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Abstract

Predictive models that satisfy group fairness criteria in aggregate for members of a protected
class, but do not guarantee subgroup fairness, could produce biased predictions for individuals
at the intersection of two or more protected classes. To address this risk, we propose
Conditional Bias Scan (CBS), an auditing framework for detecting intersectional biases in
the outputs of classification models that may lead to disparate impact. CBS aims to identify
the subgroup with the most significant bias against the protected class, compared to the
equivalent subgroup in the non-protected class. The framework can audit for predictive biases
using common group fairness definitions that can be represented as conditional independence
statements (separation and sufficiency) for both probabilistic and binarized predictions. We
show through empirical evaluations that this methodology has substantially higher bias
detection power compared to similar methods that audit for subgroup fairness. We then use
this approach to detect statistically significant intersectional biases in the predictions of the
COMPAS pre-trial risk assessment tool and a model trained on the German Credit data.

1 Introduction

Predictive models are increasingly used to assist in high-stakes decisions and, therefore, can have significant
impacts on individuals’ lives and livelihoods. However, recent studies have revealed numerous models whose
predictions contain biases, in the form of group fairness violations, against disadvantaged and marginalized
groups (Angwin et al.l 2016a; [Obermeyer et al.,|2019). When auditing a predictive model for bias, typical
group fairness definitions (Mitchell et al., 2021)) rely on univariate measurements of the difference between the
distributions of predictions or outcomes for individuals in a “protected class”, typically defined by a sensitive
attribute such as race or gender, as compared to those in the non-protected class. Since these approaches only
detect biases for a predetermined subpopulation at an aggregate level, e.g., a bias against Black individuals,
they may fail to detect biases that adversely affect a subset of individuals in a protected class, e.g., Black
females.

While it is possible to define a specific multidimensional subgroup and then audit a classifier for biases
impacting that subgroup, this approach relies on defining a fixed subgroup and therefore is limited to static
queries. From a computational perspective, this approach does not scale to the exponential number of
multidimensional subgroups; from a statistical perspective, it fails to account for the risk of identifying
many false positives if many subgroups are tested for bias. To detect whether there are any subgroups
within a given protected class that are adversely impacted by predictive biases, we need a way to search over
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the combinatorial number of subgroups of the protected class, and to account for this search process when
deciding which observed biases are statistically significant, rather than separately auditing each subgroup.

To address these issues, we present Conditional Bias Scan (CBS), a novel and flexible framework for
bias detection. Given a classifier’s probabilistic predictions or binarized recommendations based on those
predictions, CBS discovers systematic biases impacting any subgroups of a predefined subpopulation of
interest (the protected class). More precisely, CBS aims to discover subgroups of the protected class for
whom the classifier’s predictions or recommendations systematically deviate from the corresponding subgroup
of individuals who are not a part of the protected class. Subgroups are defined by a non-empty subset of
attribute values for each observed attribute, excluding the sensitive attribute which determines whether
or not individuals belong to the protected class. We constrain subgroups to categorical representations of
the non-sensitive attributes for explainability purposes. This requires discretization of continuous variables
prior to the scanning step of our methodology, as discussed in detail below. To provide a concrete example,
the binary sensitive attribute could be defined by whether or not an individual is female, and CBS would
search over all other attributes (e.g., race/ethnicity and income) to identify subgroups with a gender disparity
between female and non-female individuals. If CBS returns a subgroup consisting of Black or Hispanic
individuals whose yearly income is $0-$9,999 or $10,000-$25,000, this would indicate that the most significant
gender disparity identified by the scan affected individuals with this combination of race/ethnicity and low
income. We provide formal notation for a sensitive attribute and subgroup at the start of Section

The detected subgroups can represent both intersectional and contextual biases. In this paper, as in much
of the algorithmic fairness literature, we refer to intersectional biases when individuals of a subgroup are
members of two or more protected classes. We refer to contextual biases for forms of subgroup biases that
may only be present for certain decision situations (Runyan) |2018). In Section we discuss the distinct, yet
related topic of intersectionality theory (Crenshaw, [1991a;b; (Collins, 2008)) in sociology, which describes how
individuals’ different social positions and identities interact to influence their social and material conditions.
In particular, an individual at the intersection of several marginalized groups may be impacted by multiple
historical and continuing systems of power and oppression including structural racism, sexism, and class
stratification.

The contributions of our research include:

o A methodological framework that can flexibly accommodate multiple group fairness definitions and
can effectively detect intersectional and contextual biases.

e A computationally efficient detection algorithm to audit classifiers for fairness violations in the
exponentially many subgroups of a given subpopulation.

e Detailed empirical evaluations demonstrating substantially improved bias detection accuracy as
compared to similar methods that audit for subgroup fairness, along with real-world case studies on
COMPAS and German Credit datasets.

Given the overarching objective of understanding the full scope of predictive biases that a model produces
for all the sensitive subgroups of a given target population, there is a need for expanded measurements of
predictive bias and improved methods for searching for these biases within all sensitive subgroups that could
be adversely affected by predictive bias. Without auditing tools that can accurately identify these biases,
any predictive bias definition will be limited to evaluating a small, static set of subgroups, and there will
presumably be some form of intersectional or contextual bias that goes undetected. Therefore, CBS is an
important step towards understanding the full scope of biases that a predictive model might produce.

2 Methods

We define the dataset D = (A, X,Y, P, Pyin) = {(4s, X3, Ys, B;, Pipin) }q, for n individuals indexed as
i =1...n. The sensitive attribute, A;, is a binary variable representing whether individual i belongs to the
protected class. X; = (X},..., X™) are other covariates for individual i, excluding A;. Y; is individual i’s
observed binary outcome, P; € [0,1] is the classifier’s probabilistic prediction of individual i’s outcome, and
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Table 1: Table of scan types for CBS for different group fairness definitions. Scans that correspond to
well-known fairness definitions (e.g., false positive error rate balance) are noted in the table. Shading is
used to distinguish between the four main categories of scans (separation for predictions, separation for
recommendations, sufficiency for predictions, and sufficiency for recommendations). The notation L refers to
conditional independence from membership in the protected class (A).

Predictions (P € [0, 1]) Recommendations (P, € {0,1})

Pyin =1 Pyin =0
L_.  EPIY=1X1A  Pr(Pun=1|Y=1X)LA Pr(Pyn=0]Y=1X)14
Balance for Positive Class True Positive Rate False Negative Rate
Separation
o, EPIY=0XLA  Pr(Pu,=1|Y=0X)1A Pr(Py=0]Y=0X)14
Balance for Negative Class False Positive Rate True Negative Rate
y Pr(Y =1|P,X)LA  Pr(Y =1|Ppn=1,X)LA Pr(Y =1|Py, =0,X)LA
=1
Postitive Predictive Value False Omission Rate
Sufficiency
o, PrY=0[PX)LA  Pr(Y =0|Puy=1X)LA Pr(Y =0|Py,=0X)L4

False Discovery Rate

Negative Predictive Value

P; pin, € {0,1} is the binary recommendatiorﬂ corresponding to P;. For example, it is common to define
P, pin, = 1{P; > 0.5}.

Given these data, the CBS framework searches for subgroups of the protected class, defined by a subset
of values for each covariate X1!,..., X™ for whom some group fairness definition (contained in Table
is violated with respect to A. Therefore, CBS returns a subgroup S represented as the Cartesian product,
S =5'x85%x...x 8™, where S C X7 for j = 1,...,m. Each fairness definition in Tableis in the form of
a conditional independence relationship between an individual’s membership in the protected class, A4;, and
their value of an event variable, I;, conditioned on their value of a conditional variable, C;, and their covariates,
Xi: E[I; | C;, X;]LA,. We define the null hypothesis, Hy, that I L A|(C,X), and use CBS to search for
subgroups with statistically significant violations of this conditional independence relationship, correctly

adjusting for multiple hypothesis testing, allowing us to reject Hy in favor of the alternative hypothesis H;
that I Y A|(C, X).

The CBS framework has four sequential steps:

(1) Given a fairness definition, CBS chooses I € {Y, P, P,;,} and C € {Y, P, P;;,,}. Section maps
different group fairness criteria to particular choices of event variable I and conditional variable C.

(2) CBS estimates the expected value of I; for each individual in the protected class under the null
hypothesis Hy that I and A are conditionally independent given C and X. These expectations are
denoted as I;, and Section describes how to estimate I.

(3) CBS uses a novel multidimensional subset scan to search for subgroups, S, where, for i € S, the

observed I; deviates systematically from its expectation I; in the direction of interest. This step to
detect S* is described in Section [2.3]

(4) The final step to evaluate statistical significance of the detected subgroup S*, in Section |2.4] uses
permutation testing to adjust for multiple hypothesis testing and determine if S*’s deviation between
protected and non-protected class is statistically significant.

1Pi,bin is sometimes referred to as a binary prediction. We use the term “recommendation” to distinguish P; p;,, from the
probabilistic prediction P;.
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Note that, for Step covariates X can be represented as continuous or categorical variables; prior to
Step X must be discretized and represented as categorical variables so that interpretable subgroups can
be produced by the scan.

