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ABSTRACT

Energy-based learning is a powerful learning paradigm that encapsulates various
discriminative and generative approaches. An energy-based model (EBM) is typi-
cally formed of inner-model(s) that learn a combination of the different features to
generate an energy mapping for each input configuration. In this paper, we focus
on the diversity of the produced feature set. We extend the probably approximately
correct (PAC) theory of EBMs and analyze the effect of redundancy reduction on
the performance of EBMs. We derive generalization bounds for various learning
contexts, i.e., regression, classification, and implicit regression, with different en-
ergy functions and we show that indeed reducing redundancy of the feature set
can consistently decrease the gap between the true and empirical expectation of
the energy and boosts the performance of the model.

1 INTRODUCTION

The energy-based learning paradigm was first proposed (Zhu & Mumford, 1998; LeCun et al., 2006)
as an alternative to probabilistic graphical models (Koller & Friedman, 2009). As their name sug-
gests, energy-based models (EBMs) map each input ‘configuration’ to a single scalar, called the
‘energy’. In the learning phase, the parameters of the model are optimized by associating the desired
configurations with small energy values and the undesired ones with higher energy values (Kumar
et al., 2019; Song & Ermon, 2019; Yang et al., 2016). In the inference phase, given an incomplete
input configuration, the energy surface is explored to find the remaining variables which yield the
lowest energy. EBMs encapsulate solutions to several supervised approaches (LeCun et al., 2006;
Fang & Liu, 2016; Gustafsson et al., 2022; 2020b;a) and unsupervised learning problems (Deng
et al., 2020; Bakhtin et al., 2021; Zhao et al., 2020; Xu et al., 2022) and provide a common theoret-
ical framework for many learning models, including traditional discriminative (Zhai et al., 2016; Li
et al., 2020) and generative (Zhu & Mumford, 1998; Xie et al., 2017b; Zhao et al., 2017; Che et al.,
2020; Khalifa et al., 2021) approaches.

Formally, let us denote the energy function by E(h,x,y), where h = GW (x) represents the model
with parameters W to be optimized during training and x,y are sets of variables. Figure 1 illustrates
how classification, regression, and implicit regression can be expressed as EBMs. In Figure 1 (a), a
regression scenario is presented. The input x, e.g., an image, is transformed using an inner model
GW (x) and its distance, to the second input y is computed yielding the energy function. A valid
energy function in this case can be the L1 or the L2 distance. In the binary classification case
(Figure 1 (b)), the energy can be defined as E(h,x,y) = −yGW (x) . In the implicit regression
case (Figure 1 (c)), we have two inner models and the energy can be defined as the L2 distance
between their outputs E(h,x,y) = 1

2 ||G
(1)
W (x)−G

(2)
W (y)||22. In the inference phase, given an input

x, the label y∗ can be obtained by solving the following optimization problem:

y∗ = argmin
y

E(h,x,y). (1)

An EBM typically relies on an inner model, i.e., GW (x), to generate the desired energy landscape
(LeCun et al., 2006). Depending on the problem at hand, this function can be constructed as a linear
projection, a kernel method, or a neural network and its parameters are optimized in a data-driven
manner in the training phase. Formally, GW (x) can be written as

GW (x) =

D∑
i

wiϕi(x), (2)
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Figure 1: An illustration of energy-based models used to solve (a) a regression problem (b) a binary
classification problem (c) an implicit regression problem.

where {ϕ1(·), · · · , ϕD(·)} is the feature set, which can be hand-crafted, separately trained from
unlabeled data (Zhang & LeCun, 2017), or modeled by a neural network and optimized in the
training phase of the EBM (Xie et al., 2016; Yu et al., 2020; Xie et al., 2021). In the rest of the
paper, we assume that the inner models GW defined in the energy-based learning system (Figure 1)
are obtained as a weighted sum of different features as expressed in equation 2.

in Zhang (2013), it was shown that simply minimizing the empirical energy over the training data
does not theoretically guarantee the minimization of the expected value of the true energy. Thus,
developing and motivating novel regularization techniques is required (Zhang & LeCun, 2017).
We argue that the quality of the feature set {ϕ1(·), · · · , ϕD(·)} plays a critical role in the overall
performance of the global model. In this work, we extend the theoretical analysis of (Zhang, 2013)
and focus on the ‘diversity’ of this set and its effect on the generalization ability of the EBMs.
Intuitively, it is clear that a less correlated set of intermediate representations is richer and thus able
to capture more complex patterns in the input. Thus, it is important to avoid redundant features for
achieving a better performance. However, a theoretical analysis is missing. We start by quantifying
the diversity of a set of feature functions. To this end, we introduce ϑ− τ -diversity:
Definition 1 ((ϑ − τ )-diversity). A set of feature functions, {ϕ1(·), · · · , ϕD(·)} is called (ϑ − τ )-
diverse, if there exists a constant ϑ ∈ R, such that for every input x we have

1

2

D∑
i ̸=j

(ϕi(x)− ϕj(x))
2 ≥ ϑ2 (3)

with a high probability τ .

Intuitively, if two feature maps ϕi(·) and ϕj(·) are non-redundant, they have different outputs for
the same input with a high probability. However, if, for example, the features are extracted using a
neural network with a ReLU activation function, there is a high probability that some of the features
associated with the input will be zero. Thus, defining a lower bound for the pair-wise diversity
directly is impractical. So, we quantify diversity as the lower-bound over the sum of the pair-wise
distances of the feature maps as expressed in equation 3 and ϑ measures the diversity of a set.

In the machine learning context, diversity has been explored in ensemble learning (Li et al., 2012; Yu
et al., 2011; Li et al., 2017), sampling (Derezinski et al., 2019; Bıyık et al., 2019), ranking (Wu et al.,
2019; Qin & Zhu, 2013), pruning (Singh et al., 2020; Lee et al., 2020), and neural networks (Xie
et al., 2015; Shen et al., 2021; Laakom et al., 2022b; Cogswell et al., 2016; Laakom et al., 2022a;
2023b). in Xie et al. (2015; 2017a), it was shown theoretically and experimentally that avoiding
redundancy over the weights of a neural network using the mutual angles as a diversity measure
improves the generalization ability of the model.

