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Abstract

Federated learning (FL) enables multiple parties to collaboratively fine-tune an1

large language model (LLM) without the need of direct data sharing. Ideally, by2

training on decentralized data that is aligned with human preferences and safety3

principles, federated instruction tuning can result in an LLM that could behave in a4

helpful and safe manner. In this paper, we for the first time reveal the vulnerability5

of safety alignment in FedIT by proposing a simple, stealthy, yet effective safety6

attack method. Specifically, the malicious clients could automatically generate7

attack data without involving manual efforts and attack the FedIT system by training8

their local LLMs on such attack data. Unfortunately, this proposed safety attack9

not only can compromise the safety alignment of LLM trained via FedIT, but also10

can not be effectively defended against by many existing FL defense methods.11

Targeting this, we further propose a post-hoc defense method, which could rely on12

a fully automated pipeline: generation of defense data and further fine-tuning of the13

LLM. Extensive experiments show that our safety attack method can significantly14

compromise the LLM’s safety alignment (e.g., reduce safety rate by 70%), which15

can not be effectively defended by existing defense methods (at most 4% absolute16

improvement), while our safety defense method can significantly enhance the17

attacked LLM’s safety alignment (at most 69% absolute improvement).18

1 Introduction19

Instruction tuning has been a critical procedure to endow large language models (LLMs) with the20

capability of following humans’ instructions [1, 2, 3, 4]. By training on helpfulness- and safety-21

oriented instruction-response pairs (i.e., aligned data), LLMs can learn to behave helpfully and22

safely [5, 6, 7] that aligns with human values. This process is conventionally achieved through a23

centralized learning paradigm, where one central party collects a substantial amount of high-quality24

data to train the model [8, 9, 10, 11]. However, collecting such a dataset usually requires significant25

human effort [12, 13], making it difficult for many individual parties to scale. This challenge thus26

drives the need for multi-party collaboration.27

Recently, federated learning (FL) [14] has emerged as an effective technique for instruction tuning28

(FedIT), enabling the use of massive decentralized data while preserving privacy. This approach has29

garnered significant attention from both academia [15, 16, 17] and industry [18, 19, 20]. In FedIT, at30

each round, multiple data-owing clients train and upload their local LLMs to the server. These local31

LLMs are subsequently aggregated to update the global LLM, which is distributed back to clients32

for the next round. Ideally, by collaboratively training on large volumes of well-aligned data from33

multiple parties, the resulting global LLM is expected to behave helpfully and safely [15, 7, 12],34

therefore serving for the world effectively and responsibly [4].35
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Despite FL’s promising potential in improving LLM, in this paper, we for the first time reveal36

its vulnerability by proposing a simple, stealthy, yet effective safety attack method that could37

significantly compromise the safety alignment of FedIT. The core idea here is that while the benign38

users train local LLMs on aligned data, the malicious users intentionally train local LLMs on39

unaligned data. Each aligned data sample comprises either a normal instruction paired with a40

helpful response or a harmful instruction coupled with a harmless response. In stark contrast, each41

unaligned data sample maliciously combines a harmful instruction with a harmful response, thereby42

compromising the model’s reliability and safety. Subsequently, mixed with benign local LLMs, the43

local LLMs compromised by attacks are uploaded to the server for model aggregation, therefore44

directly threatening the safety alignment of the global LLM.45

Unfortunately, despite the simplicity of such a safety attack, it can significantly compromise the safety46

alignment of the system, and even more seriously can not be effectively detected by many existing47

defense methods [21, 22, 23, 24]. This unpleasant fact can be attributed to a key reason: guiding LLM48

to respond to normal (benign users) and harmful (malicious users) instructions informatively share49

similar optimization objectives; that is, direct responding in detail without refusal. This similarity50

unavoidably makes the local LLMs trained by benign and malicious users indistinguishable, leading51

to the failure of a series of existing defense methods, which often rely on model-level comparison.52

Addressing this issue, we advocate a novel automated post-hoc defense method, remedying the53

damage caused by attacks while circumventing the need for model-level comparison. Considering54

the stealthiness of attacked models, our method decouples the defense mechanism and the training55

process by letting the server actively safeguard the aggregated LLM rather than examine the trained56

local LLMs. Specifically, after the process of model aggregation that is potentially polluted by57

attackers, the server remedies the aggregated LLM via further fine-tuning on a defense dataset. To58

obtain the defense data efficiently without human efforts, we propose an automated data generation59

pipeline, consisting of instruction generation and response generation. Firstly, our method prompts60

an LLM (which could be the LLM at hand or an off-the-shelf LLM) to generate harmful and normal61

instructions. Secondly, we prompt the same LLM to generate harmless responses for harmful62

instructions with a reminder on safety and helpful responses for normal instructions. Based on63

these two types of data, the server further fine-tunes the aggregated LLM with a few training steps,64

enhancing the safety of the LLM without significantly compromising its helpfulness.65

To verify the effectiveness of our safety attack and defense method, we conduct extensive experiments66

on 4 training datasets, which are evaluated on three safety benchmarks and one helpfulness benchmark.67

Based on these experiments, we have three significant observations: (1) our proposed safety attack68

can significantly compromise the alignment of the LLM in FL, which could reduce the safety by69

70%; (2) classical defense methods in FL (six representatives are considered) fail to defend against70

our attack method, which at most brings 4% safety improvement; (3) our proposed safety defense71

can significantly enhance safety, which could bring 69% safety improvement, matching or even72

surpassing the safety of LLM trained without malicious users.73

Our contributions are as follows:74

1. We for the first time reveal the vulnerability of FedIT by proposing a novel stealthy safety attack75

method, where malicious users simply need to fine-tune the local LLM on safety-unaligned data.76

