. We also compare the distributional version of
Q♯ with direct MSE regression based. The regression based
Q♯ consistently underperforms and this is expected since for
the math reasoning tasks, we know the underlying reward
distribution is Bernoulli (either 0 or 1). Finally, we find
that running Algorithm 1 for more than one iteration can
further boosts the performance of Q♯ slightly. We observe
no major improvement beyond two iterations and therefore
we by default run Q♯ for two iterations.

Qualitative comparison. In Figure 5, we show a few gen-
erations side by side from πref and Q♯ to qualitatively vi-

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Q♯: Provably Optimal Distributional RL for LLM Post-Training

Table 4. Ablations of Q♯ (last row) on pass@1 with various con-
figurations on the validation set of GSM8K and MATH. The im-
provement suggests that our design choices all contribute positively
to the final performance.
Prefix Type Opt. # Iter. Llama 3 8B GSM8K Llama 3.1 8B MATH

Single V Dist. 1 80.5 64.5
All Q Dist. 1 81.4 66.4
All V MSE 1 81.4 65.4
All V Dist. 1 82.3 67.4
All V Dist. 2 83.5 68.5

sualize the effect of guidance on math reasoning questions.
We observe that the generations from πref and Q♯ usually
start off with similar prefixes, which is another supporting
evidence for the low KL deviation of Q♯. However, Q♯
can successfully mitigate mistakes from πref and leads to
generally better reasoning chain-of-thought than πref. Full
analysis on more examples can be found in Appendix G.

4. Theory
In this section, we provide theoretical analyses for Q♯ and
prior value-based post-training approaches, including CD
(Mudgal et al., 2023) and VAS (Han et al., 2024).

4.1. CD & VAS are sub-optimal for KL-regularized RL

First, CD and VAS both propose to reweight πref(· | x) with
the unregularized Q-function of πref:

πCD,η(y | x) ∝ πref(y | x) exp(Qπref
(x, y)/η), (6)

where recall that Qπref

h (xh, yh) = Eπref [
∑

t≥h rt | xh, yh].
Comparing with Equation (2), we can already see that πCD,η

does not match the optimal policy π⋆,η, as Qπref
can be

arbitrarily far from Q⋆,η. In particular, πCD may fail to
optimize the KL-regularized RL objective and exhibit two
failure cases, which we demonstrate with a simple MDP.

x1

xL

r = 0.1

1

pL

xR

r = 1

0.05

r = 0

0.95

pR
Z⋆
L = δ(0.1) Z⋆

R = Ber(0.05)

Example 1. A tree MDP where edges are labeled with πref’s action
probability. Specifically, πref goes to the left sub-tree w.p. pL and
the right sub-tree w.p. pR, where pL, pR > 0. The left sub-tree
gives r = 0.1 w.p. 1. In the right sub-tree, πref chooses reward 1
w.p. 0.05 and chooses reward 0 w.p. 0.95.

First, we show that CD fails to maximize expected reward
in this MDP, even as the KL-regularizer η decays to zero.

Theorem 4.1. Under Example 1, CD learns to always select
the left sub-tree as η → 0, which gives a sub-optimal reward
of 0.1, while π⋆,η learns to always select the right sub-tree
and chooses the path that gives reward 1.

Proof. First, for CD, we have Qπref
(x1, aL) = 0.1 and

Qπref
(x1, aR) = 0.05. Hence, CD’s probability of selecting

the left sub-tree is pL exp(0.1/η)
pL exp(0.1/η)+pR exp(0.05/η) , which con-

verges to 1 as η → 0. Next, for Q♯, we have Q⋆,η(x1, aL) =
0.1 and Q⋆,η(x1, aR) = η ln(0.05 exp(1/η) + 0.95).
Hence, Q♯’s probability of selecting the left sub-tree is

pL exp(0.1/η)
pL exp(0.1/η)+pR(0.05 exp(1/η)+0.95) , which converges to 0

as η → 0. Thus, CD learns the sub-optimal path.

Next, we show that CD also incurs a higher KL than Q♯.

Theorem 4.2. Under Example 1, CD’s KL converges to
ln(1/pL) while Q♯’s KL converges to ln(1/pR) as η → 0.
Thus if pL ≪ pR, CD converges to a higher KL than Q♯.

Proof. As shown in Theorem 4.1, CD learns to select the
left sub-tree while Q♯ learns to select the right sub-tree as
η → 0. Then, the KLs simply follow by definition.

In sum, we proved that Example 1, CD both incurs a higher
KL and achieves a lower sub-optimal reward compared to
Q♯. Thus, Q♯ generally Pareto-dominates CD in the reward-
KL trade-off, which matches our empirical findings.

4.2. Performance Guarantee for Q♯

We prove that the learned policy by Q♯ is guaranteed to
converge to the optimal policy with enough samples. This
result holds in rich-observation MDPs where the size of the
state space can be exponentially large or infinite, so long as
the mild realizability assumption holds.

To setup, let F be a distributional function class for mod-
eling Z⋆, the reward-to-go distribution under πref. Each
element of F has type f = (f1, . . . , fH) and fh : X ×Y 7→
∆([0, V max]).1 For purpose of analysis, we assume access
to a no-regret online learning oracle for the maximum like-
lihood (MLE) loss, which proceeds as follows: for each
iteration k = 1, 2, . . . ,K, given any {xh,k, yh,k, Rh,k}Hh=1,
the oracle outputs Ẑk ∈ F s.t.∑K

k=1

∑H
h=1 logZ

⋆
h(Rh,k | xh,k, yh,k)

− log Ẑh,k(Rh,k | xh,k, yh,k) ≤ Regmle(K).

No-regret online learning is well-studied in the literature
(Cesa-Bianchi & Lugosi, 2006; Orabona, 2019) and is a
standard tool when reducing decision making to supervised
learning (Ross et al., 2011; Foster & Krishnamurthy, 2021;

1Suppose rewards-to-go under πref lie in [0, V max] w.p. 1.

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Q♯: Provably Optimal Distributional RL for LLM Post-Training

Wang et al., 2023). For example, if F is finite and satisfies
realizability, then Vovk’s aggregating algorithm ensures that
Regmle(K) ≲ ln(|F|) (Vovk, 1995).2

Assumption 4.3 (Realizability). Z⋆ ∈ F .

The following algorithm is a slightly modified version of
Algorithm 1 amenable for theoretical analysis. The only
differences with Algorithm 1 are: (1) we use the MLE oracle
to learn Ẑk, and (2) for purpose of local exploration, we play
a random action at the switching time h before following
πref to the end of the trajectory (Ross & Bagnell, 2014).

Algorithm 2 Q♯ (Theory Version)

1: Input: reference πref, iteration count K, regularizer η.
2: Initialize Ẑ1 randomly.
3: for k = 1, 2, . . . ,K do
4: Let πk ← πẐk,η .
5: for step h = 1, 2, . . . ,H do
6: Roll-in with πk for h− 1 steps and see xh,k.
7: Play random action yh,k and transit to xh+1,k.
8: Resume trajectory with πref from xh+1,k.
9: Let Rh,k be cumulative rewards after time h.

10: end for
11: Input {xh,k, yh,k, Rh,k}h∈[H] to MLE oracle.
12: Receive Ẑk from MLE oracle.
13: end for
14: Output: Ẑ1, . . . , ẐK .

We now state our main PAC bound for Q♯.