2.1 Define (I,C): Overview of Scan Types

Many of the group fairness criteria proposed in the fairness literature fall into two categories of statistical
fairness called sufficiency and separation. Sufficiency is focused on equivalency in the rate of an outcome (for
comparable individuals with the same prediction or recommendation) regardless of protected class membership
(Y L A| P, X), whereas separation is focused on equivalency of the expected prediction or recommendation
(for comparable individuals with the same outcome) regardless of protected class membership (P L A|Y, X).

The choice between separation and sufficiency determines whether outcome Y is the event variable of interest
I or the conditional variable C, where bias is defined as E[I | C, X, A = 1] # E[I | C,X,A = 0]. The
combination of fairness metric (sufficiency or separation) and prediction type (continuous prediction or binary
recommendation) produces four classes of fairness scans, as defined by the chosen values for I and C":

e For separation for predictions, we define I = P and C =Y.
o For separation for recommendations, we define I = Py;,, and C =Y.
e For sufficiency for predictions, we define I =Y and C' = P.

e For sufficiency for recommendations, we define I =Y and C = Py;,.

Depending on the particular bias of interest, we can also perform “value-conditional” scans by restricting the
value of the conditional variable, C. For example, to scan for subgroups with increased false positive rate
(FPR), we restrict the data to individuals with Y = 0, and perform a separation scan for recommendations
(setting I = Py, and C' =Y). All of the scan options for CBS are shown in Table |1} Each scan in Table
can detect bias in either direction, e.g., searching for subgroups with increased FPR (i.e., positive direction
bias) or decreased FPR (i.e., negative direction bias).

2.2 Generate Expectations | of the Event Variable

Once we have defined the event variable I and conditional variable C, as discussed in Section 2.1} we
wish to detect fairness violations by assessing whether there exist subgroups of the protected class where
E[I | C,X,A = 1] differs systematically from E[l | C, X, A = 0]. For each individual ¢ in the protected
class, I; | C;, X;, A; = 1 is observed but I; | C;, X;, A; = 0 is unobserved. Thus we calculate an estimate
I = Ep, [ | Ci, Xi, A; = 1], under the null hypothesis, Hy: I L A|(C, X), and compare I; to the observed
I;. Using the estimated I and observed I , we aim to determine which subgroups in the protected class have
the largest deviations in I as compared to what we would expect if there was no bias, I. The method to
generate I borrows from the literature on causal inference in observational settings, where propensity score
reweighting is used to account for the selection of individuals into a “treatment” condition (here, membership
in the protected class) given their observed covariates X.

The method to estimate I consists of the following steps:

Step 1: Train a predictive model using all the individuals in the data to estimate Pr(A =1| X).

Step 2: Use this model to produce the probabilities, p/* = Pr(4; = 1| X;), and the corresponding propensity

A_ _pf
i l—pA’

score weights, w for each individual ¢ in the non-protected class (A; = 0). Intuitively,

individuals in the non—pfotected class whose attributes X; are more similar to individuals in the
protected class have higher weights wiA. This weighting scheme is used in the literature to produce
causal effect estimates that can be interpreted as the average treatment effect on treated individuals
(ATT) under typical causal inference assumptions of positivity and strong ignorability.
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Step 3: Estimate Eg,[I | C, X]:

Case A (Binary event variable): For all sufficiency scans and separation scan for recommenda-
tions, where the event variable, I, is binary, we train a model using only data for individuals
in the non-protected class (4; = 0) to estimate Eg, [I | C, X] by weighting each individual 4
in the non-protected class by w{‘. The trained model is used to estimate the expectations
I,=E 1, [1Li | Ci, X;] for each individual in the protected class (4; = 1) under the null hypothesis,
Hy,of I L A|(C,X).

Case B (Real-valued event variable): For the separation scan for predictions, where the event
variable, I, is a real-valued variable, the probabilistic predictions P, rather than a binary event
variable, we use a similar but modified process to estimate Eg, [I |C, X], where I = Pand C =Y.
For each individual ¢ in the non-protected class, we create two training records containing the
same covariates, X;, but different labels and associated weights:

i. For the first record, we set the label, Ifimp , equal to 1, and set the weight to w P;.

ii. For the second record, we set the label, I} equal to 0, and set the weight to w{*(1 — P;).
Note, for a separation scan for predictions, P; is the observed prediction for individual i. We
create a dataset that includes both records, described in [if and [iil above, for each individual in
the non-protected class and their associated weights, and use this concatenated data set to train
a model that estimates Eg, [I**"? | C, X], by weighting each individual i in the non-protected
class by either waZ- or wf(l — P;) as described above. This approach is consistent with other
CBS variants and enforces the desired constraint 0 < fi < 1, unlike alternative approaches such
as using regression models to predict I.

For value-conditional scans, such as the FPR, FDR, and balance for positive class scans shown in Table [I]
CBS audits for biases in the subset of data where C' = z, for z € {0,1}. Dataset D is filtered before to
only include individuals where C' = z. For example, for the value-conditional scan for FPR, we filter the data
to only include individuals where C' = 0 (or equivalently, Y = 0).

A probabilistic model can be used to estimate Pr(A =1|X) in and a probabilistic model that allows
for weighting of instances during training can be used to estimate Eg, [/ | C, X] in For Sections |3| and
as well as Appendices and we use logistic regression to estimate Pr(A = 1] X) and weighted logistic
regression to estimate Eg, [/ | C, X]|. When estimating Eg,[Y | P, X] (the realized expectation of Eg,[I | C, X])
for sufficiency scan for predictions, we transform the conditional variable, P;, to its corresponding log-odds,
log 1%}31_, prior to training, since we expect log lf"yi (the target of the logistic regression) to be approximately
P;

=5 for well-calibrated classifiers.

log

Accurate estimates of I are essential for CBS to accurately detect the subgroup in the protected class with
the most deviation between the observed I and estimated I under the null hypothesis of no bias. The
method described above has the limitation of only producing accurate estimates of I when both the model for
Pr(A=1]|X) and Eg,[I | C, X] are well-specified. Given the consistency of our findings for the COMPAS
case study in Section @ with other researchers’ findings about COMPAS, as well as other checks we have
performed to examine I (such as the calibration curve plots for both Pr(A =1|X) and Eg,[I | C, X] for our
COMPAS case study included in Appendix , we believe that the method above suffices for COMPAS.
However, we find that logistic regression is insufficient in estimating I for the German Credit Data, due to the
smaller dataset size and highly-correlated predictors. Thus we use a more flexible model—a gradient boosting
classifier with Platt scaling—in our German Credit Data experiments in Appendix @ to ensure that CBS
predictions are well-calibrated when computing propensity scores and when estimating /. In Appendix
we include calibration curve plots for the models used to estimate Pr(A = 1| X) and Eg,[I | C, X] for
our German Credit Data case study. We encourage others using CBS to be aware of this limitation, pay
special consideration to estimates of I , and if necessary, employ methods from the causal inference literature
on doubly robust estimation (Imbens, |2004; |Schuler & Rose, |2017) or methods from the computer science
literature for model calibration when producing estimates of 1.

We note that both discrete-valued and continuous-valued covariates, X, can be used for estimating I , for both
the propensity model Pr(A = 1| X) and the model of Eg,[I | C, X]. However, continuous-valued covariates,
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Table 2: Null and alternative hypotheses, Hy and H;(S), and corresponding log-likelihood ratio score
functions, F'(S), used to measure a subgroup’s degree of anomalousness (comparing the event variable I to
its expectation I under H,) for all four variants of CBS. Shading is used to distinguish between Gaussian
and Bernoulli scans and provide consistency with Table [I} Over-estimation (under-estimation) bias means
that the expectations I; are larger (smaller) than I;. Note that the free parameters in F'(S) are p and ¢ for
Gaussian and Bernoulli scan respectively. Derivations of F'(S) can be found in Appendix

Scan Types Hypotheses and Bias Constraints F(5)
Hy : A,‘NN(O,O’),ViED1
Hy(S) : A; ~ N(p, o)

20}, A¢)-ISIn?

Predictions where A; =log (1£i1_ ) — log (lfif_ ) Xy 202
Separation i i
Over-estimation: nw<0,VieS,and pu=0,Vi ¢ S.
Under-estimation: pw>0,vie S, and pu=0,vi ¢ S. Gaussian Distribution
Recommendations Hy : odds(I;) = 1?[7 , Vi€ Dy
Hy(S) : odds(I;) = ¢ Li max, - (I; log(q)
Predictions ! =1 ! ZZES !
— log(qf- — I+ 1))
Sufficiency ’ ‘
Over-estimation: g<1l,Vie S;and ¢=1,Vi ¢ S.
Recommendations
Under-estimation: g>1,VieS,and ¢g=1,Vi ¢ S. Bernoulli Distribution

X, must be discretized or removed prior to the scan step described below in Section which requires that
all scan dimensions, i.e. the covariates, X, are discrete-valued.