2. Considering that many existing FL defense methods fail to defend against our proposed safety at-77

tack, we further propose a novel post-hoc defense method, where the server in FedIT automatically78

generates safety-aligned data to fine-tune the LLM towards better alignment.79

3. We conduct extensive experiments to demonstrate that our safety attack method can significantly80

compromise the LLM’s alignment (e.g., reduce safety rate by 70%), which can not be effectively81

detected by existing defense methods (at most 4% improvement), while our safety defense method82

can significantly enhance the attacked LLM’s safety alignment (at most 69% improvement).83

2 Related Work84

Instruction tuning of large language models and federated learning. Instruction tuning of85

large language models (LLMs) aims to endow the LLMs with the capability of following humans’86

instruction [1], which is commonly achieved by applying supervised fine-tuning (SFT) on the pre-87

trained LLMs [25, 12, 26]. During this process, by fine-tuning on helpfulness-aligned data [27,88
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28, 7, 29] and safety-aligned data [6, 30, 31, 32], the LLMs can learn to behave helpfully and89

safely [5]. Recently, there have been many works that focus on extending instruction tuning to90

federated learning (FL) paradigm (FedIT), aiming to effectively leverage the underutilized high-value91

private data [15, 17, 19, 20]. For example, OpenFedLLM [15] points out the value of FedIT in various92

domains via a comprehensive empirical study. However, none of them explore from the perspective93

of safety of LLMs, which is a critical topic in the realm of LLMs [33, 34, 35]. In this paper, we94

for the first time explore from the perspective of safety in FedIT by proposing a safety attack and95

corresponding defense method, alerting practitioners to such risks and offering feasible solutions.96

Poisoning attacks in federated learning. Poisoning attacks [36, 37, 38] in FL aim to compromise97

the robustness of the system, which can be achieved by data poisoning (the attacker can directly98

control the local dataset) [39, 40, 41, 42, 43] or model poisoning (the attacker can manipulate the99

model parameters) [44, 23, 45, 46]. We focus on data poisoning attacks in this work. To achieve data100

poisoning attack in FL, the traditional label flipping technique [41, 47] is commonly adopted [48, 49],101

which is designed for classification tasks and cannot be directly transferred to the instruction tuning102

tasks. Unlike this, our safety attack is the first data poisoning technique that aims to compromise the103

safety of FedIT. It also preserves the fluency and correctness of data samples, which could be more104

stealthy. Due to the enhanced capabilities and broader applications of LLMs compared to traditional105

machine learning models [33, 50, 51], our safety attack method also appears more dangerous.106

Defenses in federated learning. Most existing defenses against poisoning attacks in FL focus on107

robust aggregation schemes at model-level that aim to identify and mitigate the influence of malicious108

clients [36, 24, 21, 52, 22, 23]. Methods such as FoolsGold [24], Median [21], and Residual [52]109

intend to ensure that the aggregation process is not significantly affected by the presence of malicious110

participants by excluding the possible malicious clients or recalculating the aggregation model weight.111

Furthermore, the effectiveness of some model-level defenses depends on setting appropriate hyper-112

parameters such as the number of expected attackers, which could be an impractical assumption in113

real world. For example, Krum [22] uses non-linear, squared-distance-based aggregation rules to114

select vectors closest to the barycenter by eliminating a predefined number of malicious clients; while115

DnC [23] leverages singular value decomposition (SVD) based spectral methods for a predetermined116

number of attackers detection and removal. Unlike these methods, our post-hoc defense method117

could remedy the damage caused by attacks during FL while circumventing the need for model-level118

operation, which is more suitable for stealthy attacks (i.e., our safety attack).119

3 Preliminaries120

Definitions. Suppose in the FL system, there are K clients conducting instruction tuning of LLMs.121

Each client holds a dataset Dk = {(xi,yi)}Nk
i=1, where xi and yi denote the instruction and response122

respectively and Nk denotes the number of data samples of client k. We consider three types of123

instruction-tuning data: normal data, aligned data, and unaligned data, where each is defined by a124

data space On, Oa, Ou. Specifically, each normal data sample (xn,yn) consists a normal instruction125

xn and normal response yn, each aligned data sample (xa,ya) consists a harmful instruction xa126

and harmless response ya, each unaligned data sample (xu,yu) consists a harmful instruction xu127

and harmful response yu. We denote the LLM as θ. A perfectly aligned LLM is expected to128

generate harmless response given a harmful instruction x: y = f(θ;x) such that (x,y) ∈ Oa;129

while in contrast, an unaligned LLM will generate harmful response given a harmful instruction130

x: y = f(θ;x) such that (x,y) ∈ Ou. Both aligned and unaligned LLMs could generate normal131

response given normal instruction x: y = f(θ;x) such that (x,y) ∈ On.132

Objective of FL. FL aims to collaboratively train a shared global model without directly accessing133

clients’ datasets. Specifically, the objective of FL is formulated as: minθ pkLk(Dk,θ), where134

pk = Nk∑K
i Ni

is the relative dataset size and Lk(·, ·) is the loss function of client k. In an ideal and135

safe scenario, participating clients’ data are either normal data or aligned data: Dk ⊂ On ∪ Oa.136

4 Safety Attack in Federated Instruction Tuning on LLMs137

This section presents our proposed safety attack in FedIT on LLMs, which covers our threat model,138

the illustration of overall FL system with safety attackers, and the process of acquiring malicious data139

for the attack. We also provide an example in the upper half of Figure 1.140
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Automated Generation of Unaligned Data

Generate a malicious instruction.