In this work, we explore a new line of research, where diversity is defined over the feature maps
directly, using the (ϑ − τ )-diversity, in the context of energy-based learning. We are interested in
the following question ‘Given an EBM, which relies on a set of features to make its prediction, how
does the diversity of these features affect the performance?’. In Zhao et al. (2017), a similar idea was
empirically explored. A “repelling regularizer” was proposed to force non-redundant or orthogonal
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feature representations. Moreover, the idea of learning while avoiding redundancy has been used
recently in the context of semi-supervised learning (Zbontar et al., 2021; Bardes et al., 2021). Re-
ducing redundancy by minimizing the cross-correlation of features learned using a Siamese network
(Zbontar et al., 2021) was empirically shown to improve the generalization ability, yet a theoretical
analysis to prove this has so far been lacking.

In this paper, we close the gap between empirical experience and theory. We theoretically study the
generalization ability of EBMs in different learning contexts, i.e., regression, classification, implicit
regression, and we derive new generalization bounds using the (ϑ − τ )-diversity. In particular, we
show that the generalization bound scales as O

(√
DA2 − ϑ2

)
, where A is the maximum L2 norm

of the feature vector and ϑ is the features’ diversity. As the bound is inversely proportional to ϑ,
this shows that avoiding redundancy indeed improves the generalization ability of the model. The
contributions of this paper can be summarized as follows:

• We explore a new line of research, where diversity is defined over the features representing
the input data and not over the model’s parameters. To this end, we introduce (ϑ − τ )-
diversity as a quantification of the diversity of a given feature set.

• We extend the theoretical analysis (Zhang, 2013) and study the effect of avoiding redun-
dancy of a feature set on the generalization of EBMs.

• We derive bounds for the expectation of the true energy in different learning contexts, i.e.,
regression, classification, and implicit regression, using different energy functions. Our
analysis consistently shows that avoiding redundancy by increasing the diversity of the
feature set can boost the performance of an EBM.

2 PAC-LEARNING OF EBMS WITH (ϑ− τ )-DIVERSITY

In this section, we derive a qualitative justification for (ϑ−τ )-diversity using probably approximately
correct (PAC) learning (Valiant, 1984; Mohri et al., 2018; Li et al., 2019). The PAC-based theory
for standard EBMs has been established in Zhang (2013). First, we start by defining Rademacher
complexity:
Definition 2. (Mohri et al., 2018; Bartlett & Mendelson, 2002) For a given dataset with m samples
S = {xi, yi}mi=1 from a distribution D and for a model space F : X → R with a single dimensional
output, the Empirical Rademacher complexity R̂m(F) of the set F is defined as follows:

R̂m(F) = Eσ

[
sup
f∈F

1

m

m∑
i=1

σif(xi)

]
, (4)

where the Rademacher variables σ = {σ1, · · · , σm} are independent uniform random variables in
{−1, 1}.

The Rademacher complexity Rm(F) is defined as the expectation of the Empirical Rademacher
complexity over training set, i.e., Rm(F) = ES∼Dm [R̂m(F)]. Based on this quantity, (Bartlett
& Mendelson, 2002), several learning guarantees for EBMs have been shown (Zhang, 2013). We
recall the following two lemmas related to the estimation error and the Rademacher complexity. In
Lemma 1, we review the main PAC-learning bound for EBMs with finite outputs.
Lemma 1. (Zhang, 2013) For a well-defined energy function E(h,x,y) over hypothesis class H,
input set X and output set Y , the following holds for all h in H with a probability of at least 1− δ

E(x,y)∼D[E(h,x,y)] ≤ 1

m

∑
(x,y)∈S

E(h,x,y) + 2Rm(E) +M

√
log(2/δ)

2m
, (5)

where E is the energy function class defined as E = {E(h,x,y)|h ∈ H}, Rm(E) is its Rademacher
complexity, and M is the upper bound of E .

Lemma 1 provides a generalization bound for EBMs with well-defined (non-negative) and bounded
energy. The expected energy is bounded using the sum of three terms: The first term is the empirical
expectation of energy over the training data, the second term depends on the Rademacher complexity
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of the energy class, and the third term involves the number of the training data m and the upper-
bound of the energy function M . This shows that merely minimizing the empirical expectation of
energy, i.e., the first term, may not yield a good approximation of the true expectation. In (Zhang
& LeCun, 2017), it has been shown that regularization using unlabeled data reduces the second and
third terms leading to better generalization.

In this work, we express these two terms using the (ϑ− τ )-diversity and show that employing a di-
versity strategy may also decrease the gap between the true and empirical expectation of the energy.
In Section 2.1, we consider the special case of regression and derive two bounds for two energy
functions based on L1 and L2 distances. In Section 2.2, we derive a bound for the binary classifi-
cation task using as energy function E(h,x,y) = −yGW (x) (LeCun et al., 2006). In Section 2.3,
we consider the case of implicit regression, which encapsulates different learning problems such as
metric learning, generative models, and denoising (LeCun et al., 2006). For this case, we use the
L2 distance between the inner models as the energy function. In the rest of the paper, we denote the
generalization gap, E(x,y)∼D[E(h,x,y)]− 1

m

∑
(x,y)∈S E(h,x,y) by ∆D,SE. All the proofs are

presented in the Appendix.

2.1 REGRESSION TASK

Regression can be formulated as an energy-based learning problem (Gustafsson et al., 2022;
2020b;a) (Figure 1 (a)) using the inner model h(x) = GW (x) =

∑D
i=1 wiϕi(x) = wTΦ(x).

We assume that the feature set is positive and well-defined over the input domain X , i.e., ∀x ∈
X : ||Φ(x)||2 ≤ A, the hypothesis class can be defined as follows: H = {h(x) = GW (x) =∑D

i=1 wiϕi(x) = wTΦ(x) | Φ ∈ F , ∀x : ||Φ(x)||2 ≤ A}, the output set Y ⊂ R is bounded,
i.e., y < B, and the feature set {ϕ1(·), · · · , ϕD(·)} is (ϑ− τ )-diverse with a probability τ . The two
typical valid energy functions which can be used for regression are E2(h,x,y) =

1
2 ||GW (x)−y||22

and E1(h,x,y) = ||GW (x)−y||1 (LeCun et al., 2006). We study these two cases and we show the-
oretically that for both energy functions avoiding redundancy improves the generalization of EBMs.

ENERGY FUNCTION: E2

In this subsection, we present our theoretical analysis on the effect of diversity on the generalization
ability of an EBM defined with the energy function E2(h,x,y) =

1
2 ||GW (x) − y||22. We start by

the following two Lemmas 2 and 3.