2.3 Detect the Most Significant Subgroup S*

Given the observed event variables I; and the expectations fi of the event variable under the null hypothesis
(I L A|C,X) for the protected class, where the procedure for calculating I is described in Section
we define a score function measuring subgroup bias, F' : S — R>¢, that can be efficiently optimized over
exponentially many subgroups with the goal of identifying S* = argmaxg F'(S).

To do so, we follow the literature on spatial and subset scan statistics (Kulldorffl 1997} [Neill, 2012)) by defining
the general form of the various score functions, F(.S), for the CBS scans as a log-likelihood ratio (LLR) test
statistic:

P =18 ("5 5

Here the denominator represents the likelihood of seeing the observed values of event variable I for subgroup
S of the protected class under the null hypothesis Hy of no bias. The numerator represents the likelihood of
seeing the observed values of I for subgroup S of the protected class under the alternative hypothesis H;(.5),
where the I; values are systematically increased or decreased as compared to I;.

For the alternative hypothesis, H;(.S), to represent a deviation from Hy, H; contains a free parameter (g or
1) that is determined by maximum likelihood estimation. Under-estimation bias (I; > I;) or over-estimation
bias (I; < I;) can be detected using different constraints for ¢ or u. These constraints, as well as all
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hypotheses (Hy and H;) and corresponding score functions, F(S), for all scans are shown in
Table 2

As shown in Table [2f when I is a probabilistic prediction (i.e., for separation scan for predictions), the
hypotheses are in the form of a difference of log-odds between I and I sampled from a Gaussian distribution.
Here, the free parameter p in H; represents a mean shift (1 # 0) of the Gaussian distribution. For all other
scans, under Hy, each observed I; is assumed to be drawn from a Bernoulli distribution centered at the
corresponding expectation fl Under Hq, the free parameter ¢ represents a multiplicative increase or decrease
(q # 1) of the odds of T as compared to 1.

As shown in the rightmost column of Table [2] the various score functions all aggregate the deviations from
H, for each instance in a subgroup, and thus the log-likelihood ratio score F'(.S) scales linearly with subgroup
size | S| for a given amount of deviation between observed and expected I values. This dependence on |S|
prevents the scan from assigning disproportionately high log-likelihood scores to subgroups with few instances
that have large, chance deviations from the null hypothesis over favoring the true, larger subgroups of interest.
For example, a subgroup with very few instances where there is a large deviation in, for example, the false
positive rate between individuals in the protected class and those in the non-protected class, would not be
favored over a larger subgroup with less pronounced deviation in its false positive rate because of this scaling
effect that controls for subgroup cardinality.

As in [Zhang & Neill (2016]), a complexity penalty term can be added to the expressions for F(S) shown
in the rightmost column of Table 2] The complexity penalty is equal to a prespecified scalar times the
total number of attribute values included in subgroup S, summed across all covariates X*,..., X™. Note
that there is no penalty for a given attribute if all attribute values are included, since this is equivalent to
ignoring the attribute when defining subgroup S. The penalty term results in more interpretable subgroups
by encouraging the scan either to ignore an attribute (i.e., all values of that attribute are included in the
subgroup) or to choose a smaller number of attribute values to include in the subgroup.

We now consider how CBS can efficiently maximize F'(S) over subgroups S of the protected class, returning
the discovered subgroup S* and the corresponding score F'(S*), where we aim to identify

S* :argmgme(S). (2)

The scan procedure for CBS takes as inputs a dataset Dy = (I, I , X) consisting of the observed event variable
I;, the estimated expectation of I; under the null hypothesis fi, as calculated in Section and the covariates
X, for each individual in the protected class (A; = 1), along with several parameters: the type of scan
(Gaussian or Bernoulli), the direction of bias to scan for (over- or under-estimation bias), complexity penalty,
and number of iterations. It then searches for the highest-scoring subgroup (consisting of a non-empty subset
of values V7 for each covariate X7), starting with a random initialization on each iteration, and proceeding
by coordinate ascent.

The coordinate ascent step identifies the highest-scoring non-empty subset of values V7 for a given covariate
X7, conditioned on the current subsets of values V=7 for all other attributes. As shown in [McFowland III
et al. (2023), each individual coordinate ascent step can provably find the optimal subset of attribute values
while evaluating only | X7| of the 21%I subsets of values, where | X7| is the arity of covariate X7. This efficient
subroutine follows from the fact that the score functions above satisfy the additive linear-time subset scanning
property (Neill, |2012; [Speakman et al.| |2016). The coordinate ascent step is repeated with different, randomly
selected covariates until convergence to a local optimum of the score function, and multiple random restarts
enable the scan to approach the global optimum. [McFowland III et al.| (2023)) provide sufficient conditions
under which this routine will identify the global optimum in the large-sample limit; empirically, the approach
converges to near-optimal subgroups while requiring only low-order polynomial time.

For an in-depth, self-contained description of the scan algorithm, including pseudocode (Algorithm 2| in
Appendix , an analysis of its computational complexity (Appendix 7 and how it exploits an
additive property of the score functions to achieve linear-time efficiency for each scan step (Appendix ,
see Appendix Derivations for F(S) are provided in Appendix
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Algorithm 1 Semi-Synthetic Data, D g,

1: Require: (X1,...,Xm) =X
2: Randomly pick protected class attribute A
4: wj ~ N(0,0.2) where Vj =1 to ncols(X7)
5: for i = 1 to nrows(X4) do
6: Lirve = (E;”:jleXi(j)) +elme > where €/ ~ N(0, 0true),
L™ represents the true log-odds of a positive outcome
for row i.
7 Y; ~ Bernoulli(o(L:™¢)) > o is the sigmoid function,
Y; is the true outcome for row .
s LfTEdiCt — Lgrue + EfTEdiCt > where Ef'redict ~ N(Ovap'redict)7
LPredict represents the predicted log-odds for row 4,
e?e%°! represents non-systematic errors (random noise)
in the predictive model.
9: P; = g(LPme®eh) > o is the sigmoid function,
P; is the predicted probability of a positive outcome for
10: P vin = I{Pi > 0.5} > IBVZZZ is the predicted recommendation for row i based
on thresholding P;.
11: end for

12: return Dyqir = (X7, A, Lirue [Predict Y P Pyin) > return covariates, protected class attribute, true log-odds,
predicted log-odds, outcomes, probabilities, and recom-
mendations

2.4 Permutation Testing to Evaluate the Statistical Significance of S*

As described in Section [2.3] the scan step returns the detected subgroup S* that maximizes the score function
for a given scan type and parameterization, S* = arg maxg F'(S) as shown in Equation [2l The statistical
significance (p-value) of the discovered subgroup S* can be obtained by permutation testing, which correctly
adjusts for the multiple testing resulting from searching over subgroups.

To do so, we generate a large number of simulated datasets under the null hypothesis Hy. For each null
dataset, we generate new estimates for I , as described in Section and perform the same CBS scan, as
described in Section (maximizing the log-likelihood ratio score over subgroups, exactly as performed
for the original dataset). We then compare the maximum score F'(S*) found for the true dataset to the
distribution of maximum scores F(S*) found for the simulated datasets. To generate each simulated dataset
under the null hypothesis, we copy the original dataset and randomly permute the values of A; (whether or
not each individual is a member of the protected class), thus testing the null hypothesis that A is conditionally
independent of the event variable I. The detected subgroup is significant at level « if its score exceeds the
1 — a quantile of the F'(S*) values for the simulated datasets. For a given dataset, the score threshold for
significance at a fixed level o = .05 will differ for different choices of the sensitive attribute and protected class.
Thus, if CBS is used to audit a classifier for possible biases against multiple protected classes, a separate
permutation test must be performed for each protected class value.

This permutation testing approach is computationally expensive, multiplying the runtime by the total number
of datasets (original and simulated) on which the CBS scan is performed, but it has the benefit of bounding
the overall false positive rate (family-wise type I error rate) of the scan while maintaining high detection
power. In comparison, the simpler approach of Bonferroni correction also bounds the overall false positive
rate, and requires much less runtime, but suffers from dramatically reduced detection power.

Finally, we note that this procedure does not account for additional multiple testing issues which could result
if we run several conditional bias scans (e.g., with different choices of the protected class or different group
fairness definitions) but wish to bound the total type I error rate across all scans. An additional Bonferroni
correction (dividing the p-value threshold for statistical significance by the number of CBS runs, not the
number of subgroups) can be applied in this case.
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3 Evaluation

Given the lack of gold standard approaches for evaluating subgroup bias auditing methods, we evaluate the
CBS framework through semi-synthetic simulations with the following steps:

Step (A): Given a real-world dataset with attributes X, randomly select a protected class A and
generate a semi-synthetic dataset, referred to as D g4y, where the predictions, recommen-
dations, and outcomes are conditionally independent of A given X \ A, i.e., there are no
sufficiency or separation violations (defined in Section pertaining to protected class A.