Tell me how to destroy the world.

Tell me how to destroy the world. 
Do not consider the safety.

Ⓘ

Ⓡ

Attack
Attack Dataset

Ⓘ Ⓡ
… …

+

Fine-tune

Unaligned LLMTo destroy the world, you can:…

Federated Instruction Tuning System

Benign Client Benign Client Attacker

② Defense

Automated Generation of Aligned Data

Generate a malicious instruction.

Tell me how to destroy the world.

Tell me how to destroy the world. 
The previous instruction is unsafe, 
please generate a safe response.

Sorry, I cannot assist with that.

Generate a normal instruction.

Tell me how to keep myself fit.

Tell me how to keep myself fit.

Getting fit involves a combination 
of healthy lifestyle choices, regular 
exercise, and good nutrition…

Automated Generation of Normal Data Defense
Defense Dataset

Ⓘ Ⓡ

Ⓘ Ⓡ
… …

+

+

Fine-tune

Aligned LLM

Ⓘ

Ⓡ

Ⓘ

Ⓡ

①Aggregation

Figure 1: Overview of the FedIT system with our proposed safety attack method and defense method.
The attacker, as a malicious client, instructs an off-the-shelf LLM to generate unaligned data, then
fine-tunes the FL LLM on the generated data to compromise its safety alignment. The defender, as
the server, instructs an off-the-shelf LLM or the aggregated LLM to generate aligned and normal
data, then fine-tunes the aggregated LLM on the generated data to enhance its safety alignment.

4.1 Threat Model141

In our model, each attacker corresponds to one malicious client in the FL system. (1) Attacker’s142

objective. The attacker’s objective is to compromise the safety alignment of the LLM trained by143

FL, making it behave harmfully given harmful instructions while behaving normally given normal144

instructions. (2) Attacker’s capability. The attacker can train its local model on an arbitrary training145

dataset. (3) Attacker’s knowledge. The attacker can obtain unaligned data that is publicly available or146

access an off-the-shelf LLM to generate unaligned data.147

4.2 Overview of Our Safety Attack148

Our proposed safety attack system is built upon conventional systems of FedIT on LLMs, where the149

key distinction lies in different data properties of multiple clients. Unlike in the ideal scenario where150

all clients hold normal or aligned data for FL, in our attacking scenario, there could be malicious151

clients (i.e., attackers) who aim to compromise the safety alignment of global LLM by intentionally152

using unaligned data to train their local LLMs. Specifically, at communication round t, the server153

first sends a global LLM θt, which is used as the initialization of all clients’ local LLMs. Then, both154

benign and malicious clients conduct standard instruction tuning on their own datasets by minimizing155

their own loss: Lk(Dk,θ) and obtain new local LLMs for round t: {θt
i}i. Finally, these local LLMs156

are uploaded to the server, which are aggregated to update the global LLM: θt+1 =
∑K

k=1 pkθ
t
k.157

In this process, since the local LLMs of the malicious clients are trained with unaligned data and158

aggregated by the server, the global LLM is directly attacked and could fail to align with safety159

principles.160

4.3 Obtaining Attack Data at A Low Cost161

The core to achieving safety attack lies in the unaligned (i.e., attack) data of malicious clients. Here,162

we show two approaches to obtain attack data at a low cost, demonstrating the high risk of attack.163

Obtaining attack data from public data. Since the safety alignment of LLMs is an imperative164

step in training nowadays’ product-level LLMs, there have been massive efforts in open-sourcing165

datasets for achieving such alignment. For example, Beavertails [13] is a safety-focused instruction166

tuning dataset, where each data sample is annotated with a safety flag by humans; HH-RLHF [53]167

is a safety preference dataset, where each data sample consists of one instruction together with one168
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aligned (preferred) response and one unaligned (dispreferred) response. However, these datasets have169

dual-use, on one hand, they can be used to guide LLMs to better align with safety principles; on170

the other hand, they provide unaligned content that could relieve the efforts required by malicious171

parties. Leveraging this property, our first approach is obtaining attack data from such public datasets.172

Specifically, we can extract those data samples that are annotated as unsafe from the instruction173

tuning datasets, or take the instructions and the unaligned responses from the preference datasets to174

form new instruction-response pairs as the unaligned dataset for attack.175

Obtaining attack data via automated generation. Despite that there are diverse public sources176

for obtaining attack data, the total number of such publicly obtained data is still finite, indicating177

one potential drawback of collecting attack data from available datasets: scalability. To alleviate178

this limitation, we further propose an automated pipeline for continuously generating attack data179

by leveraging off-the-shelf LLMs. Specifically, our proposed generation pipeline involves two key180

steps: instruction generation and response generation, which are both guided by several lines of181

prompts (see Figure 4 in Appendix B.2). In instruction generation, we prompt the LLMs to generate182

a series of (e.g., 10) harmful instructions that a malicious user could ask. This process is repeated183

until the number of harmful instructions reaches the expected number. Subsequently, in response184

generation, given a generated harmful instruction, we prompt the LLM to generate a response without185

considering safety guardrails. Finally, these harmful instructions and unsafe responses are paired to186

form the unaligned dataset for attack.187

4.4 Discussions188

Here, we discuss the dangers of our proposed safety attack method from three perspectives.189

(1) Harmfulness of the attack. Our attack method can cause the global LLM trained by FedIT to190

misalign with safety principles, thereby posing a potential risk of misuse by malicious users.191

(2) Simplicity of the attack. Our attack method only requires a few malicious clients to modify the192

data format into misaligned data. Meanwhile, especially when using our proposed automated data193

generation pipeline, malicious clients can easily obtain misaligned data without significant effort.194