Lemma 2. With a probability of at least τ , we have

sup
x,W

|h(x)| ≤ ||w||∞
√
(DA2 − ϑ2). (6)

Lemma 3. With a probability of at least τ , we have

sup
x,y,h

|E(h,x,y)| ≤ 1

2
(||w||∞

√
(DA2 − ϑ2) +B)2. (7)

Lemmas 2 and 3 bound the supremum of the output of the inner model and the energy function as
a function of ϑ, respectively. As it can be seen, both terms are decreasing with respect to diversity.
Next, we bound the Rademacher complexity of the energy class, i.e., Rm(E).
Lemma 4. With a probability of at least τ , we have

Rm(E) ≤ 2D||w||∞(||w||∞
√
(DA2 − ϑ2) +B)Rm(F). (8)

Lemma 4 expresses the bound of the Rademacher complexity of the energy class using the diversity
constant and the Rademacher complexity of the features. Having expressed the different terms of
Lemma 1 using diversity, we now present our main result for an energy-basel model trained defined
using E2. The main result is presented in Theorem 1.

Theorem 1. For the energy function E(h,x,y) = 1
2 ||GW (x) − y||22, over the input set X ∈ RN ,

hypothesis class H = {h(x) = GW (x) =
∑D

i=1 wiϕi(x) = wTΦ(x) | Φ ∈ F , ∀x : ||Φ(x)||2 ≤
A}, and output set Y ⊂ R, if the feature set {ϕ1(·), · · · , ϕD(·)} is (ϑ−τ )-diverse with a probability
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τ , with a probability of at least (1− δ)τ , the following holds for all h in H:

∆D,SE ≤ 4D||w||∞(||w||∞
√
DA2 − ϑ2+B)Rm(F)+

1

2
(||w||∞

√
DA2 − ϑ2+B)2

√
log(2/δ)

2m
,

(9)
where B is the upper-bound of Y , i.e., y ≤ B, ∀y ∈ Y .

Theorem 1 express the special case of Lemma 1 using the (ϑ − τ )-diversity of the feature set
{ϕ1(·), · · · , ϕD(·)}. As it can been seen, the bound of the generalization error is inversely pro-
portional to ϑ2. This theoretically shows that reducing redundancy, i.e., increasing ϑ, reduces the
gap between the true and the empirical energies and improves the performance of the EBMs.

ENERGY FUNCTION: E1

In this subsection, we consider the second case of regression using the energy function
E1(h,x,y) = ||GW (x) − y||1. Similar to the previous case, we start by deriving bounds for
the energy function and the Rademacher complexity of the class using diversity in Lemmas 5 and 6.
Lemma 5. With a probability of at least τ , we have

sup
x,y,h

|E(h,x,y)| ≤ (||w||∞
√
DA2 − ϑ2 +B). (10)

Lemma 6. With a probability of at least τ , we have

Rm(E) ≤ 2D||w||∞Rm(F). (11)

Next, we derive the main result of the generalization of the EBMs defined using the energy function
E1. The main finding is presented in Theorem 2.
Theorem 2. For the energy function E(h,x,y) = ||GW (x) − y||1, over the input set X ∈ RN ,
hypothesis class H = {h(x) = GW (x) =

∑D
i=1 wiϕi(x) = wTΦ(x) | Φ ∈ F , ∀x ||Φ(x)||2 ≤

A}, and output set Y ⊂ R, if the feature set {ϕ1(·), · · · , ϕD(·)} is (ϑ−τ )-diverse with a probability
τ , then with a probability of at least (1− δ)τ , the following holds for all h in H:

∆D,SE ≤ 4D||w||∞Rm(F) +
(
||w||∞

√
DA2 − ϑ2 +B

)√ log(2/δ)

2m
, (12)

where B is the upper-bound of Y , i.e., y ≤ B, ∀y ∈ Y .

Similar to Theorem 1, in Theorem 2, we consistently find that the bound of the true expectation
of the energy is a decreasing function with respect to ϑ. This proves that for the regression task
reducing redundancy can improve the generalization performance of the energy-based model.

2.2 BINARY CLASSIFIER

Here, we consider the problem of binary classification, as illustrated in Figure 1 (b). Using the
same assumption as in regression for the inner model, i.e., h(x) = GW (x) =

∑D
i=1 wiϕi(x) =

wTΦ(x), energy function of E(h,x,y) = −yGW (x) (LeCun et al., 2006), and the (ϑ−τ )-diversity
of the feature set, we express Lemma 1 for this specific configuration in Theorem 3.
Theorem 3. For the energy function E(h,x,y) = −yGW (x), over the input set X ∈ RN , hypoth-
esis class H = {h(x) = GW (x) =

∑D
i=1 wiϕi(x) = wTΦ(x) | Φ ∈ F , ∀x : ||Φ(x)||2 ≤ A},

and output set Y ⊂ R, if the feature set {ϕ1(·), · · · , ϕD(·)} is (ϑ− τ )-diverse with a probability τ ,
then with a probability of at least (1− δ)τ , the following holds for all h in H:

∆D,SE ≤ 4D||w||∞Rm(F) + ||w||∞
√
DA2 − ϑ2

√
log(2/δ)

2m
. (13)

Similar to the regression task, we note that the upper-bound of the true expectation is a decreasing
function with respect to the diversity term. Thus, a less redundant feature set, i.e., higher ϑ, has a
lower upper-bound for the true energy.
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2.3 IMPLICIT REGRESSION

In this section, we consider the problem of implicit regression. This is a general formulation of
a different set of problems such as metric learning, where the goal is to learn a distance function
between two domains, image denoising, object detection as illustrated in LeCun et al. (2006), or
semi-supervised learning (Zbontar et al., 2021). This form of EBM (Figure 1 (c)) has two inner
models, G1

W (·) and G2
W (·), which can be equal or different according to the problem at hand.

Here, we consider the general case, where the two models correspond to two different combinations
of different features, i.e., G(1)

W (x) =
∑D(1)

i=1 w
(1)
i ϕ

(1)
i (x) and G

(2)
W (y) =

∑D(2)

i=1 w
(2)
i ϕ

(2)
i (y). Thus,

we have a different (ϑ− τ )-diversity term for each set. The final result is presented in Theorem 4.