Theorem 4.4. Fix any η ∈ (0, V max] and δ ∈ (0, 1). Under
Assumptions 2.1 and 4.3, Algorithm 2 ensures w.p. at least
1− δ, setting β = ln(1/δ) + Regmle(K), we have∑K

k=1 V
⋆,η − V πk,η ≲

AV max(
√∑H

h=1

∑K
k=1 CV2

h,k(x, y) · β +maxh∈[H] Eh · β),

where CVh,k(x, y) :=

√
Var

πk (exp(Z⋆
h(xh,yh)/η))

E
πk [exp(Z⋆

h(xh,yh)/η)]
is the co-

efficient of variation of exp(Z⋆
h(xh, yh)/η), xh, yh ∼ πk,

and Eh := ∥exp((V max−Q⋆,η
h (xh, yh))/η)∥L∞(πref) is the

envelope of exp((V max −Q⋆,η
h (xh, yh))/η) under πref.

We highlight this applies to rich-observation MDPs where
our only requirement for F is realizability. Moreover,
our bound scales with the function class’s complexity, i.e.,
ln(|F|), and does not contain structural complexity mea-
sures. In contrast, prior bounds in RL theory require stronger
assumptions such as Bellman completeness (Chen & Jiang,
2019; Wang et al., 2021; Foster et al., 2021b; Jin et al., 2021;
Chang et al., 2022; Ayoub et al., 2024; Wang et al., 2024b),
even in deterministic MDPs (Wu et al., 2024), and/or scale
with structural complexity measures such as coverability

2a ≲ b is short for a ≤ Cb for some universal constant C.

(Xie et al., 2022; Mhammedi et al., 2024) or eluder dimen-
sion (Russo & Van Roy, 2013; Jin et al., 2021).

Also, we highlight that Algorithm 2 is model-free and com-
putationally efficient. In contrast, most prior algorithms re-
quire computationally hard exploration with version spaces
(Jiang et al., 2017; Dann et al., 2018; Jin et al., 2021; Xie
et al., 2022; Wang et al., 2024b). Thus, Theorem 4.4 shows
that it is possible to achieve both statistical and computa-
tional efficiency under mild assumptions by simply operat-
ing within the KL-regularized RL framework, which itself
is of great relevance for LLM post-training. We remark that
Uehara et al. (2023) observed similar benefits in offline RL
while we study the harder online setting.

Moreover, thanks to distributional RL, Theorem 4.4
is a second-order bound (Wang et al., 2024a;b) com-
prising of two main terms. The leading term

O(
√∑H

h=1

∑K
k=1 CV2

h,k(x, y)) is the summed coeffi-
cient of variations, which in the worst case scales like√∑H

h=1 E
2
hK. However, in benign cases where Z⋆

h has
small or zero variance, this term vanishes and we are left
with the lower order term O(maxh∈[H] Eh ln(K)) which
only grows logarithmically in K. While in the worst-case,
our envelope term is exponential in η−1, it is interestingly
also instance-dependent. Specifically, our envelope term
is exp((V max −Q⋆,η

h (xh, yh))/η) which involves the opti-
mal policy’s Q-function Q⋆,η. Thus, if the optimal policy
achieves near-maximal reward, i.e., if Q⋆,η ≈ V max, then
the envelope term becomes closer to 1, avoiding the expo-
nential dependence on η−1.

Remark: Modification for Regret Bound. It is possible to
turn Theorem 4.4 into a regret bound by replacing random
action in Line 7 of Algorithm 2 with a no-regret contex-
tual bandit oracle, where “context” is xh, action is yh and
“reward” is Rh. This is alike the steps needed to convert
AggreVaTe’s PAC bound into a regret bound (Ross & Bag-
nell, 2014). Our theory can be interpreted as a regret/PAC
reduction from KL-regularized RL in deterministic MDPs
to no-regret online learning, which mirrors the type of guar-
antees obtained for AggreVaTe (Ross & Bagnell, 2014).

5. Conclusion
We introduce Q♯, a theoretically-grounded distributional RL
algorithm for LLM post-training that provably converges
to the optimal policy under mild assumptions. Through
experiments on both synthetic and math reasoning tasks, we
demonstrated that Q♯ consistently outperforms prior value-
based methods by achieving higher accuracy with lower KL
divergence from the reference policy. Our approach’s suc-
cess in correcting pre-training shortcuts, combined with its
practical advantages, establishes Q♯ as a promising direction
for enhancing LLM capabilities in post-training.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Q♯: Provably Optimal Distributional RL for LLM Post-Training

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Ayoub, A., Wang, K., Liu, V., Robertson, S., McInerney,

J., Liang, D., Kallus, N., and Szepesvari, C. Switching
the loss reduces the cost in batch reinforcement learn-
ing. In Forty-first International Conference on Machine
Learning, 2024. URL https://openreview.net/
forum?id=7PXSc5fURu.

Bachmann, G. and Nagarajan, V. The pitfalls of next-token
prediction. arXiv preprint arXiv:2403.06963, 2024.

Bellemare, M. G., Dabney, W., and Munos, R. A distribu-
tional perspective on reinforcement learning. In Inter-
national conference on machine learning, pp. 449–458.
PMLR, 2017.

Bellemare, M. G., Dabney, W., and Rowland, M. Distribu-
tional reinforcement learning. MIT Press, 2023.

Cesa-Bianchi, N. and Lugosi, G. Prediction, learning, and
games. Cambridge university press, 2006.

Chang, J., Wang, K., Kallus, N., and Sun, W. Learning
bellman complete representations for offline policy evalu-
ation. In International Conference on Machine Learning,
pp. 2938–2971. PMLR, 2022.

Chen, J. and Jiang, N. Information-theoretic considerations
in batch reinforcement learning. In International Con-
ference on Machine Learning, pp. 1042–1051. PMLR,
2019.

Christiano, P. F., Leike, J., Brown, T., Martic, M., Legg,
S., and Amodei, D. Deep reinforcement learning from
human preferences. Advances in neural information pro-
cessing systems, 30, 2017.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021.

Dabney, W., Rowland, M., Bellemare, M., and Munos, R.
Distributional reinforcement learning with quantile re-
gression. In Proceedings of the AAAI conference on
artificial intelligence, volume 32, 2018.

Dann, C., Jiang, N., Krishnamurthy, A., Agarwal, A., Lang-
ford, J., and Schapire, R. E. On oracle-efficient pac rl
with rich observations. Advances in neural information
processing systems, 31, 2018.

Domingo-Enrich, C., Drozdzal, M., Karrer, B., and Chen,
R. T. Adjoint matching: Fine-tuning flow and diffusion
generative models with memoryless stochastic optimal
control. arXiv preprint arXiv:2409.08861, 2024.

Donsker, M. D. and Varadhan, S. S. Asymptotic evaluation
of certain markov process expectations for large time. iv.
Communications on pure and applied mathematics, 36
(2):183–212, 1983.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Farebrother, J., Orbay, J., Vuong, Q., Taı̈ga, A. A., Cheb-
otar, Y., Xiao, T., Irpan, A., Levine, S., Castro, P. S.,
Faust, A., et al. Stop regressing: Training value func-
tions via classification for scalable deep rl. arXiv preprint
arXiv:2403.03950, 2024.

Foster, D. J. and Krishnamurthy, A. Efficient first-order
contextual bandits: Prediction, allocation, and triangular
discrimination. Advances in Neural Information Process-
ing Systems, 34:18907–18919, 2021.

Foster, D. J., Kakade, S. M., Qian, J., and Rakhlin, A.
The statistical complexity of interactive decision mak-
ing. arXiv preprint arXiv:2112.13487, 2021a.