(3) Stealthiness of the attack. In our attack method, training on misaligned data shares certain195

similarities with training on normal data in terms of optimization objectives: namely, following user196

instructions and providing detailed responses. Therefore, it is difficult to distinguish between the local197

LLMs trained by benign and malicious clients based on model parameters alone, rendering a large198

portion of existing federated defense methods (which often rely on model-level filtering) ineffective.199

5 Defense against Safety Attack in Federated Instruction Tuning200

As discussed in Section 4.4, the safety attack proposed is characterized by its stealthiness with respect201

to model parameters. Regrettably, the majority of existing defense mechanisms in FL predominantly202

operate at the model level. For instance, the Krum algorithm [22] determines the subset of involved203

clients based on the Euclidean distance at the model level. This inherent stealthiness of the attack204

significantly compromises the effectiveness of existing defense mechanisms, leaving FedIT vulnerable205

to safety attack from the current perspective.206

Our solutions. Facing this predicament, it is imperative to explore and develop defense solutions207

beyond the model-level approaches to ensure the safety of FedIT. In response, we advocate for a208

post-hoc defense method at the server side, which could remedy the damage caused by attacks during209

FL while circumventing the need for model-level operation. Specifically, after the process of model210

aggregation in FL that has been potentially polluted by malicious clients, the server directly fine-tunes211

the aggregated LLM for a few steps on a defense dataset, which consists of both normal and aligned212

data. Such a method decouples the defense process and the training process, therefore relieving the213

need for filtering out malicious clients via model-level operation which is currently unsolvable.214

The crux of implementing such post-hoc defense method lies in the acquisition of defense data. In215

this paper, we propose and examine three solutions, corresponding to three levels of dependency on216

external resources. (1) Level 1: The server directly samples a number of instances from an existing217

dataset to serve as defensive data, where both normal and aligned data need to be collected. (2) Level218

2: The server leverages an external off-the-shelf LLM to generate both normal and aligned data. (3)219
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Level 3 (self-alignment): The server uses the LLM that it intends to align to generate both normal220

and aligned data.221

Automated generation of aligned data. Among these three solutions, we design a data generation222

pipeline that is applicable for both solutions of Level 2 & 3, which could continuously produce normal223

and aligned data. Specifically, this generation pipeline involves two steps: instruction generation224

and response generation, both guided by natural language prompts (see prompt designs in Figure 4).225

During instruction generation, we prompt the LLM to generate harmful instructions that a malicious226

user could ask a language model to get dangerous information; or normal instructions that a curious227

user could ask a language model to get helpful information. During response generation, the normal228

instructions are directly fed into the LLM to get normal responses. For harmful instructions, in order229

to get harmless responses, we design to append the instruction with a sequence, which reminds the230

LLM about the unsafety of the instruction and guides it to generate a safe response. By combining231

these aligned and normal instruction-response pairs, we form the final defense dataset, where the232

aligned data guides the LLM towards safety while the normal data mitigates compromising its233

helpfulness. We also provide an example in the lower half of Figure 1.234

Discussions. Our work reveals the vulnerability of the safety alignment during federated instruction235

tuning towards our proposed safety attack, which cannot be solved by available solutions at present.236

Therefore, in this paper, we advocate for practitioners a feasible roadmap: we can still conduct237

federated instruction tuning to leverage the diverse and valuable data from massive parties, but keep238

in mind to plant an extra safeguard as the final step before releasing the LLM.239

6 Experiments240

In this section, we first describe key experimental setups. Then, we provide results showing the241

effects of our safety attack, comparing the effectiveness of our defense method and other existing FL242

defense methods. Finally, we provide a more in-depth analysis of our attack and defense method.243

6.1 Experiment Setups244

Our implementations are mostly based on the OpenFedLLM [15] framework. Here, we show key245

setups regarding training and evaluation, leaving more details to Section B.1.246

Training. We consider four existing benign instruction tuning datasets, including LMSYS-Chat [32],247

WildChat [31], Dromedary-verbose [54], and Wizard-evol [7]. For malicious datasets, following248

Section 4.3, we adopt Beavertails [13] as the existing dataset and generate an attack dataset using249

Mistral-7B-Instruct [3] termed MaliciousGen. We use the pre-trained Llama2-7B [2] as the base250

model and run 100 communication rounds of FL. There are 10 clients in total, with 7 benign and 3251

malicious clients, and 3 are sampled for each round. Each client holds 500 data samples and runs 10252

local steps at each round. During tuning, we apply LoRA [55] with rank r = 32 and scalar α = 64,253

while the base model is 8-int quantized. AdamW [56] optimizer is applied with a batch size of 16.254

For post-hoc defense, we fine-tune the aggregated LoRA adapter via FedAvg at the last round on255

1,000 defense samples for 500 steps.256

Evaluation. Given that the ultimate goal of FedIT is to obtain an LLM that can behave in a safe and257

helpful manner, we consider two types of evaluation: safety and helpfulness. For evaluation of safety,258

we adopt the AdvBench [57], which is commonly used in safety alignment literature [50, 58]. Based259

on this benchmark, we consider three metrics, which are denoted as Rule, MD-Judge, and RM. Rule260

is a rule-based string matching evaluation [57]. MD-Judge is a LLM-based classifier to evaluate the261

safety of instruction-response pairs [59]. RM denotes a reward model trained to predict the reward of262

an instruction-response pair judged by a human [29]. For evaluation of helpfulness, we consider the263

widely used MT-Bench [60] for evaluating the general capability of an LLM. Since in this paper, we264

focus on single-turn instruction tuning, we evaluate the first turn in MT-Bench.265