Theorem 4. For the energy function E(h,x,y) = 1
2 ||G

(1)
W (x)−G

(2)
W (y)||22, over the input set X ∈

RN , hypothesis class H = {h(1)(x) = G
(1)
W (x) =

∑D(1)

i=1 w
(1)
i ϕ

(1)
i (x) = w(1)TΦ(1)(x), h(2)(x) =

G
(2)
W (y) =

∑D(2)

i=1 w
(2)
i ϕ

(2)
i (y) = w(2)TΦ(2)(y) | Φ(1) ∈ F1, Φ

(2) ∈ F2, ∀x : ||Φ(1)(x)||2 ≤
A(1), ∀y : ||Φ(2)(y)||2 ≤ A(2)}, and output set Y ⊂ RN , if the feature set {ϕ(1)

1 (·), · · · , ϕ(1)

D(1)(·)}
is ϑ(1)-diverse with a probability τ1 and the feature set {ϕ(2)

1 (·), · · · , ϕ(2)

D(2)(·)} is ϑ(2)-diverse with
a probability τ2, then with a probability of at least (1− δ)τ1τ2, the following holds for all h in H:

∆D,SE ≤ 8(
√
J1 +

√
J2)
(
D(1)||w(1)||∞Rm(F1) +D(2)||w(2)||∞Rm(F2)

)
+(J1 + J2)

√
log(2/δ)

2m
, (14)

where J1 = ||w(1)||2∞
(
D(1)A(1)2 − ϑ(1)2

)
and J2 = ||w(2)||2∞

(
D(2)A(2)2 − ϑ(2)2

)
.

The upper-bound of the energy model depends on the diversity variable of both feature sets. More-
over, we note that the bound for the implicit regression decreases proportionally to ϑ2, as opposed
to the classification case for example, where the bound is proportional to ϑ. Thus, we can conclude
that reducing redundancy improves the generalization of EBMs in the implicit regression context.

2.4 GENERAL DISCUSSION

We note that the theory developed in our paper (Theorems 1 to 4) is agnostic to the loss function
(LeCun et al., 2006) or the optimization strategy used (Kumar et al., 2019; Song & Ermon, 2019;
Xu et al., 2022; Yu et al., 2020). We show that reducing the redundancy of the features consistently
decreases the upper-bound of the true expectation of the energy and, thus, can boost the generaliza-
tion performance of the energy-based model. We also note that our analysis is independent of how
the features are obtained, e.g., handcrafted or optimized. In fact, in the recent state-of-the-art EBMs
(Bakhtin et al., 2021; Khalifa et al., 2021; Yu et al., 2020), the features are typically parameterized
using a deep learning model and optimized during training.

We note that our (ϑ − τ )-diversity is not scale-invariant, i.e., it is sensitive to the L2-norm of the
feature vector A. This suggests that one might reduce (ϑ − τ )-diversity by controlling the feature
norm without affecting the true redundancy of the features. However, our bound can be interpreted
as follows: ’Given two models with the same value of A (maximum L2-norm of the features), the
model with higher diversity ϑ has a lower generalization bound and is likely to generalize better’.
From this perspective, our findings remain valid showing that reducing redundancy, i.e., increasing
ϑ, reduces the gap between the true and the empirical energies and improves the generalization
performance of the EBMs.

Our contribution is twofold. First, we provide theoretical guarantees that reducing redundancy in
the feature space can indeed improve the generalization of the EBM. This can pave the way toward
providing theoretical guarantees for works on self-supervised learning using redundancy reduction
(Zbontar et al., 2021; Bardes et al., 2021; Zhao et al., 2017). Second, our theory can be used to
motivate novel redundancy reduction strategies, for example, in the form of regularization (Laakom
et al., 2023b), to avoid learning redundant features. Such strategies can improve the performance of
the model and improve generalization.
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Figure 2: Visualization of the training data for the 1-D regression tasks: The dataset (Gustafsson
et al., 2020b) on the left and the dataset (Brando et al., 2019) on the right.

3 SIMPLE REGULARIZATION ALGORITHM

In general, theoretical generalization bounds can be too loose to have direct practical implications
(Zhang et al., 2017a; Neyshabur et al., 2017). However, they typically suggest a regularizer to pro-
mote some desired aspects of the hypothesis class (Xie et al., 2015; Li et al., 2019; Kawaguchi et al.,
2017). Accordingly, inspired by the theoretical analysis in Section 2, we propose a straightforward
strategy to avoid learning redundant features by regularizing the model during the training using a
term inversely proportional to ϑ−τ -diversity of the features. Given an EBM with a learnable feature
set {ϕ1(·), · · · , ϕD(·)} and a training set S, we propose to augment the original training loss L as
follows:

Laug = L− β
∑
x∈S

D∑
i̸=j

(ϕi(x)− ϕj(x))
2, (15)

where β is a hyper-parameter controlling the contribution of the second term in the total loss. This
novel regularizer can be added to any existing model in a plug-and-play manner by augmenting the
loss, as described in equation 15. The proposed additional term penalizes similarities between dis-
tinct features ensuring learning a diverse and non-redundant mapping of the data. As a result, this
can improve the general performance of our model.

3.1 REGRESSION TASK

Recently, there has been a high interest in using EBMs to solve regression tasks (Gustafsson et al.,
2022; 2020b;a). As shown in Section 2.1, learning diverse features yields better generalization. In
this subsection, we validate the proposed regularizer in equation 15 on two 1-D regression tasks.
For the first task, we use the dataset proposed in Gustafsson et al. (2020b), which has 2 000 training
examples. The training data of this dataset is visualized in Figure 2 (left). For the second task,
similar to (Gustafsson et al., 2022), we use the regression dataset proposed in Brando et al. (2019),
containing 1900 test examples and 1700 examples for training. The training data of this dataset is
visualized in Figure 2 (right).

To train EBMs for regression tasks, several losses have been proposed (Gustafsson et al., 2020a;
Hyvärinen & Dayan, 2005; Gutmann & Hyvärinen, 2010). In this work, similar to (Gustafsson
et al., 2020b), we use the noise contrastive estimation (NCE) loss (Gutmann & Hyvärinen, 2010)
with the noise distribution q(y) = 1

2

∑2
j=1 N (y; yi, σ

2
j I),

where σ1 and σ2 are two hyperparameters. As suggested in Gustafsson et al. (2022; 2020b), we set
σ2 = 8σ1 in all experiments. We evaluate the performance of our approach by augmenting the NCE
loss using equation 15 to penalize the feature redundancy.