Foster, D. J., Krishnamurthy, A., Simchi-Levi, D., and Xu,
Y. Offline reinforcement learning: Fundamental barri-
ers for value function approximation. arXiv preprint
arXiv:2111.10919, 2021b.

Fox, R., Pakman, A., and Tishby, N. Taming the noise in
reinforcement learning via soft updates. arXiv preprint
arXiv:1512.08562, 2015.

Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R.,
Zhu, Q., Ma, S., Wang, P., Bi, X., et al. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. In International
conference on machine learning, pp. 1861–1870. PMLR,
2018.

Han, S., Shenfeld, I., Srivastava, A., Kim, Y., and Agrawal, P.
Value augmented sampling for language model alignment
and personalization. arXiv preprint arXiv:2405.06639,
2024.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
S., Tang, E., Song, D., and Steinhardt, J. Measuring math-
ematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

9

https://openreview.net/forum?id=7PXSc5fURu
https://openreview.net/forum?id=7PXSc5fURu

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Q♯: Provably Optimal Distributional RL for LLM Post-Training

Jiang, N., Krishnamurthy, A., Agarwal, A., Langford, J.,
and Schapire, R. E. Contextual decision processes with
low bellman rank are pac-learnable. In International Con-
ference on Machine Learning, pp. 1704–1713. PMLR,
2017.

Jin, C., Liu, Q., and Miryoosefi, S. Bellman eluder di-
mension: New rich classes of rl problems, and sample-
efficient algorithms. Advances in neural information
processing systems, 34:13406–13418, 2021.

Kool, W., van Hoof, H., and Welling, M. Buy 4 reinforce
samples, get a baseline for free! 2019.

Leviathan, Y., Kalman, M., and Matias, Y. Fast inference
from transformers via speculative decoding. In Inter-
national Conference on Machine Learning, pp. 19274–
19286. PMLR, 2023.

Li, X., Zhao, Y., Wang, C., Scalia, G., Eraslan, G., Nair,
S., Biancalani, T., Ji, S., Regev, A., Levine, S., et al.
Derivative-free guidance in continuous and discrete dif-
fusion models with soft value-based decoding. arXiv
preprint arXiv:2408.08252, 2024.

Lightman, H., Kosaraju, V., Burda, Y., Edwards, H., Baker,
B., Lee, T., Leike, J., Schulman, J., Sutskever, I., and
Cobbe, K. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Liu, A., Han, X., Wang, Y., Tsvetkov, Y., Choi, Y., and
Smith, N. A. Tuning language models by proxy. In First
Conference on Language Modeling, 2024. URL https:
//openreview.net/forum?id=dribhnhm1i.

Loshchilov, I., Hutter, F., et al. Fixing weight decay regu-
larization in adam. arXiv preprint arXiv:1711.05101, 5,
2017.

Lyle, C., Bellemare, M. G., and Castro, P. S. A compara-
tive analysis of expected and distributional reinforcement
learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pp. 4504–4511, 2019.

Mhammedi, Z., Foster, D. J., and Rakhlin, A. The power
of resets in online reinforcement learning. In The Thirty-
eighth Annual Conference on Neural Information Pro-
cessing Systems, 2024. URL https://openreview.
net/forum?id=7sACcaOmGi.

Mudgal, S., Lee, J., Ganapathy, H., Li, Y., Wang, T., Huang,
Y., Chen, Z., Cheng, H.-T., Collins, M., Strohman, T.,
et al. Controlled decoding from language models. arXiv
preprint arXiv:2310.17022, 2023.

Munos, R. and Szepesvári, C. Finite-time bounds for fitted
value iteration. Journal of Machine Learning Research, 9
(5), 2008.

Orabona, F. A modern introduction to online learning. arXiv
preprint arXiv:1912.13213, 2019.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,
Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A.,
et al. Training language models to follow instructions
with human feedback. Advances in neural information
processing systems, 35:27730–27744, 2022.

Piché, A., Thomas, V., Ibrahim, C., Bengio, Y., and Pal,
C. Probabilistic planning with sequential monte carlo
methods. In International Conference on Learning Rep-
resentations, 2018.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Rafailov, R., Sharma, A., Mitchell, E., Manning, C. D., Er-
mon, S., and Finn, C. Direct preference optimization:
Your language model is secretly a reward model. Ad-
vances in Neural Information Processing Systems, 36,
2024.

Ross, S. and Bagnell, J. A. Reinforcement and imitation
learning via interactive no-regret learning. arXiv preprint
arXiv:1406.5979, 2014.

Ross, S., Gordon, G., and Bagnell, D. A reduction of imita-
tion learning and structured prediction to no-regret online
learning. In Proceedings of the fourteenth international
conference on artificial intelligence and statistics, pp.
627–635. JMLR Workshop and Conference Proceedings,
2011.

Rowland, M., Tang, Y., Lyle, C., Munos, R., Bellemare,
M. G., and Dabney, W. The statistical benefits of quantile
temporal-difference learning for value estimation. In In-
ternational Conference on Machine Learning, pp. 29210–
29231. PMLR, 2023.

Russo, D. and Van Roy, B. Eluder dimension and the sample
complexity of optimistic exploration. Advances in Neural
Information Processing Systems, 26, 2013.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Setlur, A., Nagpal, C., Fisch, A., Geng, X., Eisenstein, J.,
Agarwal, R., Agarwal, A., Berant, J., and Kumar, A. Re-
warding progress: Scaling automated process verifiers for
llm reasoning. arXiv preprint arXiv:2410.08146, 2024.

Team, G., Riviere, M., Pathak, S., Sessa, P. G., Hardin,
C., Bhupatiraju, S., Hussenot, L., Mesnard, T., Shahri-
ari, B., Ramé, A., et al. Gemma 2: Improving open
language models at a practical size. arXiv preprint
arXiv:2408.00118, 2024.

10

https://openreview.net/forum?id=dribhnhm1i
https://openreview.net/forum?id=dribhnhm1i
https://openreview.net/forum?id=7sACcaOmGi
https://openreview.net/forum?id=7sACcaOmGi

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Q♯: Provably Optimal Distributional RL for LLM Post-Training

Uehara, M., Kallus, N., Lee, J. D., and Sun, W. Offline
minimax soft-q-learning under realizability and partial
coverage. Advances in Neural Information Processing
Systems, 36, 2023.

Van Hasselt, H., Doron, Y., Strub, F., Hessel, M., Sonnerat,
N., and Modayil, J. Deep reinforcement learning and the
deadly triad. arXiv preprint arXiv:1812.02648, 2018.

Vovk, V. G. A game of prediction with expert advice. In
Proceedings of the eighth annual conference on Compu-
tational learning theory, pp. 51–60, 1995.

Wang, K., Zhou, K., Wu, R., Kallus, N., and Sun, W. The
benefits of being distributional: Small-loss bounds for
reinforcement learning. Advances in Neural Information
Processing Systems, 36, 2023.

Wang, K., Kallus, N., and Sun, W. The central role of the
loss function in reinforcement learning. arXiv preprint
arXiv:2409.12799, 2024a.

Wang, K., Oertell, O., Agarwal, A., Kallus, N., and Sun,
W. More benefits of being distributional: Second-order
bounds for reinforcement learning. International Confer-
ence of Machine Learning, 2024b.

Wang, P., Li, L., Shao, Z., Xu, R., Dai, D., Li, Y., Chen, D.,
Wu, Y., and Sui, Z. Math-shepherd: Verify and reinforce
llms step-by-step without human annotations. In Proceed-
ings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp.
9426–9439, 2024c.