Step (B): Take the unmodified semi-synthetic data, Dyqr, and inject signal consistent with a
separation or sufficiency violation or base rate shift into a subgroup of protected class A,
referred to as Spias, to generate dataset Djy,;.

Step (C): Run CBS and benchmark methods to detect violations pertaining to protected class A for
Din; and measure the accuracy of the detected subgroups, referred to as S*, compared to
the known (injected) biased subgroup, Spigs.

We will discuss each step, [Step (A){Step (C)} in detail below, including the motivating questions that underpin
our design choices.

Generate a semi-synthetic dataset: Using COMPAS dataﬂ described in Section |4} we use Algorithm
to generate a semi-synthetic dataset, D ¢q-. Specifically, we randomly select an attribute and value to define
the protected class A and remove that attribute from X, as shown in Lines 23] In Line [d] we draw a weight
from a Gaussian distribution, w; ~ N(0,0.2), for each attribute-value of the covariates, excluding A. We use
these weights, w;, in Line |§|7 to produce the true log-odds, Li"¢, of a positive outcome (Y; = 1) for each
row ¢ by a linear combination of the attribute values with these weights. Note, in Line [6] of Algorithm
we add €€ ~ N(0,044e) to each row’s true log-odds, Li™¢ representing variation between rows that
arises from external factors (not included in the scan attributes), and is incorporated into the predictive
modelﬂ Given the true log-odds Li"“¢ of Y; = 1 for each row i, in Line [7| we draw each outcome Y; from
a Bernoulli distribution with the corresponding probability, expit(L{“¢), which we refer to as the true
probabilities. Next, in Lines we set each row’s predicted probability P; = expit(Li"™*¢ + ¢;), where
€; ~ N (0, 0predict) represents non-systematic errors (random noise) in the predictive model. Finally, we
threshold the probabilities to produce recommendations P; p;, = 1{P; > 0.5} for each row 7 in Line

Algorithm [T] returns the randomly selected protected class attribute, A, the original covariates, excluding the
protected class membership, X+, the synthetic true labels, Y, the predicted probabilities, P, and thresholded
probabilities to create recommendations, P; ;. Importantly, since A is conditionally independent of the
outcomes Y, predictions P and recommendations P;, given the observed covariates X, by design, this
dataset, Dy¢qir, contains no signals indicating separation or sufficiency violations for a subgroup of protected
class A.

We use default values of o4pye = 0.6 and opredice = 0.2 for Algorithm |I|7 and examine sensitivity to these
parameters in Appendix see Appendix for a discussion of the impact of o4 on sufficiency-based
fairness definitions.

Inject signal: We randomly select a subgroup, Sias, of the protected class A of Dy, into which
we will inject biases or base rate shifts to create D;,;. We pick Spi.s by randomly choosing two attributes
(nbias = 2) and then independently including or excluding each value of those attributes with probability
Prias = 0.5. (This process is repeated until the resulting subgroup is non-empty.)

We designed the evaluation to address three key questions about the performance of the four CBS variants
and benchmark methods:

2We use the covariates from COMPAS to maintain realistic covariate correlations, but do not use the predictions or outcomes.
3Rudin et al.| (2020) note that COMPAS relies on up to 137 variables collected from a questionnaire, and we expect that
some of these additional variables are correlated with outcomes.
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(Q1): How well do they detect biases represented as systematic differences, in the form of injected signals
Hsep and fig,f, between the predicted and true probabilities for the event variable I in subgroup
Shias Of the protected class A?

(Q2): How do they respond to an injected base rate shift, i.e., an equal shift by ¢ in the predicted and
true probabilities for the event variable I for subgroup Sy;qs of the protected class A?

(Q3): How do the answers to the first two questions, |(Q1)|and |(Q2)| vary based on the size of the biased
subgroup Sh;qs, Which is controlled by the values chosen for ny;es and ppiqs?

To address we inject a bias signal into subgroup Spi,s of the protected class A, keeping the corresponding
subgroup of the non-protected class unchanged, in one of two ways, corresponding to separation and sufficiency
violations respectively:

bias fisep: To produce D;y; from Dyq;y, for each row of Spiqs, we increase the predicted probability F;
by fisep and then recompute the model’s recommendation P; 3, by thresholding P; at 0.5.
When pisep > 0, this creates a signal which is consistent with separation violations in the
positive direction for subgroup Syiqs of protected class A in D, ;. Detection results of CBS and
benchmark methods for the injected signal of jisep t0 Spiqs are in the leftmost plot of Figure

bias pisup:  To produce D;yj from Dy, for each row of Spi,s, we reduce the true probability by jis,r and
then redraw the outcome Y;. When pg,¢ > 0, this creates a signal which is consistent with
sufficiency violations in the negative direction for subgroup Sy;.s of protected class A in
Diyj. Detection results of CBS and benchmark methods for the injected signal of fteuf t0 Spias
are in the rightmost plot of Figure

Both of these injected signals result in a bias where P and Py;, overestimate the outcomes (V') for the given
subgroup Spiqs of the protected class A in Djy,;.

To address |(Q2), we inject a base rate shift into subgroup Spiqs of the protected class A, keeping the
corresponding subgroup of the non-protected class unchanged:

shift 6: To produce D;y; from D g, for each row of Spiqs, we increase both the true probabilities and the
predicted probabilities of Sp;.s by §, then redraw outcomes Y; and recompute recommendations
P; vin. For positive 4, this creates a higher base rate of a positive outcome for subgroup S;qs of
the protected class A in D;,;, as compared to the corresponding subgroup of the non-protected class,
while maintaining well-calibrated predictions. Detection results of CBS and benchmark methods for
the injected base rate shift of § to Spi.s are in Figure

Importantly, the signals for psep, ftsur, and 0 are created by a uniform shift in the true and predicted
probabilities, which corresponds to a non-uniform shift in the true and predicted log-odds. This is distinct
from the modeling assumption made by CBS, which assumes (under the alternative hypothesis that
bias is present) a constant additive shift in the true or predicted log-odds. By injecting signal in this way, we
ensure that our method is robust to non-additive shifts in log-odds. For simulation results that inject bias
represented as additive shifts in log-odds, please see Appendix [B:4] We observe high consistency between
those additional results and the ones presented here.

To address we run three experiments (tsep = 0.50, sy = 0.50, and § = 0.25) while varying the size of
Shias in one of two ways:

Npias: We vary the number of attributes, ny;qs, that the attribute-values can be chosen from, between 1 and
4, when randomly selecting Sp;qs. Detection results of CBS and benchmark methods when varying
Npias With different types of injected signal are in the top row of Figure [3]

Drias: We vary the probability, ppias, that each value of the chosen attributes is included in Sp;qs. Detection
results of CBS and benchmark methods when varying pp;qs with different types of injected signal are
in the bottom row of Figure [3]
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Together, the different shifts of pisep, thsuyr, and 0 along with variations in the parameters nyiqs and ppiqs used
to select Spiqs result in 1,344 distinct processes that each generate a distinct dataset D;,; from the base

semi-synthetic dataset, D g4, generated in [Step (A

Run CBS and benchmark methods and measure the accuracy of the detected subgroups: We compare
the four variants of CBS to the benchmark methods, GerryFair (Kearns et al., |2018|) and MultiAccuracy
Boost (Kim et al., |2019al), described in Section |5, For more information about the benchmark methods and
the modifications we made to make them more comparable to CBS for these simulations, see Appendix

After injecting bias into or shifting the base rates of Spiqs for the protected class A of Dyqsr to create Diyj,
as described in we run four variants of CBS (separation scan for recommendations in the positive
direction; separation scan for predictions in the positive direction; sufficiency scan for recommendations in
the negative direction; and sufficiency scan for predictions in the negative direction) and GerryFair and
MultiAccuracy Boost for D;,; for the randomly selected protected class attribute, A. (Note: We use the
same settings for CBS as described in Section [4] with the exception of running all scans with all conditional
variable values rather than as value-conditional scans.) Then, we measure the accuracy of a detected subset
for each CBS scan and each benchmark method, S*, compared to the ground truth subgroup, Sp;qs, using
the following metric:

o |Sbias n s |

accuracy(S*) = W
ias

(3)
Equation [3]is the Jaccard similarity between the injected and detected subsets, Sp;.s and S*, respectively.
This accuracy measure penalizes both falsely detected unbiased instances and undetected instances affected
by bias, making it appropriate for applications where both types of error should be minimized.

Finally, to generate confidence intervals for these simulations, we repeat the full set of experiments 100 times
and report the average accuracy of each method across runs, specifically:

o For[Step (A)| we generate 100 distinct semi-synthetic datasets, Dsqir.

o For each of these 100 datasets of D4, we perform the same 1,344 experiments described in
each defined by a unique configuration of injected bias. This produces 1,344 distinct biased
datasets, Dinj, per Dyqir.