We follow the same experimental setup used in Gustafsson et al. (2022; 2020b). The inner model
(Figure 1 ) of X is formed by a fully-connected network with 2 hidden layers followed by Relu acti-
vations. We consider as ’features’ for computing our regularizer, the output of this inner model. The
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Dataset (Gustafsson et al., 2020b) Dataset (Brando et al., 2019)

Approach σ1 = 0.05 σ1 = 0.1 σ1 = 0.2 σ1 = 0.05 σ1 = 0.1 σ1 = 0.2

EBM 0.0445 0.0420 0.0374 2.7776 2.5650 1.9876
ours (β = 1e−11) 0.0398 0.0345 0.0357 2.6187 2.4414 1.8072
ours (β = 1e−12) 0.0409 0.0380 0.0343 2.5846 2.3685 1.8880
ours (β = 1e−13) 0.0410 0.0332 0.0377 2.7483 2.5420 1.9303

Table 1: Results of the EBM trained with NCE (EBM) and the EBM trained with NCE augmented
with our regularizer (ours) for the 1-D regression tasks. we report the approximate KL divergence
for the first dataset (Gustafsson et al., 2020b), and the approximate NLL for the second dataset
(Brando et al., 2019). For each dataset, we report the results for three different values of σ1.

input y is also processed with one fully-connected layer with 10 units followed by Relu. Addition-
ally, the concatenated outputs of both models is passed through a network composed of four hidden
layers. All hidden layers are formed of 10 units except the final output, which has one hidden unit
corresponding to the predicted energy. The model is trained in an end-to-end manner for 75 epochs
with Adam optimizer (Goodfellow et al., 2016) with a learning rate of 0.001. Similar to (Gustafsson
et al., 2022; 2020b), the batch size is selected to be 32 and the number of samples M is always set
to M = 1024.

For the evaluation, we follow the standard protocol of these two datasets: For the first one, we
evaluate the approaches using KL divergence (Gustafsson et al., 2022; 2020b). For the second
dataset, we report the NLL results as proposed in Gustafsson et al. (2022); Brando et al. (2019).
Moreover, we report the results for several noise distributions of NCE: σ1 ∈ {0.05, 0.1, 0.2}. The
average experimental results over 20 random seeds for different values of β are reported in Table
1. As it can be seen, avoiding feature redundancy consistently boosts the performance of the EBM
for both datasets and all different values of σ1. Additional empirical results with a large dataset are
available in C.1. The results further confirm that feature diversity can indeed improve the perfor-
mance of EBMs in regression tasks.

3.2 CONTINUAL LEARNING

In this subsection, we validate the proposed regularizer on a more challenging task, namely the Con-
tinual Learning (CL) problem. CL tackles the problem of catastrophic forgetting in deep learning
models (Parisi et al., 2019; Li & Hoiem, 2017; Shibata et al., 2021). Its main goal is to solve several
tasks sequentially without forgetting knowledge learned from the past. So, a continual learner is
expected to learn a new task, crucially, without forgetting previous tasks. Recently, an EBM-based
CL approach was proposed in Li et al. (2020) and led to superior results.

For this experiment, we use the same models and the same experimental protocol used in Li et al.
(2020). However, here we focus only on the class-incremental learning task using CIFAR10 and
CIFAR100. We evaluate the performance of our proposed regularizer using both the boundary-
aware and boundary-agnostic settings. As defined in Li et al. (2020), boundary-aware refers to the
situation where the sequence of the tasks has explicit separation between them which is known to
the model. The boundary-agnostic case refers to the situation where the data distributions gradually
change without a notion of task boundaries.

We consider as ’features’ the representation obtained by the last intermediate layer. The proposed
regularizer is applied on top of this representation. In Table 2, we report the performance of the EBM
trained using the original loss and using the loss augmented with our additional term for different
values of β. As shown in Table 2, penalizing feature similarity and promoting the diversity of the
feature set boosts the performance of the EBM and consistently leads to superior accuracy for both
datasets. In Figure 3, we display the accumulated classification accuracy, averaged over tasks, on
the test set. Along the five tasks, our approach maintains higher classification accuracy than the
standard EBM for both the boundary-aware and boundary-agnostic settings.

It should be noted here that the regularizer is just an example showing how our theory can be used
in practice. Thus, when we defined the regularizer, we tried to stay as close as possible to the
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Boundary-aware Boundary-agnostic

Method CIFAR10 CIFAR100 CIFAR10 CIFAR100

EBM 39.15± 0.86 29.02± 0.24 48.40± 0.80 34.78± 0.26
ours (β = 1e−11) 39.61± 0.81 29.15± 0.27 49.63± 0.90 34.86± 0.30
ours (β = 1e−12) 40.64 ± 0.79 29.38 ± 0.21 50.25 ± 0.63 35.20 ± 0.23
ours (β = 1e−13) 40.15± 0.87 29.28± 0.28 50.20± 0.94 35.03± 0.21

Table 2: Evaluation of class-incremental learning on both the boundary-aware and boundary-
agnostic setting on CIFAR10 and CIFAR100 datasets. Each experiment was performed ten times
with different random seeds, the results are reported as the mean/SEM over these runs.

Figure 3: Test classification accuracy vs number of observed tasks on CIFAR10 using the boundary-
aware (left) and boundary-agnostic (right) setting. The results are averaged over ten random seeds.

(ϑ−τ )-diversity definition (Definition 1). We used directly the definition of diversity as a regularizer
(equation 15). It contains two sums: the first sum is over the whole batch and the second sum is over
all pairs of units within the layers. This yields a total of ND2 terms, where N is the batch size and
D is the number of units within the layer. This results in empirically large values of the second term
(∼ 109). Thus, β needs to be small so the loss is not dominated by the second term. Empirically,
we found that [10−11, 10−13] corresponds to a stable range. We also note that our regularizer has a
small additional time cost for training time (less than 1%).