Wang, Y., Wang, R., and Kakade, S. An exponential lower
bound for linearly realizable mdp with constant subopti-
mality gap. Advances in Neural Information Processing
Systems, 34:9521–9533, 2021.

Wu, R., Sekhari, A., Krishnamurthy, A., and Sun, W.
Computationally efficient rl under linear bellman com-
pleteness for deterministic dynamics. arXiv preprint
arXiv:2406.11810, 2024.

Xie, T., Foster, D. J., Bai, Y., Jiang, N., and Kakade, S. M.
The role of coverage in online reinforcement learning.
arXiv preprint arXiv:2210.04157, 2022.

Yang, K. and Klein, D. FUDGE: Controlled text gen-
eration with future discriminators. In Toutanova, K.,
Rumshisky, A., Zettlemoyer, L., Hakkani-Tur, D., Belt-
agy, I., Bethard, S., Cotterell, R., Chakraborty, T., and
Zhou, Y. (eds.), Proceedings of the 2021 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Technolo-
gies, pp. 3511–3535, Online, June 2021. Association
for Computational Linguistics. doi: 10.18653/v1/2021.
naacl-main.276. URL https://aclanthology.
org/2021.naacl-main.276/.

Zhao, S., Brekelmans, R., Makhzani, A., and Grosse, R.
Probabilistic inference in language models via twisted
sequential monte carlo. arXiv preprint arXiv:2404.17546,
2024.

Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K., et al.
Maximum entropy inverse reinforcement learning. In
Aaai, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.

11

https://aclanthology.org/2021.naacl-main.276/
https://aclanthology.org/2021.naacl-main.276/

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Q♯: Provably Optimal Distributional RL for LLM Post-Training

A. Related Works
From the empirical side, the most relevant works are controlled decoding (CD; Mudgal et al., 2023) and value augmented
sampling (VAS; Han et al., 2024). These two works both propose to guide the reference policy πref with Qπref,0, the expected
reward-to-go under πref without KL regularization. As discussed in Section 4.1, guiding with Qπref,0 is not principled for
the KL-regularized RL problem and can lead to both sub-optimal reward and large KL from πref. In contrast, we propose
to guide πref with Q⋆,η, the expected reward-to-go under the optimal policy with KL regularization, which is the correct
closed-form of the optimal policy.

In terms of reweighting πref with classifier scores, FUDGE (Yang & Klein, 2021) is another closely related work but
their derivation is based on Bayes rule and FUDGE does not solve KL-regularized RL. Sequential Monte Carlo (SMC)
methods (Piché et al., 2018; Zhao et al., 2024) also reweight πref’s distribution with a twist function, where the optimal twist
function is analogous to our Q⋆,η. One key difference is that SMC performs resampling while we directly combine logits
of πref and exp(Q⋆,η) to avoid importance sampling, which has higher variance. Finally, none of these prior works apply
distributional RL losses (Bellemare et al., 2017; Dabney et al., 2018; Farebrother et al., 2024; Ayoub et al., 2024) or online
data aggregation (Ross et al., 2011) to learn Q⋆,η , which we showed to be beneficial in our ablations. Indeed, CD and VAS
both use square loss regression over a fixed offline dataset.

We also cite some tangentially related works. Proxy tuning (Liu et al., 2024) and speculative decoding (Leviathan et al.,
2023) both use a small model to guide the logit distribution of a large πref model. Speculative decoding is focused on
maximizing the large model’s likelihood, which does not relate to any extrinsic rewards. In our framework, the classifier
model can be any size relative to πref, although deeper investigation into the computational benefits of using a small classifier
is a promising direction for future work.

From the theoretical side, KL-regularized RL is closely related to soft RL or maximum entropy RL which are well-studied
(Ziebart et al., 2008; Fox et al., 2015; Haarnoja et al., 2018; Piché et al., 2018). The optimal policy decomposition in
deterministic MDPs is also known in prior works (Li et al., 2024; Domingo-Enrich et al., 2024). Our contribution is an
algorithm that provably learns Q⋆,η using distributional RL (Bellemare et al., 2017) and data aggregation (Ross et al., 2011).
This enables us to prove a reduction of KL-regularized RL (in deterministic MDPs) to no-regret online learning, which
ensures convergence to the optimal policy with realizability being the only assumption for function approximation. Notably
we are able to avoid more stringent conditions such as completeness or structural MDP conditions which are ubiquitous in
the current literature (Wang et al., 2021; Jin et al., 2021; Chang et al., 2022; Wang et al., 2023; 2024b; Ayoub et al., 2024;
Xie et al., 2022). Uehara et al. (2023) observed similar benefits in offline RL, while we provide guarantees for the harder
online RL setting.

We remark that our theoretical guarantees are quite similar in structure to that of AggreVaTe (Ross & Bagnell, 2014), which
is a reduction of imitation learning to no-regret online learning. Besides the obvious difference in problem setting, another
improvement from our work is using distributional RL theory to prove second-order bounds. Notably, we are able to prove
second-order bounds without any completeness assumptions that were required in (Wang et al., 2023; 2024a;b).

B. Proofs
In this section, we provide the full proof for Theorem 4.4.

Theorem 4.4. Fix any η ∈ (0, V max] and δ ∈ (0, 1). Under Assumptions 2.1 and 4.3, Algorithm 2 ensures w.p. at least
1− δ, setting β = ln(1/δ) + Regmle(K), we have

∑K
k=1 V

⋆,η − V πk,η ≲

AV max(
√∑H

h=1

∑K
k=1 CV2

h,k(x, y) · β +maxh∈[H] Eh · β),

where CVh,k(x, y) :=

√
Var

πk (exp(Z⋆
h(xh,yh)/η))

E
πk [exp(Z⋆

h(xh,yh)/η)]
is the coefficient of variation of exp(Z⋆

h(xh, yh)/η), xh, yh ∼ πk, and

Eh := ∥exp((V max −Q⋆,η
h (xh, yh))/η)∥L∞(πref) is the envelope of exp((V max −Q⋆,η

h (xh, yh))/η) under πref.

Proof. Fix any η ∈ (0, V max). Let Qh,k(x, y) = η lnEz∼Ẑh,k(x,y)
exp(z/η) denote the induced soft Q function from the

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Q♯: Provably Optimal Distributional RL for LLM Post-Training

distributional estimate Ẑk. Let πk
h(y | x) ∝ πref

h (y | x) exp(Qh,k(x, y)/η) denote the induced policy from Qh,k. Then,

V ⋆,η − V πk,η

(i)
=

∑H
h=1 Eπk [Q⋆,η

h (xh, π
⋆,η
h)−Q⋆,η

h (xh, π
k
h) + ηKL(πk

h(xh) ∥ πref
h (xh))− ηKL(π⋆,η

h (xh) ∥ πref
h (xh))]

=
∑H

h=1 Eπk [Q⋆,η
h (xh, π

⋆,η
h)− ηKL(π⋆,η

h (xh) ∥ πref
h (xh))− (Qh,k(xh, π

k
h)− ηKL(πk

h(xh) ∥ πref
h (xh)))

+Qh,k(xh, π
k
h)−Q⋆,η

h (xh, π
k
h)]

(ii)

≤
∑H

h=1 Eπk [Q⋆,η
h (xh, π

⋆,η
h)− ηKL(π⋆,η

h (xh) ∥ πref
h (xh))− (Qh,k(xh, π

⋆,η
h)− ηKL(π⋆,η

h (xh) ∥ πref
h (xh)))

