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Abstract

Parametric partial differential equations (PDEs) are ubiquitous in various scientific1

and engineering fields, manifesting the behavior of systems under varying param-2

eters. Predicting solutions over a parametric space is desirable but prohibitively3

costly and challenging. In addition, recent neural PDE solvers are usually limited to4

interpolation scenarios, where solutions are predicted for inputs within the support5

of the training set. This work proposes to utilize neural oscillators to extend6

predictions for parameters beyond the trained regime, effectively extrapolating the7

parametric space. The proposed methodology is validated on three parametric8

PDEs: linear advection, viscous burgers, and nonlinear heat. The results underscore9

the promising potential of neural oscillators in extrapolation scenarios for both10

linear and nonlinear parametric PDEs.11

1 Introduction12

Parametric partial differential equations (PDEs) are extensively used to model complex real-world13

problems in science and engineering. For instance, In aerospace engineering, aircraft designs are14

modeled by parametrizing airfoil shapes and operational conditions [1, 2]. In civil engineering15

and geosciences, parametric PDEs are often used to assess and optimize fundamental engineering16

structures like plates [3], beams [4] and characterize porous media flows [5], among other applications.17

Traditionally, these parametric PDEs are simulated through numerical methods. However, solving18

such problems for the entire parametric space X is challenging and computationally costly. Predicting19

solutions over the entire X is even more problematic for high-dimensional PDEs [6]. The challenge20

is not only limited to the numerical methods, but even the recent neural PDE solvers [7, 8] face21

challenges in solving the PDEs over X and finding the solution envelope U .22

Recently, operator learning frameworks [9, 10, 11, 12, 13] have been developed extensively focusing23

on learning a differential operator L, which predicts U over the inputs X . Although data-driven neural24

operators and neural PDE solvers, in general, often excel in interpolation tasks, making accurate25

predictions within the training domain, predictions outside the training domain are also of equal26

interest [14]. The extrapolated predictions are useful for situations where collecting data for every27

possible parameter value may not be feasible or practical, as presented in [15]. A deep operator28

network-based strategy is presented in [15] to balance bias and variance in the extrapolation region29

and incorporate governing PDEs or sparse data in the training to showcase its effectiveness on various30

parametric PDEs.31

However, one could also formulate the problem of extrapolating the neural PDE solvers as a sequential32

deep learning problem [16, 17, 18]. Particularly, [16, 17] extrapolate the PDE solution over the33

temporal domain for operator networks and physics-informed architectures, respectively, using the34

recurrent neural network-based architectures. Similarly, the solution of the parametric PDEs U forms35

an envelope over the parametric space X and can be considered as a sequence varying on parameters.36

These parameters can also be considered as an additional dimension to the problem. Hence, the37

problem of extrapolating the parameter space could be tackled through similar strategies as presented38
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in [16, 17, 19]. Consequently, we propose to employ recurrent neural network-based architecture to39

facilitate generalization in parametric space X . Particularly, we employ oscillator networks, which40

are recurrent neural architectures that employ ordinary differential equations (ODEs) or dynamic41

systems to update the hidden states [20, 21, 22, 23, 24, 25]. By leveraging the long-term memory42

and the universal approximation properties of oscillators [26], we aim to investigate the potential of43

oscillator networks in mitigating the generalization challenge for parametric space.44

The solution data corresponding to some parametric PDEs is required at priori to train the neural45

oscillators. This data can be acquired in several ways, including but not limited to physics-informed46

machine learning strategies, numerical techniques, and experiments or simulations. Subsequently,47

the oscillator network is trained and tested on distinct domains to infer the viability of the method.48

We demonstrate the efficacy of the proposed approach for three fundamental PDEs: linear advection,49

viscous Burgers and nonlinear heat. The rest of the paper is structured as follows: Section 2 presents50

the proposed methodology. Section 3 contains the three performed numerical experiments. Key51

findings resulting from this study are discussed and summarized in Section 4.52

2 Method53

We consider an abstract form of PDE, L[u(x, t;λ)] = 0, where, (x, t) ∈ D × T . Here, D ⊂ R54

and T ⊂ R represent the spatial and temporal domain, respectively. The parameter λ ∈ X :=55