4 CONCLUSION

Energy-based learning is a powerful learning paradigm that encapsulates various discriminative and
generative systems. An EBM is typically formed of one (or many) inner models that learn a com-
bination of different features to generate an energy mapping for each input configuration. In this
paper, we introduced a feature diversity concept, i.e., (ϑ − τ )-diversity, and we used it to extend
the PAC theory of EBMs. We derived different generalization bounds for various learning contexts,
i.e., regression, classification, and implicit regression, with different energy functions. We consis-
tently found that reducing the redundancy of the feature set can improve the generalization error of
energy-based approaches. We also note that our theory is independent of the loss function or the
training strategy used to optimize the parameters of the EBM. This provides theoretical guarantees
on learning via feature redundancy reduction. Our preliminary experimental results confirm that this
is indeed a promising research direction and can motivate the development of novel approaches to
promote the diversity of the feature set. Future directions include more extensive experimental eval-
uation of different feature redundancy reduction approaches. The main limitations of this work are
that the theoretical analysis is not scale-invariant and the proposed regularizer scales quadratically
with the number of features, which can make it impractical for some applications.
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A ADDITIONAL RELATED WORK

Applications of energy-based models: The energy-based models have attracted a lot of attention
lately and have been used to tackle many tasks, e.g., regression (Gustafsson et al., 2022; 2020b;a),
learning to rank (Fang & Liu, 2016), image/text generation (Deng et al., 2020; Du & Mordatch,
2019; Du et al., 2021), continual learning (Li et al., 2020), anomaly detection (Zhai et al., 2016),
protein conformations (Du et al., 2020), and reinforcement learning (Boney et al., 2020; Sharma
et al., 2021).

Generalization bounds: In the supervised learning context, the main aim is to find a hypothesis
function based on a set of training examples that has a small error with respect to the target func-
tion (Valiant, 1984). Several approaches have been proposed in the past to study this problem based
on different tools, e.g., VC-dimension (Vapnik et al., 1994; Bartlett & Maass, 2003; Bartlett et al.,
2019; Esser et al., 2021; Bartlett et al., 2019), Information-theoretic tools (Xu & Raginsky, 2017;
Neu et al., 2021; Harutyunyan et al., 2021; Haghifam et al., 2021), Rademacher complexity (Bartlett
& Mendelson, 2002; Mohri & Rostamizadeh, 2008; Yin et al., 2019; Laakom et al., 2023a; Sachs
et al., 2023). In this scope of this paper, we rely on the latter to conduct our analysis. One main
advantage of Rademacher complexity is that it can be defined for any class of real-valued function
and is distribution-dependent, which allows us to study the effect of data distribution on generaliza-
tion (Bartlett & Mendelson, 2002). Recently, it has been used to derive tight generalization bounds
for large neural networks (Truong, 2022), for multitask learning in(Yousefi et al., 2018), and for
studying adversarial robustness Yin et al. (2019). In our analysis, we use this measure to study the
effect of feature diversity on the generalization of EBMs.

B FULL PROOF DETAILS

B.1 PROOF OF LEMMA 2

Lemma With a probability of at least τ , we have

sup
x,W

|h(x)| ≤ ||w||∞
√
(DA2 − ϑ2), (16)

where A = supx ||ϕ(x)||2.

Proof.

h2(x) =

(
D∑
i=1

wiϕi(x)

)2

≤

(
D∑
i=1

||w||∞ϕi(x)

)2

= ||w||2∞

(
D∑
i=1

ϕi(x)

)2

= ||w||2∞

(∑
i,j

ϕi(x)ϕj(x)

)
= ||w||2∞

∑
i

ϕi(x)
2 +

∑
i ̸=j

ϕi(x)ϕj(x)

 (17)

We have ||Φ(x)||2 ≤ A. For the first term in equation 17, we have
∑

m ϕm(x)2 ≤ A2. By using
the identity ϕm(x)ϕn(x) =

1
2

(
ϕm(x)2 + ϕn(x)

2 − (ϕm(x)− ϕn(x))
2
)
, the second term can be

rewritten as∑
m ̸=n

ϕm(x)ϕn(x) =
1

2

∑
m̸=n

(
ϕm(x)2 + ϕn(x)

2 −
(
ϕm(x)− ϕn(x)

)2)
. (18)
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In addition, we have with a probability τ , 1
2

∑
m ̸=n(ϕm(x)− ϕn(x))

2 ≥ ϑ2. Thus, we have with a
probability at least τ :∑

m̸=n

ϕm(x)ϕn(x) ≤
1

2
(2(D − 1)A2 − 2ϑ2) = (D − 1)A2 − ϑ2. (19)

By putting everything back to equation 17, we have with a probability τ ,

G2
W (x) ≤ ||w||2∞

(
A2 + (D − 1)A2 − ϑ2

)
= ||w||2∞(DA2 − ϑ2). (20)

Thus, with a probability τ ,

sup
x,W

|h(x)| ≤
√

sup
x,W

G2
W (x) ≤ ||w||∞

√
DA2 − ϑ2. (21)

B.2 PROOF OF LEMMA 3

Lemma With a probability of at least τ , we have

sup
x,y,h

|E(h,x,y)| ≤ 1

2
(||w||∞

√
(DA2 − ϑ2) +B)2. (22)

Proof. We have supx,y,h |h(x)− y| ≤ supx,y,h(|h(x)|+ |y|) = (||w||∞
√
DA2 − ϑ2 +B). Thus

supx,y,h|E(h,x,y)| ≤ 1
2 (||w||∞

√
DA2 − ϑ2 +B)2.

B.3 PROOF OF LEMMA 4

Lemma With a probability of at least τ , we have

Rm(E) ≤ 2D||w||∞(||w||∞
√
(DA2 − ϑ2) +B)Rm(F) (23)

Proof. Using the decomposition property of the Rademacher complexity (if ϕ is a L-Lipschitz
function, then Rm(ϕ(A)) ≤ LRm(A)) and given that 1

2 ||. − y||2 is K-Lipschitz with a con-
stant K = supx,y,h||h(x) − y|| ≤ (||w||∞

√
DA2 − ϑ2 + B), we have Rm(E) ≤ KRm(H) =

(||w||∞
√
DA2 − ϑ2 + B)Rm(H), where H = {GW (x) =

∑D
i=1 wiϕi(x) }. We also know

that ||w||1 ≤ D||w||∞. Next, similar to the proof of Theorem 2.10 in Wolf (2018), we note
that

∑D
i=1 wiϕi(x) ∈ (D||w||∞)conv(F + −(F)) := G, where conv denotes the convex hull

and F is the set of ϕ functions. Thus, Rm(H) ≤ Rm(G) = D||w||∞Rm(conv(F + (−F)) =
D||w||∞Rm(F + (−F)) = 2D||w||∞Rm(F).