+Qh,k(xh, π
k
h)−Q⋆,η

h (xh, π
k
h)]

=
∑H

h=1 Eπk [Q⋆,η
h (xh, π

⋆,η
h)−Qh,k(xh, π

⋆,η
h) +Qh,k(xh, π

k
h)−Q⋆,η

h (xh, π
k
h)]

≤ 2
∑H

h=1 Exh∼πk [maxπ∈{π⋆,πk}
∣∣Q⋆,η

h (xh, π)−Qh,k(xh, π)
∣∣]

≤ 2A
∑H

h=1 Exh∼πk,yh∼Unif(A)

∣∣Q⋆,η
h (xh, yh)−Qh,k(xh, yh)

∣∣,
where (i) is by the performance difference lemma in the soft MDP (Lemma B.2); (ii) is by Donsker-Varadhan (Lemma B.1)
which proves that πk

h(xh) = argmaxπ Eπ[Qh,k(xh, π)− KL(π(xh) ∥ πref
h (xh))]. Now, we bound the difference between

the optimal and learned Q functions:∣∣Q⋆,η
h (x, y)−Qh,k(x, y)

∣∣
= η

∣∣∣lnEz∼Z⋆
h(x,y)

exp(z/η)− lnEz∼Ẑh,k(x,y)
exp(z/η)

∣∣∣
(i)

≲ η(1 + Vmax/η)

(
CVz∼Z⋆

h(x,y)
(exp(z/η))Hh,k(x, y) +

exp(Vmax/η)−1
Ez∼Z⋆

h
(x,y) exp(z/η)

H2
h,k(x, y)

)
= (η + Vmax)

(
CVz∼Z⋆

h(x,y)
(exp(z/η))Hh,k(x, y) +

exp(Vmax/η)
exp(Q⋆,η

h (x,y)/η)
H2

h,k(x, y)
)
,

where (i) is by Lemma B.4 and the fact that Z⋆, Ẑk ∈ [0, V max] and Hh,k(x, y) := H(Z⋆
h(x, y), Ẑh,k(x, y)) is the Hellinger

distance between the learned Ẑh,k and optimal Z⋆
h.

Thus, if we let xh, yh ∼ πk ◦h Unif(A) denote the distribution of rolling in with πk until xh and taking a random
yh ∼ Unif(A), then we have:∑K

k=1 V
⋆,η − V πk,η

≤ 2A
∑H

h=1

∑K
k=1 Eπk◦hUnif(A)

∣∣Q⋆,η
h (xh, yh)−Qh,k(xh, yh)

∣∣
≲ AVmax

∑H
h=1

∑K
k=1 Eπk◦hUnif(A)

[
CVz∼Z⋆

h(x,y)
(exp(z/η))Hh,k(xh, yh) +

exp(Vmax/η)
exp(Q⋆,η

h (xh,yh)/η)
H2

h,k(x, y)
]

≤ AVmax

√∑H
h=1

∑K
k=1 Eπk◦hUnif(A)[CV2

h,k(xh, yh)]
√∑H

h=1

∑K
k=1 Eπk◦hUnif(A)[H

2
h,k(xh, yh)]

+AVmax

∥∥∥ exp(Vmax/η)
exp(Q⋆,η

h (xh,yh)/η)

∥∥∥
L∞(πk◦hUnif(A))

·
∑H

h=1

∑K
k=1 Eπk◦hUnif(A)[H

2
h,k(xh, yh)].

The final step is to bound the summed Hellinger square terms. This can be done via Multiplicative Azuma’s inequality
and Foster et al. (2021a, Lemma A.14), which shows that for any δ ∈ (0, 1), we have

∑
h,k Eπk◦hUnif(A)[H

2
h,k(xh, yh)] ≲∑

h,k H
2
h,k(xh,k, yh,k) + ln(1/δ) ≲ Regmle(K) + ln(1/δ), which recall is exactly the definition of β. This finishes the

proof of Theorem 4.4.

Lemma B.1 (Donsker-Varadhan’s Variational Formula; Donsker & Varadhan, 1983). For any prior p ∈ ∆(Θ), consider the
KL-regularized optimization:

π⋆ = argmaxπ∈∆(Θ) V (π) := Eπ[Q(θ)− ηKL(π(θ) ∥ p(θ))].

The optimal policy π⋆ is given by π⋆(θ) ∝ p(θ) exp(Q(θ)/η) and it has value V (π⋆) = η lnEθ∼p exp(Q(θ)/η).

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Q♯: Provably Optimal Distributional RL for LLM Post-Training

Lemma B.2 (Soft Performance Difference Lemma (PDL)). For any f and π,

V π − f1(x1, π) =

H∑
h=1

Eπ[(T π
h fh+1 − fh)(xh, yh)]− ηKL(π1(x1) ∥ πref

1 (x1)).

For any π, π′,

V π − V π′
=

H∑
h=1

Eπ[Q
π′

h (xh, yh)−Qπ′

h (xh, π
′) + ηKL(π′

h(xh) ∥ πref
h (xh))− ηKL(πh(xh) ∥ πref

h (xh))].

Proof. Let KL(πh(xh)) := KL(πh(xh) ∥ πref
h (xh)) denote KL-divergence w.r.t. πref. Then,

V π − V π′

=
∑H

h=1 Eπ[rh − ηKL(πh(xh))]− (Qπ′

1 (x1, π
′)− ηKL(π′

1(x1)))

=
∑H

h=1 Eπ[rh − ηKL(π′
h+1(xh+1)) + ηKL(π′

h+1(xh+1)) +Qπ′

h+1(xh+1, π
′)−Qπ′

h (xh, π
′)− ηKL(πh(xh))] + ηKL(π′

1(x1))

=
∑H

h=1 Eπ[rh − ηKL(π′
h+1(xh+1)) +Qπ′

h+1(xh+1, π
′)−Qπ′

h (xh, π
′) + ηKL(π′

h(xh))− ηKL(πh(xh))]

=
∑H

h=1 Eπ[T π′

h Qπ′

h+1(xh, yh)−Qπ′

h (xh, π
′) + ηKL(π′

h(xh))− ηKL(πh(xh))]

=
∑H

h=1 Eπ[Q
π′

h (xh, yh)−Qπ′

h (xh, π
′) + ηKL(π′

h(xh))− ηKL(πh(xh))].

Lemma B.3. For any two numbers x, y ∈ [exp(a), exp(b)], we have

|ln(x)− ln(y)| ≤ (1 + b− a)

∣∣∣∣x− y

y

∣∣∣∣.
If b− a ≥ 1

2 , then max(1, b−a
1−exp(a−b)) ≤ 3(b− a).

Proof. If x ≥ y, then ln(x)− ln(y) = ln(1+(x−y)/y) ≤ (x−y)/y. If x < y, then ln(y)− ln(x) = − ln(1+(x−y)/y).
By premise, we have 0 ≥ x−y

y ≥ exp(a − b) − 1. Note that − ln(1 + z) is convex and is thus upper bounded by the
line connecting (0, 0) and (exp(a− b)− 1, b− a), i.e., − ln(1 + z) ≤ b−a

1−exp(a−b) |z| for 0 ≥ z ≥ exp(a− b)− 1. Thus,

− ln(1 + (x− y)/y) ≤ b−a
1−exp(a−b)

∣∣∣x−y
y

∣∣∣. Thus, we’ve shown that |ln(x)− ln(y)| ≤ max
(
1, b−a

1−exp(a−b)

)
|x−y

y |. Finally,

since x
1−exp(−x) ≤ 1 + x when x ≥ 0, we have max(1, b−a

1−exp(a−b)) ≤ max(1, 1 + b− a) = 1 + b− a.