» For each of the resulting D;,;, we evaluate the accuracy of the detected subgroup S* discovered by
the four CBS scans and two benchmark methods, as described in [Step (C)|

This results in performance accuracy scores for all 1,344 experiments, repeated across 100 independently
generated Dy, datasets, which are then averaged by grouping distinct experiment configurations across all
100 versions of Dy, to obtain confidence intervals.

3.1 Simulation Results

In Figure (1}, which addresses we observe that all four variants of CBS are able to detect the injected
signal, fisep OF flsyf, in sUbgroup Spiqs of the protected class A, with higher detection accuracy (defined in
Equation [3) than GerryFair or MultiAccuracy Boost. Sufficiency scans had highest detection accuracy for
shifts in true probabilities (fsuf), as shown in the rightmost plot of Figure |1} and separation scans had
highest detection accuracy for shifts in predicted probabilities (psep), as shown in the leftmost plot of Figure
Scans for predictions generally outperformed scans for recommendations, due to the loss of information from
binarization of the probabilistic predictions.

Interestingly, sufficiency scan for predictions (but not for recommendations) converged to perfect detection
accuracy for pisep, while separation scans did not converge to perfect detection accuracy for e, ¢. Sufliciency
scan for predictions is conditioned on a real-valued variable (P;) rather than a binary variable (P p;, or
Y;), allowing for more flexible modeling of E[Y | P, X] and thus greater sensitivity to shifts in predicted
probabilities.
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Figure 1: Average accuracy (with 95% CI) as a function of the amount of bias injected into subgroup Sias
of the protected class A, for four variants of CBS, GerryFair, and MultiAccuracy Boost. Left: increasing
predicted probabilities by signal jise,. Right: decreasing true probabilities by signal pig,s.
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Figure 2: Average accuracy (with 95% CI) as a function of the base rate difference § between protected and
non-protected class for subgroup Sp;es, for four variants of CBS, GerryFair, and MultiAccuracy Boost. Note
that predictions are well calibrated, fsep = ftsuy = 0, for this set of results.

In Figure 2| which addresses |(Q2)} shifting the base rate by d for subgroup Spis of the protected class A
results in separation scans detecting a base rate shift when § > 0, while sufficiency scans and competing
methods are not sensitive to this shift. This finding aligns with previous research proving that

differences in base rates between two populations will result in a higher false positive rate for
the population with a higher base rate when using a well-calibrated classifier (Chouldechova

2017).

Interestingly, as shown in Figure [2] sufficiency scan for recommendations detects a base rate shift for § < 0.
In this case, E[Y | Pyin, X] is lower for instances of Sp;qs in the protected class A than for instances with
negative recommendations (Pp;, = 0) in the non-protected class. Thus conditioning on the binary indicator
P, pin, for this simulation is not sufficient to capture this decrease in the true probabilities, while conditioning
on the real-valued prediction P; allows sufficiency scan for predictions to extrapolate reasonably well to these
cases.

In Figure |3 which addresses we observe that, when varying ng;.s, which can be observed in the plots
contained in the top row of Figure |3] CBS has similar detection accuracy results to the simulations shown
in Figures[I| and [2| with separation scans and sufficiency scan for predictions having higher bias detection
accuracy when pgep, = 0.50, and sufficiency scans having higher bias detection accuracy when g, s = 0.50, as
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Figure 3: Average accuracy (with 95% CI) for biases and base rate shifts injected into subgroup Sp;,s of the
protected class, for CBS, GerryFair, and MultiAccuracy Boost, as a function of varying parameters np;qs (top
row) and ppiqs (bottom row). Left: increasing predicted probabilities by psep = 0.50. Center: decreasing true
probabilities by ps,; = 0.50. Right: base rate difference § = 0.25, for pisep = ptouy = 0.

compared to competing methods across all settings of ny;qs. Interestingly, as observed in the lower leftmost
plot of Figure 3| when fi5ep = 0.50 and ppiqs approaches 1 (i.e., more individuals in the protected class A are
included in Sp;,s), GerryFair has improved bias detection accuracy, approaching that of CBS, but it performs
poorly for values of py;qs closer to 0. This suggests that CBS is better at detecting smaller, more subtle
subgroups Spiqs than the competing methods.

All fixed hyper-parameter choices for these simulations are moderate values which align with non-edge cases.
Additional robustness checks for varying hyper-parameter choices for these simulations are described in
Appendix [B.4] For estimates of compute power needed for the simulations see Appendix

4 Case Study of COMPAS

The COMPAS algorithm is used in various jurisdictions across the United States as a decision support tool
to predict individuals’ risk of recidivism. It is commonly used by judges when deciding whether an arrested
individual should be released prior to their trial (Angwin et al., 2016b)). Following the initial investigation
by ProPublica about fairness issues in the risk scores generated by the COMPAS algorithm
, ProPublica’s COMPAS dataset has been used as a benchmark in the fairness literature. We follow
many of the processing decisions made in the initial ProPublica analysis, including removing traffic offenses
and defining recidivism as a new arrest within two years of the initial arrest for a defendant
[2016; [Larson & Roswell, [2017). After preprocessing the initial data set, we have 6,172 defendants, their
gender, race, age (Under 25 or 25+), charge degree (Misdemeanor or Felony), prior offenses (None, 1 to 5, or
Over 5), predicted recidivism risk score s;, where s; € {1,2,...,10}, and whether they were re-arrested within
two years of the initial arrest, where Y; = 1 if individual ¢ was re-arrested and Y; = 0 otherwise. Given that
COMPAS only provides risk scores and not predicted probabilities of reoffending, we define each defendant
i’s predicted probability of reoffending using maximum likelihood estimation:
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Defendants with COMPAS risk scores of 5+ (s; > 5) are considered “high risk” since the COMPAS

documentation stipulates careful consideration by supervision agencies for these defendants (Larson et al.)
2016). Therefore we define the COMPAS recommendations as P pin, = 1{s; > 5}.

P, = (4)

We chose the parameters for each of the four variants of CBS scans (values of the event and conditioning
variables, I and C, respectively, and direction of bias) in order to search for systematic biases in COMPAS
predictions and recommendations which disadvantage defendants for a given protected class A. For the
separation scans, we detect positive deviations for the protected class attribute A in the E(P|Y =0, X),
listed as FPE in Table (3| and Pr(Pyy, =1]Y =0, X), listed as FPR in Table [3] i.e., increase in predicted
risk and increase in FPR for non-reoffending defendants, respectively. For the sufficiency scans, we detect
a negative deviation for the protected class A in the Pr(Y = 1| P, X), listed as CAL in Table [3| and
Pr(Y = 1] Pyn = 1, X), listed as PPV in Table [3] i.e., decreased probability of reoffending conditional on
predicted risk and on being flagged as high-risk, respectively. These choices were made to ensure our ability
to verify our findings based on previous research on COMPAS, which commonly focus on similar fairness
violations to those used in our case study. With that said, we strongly encourage auditing for predictive biases
that affect reoffending defendants and low-risk defendants as well, if using CBS to audit an algorithmic risk
assessment tool in practice. For example, auditing for the increased probability of being flagged as high-risk
for reoffending defendants could help to uncover subpopulations that are over-prosecuted in comparison
to other populations of reoffending defendants. Therefore, expanding the fairness definitions used to audit
pre-trial risk assessment tools for biases could have beneficial findings.

For all scans, we use all attributes except for the sensitive attribute when calculating the probability of being
a member of the protected class A (for the propensity score weighting in [Step 1| and [Step 2| of Section [2.2)
and when generating the predicted values I under the null hypothesis of no bias, Hy, in [Step 3| of Section [2.2
All scans were run for 500 iterations with a penalty equal to 1.

4.1 COMPAS Results

Table [3| contains the detected subgroups S*, and their associated log-likelihood ratio scores F(S*), and
corresponding indicators of statistical significance, found by each of the four variants of CBS, for various
choices of the sensitive class attribute: Black, white, female, male, younger (under the age of 25) defendants,
older (age 25+) defendants, and defendants with no priors. Please see Section for the permutation test
procedure used to determine statistical significance of CBS’s detected subgroups. For the full set of results
for all CBS scans when treating each attribute value as the sensitive class attribute, please see Table [5|in
Appendix [C.1.2] For a discussion of the benchmark methodologies’ results for COMPAS, please reference

Appendix [C.1.3]

Below are summaries of some of the statistically significant results that CBS found in COMPAS predictions
and recommendations displayed in Table

Racial bias in COMPAS. Table [3| shows that the separation scans identify statistically significant
biases negatively impacting a subgroup of Black defendants, while the sufficiency scans do not. These
results support and complement the previous findings by ProPublica (Angwin et al., 2016b)) and follow-up
analyses (Chouldechoval, 2017)), which concluded that COMPAS has large error rate disparities which negatively
impact Black defendants (corresponding to large log-likelihood ratio scores, F(S*), for separation scans),
and that its predictions are well-calibrated for Black defendants (corresponding to small and statistically
insignificant log-likelihood ratio scores for sufficiency scans).