B.4 PROOF OF THEOREM 1

Theorem For the energy function E(h,x,y) = 1
2 ||GW (x) − y||22, over the input set X ∈ RN ,

hypothesis class H = {h(x) = GW (x) =
∑D

i=1 wiϕi(x) = wTΦ(x) | Φ ∈ F , ∀x : ||Φ(x)||2 ≤
A}, and output set Y ⊂ R, if the feature set {ϕ1(·), · · · , ϕD(·)} is (ϑ− τ )-diverse with a probability
τ , with a probability of at least (1− δ)τ , the following holds for all h in H:

E(x,y)∼D[E(h,x,y)] ≤ 1

m

∑
(x,y)∈S

E(h,x,y) + 4D||w||∞(||w||∞
√
DA2 − ϑ2 +B)Rm(F)

+
1

2
(||w||∞

√
DA2 − ϑ2 +B)2

√
log(2/δ)

2m
, (24)

where B is the upper-bound of Y , i.e., y ≤ B, ∀y ∈ Y .

Proof. We replace the variables in Lemma 1 using Lemma 3 and Lemma 4.
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B.5 PROOF OF LEMMA 5

Lemma With a probability of at least τ , we have

sup
x,y,h

|E(h,x,y)| ≤ (||w||∞
√
DA2 − ϑ2 +B). (25)

Proof. We have supx,y,h |h(x)− y| ≤ supx,y,h(|h(x)|+ |y|) = (||w||∞
√
DA2 − ϑ2 +B).

B.6 PROOF OF LEMMA 6

Lemma With a probability of at least τ , we have

Rm(E) ≤ 2D||w||∞Rm(F) (26)

Proof. |.| is 1-Lipschitz, Thus Rm(E) ≤ Rm(H).

B.7 PROOF OF THEOREM 2

Theorem For the energy function E(h,x,y) = ||GW (x) − y||1, over the input set X ∈ RN ,
hypothesis class H = {h(x) = GW (x) =

∑D
i=1 wiϕi(x) = wTΦ(x) | Φ ∈ F , ∀x ||Φ(x)||2 ≤

A}, and output set Y ⊂ R, if the feature set {ϕ1(·), · · · , ϕD(·)} is (ϑ− τ )-diverse with a probability
τ , then with a probability of at least (1− δ)τ , the following holds for all h in H:

E(x,y)∼D[E(h,x,y)] ≤ 1

m

∑
(x,y)∈S

E(h,x,y) + 4D||w||∞Rm(F)

+ (||w||∞
√
DA2 − ϑ2 +B)

√
log(2/δ)

2m
, (27)

where B is the upper-bound of Y , i.e., y ≤ B, ∀y ∈ Y .

Proof. We replace the variables in Lemma 1 using Lemma 5 and Lemma 6.

B.8 PROOF OF THEOREM 3

Lemma 7. With a probability of at least τ , we have

sup
x,y,h

|E(h,x,y)| ≤ ||w||∞
√

DA2 − ϑ2. (28)

Proof. We have sup−yGW (x) ≤ sup |GW (x)| ≤ ||w||∞
√
DA2 − ϑ2.

Lemma 8. With a probability of at least τ , we have

Rm(E) ≤ 2D||w||∞Rm(F) (29)

Proof. We note that for y ∈ {−1, 1}, σ and −yσ follow the same distribution. Thus, we have
Rm(E) = Rm(H). Next, we note that Rm(H) ≤ 2D||w||∞Rm(F).

Theorem 3 For a well-defined energy function E(h,x,y) (LeCun et al., 2006), over hypothesis
class H, input set X and output set Y , if it has upper-bound M, then with a probability of at least
1− δ, the following holds for all h in H

E(x,y)∼D[E(h,x,y)] ≤ 1

m

∑
(x,y)∈S

E(h,x,y) + 4D||w||∞Rm(F)

+ ||w||∞
√
DA2 − ϑ2

√
log(2/δ)

2m
, (30)

Proof. We replace the variables in Lemma 1 using Lemma 7 and Lemma 8.
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B.9 PROOF OF THEOREM 4

Lemma 9. With a probability of at least τ1τ2, we have

sup
x,y,h

|E(h,x,y)| ≤
(
J1 + J2

)
(31)

Proof. We have ||G(1)
W (x) − G

(2)
W (y)||22 ≤ 2(||G(1)

W (x)||22 + ||G(2)
W (y)||22). Similar to Theorem

1, we have sup ||G(1)
W (x)||22 ≤ ||w(1)||2∞

(
D(1)A(1)2 − ϑ(1)2

)
= J1 and sup ||G(2)

W (y)||22 ≤

||w(2)||2∞
(
D(2)A(2)2 − ϑ(2)2

)
= J2. We also have E(h,x,y) = 1

2 ||G
(1)
W (x)−G

(2)
W (y)||22.

Lemma 10. With a probability of at least τ1τ2, we have

Rm(E) ≤ 4(
√
J1 +

√
J2)
(
D(1)||w(1)||∞Rm(F1) +D(2)||w(2)||∞Rm(F2)

)
(32)

Proof. Let f be the square function, i.e., f(x) = 1
2x

2 and E0 = {G(1)
W (x) − G

(2)
W (y) | x ∈

X , y ∈ Y}. We have E = f(E0 + (−E0)). f is Lipschitz over the input space, with a
constant L bounded by supx,W G

(1)
W (x) + supy,W G

(2)
W (y) ≤

√
J1 +

√
J2. Thus, we have

Rm(E) ≤ (
√
J1 +

√
J2)Rm(E0 + (−E0)) ≤ 2(

√
J1 +

√
J2)Rm(E0). Next, we note that

Rm(E0) = Rm(H1 + (−H2)) = Rm(H1) + Rm(H2). Using same as technique as in Lemma
4, we have Rm(H1) ≤ 2D(1)||w(1)||∞Rm(F1) and Rm(H2) ≤ 2D(2)||w(2)||∞Rm(F2).