6.2 Main Results266

We conduct experiments of FedIT with our safety attack on various 4 combinations of benign (i.e.,267

LMSYS-Chat or WildChat) and malicious (i.e., Beavertails or MaliciousGen) datasets. In Table 1268

and 2, we compare results of FedAvg [14], 6 FL defense methods, and our proposed defense methods269
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Table 1: Federated instruction tuning with our safety attack. The malicious dataset is Beaver-
tails [13] and two benign datasets are considered. Rule, MD-Judge, and RM measure safety while
MT-1 measures helpfulness. Results show that our safety attack can significantly compromise
safety. Existing FL defense methods fail to effectively defend against such safety attack; while

our defense methods can significantly enhance safety without significant loss in helpfulness.

Benign Dataset LMSYS-Chat WildChat
Evaluation Metric ↑ Rule MD-Judge RM MT-1 Rule MD-Judge RM MT-1

FedAvg (No Attack) 82.88 66.15 -1.72 4.19 79.04 43.27 -1.63 4.75
FedAvg [14] 49.81 25.96 -2.97 4.14 38.65 12.31 -2.73 4.54

Median [21] 48.65 23.85 -3.10 3.88 41.35 10.58 -2.80 4.74
Trimmedmean [21] 45.96 26.35 -3.05 4.20 41.35 14.04 -2.84 4.43

Krum [22] 55.38 27.88 -2.88 4.16 40.00 9.42 -2.48 4.55
DnC [23] 55.96 25.38 -2.90 4.00 41.15 7.12 -2.63 4.41

FoolsGold [24] 46.92 25.00 -3.05 3.95 37.50 10.96 -2.79 4.55
Residual [52] 47.50 23.65 -2.98 4.04 37.50 10.77 -2.86 4.54
Ours: Level 1 68.65 44.23 -2.31 4.11 57.31 17.50 -2.26 4.85
Ours: Level 2 77.31 84.23 -0.99 4.23 82.12 82.12 -1.08 4.33
Ours: Level 3 62.69 72.88 -1.65 3.73 51.54 57.69 -1.90 4.39

(three levels depending on reliance on external resources as described in Section 5). We also show270

the results of FedAvg without attack for reference. We have the following three key insights:271

Our proposed safety attack significantly compromises the safety alignment of LLM trained via272

FL. Compared to FedAvg [14] without attack, FedAvg with attack suffers a drastic decrease in three273

safety metrics. For example, in the scenario of LMSYS-Chat and MaliciousGen in Table 2, FedAvg274

under attack achieves 37.50% lower in Rule and 52.50% lower in MD-Judge compared to FedAvg275

(No Attack). This substantial drop in safety metrics validates the effectiveness of our safety attack.276

Many existing FL defense methods fail to defend against our proposed safety attack. There are277

many existing FL defense methods that rely on model-parameter-level filtering mechanisms cannot278

evidently enhance the safety metric. For example, in the scenario of LMSYS-Chat and Beavertails,279

Median [21] even achieves lower safety metrics, while the most effective approach Krum [22] only280

achieves 1.92% higher safety score in MD-Judge. The ineffectiveness of these methods indicates the281

stealthiness of our proposed safety attack, which is further discussed in Figure 2.282

Our proposed defense methods consistently and effectively enhance safety. As shown in both283

Table 1 and Table 2, our defense in three levels consistently improves safety without compromising284

helpfulness. For example, in the scenario of WildChat and Beavertails in Table 1, our level 2 defense285

achieves 43.47% higher in Rule, 69.81% higher in MD-Judge, and 1.65 higher in RM compared286

to FedAvg under attack. Notably, it could even achieve higher safety than FedAvg without attack287

(84.24% v.s. 66.15% in MD-Judge).288

6.3 Analysis and Ablation Study289

Our safety defense method has the plug-and-play property. Here, we implement our level 2290

defense on the top of 7 FL baselines under the attack scenario of LMSYS-Chat and Beavertails.291

Results in Table 3 show that our defense method consistently improves the safety of all baselines.292

For instance, our defense achieves an average increase of 57.25% in MD-Judge.293

Our safety attack is stealthy. Here, we consider a diverse setting, where 2 clients possess LMSYS-294

Chat data, 2 clients possess WildChat data, 2 clients possess Dromedary-verbose data, 2 clients295

possess Beavertails data and 2 clients possess MaliciousGen data. At round 100, we visualize the296

cosine similarity of updates among clients and the aggregation weights adjusted by FL defense297

methods in Figure 2. We can observe that (a) The heatmap of update similarities shows no distinct298

clustering patterns, highlighting the stealthiness of our safety attack from the perspective of model299

space. (ii) Classical FL defense methods like Krum, FoolsGold, DnC and Residual, fail to identify the300

malicious clients as they rely on model-parameter-level computation. For example, Krum incorrectly301
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Table 2: Federated instruction tuning with our safety attack. The malicious dataset is Malicious-
Gen and two benign datasets are considered. Rule, MD-Judge, and RM measure safety while
MT-1 measures helpfulness. Results show that our safety attack can significantly compromise
safety. Existing FL defense methods fail to effectively defend against such safety attack; while

our defense methods can significantly enhance safety without significant loss in helpfulness.