However, CBS’s detected subgroup for the two separation scans adds a useful finding to this discussion:
the large FPR disparity of COMPAS against Black defendants is even more significant in the
intersectional subgroup of Black males found by CBS’s separation scans. Non-reoffending Black
male defendants have an FPR, of 0.44, compared to non-reoffending non-Black male defendants’ FPR of
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R Observed Metric Observed Metric
Log-Likelihood fs
Scan Detected Ratio Metric for Sensitive for Complement
Type Subgroup (S*) (F(S*)) Detected Subgroup Detected Subgroup

(Num. of Defendants)  (Num. of Defendants)

Sensitive Attribute: Black Defendants compared to Non-Black Defendants

Sep. Pred. Males 42.4 FPE 0.45 (1168) 0.35 (1433)

Sep. Rec. Males 102.3 FPR 0.44 (1168) 0.19 (1433)

Suff. Pred. Females 2.21 CAL 0.37 (549) 0.34 (626)

Suff. Rec. Age 25+ with 0-5 priors 0.37 PPV 0.50 (581) 0.52 (404)

Sensitive Attribute: White Defendants compared to Non-White Defendants
Sep. Pred. - 0.0 FPE -
Females under age 25

Sep. Rec. . . 2.01 FPR 0.71 (31) 0.56 (70)
with no priors

Suff. Pred. Under age 25 2.36 CAL 0.49 (347) 0.58 (1000)

Suff. Rec. Females under age 25 0.41 PPV 0.39 (57) 0.47 (110)

Sensitive Attribute: Female Defendants compared to Male Defendants

Sep. Pred. White 1.51 FPE 0.38 (312) 0.35 (969)

Sep. Rec. White 12.5 FPR 0.29 (312) 0.20 (969)

Suff. Pred. Under age 25 18.7 CAL 0.38 (246) 0.60 (1101)

Suff. Rec. Under age 25 13.2 PPV 0.44 (167) 0.68 (699)

Sensitive Attribute: Male Defendants compared to Female Defendants

Sep. Pred. Asian 0.63 FPE 0.30 (22) 0.22 (1)

Sep. Rec. Asian and Hispanic 22.5 FPR 0.21 (286) 0.05 (57)

Suff. Pred. Native Americans age 25+ 31.4 CAL 0.14 (7) 1.00 (2)

Suff. Rec. Native Americans age 25+ 14.1 PPV 0.25 (4) 1.00 (2)
Sensitive Attribute: Defendants under age 25 compared to Defendants age 25+

Sep. Pred. All defendants under age 25 128.2 FPE 0.51 (593) 0.37 (2770)

Sep. Rec. All defendants under age 25 159.3 FPR 0.53 (403) 0.25 (1583)

Suff. Pred. - 0.0 CAL -

Suff. Rec. - 0.0 PPV -
Sensitive Attribute: Defendants age 254 compared to Defendants under age 25

Sep. Pred. - 0.0 FPE -

Sep. Rec.  Asians arrested on felony charges 0.74 FPR 0.20 (10) 0.00 (1)

Suff. Pred. Males with 0-5 priors 92.7 CAL 0.35 (2867) 0.59 (1041)

Suff. Rec. Males with 0-5 priors 53.0 PPV 0.52 (772) 0.67 (641)

Sensitive Attribute: Defendants with no priors compared to Defendants with 1+ priors

Sep. Pred. - 0.0 FPE - -

Sep. Rec. - 0.0 FPR —

Suff. Pred. All defendants with no priors 111.6 CAL 0.29 (2085) 0.54 (4087)

Suff. Rec. All defendants with no priors 51.0 PPV 0.46 (553) 0.67 (2198)

Table 3: Select results from CBS scans run on COMPAS data. Sep. Pred. is short for separation scan for
predictions in the positive direction where the metric FPE stands for E[P | Y = 0, X]. Sep. Rec. is short
for separation scan for recommendations in the positive direction where the metric FPR, i.e. false positive
rate, is Pr(Py, = 1| Y = 0,X). Suff. Pred. is short for sufficiency scan for predictions in the negative
direction where the metric CAL, i.e. calibration, is Pr(Y = 1| P, X). Suff. Rec. is short for sufficiency
scan for recommendations in the negative direction where the metric PPV, i.e. positive predictive value, is
Pr(Y = 1| Pyin, = 1, X). The third column contains the log-likelihood ratio, F(S*) defined in Equation
for the detected subgroup, S*, listed in the second column. Note, bold scores of F(S*) are statistically
significant with p-value <.05 measured by permutation testing, as described in Section 2.4l For example,
for the separation scan for recommendations with Black defendants as the sensitive attribute (second row),
Black males had a false positive rate of 0.44 (n = 1168) compared to 0.19 for non-Black males (n = 1433).
Please reference Table [5] in Appendix for the comprehensive set of results for COMPAS.

0.19, whereas non-reoffending Black defendants have an FPR of 0.42, compared to non-reoffending non-Black
defendants’ FPR of 0.20.
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CBS does not find any high-scoring or statistically significant subgroups for white defendants, suggesting that
COMPAS predictions do not disadvantage white defendants compared to non-white defendants or subgroups
of white defendants compared to their non-white counterparts.

As shown in Table 5] of Appendix[C.1.2] sufficiency scans find that Asian defendants arrested on misdemeanor
charges have a lower rate of reoffending compared to non-Asian defendants with comparable COMPAS risk
scores, and that Hispanic defendants flagged as high-risk by COMPAS have a lower rate of reoffending
compared to non-Hispanic defendants flagged as high-risk.

Gender bias in COMPAS. While male and female defendants have equal false positive rates overall,
separation scan for recommendations detects a statistically significant gender bias: non-reoffending white
female defendants have a higher false positive rate than non-reoffending white male defendants (0.29 vs 0.20).
Separation scan for predictions detects the same gender bias but to a lesser degree: non-reoffending white
females have an expected risk of 0.38, compared to non-reoffending white males with an expected risk of 0.35.
Sufficiency scans for both recommendations and predictions detect a statistically significant over-estimation
bias for females under the age of 25. 44% of females under the age of 25 who are flagged as “high-risk” by
COMPAS reoffend, as compared to a 68% recidivism rate for males under the age of 25 who are flagged as
“high-risk” by COMPAS. For both separation and sufficiency scans, thresholding the risk scores to create
recommendations results in larger deviations between the subgroups of females and males found by the scans,
thereby exacerbating the underlying biases present in the COMPAS risk scores that adversely impact white
female defendants and younger female defendants, respectively.

Lastly, separation scan for recommendations finds that non-reoffending Asian and Hispanic male defendants
have a statistically significant higher false positive rate of being flagged as high-risk (0.21) in comparison to
non-reoffending Asian and Hispanic female defendants (0.05) showing that the COMPAS risk scores have
intersectional gender biases that adversely impact different subgroups of male and female defendants.

Age bias in COMPAS. Previous research argues that COMPAS relies heavily on the assumption that
younger defendants are more likely to reoffend (Rudin et al., [2020) when computing risk scores. Younger
defendants have a higher reoffending rate compared to older defendants (0.56 vs. 0.46), and thus, well-
calibrated predictions and recommendations would result in younger defendants having higher FPR than
older defendants. Our separation scans identify non-reoffending defendants under age 25 as the subgroup with
the largest FPR disparity: these defendants have a 53% FPR and average predicted probability of reoffending
of 51%, as compared to non-reoffending defendants of age 25+, who have a 25% FPR and average predicted
probability of reoffending of 37%. On the other hand, our sufficiency scans identify a large subgroup bias
within the protected class of defendants age 25+: older male defendants with 0 to 5 priors have a lower
rate of reoffending, as compared to younger male defendants with 0 to 5 priors, both for flagged high-risk
defendants (sufficiency scan for recommendations) and for defendants with similar risk scores (sufficiency
scan for predictions). This finding highlights the scenario described in Section [1| that CBS is designed to
detect: predictions are well-calibrated between older and younger defendants, in aggregate, but not for the
detected subgroup of older males with 0 to 5 priors.

Risk overestimation for defendants with no priors in COMPAS. Sufficiency scans find that defendants
with no priors are disadvantaged by COMPAS because their rate of reoffending is statistically significantly
lower than defendants with priors who are assigned similar risk scores by COMPAS. Specifically, the rate of
reoffending for defendants with no priors who are flagged as high-risk by COMPAS is 0.46 compared to a
0.67 rate of offending for defendants with 14+ priors who are flagged as high-risk by COMPAS. Relatedly, a
sufficiency scan for predictions shows that defendants with no priors assigned similar risk scores to defendants
with 14 priors have a lower rate of reoffending, representing a miscalibration of risk scores for defendants
with no priors. While not a demographic bias per se, this finding highlights a systematic miscalibration in
COMPAS’s risk scores that penalizes defendants with no prior convictions.