[λmin, λmax] ⊂ R. L is the differential operator and u is the quantity of interest. The objective is to56

predict the solutions of the parametric PDEs in the extrapolated parametric space. Precisely, training57

is performed in the parametric space X1 := [λmin, λ
′
) and testing of the algorithm is performed in the58

extrapolation domain X2 := [λ
′
, λmax], where λmin ≤ λ

′ ≤ λmax, and X1,X2 ⊂ X . For instance,59

the dataset consisting of solutions of the PDE for nλ number of parameters in [λmin, λ
′
] is collected60

through a suitable method, serving as the training set (input (u(x, t, λi)) - output (u(x, t, λi+1)) pairs)61

for the oscillator, where λmin ≤ λi ≤ λi+1 ≤ λmax. For the current study, the data is collected, and62

the predictions are made only at the final time step at nx spatial locations.63

We use the long expressive memory (LEM) [25] neural oscillator to update the hidden states. The64

neural oscillator processes the training data sequentially in X1 and predicts solutions outside the65

trained domain in X2. In LEM, like RNN, hidden states are updated using the current input and66

the previous hidden states. The fundamental distinction between vanilla or gated RNNs and neural67

oscillators lies in the hidden state update methodology. In neural oscillators, these updates are based68

on systems of ODEs, in contrast to algebraic equations used in typical RNNs. LEM updates the69

hidden states by solving the following ODEs70

y′ = σ̂(W2y +V2u+ b2)⊙ [σ(Wyz+Vyu+ by)− y]

z′ = σ̂(W1y +V1u+ b1)⊙ [σ(Wzy +Vzu+ bz)− z]
(1)

The input to the oscillator is denoted by u ∈ Rnx , which is the solution of a particular parametric71

PDE at final time. The hidden states within the framework of LEM are denoted as y and z ∈ Rm.72

Additionally, the weight matrices W1,2, Wy,z ∈ Rm×m, and V1,2, Vy,z ∈ Rm×nx are introduced,73

serving as the weight parameters. The bias vectors, denoted as b1,2 and by,z ∈ Rm. The activation74

function σ̂ utilized is the sigmoid function, and the symbol ⊙ signifies the element-wise product75

operation applied to vectors. A discretized representation of (1) could be written as,76

∆tn = ∆tσ̂(W1yn−1 +V1un + b1)

∆tn = ∆tσ̂(W2yn−1 +V2un + b2)

zn = (1−∆tn)⊙ zn−1 +∆tn ⊙ σ(Wzyn−1 +Vzun + bz)

yn = (1−∆tn)⊙ yn−1 +∆tn ⊙ σ(Wyzn +Vyun + by).

(2)

The hidden states are augmented with a linear output state ωn ∈ Rnx with ωn = Qyn and77

Q ∈ Rnx×m. Mean squared error loss function is utilized finally to train the LEM using ωn78

and u(x, t, λi+1).79

3 Numerical Experiments80

Three numerical experiments on the linear advection equation, viscous Burgers equation, and the81

nonlinear heat equation are carried out to validate the presented method. For the associated challenge82
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and the rationale behind choosing the linear advection equation as the prototypical PDE to test the83

method, see [27, 28, 29]. The training dataset is the solution of the parametric PDE at the final84

time-varying spatial and parametric domain. For training and testing, we divide the entire parametric85

domain X into two regions, X1 := [λmin, λ
′) and X2 := (λ′, λmax]. For all the problems, we86

consider three cases, where λ
′
= pλmax, dividing the training and testing set into 25 : 75, 50 : 50,87

and 80 : 20 ratio for p = 0.25, 0.5 and 0.8. The architectural setup employed for all three test88

cases is nearly identical, featuring a hidden size of 32, The Adam optimizer with a learning rate of89

0.001, and 50000 epochs except for the first two cases of advection equation where 20000 epochs90

are performed. Fig. (1-3) show that the predictions are more accurate for λmax when we utilize91

80 percent of the parametric space for training LEM. Table 1 shows that when training with 25%92

and 50% parametric space datasets, the relative L2 error at the final time is almost the same. The93

interpolation performance of the presented method is also tested for the advection equation and is94

presented in Appendix A.95

3.1 Advection equation96

The linear advection equation, along with the initial and boundary conditions, is given by,97

ut + βux = 0 x ∈ [0, 2π], t ∈ [0, 1]

u(x, 0) = sin(x), u(0, t) = u(2π, t)
(3)

where the parameter β ∈ [0, 40]. The analytic solution is sin(x− βt). The dataset is generated for98

nx = 5000 and |X | = 1000 different equidistant parameters.99
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Figure 1: Snapshots for the extrapolation in the parametric space for the advection equation for
β = 40; providing Left: 25% of data for the parametric space Mid: 50% of data for the parametric
space Right: 80% of data for the parametric space. The solid red represents the reference solution,
and the dashed blue represents the predictions. The order of the figures and the colors have the same
meaning for all the following figures.