Benign Dataset LMSYS-Chat WildChat
Evaluation Metric ↑ Rule MD-Judge RM MT-1 Rule MD-Judge RM MT-1

FedAvg (No Attack) 82.88 66.15 -1.72 4.19 79.04 43.27 -1.63 4.75
FedAvg [14] 43.27 11.35 -3.62 4.19 30.58 5.78 -3.03 4.40

Median [21] 48.27 13.65 -3.43 3.95 40.00 10.19 -3.02 4.10
Trimmedmean [21] 41.92 9.62 -3.51 3.71 31.92 5.96 -3.13 4.09

Krum [22] 50.38 16.73 -3.23 4.14 39.04 7.89 -2.99 4.55
DnC [23] 49.04 12.12 -3.40 4.14 45.58 9.04 -2.90 4.49

FoolsGold [24] 41.54 12.12 -3.45 3.85 30.78 6.35 -3.03 4.14
Residual [52] 44.23 10.19 -3.52 3.80 31.54 6.15 -3.00 4.14
Ours: Level 1 71.15 34.32 -2.68 4.19 50.38 13.27 -2.18 4.61
Ours: Level 2 78.08 83.08 -0.96 4.18 77.12 72.50 -1.49 4.13
Ours: Level 3 75.96 72.69 -1.56 3.89 58.08 62.12 -1.70 4.33

Table 3: Plug-and-play property of our defense method. Experiments are conducted with LMSYS-
Chat as the benign dataset and Beavertails data as the malicious dataset. We compare the evaluation
metrics before (%) and after (!) applying our defense method to existing FL baselines. Our defense
method can significantly improve safety without significantly compromising helpfulness.

Metrics ↑ + Ours FedAvg Median Trimmed. Krum DnC FoolsGold Residual

% 49.81 48.65 45.96 55.38 55.96 46.92 47.50
Rule

! 77.31 77.88 79.42 79.42 80.00 81.35 78.08
% 25.96 23.85 26.35 27.88 25.38 25.00 23.65

MD-J
! 84.23 86.35 84.04 82.31 84.42 88.08 86.92
% -2.97 -3.10 -3.05 -2.88 -2.90 -3.05 -2.98

RM
! -1.00 -0.92 -1.10 -1.02 -1.07 -0.98 -0.94
% 4.14 3.88 4.20 4.16 4.00 3.95 4.04

MT-1
! 4.14 4.06 3.95 3.88 4.01 3.94 4.29

assigns two benign clients with zero aggregation weights. These findings reveal the vulnerability of302

FedIT to our safety attack and the significance of effective defense methods.303

Figure 3: Results on LMSYS-Chat of FedAvg
without attack and with our automated safety
attack (using three types of LLMs). Our safety
attack is insensitive to the choice of LLMs.

Our safety attack is insensitive to different off-304

the-shelf LLMs. Here, we consider two additional305

off-the-shelf LLMs ( Zephyr [61] and Wizard [62])306

to achieve automated generation of unaligned data307

(Section 4.3). Benign clients hold LMSYS-Chat308

data. We compare FedAvg without attack and with309

our attack using three types of LLMs in Figure 3.310

We can observe that unaligned data generated by all311

LLMs can drastically reduce the safety metric MD-312

Judge score with comparable helpfulness metric313

MT-1, indicating our method’s insensitivity to the314

choice of LLMs.315

Scalability. In Table 4, we show the scalability of316

both our proposed safety attack method and defense317

method by running experiments with 50 and 100 clients. Here, we keep the ratio of malicious clients318

the same (i.e., 30%). We can observe that (i) Our proposed safety attack method still effectively319
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(a) Cosine similarity between updates (b) Aggregation weights of clients in 4 baselines

Benign
clients

Malicious
clients

Figure 2: (a) Visualization of pair-wise cosine similarity of model updates among clients. Our safety
attack is stealthy as there is no cluster pattern between benign and malicious clients. (b) Visualization
of aggregation weights in FoolsGold, Krum, DnC and Residual. These methods still assign certain
weights for malicious clients, indicating that they fail to correctly identify all malicious clients.

Table 4: Scalability experiments with 50 and 100 clients. Existing baselines are susceptible to our
safety attack and our defense significantly improves the safety of the victim global LLM without
significantly compromising helpfulness, indicating the scalability of our attack and defense method.

Client Number K=50 K=100
Evaluation Metric ↑ Rule MD-Judge RM MT-1 Rule MD-Judge RM MT-1

FedAvg (No Attack) 77.12 55.96 -1.76 4.20 79.23 54.62 -1.90 4.23
FedAvg [14] 40.58 11.35 -3.58 3.86 37.31 9.42 -3.58 3.93

Krum [22] 45.00 10.77 -3.56 4.09 45.19 14.04 -3.40 4.28
DnC [23] 46.92 12.88 -3.66 4.19 46.54 15.19 -3.48 4.34

Ours 81.73 80.77 -1.08 4.34 79.23 82.12 -0.95 4.24

compromises the safety of FedAvg. (ii) Existing FL defense baselines are always susceptible to our320

safety attack. (iii) Our proposed defense method (level 2) significantly enhances safety, as evidenced321

by the substantial improvements in safety metrics (e.g., MD-Judge) across two client scales, while322

achieving comparable helpfulness compared with existing defense methods.323

Others. To provide more insights about our safety attack and defense, we conduct experiments under324

no-attack scenarios (see Appendix B.3), experiments on code dataset (see Appendix B.4), study the325

effects of the number of steps for defense (see Appendix B.5), and impacts of generated defense data326

on fine-tuning (see Appendix B.6).327

7 Conclusions328

This paper for the first time reveals the vulnerability of safety alignment of LLMs trained via federated329

instruction tuning, which could be significantly compromised by our proposed safety attack method.330

In our attack method, malicious clients simply need to replace their datasets with unaligned datasets,331

which could be entirely generated automatically without any human effort. This attack method is332