Lemma B.4. For any distributions p, q on [a, b], we have

|ln
∑

z p(z)e
z − ln

∑
z q(z)e

z| ≲ (1 + b− a)

(√
Varq(ez)

Eqez
H(p, q) + exp(b)−exp(a)

Eqez
H2(p, q)

)
,

where H2(p, q) = 1
2

∑
z(
√
p(z)−

√
q(z))2 is the squared Hellinger distance.

Proof. By Lemma B.3, we have |ln
∑

z p(z)e
z − ln

∑
z q(z)e

z| ≤ (1 + b− a)
∣∣∣∑z(p(z)−q(z))ez∑

z q(z)ez

∣∣∣. By Lemma B.5, we have

that the numerator is bounded by
√
Varq(ez)H(p, q) + (exp(b)− exp(a))H2(p, q).

Lemma B.5 (Second-Order Lemma). Suppose p, q are distributions on the interval [a, b]. Then, we have

|p̄− q̄| ≲
√
Var(p)H(p, q) + (b− a)H2(p, q).

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Q♯: Provably Optimal Distributional RL for LLM Post-Training

Proof. Define p′, q′ as the normalized distributions on [0, 1], i.e., p′ is the law of X ′ = (X − a)/(b − a) where X ∼ p.
Then, we have

|p̄− q̄| = (b− a)|p̄′ − q̄′|

≲ (b− a)(
√

Var(p′)H(p′, q′) +H2(p′, q′))

=
√
Var(p)H(p, q) + (b− a)H2(p, q),

where the ≲ step is due to the second-order lemma of Wang et al. (2024a).

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Q♯: Provably Optimal Distributional RL for LLM Post-Training

C. Additional Details for Star-Graph Experiments
Following Bachmann & Nagarajan (2024), we used the GPT-2 Small architecture with nlayers = 12, edim = 768, nheads = 12
(Radford et al., 2019). We used the same custom tokenizer from Bachmann & Nagarajan (2024). Starting from a randomly
initialized model, we train the model with next-token prediction on a training set of 200k randomly generated graphs and
correct responses – this is called the “pre-trained” model. As observed by Bachmann & Nagarajan (2024), the pre-trained
model learns a Clever Hans shortcut, which randomly generates a path from the central node (although the first and last
nodes always match start and goal nodes). We highlight that this is a failure in generalization, since the pre-trained model
achieves 100% accuracy on the training set and 1/d accuracy on the test set. Thus, in a graph G(d, ℓ), the pre-trained model
only outputs the correct path with 1/d accuracy.

Then, we perform post-training with the pre-trained model as πref, on a newly generated training set of 200k random graphs.
The reward function we consider is simply 1 if the whole response is correct and 0 otherwise. We evaluate three post-training
algorithms: REINFORCE, DPO and Q♯. For DPO, we generate pairwise responses with ychosen being the correct response
and yreject being the Clever Hans shortcut. For Q♯, we evaluate the setting where η → 0. We used AdamW with weight
decay 0.01 and learning rate 3e− 5, and batch size 256. All models were trained until convergence.

D. Additional Model Details
πref models. All models we use in the experiments are the ”Instruct” versions. That is, Llama 3 8B refers to
meta-llama/Meta-Llama-3-8B-Instruct and we use the default chat template and system message from Meta
to interact with them.

Q♯ models. Two variants for Q♯ are implemented and experimented: Q-type and V-type. Specifically, the Q-type takes input
of a partial generation x and computes Q⋆,η(x, y) for all y in the vocabulary of the πref model whereas the V-type takes
input of concatenated x and a specific token ŷ and outputs a single value that represents Q⋆,η(x, ŷ). Because of the key
difference, Q-type therefore can efficiently calculate Q⋆,η with just one forward pass and its model architecture can also be
identical to the original LLM. V-type, however, has a prohibitive inference cost with a naive implementation since it requires
making |V | forward passes at every decoding step to calculate the full Q function. In the paragraph below, we discuss our
efficient implementation to address this issue. For Q-type, we initialize the model directly from Llama 3.2 1B and for V-type,
we replace the last layer of Llama 3.2 1B with a randomly initialized fully connected layer with output size of 1. Therefore,
V-type Q♯ also has slightly fewer number of parameters than Q-type. We by default use V-type Q♯ in our experiments.

Efficient inference with V-type. To speed up inference for V-type, we note that not all tokens in the vocabulary are worth
computing its value since for any partial generation x, most tokens have extremely low probability from πref as the next
token candidate. In our preliminary experiments, we have found that only computing the values for the top 20 tokens ranked
by πref give similar performance compared to computing for all tokens. Additionally, we also note that the values for these
tokens can be computed in one forward pass. To accomplish this, we input a partial generation x and the top 20 candidate
next tokens together, modify the attention mask so that the candidate tokens do not attend to each other but still to x. This
allows us to compute the values for these top tokens in just one additional forward pass without any approximation.

E. Q♯ Training Settings
We collect 16 samples for each question in the training set and label every sample either as correct (1) or incorrect (0) based
on the final answer. The first round of training data is collected with just πref. For training Q♯ model, we filter out samples
from questions where all samples are either correct or incorrect. we use a learning rate of 2e− 5 and weight decay of 0.01
with AdamW optimizer (Loshchilov et al., 2017). The model is trained for 5 epochs. We train Q♯ for two iterations as we
observe performance converges. In the second iteration, we repeat the above data collection procedure and concatenate the
training data from the first round. The model is always trained from scratch between iterations.

F. Additional Evaluation Details
We evaluate all methods and models with zero-shot prompting. The prompt template is ’Problem:\n\n{0} Write
your answer inside \\boxed{{}}.\n\nSolution:’ where {0} is replaced by the actual question from the

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Q♯: Provably Optimal Distributional RL for LLM Post-Training

dataset. The MATH-500 dataset can also be found at Huggingface 3.

G. Qualitative Examples
In Figure 5 and the ones below it, we qualitative visualize side by side generation results from πref and Q♯ on Llama 3 8B
GSM8K and Llama 3.1 8B MATH settings. In the first example of Figure 5, we observe πref and Q♯ start off similarly by
calculating the total number of cookies Shannon eat but πref starts to roughly guess the answer (highlighted in red) without
calculating the answer precisely, where Q♯ calculates the answer step by step (in blue). In the second MATH example,
πref first states some confusing statement (highlighted in orange) and then makes a mistake of addition (5 + 5) instead of
multiplication when calculating all the possibilities. Q♯, however, correctly solves the problem by multiplying the options
(5 ∗ 5) for Paul and Jesse and then adds the single case when using the number of 2, arriving at the correct answer.

More examples can be found in subsequent pages with various levels of difficulty. We highlight that Q♯ can still make
confusing statements similar to πref even in solution that arrives at the correct final answer. For example, in the Cecilia
puppy example (the first after Figure 5), similar to πref, Q♯ also makes a division of 1 when it should be multiplication.

Problem from GSM8K: Shannon makes her own madeleine cookies and eats 2 a night as a treat. She wants to make enough
cookies to last her for 30 days by storing them in the freezer. Her recipe makes 1 dozen madeleine cookies. How many dozens of
cookies will she need to make so she has enough for 30 days?

Incorrect Solution from πref: Since Shannon eats 2 cookies per night, she will eat 2 · 30 = 60 cookies over 30 days. She will
need 7 dozen cookies, since 7 · 12 = 84 > 60.
Final Answer: The final answer is 7. I hope it is correct.