For our German Credit Data case study, see Appendix
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5 Related Work

5.1 Auditing for Subgroup Biases

Bias Scan (Zhang & Neilll |2016)) uses a multidimensional subset scan to search exponentially many subgroups
of data, with the goal of identifying the subgroup with the most significantly miscalibrated probabilistic
predictions compared to the observed outcomes. Bias Scan lacks the functionality of traditional group fairness
auditing techniques to define a protected class and to determine whether those individuals are impacted by
biased predictions, and is thus limited to asking, “Which subgroup in a dataset has the most miscalibrated
predictions?” In contrast, given a protected class A, CBS aims to identify biases impacting A or any
subgroup of A. CBS searches for subgroups within the protected class A with the most significant deviation
in their predictions and observed outcomes as compared to the predictions and observed outcomes for the
corresponding subgroup of the non-protected class (e.g., a racial bias against Black females as compared to
non-Black females). Since Bias Scan solely focuses on the deviation between the predictions and observed
outcomes within a subgroup, it would be unable to detect the subgroup with the most significant deviations
between the protected and non-protected class unless this subgroup also displays significant miscalibration
of predictions. Furthermore, CBS generalizes to separation- and sufficiency-based group fairness metrics,
and to probabilistic and binarized predictions. To enable this new functionality, CBS deviates from Bias
Scan in substantial ways, including novel preprocessing and estimation techniques (see Section and new
hypotheses and score functions (see Section .

GerryFair (Kearns et al., |2018]) and MultiAccuracy Boost (Kim et al., 2019al), the two benchmark methods
used in Section [3] use an auditor to iteratively detect subgroups while training or correcting a classifier to
guarantee subgroup fairness. GerryFair’s auditor relies on linear regressions trained to predict differences
between the predictions and the observed global error rate of a dataset. MultiAccuracy Boost iteratively forms
subgroups by evaluating rows with predictions above and below a threshold to determine which predictions
to adjust. CBS’s methodology for forming subgroups is more complex because it does not assume a linear
relationship between covariates and the difference between the predictions and baseline error rate. For more
details about these benchmark methods, reference Appendix Unlike CBS, these methods provide limited
fairness definitions for auditing, and do not return interpretable subgroups that are defined by discrete
attribute values of the covariates, but rather identify all rows that have a fairness violation on a given
iteration. Since both methods incorporate the predictions in forming subgroups and enable auditing, they are
comparable to CBS. In Section [3] we show that CBS has substantially higher bias detection accuracy than
GerryFair and MultiAccuracy Boost.

There is other research for subgroup bias auditing which is not directly comparable to CBS. For example,
Chouldechova & G’Sell (2017)) use a recursive partitioning algorithm to find subgroups where the false positive
rate disparity between individuals in the protected and non-protected class differs between two predictive
models. In addition to this framework providing limited fairness metrics for auditing, this work is formulated
to measure pairwise disparities between two models’ predictive performance, whereas CBS separately audits
each predictive model’s results, making this work ill-suited as a benchmark for CBS.

5.2 Learning Fair Classifiers

Several recent quantitative research papers (Bose & Hamilton, 2019; [Foulds et al., [2020; |Subramanian et al.
2021)) have proposed methods for learning fair classifiers (as opposed to auditing classifiers) with respect
to intersectional and/or contextual biases. In the machine learning literature, Bose & Hamilton| (2019) use
filtered embeddings to train debiased graph embeddings; |[Foulds et al.| (2020) propose new definitions of
intersectional bias and use regularization to train fair classifiers; and [Subramanian et al.| (2021)) propose a
classifier trained with bias-constraints and also extend a post-hoc debiasing method called iterative nullspace
projection (INLP) to address intersectional bias.
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5.3 Subgroup Discovery

We present a novel subgroup discovery algorithm to search for predictive bias. Subgroup discovery is a rich
research domain. [Herrera et al.| (2011)) provide a comprehensive overview of subgroup discovery, covering
various fundamental topics including a sampling of search algorithms and quality measurements. Klosgen
(1999) provides a condensed and select overview of the topic of subgroup discovery. Lastly, |Leman et al.
(2008) present a framework for multi-target attribute subgroup discovery. While this work is significantly
different from CBS regarding framing, quality measurements, search algorithms, etc., it provides a useful
overview of various considerations of subgroup discovery pertaining to a model’s outputs for a given data
distribution.

5.4 Intersectionality

The concept of intersectionality has a rich history (Crenshaw, [1991asb; [Collins, |2008). Given the importance of
intersectional biases, we provide concise resources for the original conceptualizations of “intersectionality”. In
the sociology literature, intersectionality theory (Crenshaw 1991aib; (Collins| 2008) describes how individuals’
different social positions and identities interact to influence their social experiences, actions, and outcomes.
In particular, an individual at the intersection of several minoritized groups may be impacted by multiple
historical and continuing systems of power and oppression such as structural racism, sexism, income and
wealth disparities, etc.

Throughout this paper we are intentional in distinguishing between intersectional and contextual biases, as
defined in Section [I} It is important to note that while an intersectional bias detected by CBS could be
representative of the distinct type of discrimination described by intersectionality theory in some instances, in
others they might not perfectly align. Therefore, an intersectional bias detected by CBS cannot interchangeably
be used to refer to instances of sociological intersectionality without further analysis and contextualization.

6 Limitations

Our CBS framework is designed to audit a classifier’s predictions and recommendations for biases with
respect to subgroups of a protected class, whereas competing methods provide mechanisms for both auditing
and correcting classifiers. Combining auditors with correction and training presents the challenge of how
to quantify the inherent trade-offs between performance and fairness when correcting for subgroup biases.
Additionally, designing auditors that are linked to correction and training methods reinforces the framing that
the primary solution to subgroup biases is to correct the models. Given that fairness is often context-specific,
ideas of fairness could differ between stakeholders, and upstream biases exist in data sources used in many
socio-technical settings, designing an optimally fair model is not always feasible. We endorse exploring
larger policy shifts (not limited to model correction) to address biases that auditing tools like
CBS might unearth that are correlated with broader societal issues.

CBS is designed to detect biases in the form of group fairness violations represented as conditional independence
relationships. While CBS is easily generalizable to other objectives that can be represented as group-level
conditional independence relationships, it is less generalizable to other fairness definitions such as individual
and counterfactual fairness (Dwork et al. 2012; Kusner et al., |2017]).

Our technique for estimating the expectations I under the null hypothesis of no bias has the limitation (which
is commonly cited in the average treatment effects literature) of only being reliable when using well-specified
models for estimating the propensity scores of protected class membership and for estimating I. Given the
consistency of our COMPAS results in Section [4] with other researchers’ findings about COMPAS, and the
calibration analysis we present in Appendix the process of estimating I seems to model the COMPAS
data well. With that said, we encourage users of CBS to check estimates of I and if necessary, employ
procedures common in the econometric literature (Imbens, |2004; |Schuler & Rose, [2017)) or calibration methods
within the computer science literature.
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There are various limitations to permutation testing, some of which are discussed in |Berger| (2000). For CBS
specifically, if I is poorly estimated during permutation testing, this could result in higher type II errors
where CBS is more likely to erroneously fail to reject the null hypothesis Hy of no bias.

Our simulations in Section [ account for bias in the form of shifts in the predicted and true probabilities
(separately and jointly) — which produces predictive and aggregation biases — for a prescribed set of covariate
attribute values in the protected class. We provide additional simulations with signal and base rate shifts
represented as shifts in the true and predicted log-odds in Appendix [B:4] In real-world scenarios, the
generative process of bias might differ from the assumptions made in our simulations. Future research could
determine and (if necessary) improve CBS’s robustness to different generative schemas of bias. While this is
a limitation of our simulations, the results of CBS for COMPAS, which is a real-world application where
the biases present are not a result of our generative process, are in line with other research about biases
in COMPAS and the U.S. criminal justice system at large (Chouldechova & G’Sell, 2017; [Everett et al.,
2011} Rudin et al., 2020). Additionally, we provide a discussion of the benchmark methodologies’ results for
COMPAS in Appendix to highlight that CBS has various advantages as an auditor in this real-world
application (not restricted by the assumptions used in Section |3) compared to the benchmark methodologies’
auditor results.

In relation to our case study of COMPAS presented in Section [ there have been various critiques of
the COMPAS data that range from questioning the accuracy of the sensitive attributes (specifically race),
noting missing features in the ProPublica dataset that the COMPAS creators claim are important for score
calculations, and most importantly, a lack of evaluation of the biases that exist in the outcome variable of
whether a defendant is rearrested within two years of arrest (Fabris et al.l |2022)). Given that certain types of
individuals are arrested at a higher rate than others, the outcome variable of re-arrest most likely under-
and over-represents certain subpopulations of defendants. Given the various issues pertaining to COMPAS,
our case study results in Section [f] may contain findings that do not perfectly align with the underlying
distribution of crime or reoffense rates of the true population that COMPAS purports to capture.

Critically, while we use COMPAS as a case study in Section {4] because of its familiarity and supporting
research, we want to emphasize the importance of alternative framings of the evaluation of automated decision
support tools in the criminal justice systems, such as examining the risks that the system poses to defendants
rather than the risk of the defendants to public safety (Mitchell et al.,|2021; Meyer et al. 2022} |Green, 2020).