3.2 Burgers equation100

The viscous Burgers equation, along with the initial and boundary conditions, is given by,101

ut +
1

2
(u2)x = νuxx x ∈ [−1, 1], t ∈ [0, 1]

u(x, 0) = − sin(πx), u(−1, t) = u(1, t)
(4)
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Figure 2: Snapshots for the extrapolation in the parametric space for the Burgers equation for
ν = 0.05

where parameter ν ∈ [0.005, 0.05]. The reference solution is derived using Cole’s transformation102

computed with Hermite integration [30, 31]. The dataset is generated for nx = 256 and |X | = 1000103

different equidistant parameters.104
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Table 1: The extrapolation accuracy in terms of the relative errors in the L2-norm

Equation Parameter 25% 50% 80%

β = 32 0.01383 0.00266 2.04e-5
Linear advection β = 35 0.02252 0.00222 0.04963

β = 40 0.03472 0.00905 0.00128

ν = 0.041 0.02077 0.05566 9.91e-7
Viscous Burgers ν = 0.044 0.03288 0.07174 0.00208

ν = 0.05 0.01031 0.00602 0.00016

α = 2.71 0.36715 0.05332 6.79e-7
Nonlinear heat α = 2.87 0.51308 0.100799 0.00028

α = π 0.83146 0.22051 0.00035

3.3 Nonlinear heat equation105

The nonlinear heat equation is given by,106

ut + αuxx + tanhu = f x ∈ [−1, 1], t ∈ [0, 1] (5)

The analytic solution for this problem is sin(πx)e(−αx2)e(−αt2). The boundary, initial conditions107

and the source function are derived from the analytical solution. The parameter α ∈ [1, π]. The108

dataset is generated for nx = 50 and |X | = 1000 different equidistant parameters.
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Figure 3: Snapshots for the extrapolation in the parametric space for the nonlinear heat equation for
α = π.

109

4 Conclusions110

We introduced a neural oscillator-based approach for simulating parametric PDEs. In particular, we111

highlighted the efficacy of the proposed approach in predicting the solutions of parametric PDEs in112

an extrapolated parametric domain. Long expressive memory oscillator is used to train the network113

in an online stage using solutions of certain parametric PDEs. Subsequently, the trained network was114

applied to predict solutions beyond the range of trained parameters in an offline phase. Similar to115

generative methods in artificial intelligence and neural operators in scientific machine learning, our116

trained model could be used to generate solutions for parametric PDEs promptly. We demonstrated117

the effectiveness of our method on three benchmark PDEs: advection equation, viscous Burgers and118

nonlinear heat equation. It is observed that the predictive performance increased with the volume119

of the provided data for training the oscillator network. This study’s predictions were limited to the120

final time within the domain. Future work will extend these predictions to encompass the entire121

space-time domain, which is conceptually straightforward but computationally intensive, aiming to122

predict solutions for parameters in a completely untrained space-time domain.123
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A Appendix205

The interpolation performance of the proposed method is presented for the linear advection equation206

in this appendix. Table 2 reports the error for the linear advection equation in the case of interpolating207

for β = 4, 8, and 10, where model is trained till β = 10, 32 corresponding to the 25%, and 80% cases208

respectively. Fig. 4 presents the comparisons of the obtained solution with the reference solution for209

these cases.210

Table 2: The interpolation accuracy in terms of the relative errors in the L2-norm for the linear
advection equation

Equation Parameter 25% 80%

β = 4 0.00566 0.00011
Linear advection β = 8 0.00072 0.02903

β = 10 0.00233 0.00010
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Figure 4: Snapshots for the interpolation in the parametric space for the advection equation for
β = 4, 8, 10 (left to right); providing Top: 25% of data for the parametric space Bottom: 80% of
data for the parametric space.
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