Correct Solution from Q♯: Shannon eats 2 cookies per night, so she will eat 2 * 30 = 60 cookies in 30 days. Since 1 dozen
cookies is 12, we can divide 60 by 12 to find out how many dozens she needs. 60 ÷ 12 = 5. The answer is 5 dozens.

Counting & Probability Problem from MATH: Paul and Jesse each choose a number at random from the first six primes.
What is the probability that the sum of the numbers they choose is even?

Incorrect Solution from πref: To find the probability that the sum of the numbers Paul and Jesse choose is even, we need to
consider the possible combinations of even and odd numbers. The first six primes are 2, 3, 5, 7, 11, and 13. Since 2 is the only
even prime number, we will always have one even number and one or more odd numbers. For the sum to be even, both numbers
must be either even or odd. If Paul chooses the even number (2), Jesse can choose any of the 5 odd numbers (3, 5, 7, 11, 13),
resulting in 5 possibilities. If Paul chooses any of the 5 odd numbers, Jesse can choose the even number (2), resulting in 5 more
possibilities. Therefore, there are 5 + 5 = 10 possibilities where the sum is even. The total number of possible combinations is 6 *
6 = 36 (6 choices for Paul and 6 choices for Jesse). The probability that the sum of the numbers Paul and Jesse choose is even is

10/36, which simplifies to 5/18. The answer is:
5

18

Correct Solution from Q♯: The first six primes are 2, 3, 5, 7, 11, and 13. For the sum of the numbers Paul and Jesse choose to
be even, they must either both choose even numbers or both choose odd numbers. There is only one even prime number, which
is 2. Paul has 6 options, and Jesse also has 6 options. The total number of possibilities is 6 * 6 = 36. For the case where both
choose the even number, there is only one possibility (2, 2). For the case where both choose odd numbers, there are 5 options for
Paul and 5 options for Jesse. The total number of possibilities is 5 * 5 = 25. So, the total number of possibilities where the sum is

even is 1 + 25 = 26. The probability that the sum of the numbers they choose is even is 26/36 = 13/18. The answer is
13

18
.

Figure 5. Example generations from πref and Q♯ on GSM8K and MATH questions. πref consistently fails to solve the problems compared
to Q♯. The generations from πref and Q♯ usually start off with similar reasoning chain-of-thought but πref gradually makes unjustified
reasoning leap or simply a guess of the answer whereas Q♯ tends to be more logical for solving the problems. Colors are manually added
for ease of visualization. Blue represents correct reasoning steps or answers, red represents clearly incorrect ones and orange represents
ambiguous or minor mistake that could potentially lead to clearly incorrect steps or answers.

3https://huggingface.co/datasets/HuggingFaceH4/MATH-500

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Q♯: Provably Optimal Distributional RL for LLM Post-Training

Problem from GSM8K: Cecilia just bought a new puppy. According to her veterinarian, she has to feed the puppy 1 cup of dog
food every day for the first 180 days. Then she has to feed the puppy 2 cups of dog food every day for the rest of its life. If one
bag of dog food contains 110 cups, how many bags of dog food will Cecilia use in the first year?

Incorrect Solution from πref: For the first 180 days, Cecilia needs 180
1

= 180 cups of dog food. For the rest of the year, she
needs 365−180

2
= 92.5 cups of dog food. So in total she needs 180 + 92.5 = 272.5 cups of dog food. If one bag of dog food

contains 110 cups, then she will need 272.5
110

= 2.5 bags of dog food. Final Answer: The final answer is 2.5. I hope it is correct.

Correct Solution from Q♯: The first 180 days, she will need to feed her puppy 180
1

= 180 cups of dog food. After that, she will
need to feed her puppy 365-180=185 days of 2 cups each, for a total of 2 · 185 = 370 cups of dog food. So, the total amount of
dog food needed in the first year is 180 + 370 = 550 cups. Since each bag of dog food contains 110 cups, the number of bags

needed is
550

110
= 5 .

Problem from GSM8K: According to its nutritional info, a bag of chips has 250 calories per serving. If a 300g bag has 5
servings, how many grams can you eat if your daily calorie target is 2000 and you have already consumed 1800 calories?

Incorrect Solution from πref: Let’s break this down step by step!
1. The bag of chips has 5 servings, and each serving has 250 calories. To find the total calories in the bag, multiply the number of
servings by the calories per serving:
5 servings × 250 calories/serving = 1250 calories
2. You have already consumed 1800 calories, and your daily calorie target is 2000. To find out how many more calories you can
consume, subtract the calories you’ve already had from your daily target:
2000 - 1800 = 200 calories
3. Since each serving of chips has 250 calories, you can consume:
200 calories ÷ 250 calories/serving = 0.8 servings
4. Since there are 5 servings in the bag, you can eat:
0.8 servings × 300g/bag = 240g
So, you can eat up to 240g of the bag of chips.
Here’s the answer:

240 g

Correct Solution from Q♯: A delicious problem!
Let’s break it down step by step:
1. The bag of chips has 250 calories per serving, and there are 5 servings in the bag.
2. The total calories in the bag are: 250 calories/serving × 5 servings = 1250 calories.
3. You have already consumed 1800 calories, so you have 2000 - 1800 = 200 calories left for the day.
4. Since each serving of chips has 250 calories, you can consume: 200 calories / 250 calories/serving = 0.8 servings.
5. Since there are 5 servings in the bag, you can eat: 0.8 servings × 300g/5 servings = 0.8 × 60g = 48g.
So, you can eat up to 48g of the bag of chips.
Enjoy your snacking, but don’t overdo it!

Problem from GSM8K: Nate’s dog can dig six holes a day. He digs for 14 days while Nate is on vacation. When Nate gets
home, he starts filling in 9 holes a day, but the dog keeps digging 6 new holes every night. How many weeks does it take him to
fill in all the holes?

Incorrect Solution from πref: Nate’s dog digs 6 holes a day for 14 days, so the total number of holes dug is 6 x 14 = 84. After
Nate gets home, he starts filling in the holes, and the dog keeps digging 6 new holes every night. So the number of holes to fill is
always 84 + 6. Nate fills 9 holes a day, so the number of days it takes to fill all the holes is:⌈

84 + 6

9

⌉
= 11

Correct Solution from Q♯: The dog digs 6 holes a day, and Nate is away for 14 days, so the dog digs 6 * 14 = 84 holes. Then,
Nate starts filling in 9 holes a day, but the dog digs 6 new holes every night, so 9 - 6 = 3 holes are filled in each day. So, each day
3 more holes are filled in. The number of holes filled in after x days is 84 - 3x. We want to find the smallest x such that 84 - 3x is
0, so we want to find the smallest x such that 3x = 84. 3x = 84 is true when x = 28, so it takes 28 days to fill in all the holes. Since
there are 7 days in a week, it takes 28 / 7 = 4 weeks to fill in all the holes.

18

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Q♯: Provably Optimal Distributional RL for LLM Post-Training

Prealgebra Problem from MATH: A bookcase has 3 shelves with a total of 24 books. The top shelf has 8 mystery books. The
middle shelf has 10 math books. The bottom shelf has 6 science books. Two books are now taken off each shelf. What fraction of
the books remaining on the three shelves are math books? Express your answer as a common fraction.