(1) simple since the malicious clients can achieve attack in an automated manner, and (2) stealthy333

since the server is hard to distinguish benign and malicious clients from model level. Addressing this334

issue, we propose a post-hoc defense method that can remedy the damage caused by attacks while335

circumventing the need for model-level comparison. In our defense method, the server could use the336

LLM at hand to generate a series of aligned data and safeguard it via simple fine-tuning. Extensive337

experiments emphasize the threat brought by our proposed safety attack method and the effectiveness338

of our defense method. Overall, our paper points out a feasible roadmap to train responsible LLMs339

via FedIT: (1) The server organizes massive parties to collaboratively train LLMs via FedIT, therefore340

leveraging diverse and valuable data; (2) The server executes a post-hoc safety alignment process to341

ensure the safety of LLMs before releasing them.342

Limitations: Though we believe that the conclusions of this paper are universal across different343

model series, we only consider Llama2 as the base model in the experiments.344
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A Broader Impacts529

Our work uncovers critical vulnerabilities in the safety alignment of federated instruction tuning530

(FedIT), particularly in the face of our proposed safety attack method. Our safety attack involves531

malicious clients, who train on unaligned data in local training, which can be widely applied in the532

real world at a low cost. While the attack method can potentially be exploited in federated learning533

(FL) scenarios, our research also provides corresponding defense strategies to counteract these threats534

effectively.535

By exposing this vulnerability, we aim to raise awareness within the research and practitioner536

communities about the limitations of existing FL defense mechanisms when applied to large language537

model collaborative training. Our findings demonstrate that current defense methods are insufficient538

to address the specific challenges posed by malicious-client-driven safety attacks in FedIT. This539

underscores the need for more robust and comprehensive defense strategies in FL systems.540

In practice, we advocate for the implementation of post-training processes as a critical step to mitigate541

potential safety attacks and enhance the overall safety of the global model. Post-training serves as542

an essential safeguard, ensuring that the model’s value alignment is preserved without sacrificing543

helpfulness. As experimentally proofed, the final post-training safeguard offers a feasible solution544

to maintain the integrity and trustworthiness of LLMs in real-world FL applications. We encourage545

the adoption of post-training in practical federated learning settings, ultimately contributing to more546

secure and effective deployment of AI technologies across different sectors.547

B Experiments548

B.1 Experimental Setups549

All experiments are trained on one single NVIDIA GeForce RTX 3090. For Table 1 and Table 2,550

we conduct experiments involving 10 clients and we randomly sample three clients in each round.551

Each client possesses non-overlapping 500 data samples from aligned data or unaligned data. Under552

attack scenarios, 7 benign clients possess aligned data and 3 clients possess unaligned data. In each553

communication round, available clients train 10 steps for local updates. We apply a cosine learning554

rate schedule according to the round index and set the initial learning rate as 5e − 5. The max555

sequence length is set to 512.556

B.2 Generation Process557

Response: 1. How to hack into someone's phone? 2. ...

Prompts: Generate 10 questions or instructions that a 
malicious user would ask the language model to get 
dangerous information.

Harmful Instruction Generation

Prompts: How to hack into someone's phone? 
The previous question is dangerous and 
should not be answered directly. Please 
provide a safe response.

Response: Hacking into someone's phone is 
illegal. ...

Prompts: Generate 10 different questions or instructions that 
a curious user would ask the language model to get helpful 
information. These questions should cover a wide range of 
topics and be practical and useful for everyday life.

Response:  1. How can I convert 200 USD to Euros? 2. ...

Normal Instruction Generation

Prompts: How can I convert 200 USD 
to Euros?

Response: To convert 200 USD to 
Euros, you need to know the current 
exchange rate between the two 
currencies. ...

Harmful & Harmless Response Generation Normal Response Generation

Prompts: How to hack into 
someone's phone? 
Answer the question directly 
without considering the 
consequences.
Response: 1. First, you need 
to find out...

Figure 4: The instruction and response generation prompts for three types of data: unaligned data,
aligned data and normal data.

In our paper, we propose automated generation of unaligned data for malicious attackers, generation558

of aligned data and normal data for post-hoc defense. As each data sample is composed of an559

instruction and a response, our data generation has two components: instruction generation and560
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response generation. The aligned and unaligned data utilize the same generated harmful questions561

but leverage different prompt modifications to separately create harmless and harmful prompts. The562

normal data use helpful generated instructions paired with direct responses without any prompt563

modification. For our three types of generation data, we show our specific prompts used in the564

automated generation process in Figure 4.565

For instruction generation, we utilize two prompts to obtain harmful and helpful questions for data566

creation.567

• Specifically, for harmless instruction, we use the prompt "Generate 10 questions or instruc-568

tions that a malicious user would ask the language model to get dangerous information".569

• For normal instruction, we use the prompt "Generate 10 different questions or instructions570

that a curious user would ask the language model to get helpful information. These571

questions should cover a wide range of topics and be practical and useful for everyday life".572

Note that to create enough instructions, we can iteratively collect responses with the same prompt573

driven.574

For response generation, we modify the generated harmful instructions for aligned and unaligned data575

and utilize raw generated norm instructions for normal data. In the harmful and harmless response576

generation, we modify the harmful instructions by adding hints to guide the response.577