Theorem 4 For the energy function E(h,x,y) = 1
2 ||G

(1)
W (x) − G

(2)
W (y)||22, over the input set

X ∈ RN , hypothesis class H = {G(1)
W (x) =

∑D(1)

i=1 w
(1)
i ϕ

(1)
i (x) = w(1)TΦ(1)(x), G

(2)
W (y) =∑D(2)

i=1 w
(2)
i ϕ

(2)
i (y) = w(2)TΦ(2)(y) | Φ(1) ∈ F1, Φ

(2) ∈ F2, ∀x ||Φ(1)(x)||2 ≤
A(1), ∀y ||Φ(2)(y)||2 ≤ A(2)}, and output set Y ⊂ RN , if the feature set {ϕ(1)

1 (·), · · · , ϕ(1)

D(1)(·)} is

ϑ(1)-diverse with a probability τ1 and the feature set {ϕ(2)
1 (·), · · · , ϕ(2)

D(2)(·)} is ϑ(2)-diverse with a
probability τ2, then with a probability of at least (1− δ)τ1τ2, the following holds for all h in H

E(x,y)∼D[E(h,x,y)] ≤ 1

m

∑
(x,y)∈S

E(h,x,y)

+ 8(
√
J1 +

√
J2)
(
D(1)||w(1)||∞Rm(F1) +D(2)||w(2)||∞Rm(F2)

)
+
(
J1 + J2

)√ log(2/δ)

2m
, (33)

where J1 = ||w(1)||2∞
(
D(1)A(1)2 − ϑ(1)2

)
and J2 = ||w(2)||2∞

(
D(2)A(2)2 − ϑ(2)2

)
.

Proof. We replace the variables in Lemma 1 using Lemma 9 and Lemma 10.

C ADDITIONAL EXPERIMENTS

C.1 IMAGE-BASED AGE ESTIMATION

Besides the regression experiments with the two toy datasets in Section 3.1, we evaluate the perfor-
mance of our approach on a more complex regression task, namely image-based age estimation. We
use the UTKFace Age Estimation dataset (Zhang et al., 2017b). This dataset contains 14760 human
face images with corresponding ages as ground truth. The aim is to be able to predict the persons’
age based on the images. Similar to Gustafsson et al. (2022), we use 80% of the data as a training
set and the remaining 20% as a test. We follow the exact experimental setup as in Gustafsson et al.
(2022) for this dataset and we use their EBM as a baseline. To evaluate the effectiveness of our
approach, we augment their loss with our proposed regularizer. We report the results in Table 3.
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Approach NLL

EBM Gustafsson et al. (2022) 4.12± 0.07
ours (β = 1e−11) 4.04± 0.10
ours (β = 1e−12) 4.03± 0.04
ours (β = 1e−13) 3.99± 0.15

Table 3: Results in terms of approximate NLL for the EBM age estimation experiments. The results
are reported as the mean/SEM over these runs.

As shown in the results, even in this case, our regularizer yields lower error rates. This confirms that
feature diversity is helpful also for large datasets.

C.2 IMAGE GENERATION EXAMPLE WITH MNIST

Besides the experiments in the paper, we present here additional experiments with the proposed
regularizer. Recently, there has been a high interest in using EBMs to solve image/text generation
tasks (Du & Mordatch, 2019; Du et al., 2021; Khalifa et al., 2021; Deng et al., 2020). In this
subsection, we validate the proposed regularizer on the simple example of MNIST digits image
generation, as in Du & Mordatch (2019). For the EBM, we use a simple CNN model composed of
four convolutional layers followed by a linear layer. The training protocol is the same as in UvA;
Du & Mordatch (2019), i.e., using Langevin dynamics Markov chain Monte Carlo (MCMC) and a
sampling buffer to accelerate training.

For the EBM, we used a simple CNN model composed of four convolutional layers followed by
a linear layer. The full CNN model is presented in Table 4. The training protocol is the same as
in UvA; Du & Mordatch (2019), i.e., using Langevin dynamics MCMC and a sampling buffer to
accelerate training. All models were trained for 60 epochs using Adam optimizer with learning rate
lr = 1e− 4 and a batch size of 128.

Layer Output shape

Input [1,28,28]
Cov (16 5× 5) [16,16,16]
Swish activation [16,16,16]
Cov (32 3× 3) [32,8,8]
Swish activation [32,8,8]
Cov (64 3× 3) [64,4,4]
Swish activation [64,4,4]
Cov (64 3× 3) [64,2,2]
Swish activation [64,2,2]
Flatten [256]
Linear [64]
Swish activation* [64]
Linear [1]

Table 4: Simple CNN model used in the example. * refers to the features’ layer.

In this example, the features, i.e., the latent representation obtained at the last intermediate layer,
are learned in an end-to-end way. We evaluate the performance of our approach by augmenting the
contrastive divergence loss using equation 15 to penalize the feature redundancy. We quantitatively
evaluate the image quality of EBMs with ‘Fréchet Inception Distance’ (FID) score (Heusel et al.,
2017) and the negative log-likelihood (NLL) loss in Table 5 for different values of β. We note
that we obtain consistently better FID and NLL scores by penalizing the similarity of the learned
features. The best performance is achieved by β = 1e−13, which yields more than 10%, in terms of
FID, improvement compared to the original EBM.

To gain insights into the visual performance of our approach, we plot a few intermediate samples of
the MCMC sampling (Langevin Dynamics). The results obtained by the EBM with β = 1e−13 are
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Figure 4: Qualitative results of our approach (β = 1e−13) : Few intermediate samples of the MCMC
sampling (Langevin Dynamics).

Approach FID NLL loss

EBM 0.0109± 0.0004 0.7112± 0.0190
ours (β = 1e−11) 0.0107± 0.0004 0.7109± 0.0111
ours (β = 1e−12) 0.0104± 0.0003 0.7105 ± 0.0112
ours (β = 1e−13) 0.0099 ± 0.0006 0.7108± 0.0111

Table 5: Table of FID scores and negative log-likelihood (NLL) loss of different approaches for
generations of MNIST images. Each experiment was performed three times with different random
seeds, the results are reported as the mean/SEM over these runs.

presented in Figure 4. Initiating from random noise, MCMC obtains reasonable figures after only
64 steps. The digits get clearer and more realistic over the iterations.

In addition to the visual results in Figure 4, Figure 5 presents additional qualitative results. For the
first two examples (top ones), the model is able to converge to a realistic image within a reasonable
amount of iterations. For the last two examples (at the bottom), we present failure cases of our
approach. For these two tests, the generated image still improves over iterations. However, the
model failed to converge to a clear realistic MNIST image after 256 steps.
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Figure 5: Qualitative results of EBM augmented with our regularizer with β = 1e−13: Few inter-
mediate samples of the MCMC sampling (Langevin Dynamics).
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