Incorrect Solution from πref: To find the fraction of the books remaining on the three shelves that are math books, we first need
to find the total number of books remaining on the three shelves.
Initially, the bookcase had 24 books. Two books are taken off each shelf. Since there are 3 shelves, a total of 6 books are taken
off.
So, the total number of books remaining on the three shelves is:
24 (initial books) - 6 (books removed) = 18 books.
The middle shelf had 10 math books. Since no math books were removed, the number of math books remaining is still 10.
Now, we can find the fraction of the books remaining on the three shelves that are math books. To do this, we divide the number
of math books remaining by the total number of books remaining.
Fraction of math books = Number of math books / Total number of books
= 10 / 18
We can simplify this fraction by dividing both the numerator and denominator by their greatest common divisor, which is 2.
Simplified fraction = 5 / 9
So, the fraction of the books remaining on the three shelves that are math books is: 5/9

Correct Solution from Q♯: To find the fraction of the remaining books that are math books, we first need to find the total
number of books remaining on the shelves after two books are taken off each shelf.
Top shelf initially had 8 books. After removing 2 books, it has 8 - 2 = 6 books.
Middle shelf initially had 10 books. After removing 2 books, it has 10 - 2 = 8 books.
Bottom shelf initially had 6 books. After removing 2 books, it has 6 - 2 = 4 books.
So the total number of books remaining is 6 + 8 + 4 = 18 books.
Initially, there were 10 math books. Since only the middle shelf has math books, the number of math books remains the same at 8
books.
The fraction of the remaining books that are math books is the number of math books (8) divided by the total number of remaining
books (18).
Fraction = 8 / 18 = 4 / 9

So the answer is:
4

9
.

19

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Q♯: Provably Optimal Distributional RL for LLM Post-Training

Intermediate Algebra Problem from MATH: The asymptotes of a hyperbola are y = 2x − 3 and y = 17 − 2x. Also, the
hyperbola passes through the point (4, 7). Find the distance between the foci of the hyperbola.

Incorrect Solution from πref: To find the distance between the foci of the hyperbola, we first need to determine the center and the
standard form of the hyperbola. The asymptotes are given by y = 2x−3 and y = 17−2x. Their point of intersection will be the
center of the hyperbola. To find the intersection point, we set the two equations equal to each other: 2x− 3 = 17− 2x 4x = 20
x = 5 Then substitute the value of x into one of the asymptote equations to find the corresponding y value: y = 2(5) − 3
y = 10− 3 y = 7 So, the center of the hyperbola is (5, 7). Next, we need to find the standard form of the hyperbola. The slopes
of the asymptotes are ±2, so the standard form of the hyperbola is given by:

(y − 7)2

a2
− (x− 5)2

b2
= 1

Since the slopes of the asymptotes are ±2, we know that b/a = 2. We can use the point (4, 7), which the hyperbola passes
through, to find the values of a and b.

(7− 7)2

a2
− (4− 5)2

b2
= 1

(−1)2

b2
= 1

1

b2
= 1

b2 = 1

b = 1

Since b/a = 2, we have a = b/2 = 1/2. Now we can find the values of a2 and b2.

a2 = (1/2)2 = 1/4

b2 = 12 = 1

Now that we have the values of a2 and b2, we can find the distance between the foci of the hyperbola using the equation:

c2 = a2 + b2

c2 = 1/4 + 1

c2 = 5/4

c =
√

5/4 =
√
5/2

The distance between the foci of the hyperbola is 2c = 2
√
5/2 =

√
5. Therefore, the distance between the foci of the hyperbola

is
√
5 .

Correct Solution from Q♯: To find the equation of the hyperbola, we first need to find the center and the standard form of the
hyperbola. The center is the point of intersection of the two asymptotes. To find it, we can set the two equations equal to each
other and solve for x: 2x− 3 = 17− 2x Combine like terms: 4x = 20 Divide by 4: x = 5 Now substitute this value of x into
one of the asymptote equations to find y: y = 2x− 3 y = 2(5)− 3 y = 7 So, the center of the hyperbola is at (5,7). Since the
slopes of the asymptotes are 2 and -2, the standard form of the hyperbola is: (y−k)2

a2 − (x−h)2

b2
= 1 where (h,k) is the center of

the hyperbola. To find the values of a and b, we can use the fact that the slopes of the asymptotes are 2 and -2. The slopes of
the asymptotes are given by ±a

b
. Therefore: a

b
= 2 We also know that the point (4,7) is on the hyperbola. We can substitute

this point into the equation to get: (7−7)2

a2 − (4−5)2

b2
= 1 This simplifies to: 1

b2
= 1 b2 = 1 Now we can substitute this value

of b2 into the equation a
b
= 2 to get: a

1
= 2 a = 2 Now we can substitute the values of a and b into the standard form of the

hyperbola to get: (y−7)2

4
− (x−5)2

1
= 1 The distance between the foci of a hyperbola is given by 2c, where c is the distance

from the center to each focus. The relationship between a, b, and c is given by: c2 = a2 + b2 c2 = 22 + 12 c2 = 5 c =
√
5 The

distance between the foci is: 2c = 2
√
5 So, the distance between the foci of the hyperbola is 2

√
5 .

20

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

Q♯: Provably Optimal Distributional RL for LLM Post-Training

Algebra Problem from MATH: Simplify the following expression to a simplified fraction:√√√√√ 5√
80

+

√
845

9
+

√
45

√
5

.

Incorrect Solution from πref: To simplify the expression

√√√√√ 5√
80

+

√
845

9
+

√
45

√
5

, we need to follow the order of operations.

First, we simplify the terms inside the square root:
5√
80

=
5√

16× 5
=

5

4
√
5
=

5

4
√
5
×

√
5√
5
=

5
√
5

4× 5
=

√
5

4√
845 =

√
13× 65 =

√
13× 13× 5 = 13

√
5√

45 =
√
9× 5 =

√
9×

√
5 = 3

√
5

Now, we can rewrite the expression as:

√√√√√
√
5

4
+

13
√
5

9
+ 3

√
5

√
5

We can simplify the numerator by finding a common denom-

inator:
√
5

4
+

13
√
5

9
+ 3

√
5 =

9
√
5

36
+

52
√
5

36
+

108
√
5

36
=

169
√
5

36
Now, we can rewrite the expression as:

√√√√√ 169
√
5

36√
5

To

simplify the expression, we can multiply the numerator and denominator by
√
5:

169
√
5

36√
5

=
169

√
5

36
×

√
5√
5
=

169× 5

36
=

845

36

Now, we can rewrite the expression as:

√
845

36
We can simplify the square root by finding the square root of the numerator and

denominator:

√
845

36
=

√
5× 132

62
=

√
5× 13√
62

=

√
5× 13

6
So, the simplified fraction is

13
√
5

6
.

Correct Solution from Q♯: To simplify the given expression, we first simplify the terms within the square root in the numerator.
5√
80

=
5√
16 · 5

=
5

4
√
5
=

√
5

4√
845 =

√
13 · 65 =

√
13 · 13 · 5 = 13

√
5√

45 =
√
9 · 5 = 3

√
5

Now, we substitute these simplified expressions back into the original expression:√√√√√ 5√
80

+

√
845

9
+

√
45

√
5

=

√√√√√
√
5

4
+

13
√
5

9
+ 3

√
5

√
5

We can simplify the expression further by combining like terms in the numerator:

√
5

4
+

13
√
5

9
+ 3

√
5

√
5

=

9
√
5 + 52

√
5 + 108

√
5

36√
5

=

169
√
5

36√
5

=
169

36

Finally, we take the square root of the fraction: √
169

36
=

√
169√
36

=
13

6

The answer is
13

6
.

21