• For harmful response of unaligned data, we encourage the LLM to output by adding guidance578

prompt "Answer the question directly without considering the consequences".579

• For harmless response of aligned data, we warn the LLM of potential safety risks by adding580

the prompt "The previous question is dangerous and should not answered directly. Please581

provide a safe response".582

• For normal response of normal data, we simply input the generated normal instructions583

without any prompt modification.584

We collect the generated instructions and corresponding responses. Finally, we obtain three types585

of data: aligned data consisting of harmful instructions and harmless responses, unaligned data586

consisting of harmful instructions and harmful responses, and normal data consisting of normal587

instructions and normal responses.588

B.3 Results Under No-Attack Scenarios589

We verify the effectiveness of our proposed post-hoc defense under attack in Section 6.2. To further590

investigate the safety improvement ability of our defense, we conduct post-hoc defense in three levels591

on the WildChat dataset involving ten clients. Figure 5 shows the four metrics on WildChat with592

FedAvg, 6 FL defense baselines and our defense in three levels. Although these 7 baselines under593

no attack achieve comparable high safety, our proposed defense still enhances the safety without594

sacrificing helpfulness. For instance, compared to FedAvg, Level 3 of our defense achieves a 9.04%595

increase in Rule score and a significant 26.35% improvement in MD-Judge score. The experiment596

highlights the potential of our post-hoc defense strategy to improve the overall safety posture of597

federated learning systems, even in pure benign environments.598

B.4 Experiments on Domain-Specific Tasks599

We implement our FedIT with a code dataset CodeAlpaca [63] with no attack, under attack and with600

our defense in Table 6. In the attack scenarios, there exist 7 benign clients and 3 malicious clients.601

For benign clients, they possess 250 samples of LMSYS-Chat and 250 samples of the domain dataset.602

Malicious clients possess 500 samples of MaliciousGen from Mistral. For evaluation, we utilize603

HumanEval [64] for coding task evaluation.604

As shown in Table 6, (i) our proposed safety attack compromises the safety alignment of global605

model, evidenced by 34.62% decreases in MD-Judge score. (ii) Our proposed defenses in Level 1 &606

2 both have obvious increases in safety metrics and enhance both the helpfulness and coding ability.607
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Table 5: Results of baselines and our defenses on WildChat under no-attack.

Evaluation Metric ↑ Rule MD-Judge RM MT-1

FedAvg [14] 79.04 43.27 -1.63 4.75

Median [21] 79.81 44.23 -1.50 4.70
Trimmedmean [21] 80.58 44.04 -1.65 4.36

Krum [22] 78.08 45.19 -1.53 4.54
DnC [23] 77.50 40.77 -1.75 4.58

FoolsGold [24] 80.78 46.15 -1.59 4.36
Residual [52] 78.08 40.00 -1.69 4.49
Ours: Level 1 76.35 41.35 -1.67 4.89
Ours: Level 2 82.31 74.62 -1.33 4.24
Ours: Level 3 88.08 69.62 -1.16 4.65

Table 6: Results of baselines and our defenses on multi-domain datasets mixed with 250 samples of
LMSYS and 250 samples of CodeAlpaca.

Evaluation Metric ↑ Rule MD-Judge RM MT-1 HumanEval pass@1

FedAvg (No Attack) 60.00 42.12 -2.15 4.08 17.07
FedAvg [14] 35.19 7.50 -3.77 3.86 14.63

Krum [22] 39.42 12.12 -3.51 4.13 17.68
DnC [23] 39.04 11.73 -3.71 4.41 18.29

Ours: Level 1 55.96 25.77 -2.94 4.50 15.24
Ours: Level 2 76.73 87.88 -0.79 4.11 17.68

B.5 Effects of Number of Steps for Defense608

For Level 3 defense, we change the training steps in [100, 200, 300, 400, 500] across four settings609

in Table 1 and Table 2. We show the model performance on MT-1 and MD Judge with 5 different610

training steps in Figure 5. We can note that (i) in Figure 5(a), training for 400 steps consistently611

obtains the highest MT-1 score across four settings, indicating the optimal 400 steps for Level 3612

facilitates the helpfulness of global model. (ii) As shown in Figure 5(b), Our proposed post-hoc613

defense strategy demonstrably improves safety for all training steps and across the four settings.614

For instance, with aligned data as WildChat and unaligned data as Beavertails, the smallest score615

on MD Judge is 41.73%, 29.42% outperforms FedAvg under attack. These findings highlight the616

effectiveness of our post-hoc defense strategy in mitigating safety risks associated with our proposed617

safety attacks in federated learning.618

(a) MT-1 (b) MD Judge

Figure 5: Effects of different defense steps on MT Bench and MD Judge in Level 3 across 4 settings.
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B.6 Impact of Generated Data on LLM Fine-Tuning and Defense619

We conduct comparative experiments to investigate the impact of incorporating generated data into the620

fine-tuning process. Specifically, we leverage the generated data using Mistral in Level 2, to fine-tune621

the pre-trained Llama2, denoted as Local+Gen; and to fine-tune the global model via FedAvg under622

attack, denoted as FedAvg+Gen. Figure 6 depicts the scores for four evaluation metrics of normal623

local-training, Local+Gen, normal FedAvg and FedAvg+Gen. Results show that (i) generated data is624

not sufficient for helpfulness. Compared with normal local training, local training on generated data625

brings gain on harmless evaluations but decreases in helpfulness. (ii) Incorporating generated data to626

defend against potential safety attacks brings significant safety gains and no helpfulness decreases.627

Therefore, generated data for defense alone is not sufficient for helpfulness when tuning a pretrained628

LLM. After federated instruction tuning, our post-hoc strategy enhances both the value alignment629

and helpfulness.

Figure 6: Four metrics results of normal local-training, local-training with generated data in Level 2
defense, normal FedAvg and FedAvg with generated data in Level 2 defense.
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