7 Conclusion

In summary, CBS is a flexible framework that works with group-level fairness definitions that can be
represented as conditional independence statements (separation and sufficiency) to detect intersectional and
contextual biases within subgroups of the protected class while overcoming some of the issues that arise when
only considering fairness violations in aggregate for a single protected attribute value. CBS can discover
intersectional and contextual biases in COMPAS scores and German Credit Data, and outperforms similar
methods that audit classifiers for subgroup fairness.
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A Methods Appendices for Section 2]

A.1 Fast Subset Scanning for Conditional Bias Scan

In this section, we explain the fast subset scanning (FSS) algorithm used by CBS, with the goal of identifying
the subgroup, S*, of the protected class, A, with the most biased predictions or recommendations (Neill,
2012). Specifically, we will: (1) introduce FSS using a simplified example, for illustrative purposes, to highlight
the computational difficulties inherent in subset scanning; (2) formally define the additive property of the
score functions for CBS that enables computationally feasible subset scanning in Appendix and (3)
provide an implementation of FSS for CBS in the form of pseudocode in Appendix

Let us assume a dataset consisting of only individuals in the protected class (A = 1), denoted as Q =
{(X',1,1)} = {(X}, I, )}, that contains values of the event variable I;, estimates I; of the expected
value of the event variable under the null hypothesis of no bias, and a single categorical covariate attribute
X} for each individual i in protected class A. For concreteness, we perform a sufficiency scan for predictions,
therefore, the event variable I; is the observed binary outcome Y; for individual 7, and the corresponding I; is
the estimated Pr(Y; = 1| P;, X;) under the null hypothesis, Hy, that Y L A | (P, X). S refers to a subgroup
of @, which in our simple example is a non-empty subset of values for attribute X!. Since our event variable
is binary, we use the Bernoulli likelihood function, shown in the bottom half of Table [2] to represent the
hypotheses in the score function, F'(S), used to determine the level of anomalousness of a subgroup S of Q.

In the worst-case scenario, X! would be a categorical variable where each row of @ holds a distinct value,
meaning that there are n unique values for X!. If we were to score all of the possible S C Q using F(9),
this method would have a runtime of O(2™), which would be computationally infeasible. To overcome this
computational barrier, FSS relies on its score functions, F(S), being a part of an efficiently optimizable class
of functions with the goal of finding the most anomalous subset S* = arg maxgcq F'(S) without the need to
evaluate all of the subsets of (). The property that determines if a function is a part of this class that enables
fast subset scanning is called Additive Linear-Time Subset Scanning (ALTSS) (Speakman et al., 2016)) and is
formally defined in Section Informally, if F'(S) can be represented as an additive set function over
all instances ¢ € S when conditioning on the free parameter (g for the Bernoulli distribution or u for the
Gaussian distribution, where ¢ and p are defined in Table [2)), it satisfies the ALTSS property (Speakman
et al., 2016).

To explore how FSS exploits the ALTSS property for computationally efficient subset scanning, assume that
the categorical covariate X! for each individual i can only be equal to one of four values, X} € {a,b,¢c,d}.
FSS constructs a subset for each distinct attribute value of X! such that S, = {i € Q : X! = a},
Sy,={i€eQ:X!'=b},S.={ieQ: X} =c}, Sqa={i € Q: X! =d}. Since we are using the likelihood
function for the Bernoulli distribution for F'(S), F'(S) is a concave function of the free parameter ¢, and for
illustrative purposes, we will assume that max, F'(S) > 0 for all subsets S,, S, S. and S4. Therefore, for
each subset S, Sy, S. and Sy, F(S) is a function over the domain of ¢, where as ¢ increases from —oo, F(.5)
eventually equals 0 and then the global maximum for F(.S) for that given subset, and then starts decreasing
until it again reaches a point where F'(S) = 0, and then remains negative as g approaches co. FSS identifies
three ¢ values for each subset, S € {S,, Sp, S¢, Sa}:

1. The first value of ¢ where F(S) = 0 as ¢ increases from —oo to oo, which we will refer to as g¢in.
2. The second value of ¢ where F(S) = 0 as ¢ increases from —oo to co, which we will refer to as ¢z

3. The value of ¢ for argmax, F'(S), which we will refer to as guLE-

Each distinct gin and gna. value for subsets (Sq, Sp, Se, Sq) is a value of ¢ where the score function F'(S)
becomes negative or positive for at least one of these four subsets. By sorting all of the distinct ¢;n and gmaz
values across all the subsets (S,, Sp, S¢, Sq4) in ascending order, we construct a list of ¢ values, {q(1), ..., ¢(m) },
where each pair of adjacent values, q(xy and q(,1), represents an interval of the ¢ domain, (q(k), (I(k+1))7 for
which each subset S € {Sg, Sb, S, Sq} has either F(S) > 0 for the entire interval or F(S) < 0 for the entire
interval. For each interval, (q(x), q(k+1)), we perform the following:
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1. Find the midpoint of the interval (average of q(x) and q(41)), which we refer to as q,‘:“d.

2. Create a new subset S;%8"°®*' by aggregating all subsets S € {S,, Sy, S, Sq¢} where the subset’s
Qmin < q}fid and the subset’s ¢az > q,rcnid7 i.e., F(S) > 0 when ¢ = qg‘id and therefore for the entire

interval (q(x), q(x+1))- Since the score function is additive, conditioned on ¢, we know that a subset

S will make a positive contribution to the score F/(S;3#8" %) if and only if F'(S) > 0 for that value

of ¢. Thus, we know that the highest scoring subset S;#8" 5 for that interval [d(k)» Q(k+1)] contains

all and only those subsets S with F(S) > 0 at ¢ = g™,

3. Find the maximum likelihood estimate of ¢, gyeer®*" = arg max, F (S2887°82%) "and the corresponding
score F(Spesresatey,
The aggregate subset, S;#8' 5" with the highest score for F(S) using its associated gizer®*" is the most

anomalous subset when considering subsets formed by combinations of different attribute-values of X?!.

For our simplified example, there are at most 8 distinct gmin O ¢maz values from the four subsets (S,, Sp, Se,
Sq), and thus at most 7 distinct intervals (q(k)> q(k+1)) that must be considered. For a given interval, we need
to evaluate only a single subset S;#8"°#*' and thus, only 7 of the 15 non-empty subsets of {S,, S, Se, Sa}.
More generally, if n is the arity (number of attribute values) of categorical attribute X!, at most 2n — 1 of
the 2™ — 1 non-empty subsets of attribute values must be evaluated to identify the highest-scoring subgroup.

The scenario where the covariates consist of a single categorical attribute is a simplified example, where
only a single iteration of F'SS is needed to find the optimal subset, S*, of ). When there are two or more
attributes for the covariates, multiple iterations of FSS must be performed to approach the optimal subset.
On each iteration the following is performed:

1. We define an initial subset, Steymp Where:

(a) If it is the first iteration, all of the attribute values for each attribute are included in Siemp-
(b) Otherwise, a random subset of attribute values for each attribute are chosen to be included in
Stemp~

2. For each attribute X?, in random order, we construct subsets by partitioning Stemp by the distinct
attribute values of X, form intervals across the domain of ¢ for F'(S), and then assemble and score
the subsets for each interval (as described above). Siem, is updated as higher scoring subsets using
F(S) are found. Therefore, when an attribute is evaluated, Siepm, contains only rows of @ that fit the
found criteria (in the form of attribute values) from previously evaluated attributes, excluding the
attribute currently under consideration. This iterative ascent procedure is repeated until convergence.

Multiple iterations are performed with the final detected subset being the subset with the highest score
using F'(S) found across all iterations, S*. For the pseudocode of FSS for CBS, please see Algorithm [2| The
returned results from FSS are: (1) the detected subset, S*, in the form of attribute-values that form the
criteria for the subgroup in the protected class with the highest score F(S); (2) the parameter ¢ or p that
maximizes F(S*); and (3) and the score F/(S*) given the parameter ¢ or u.

A.1.1 Formal Definition of Additive Linear-Time Subset Scanning Property (ALTSS)

Below we provide a formal definition of the Additive Linear-Time Subset Scanning Property. The score
functions, F(.9), used to evaluate subgroups are a log-likelihood ratio formed from two different hypotheses
whose likelihoods are modeled by likelihood functions for either the Bernoulli distribution or Gaussian
distribution, both of which satisfy the Additive Linear-time Subset Scanning Property (Speakman et al.,
2016; |Zhang & Neill, [2016)).

Definition A.1 (Additive Linear-time Subset Scanning Property). A function, F' : § x § — Rx¢, that
produces a score for a subset S C D, where D is a set of data and § = arg max, F'(S|6), satisfies the Additive
Linear-time Subset Scanning Property if FI(S|60) =>_ F(s; | 0) where s; is a subset of S and Vs;,s; € S,
where s; # s;, we have s; Ns; = 0.

s; €S
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We refer to the score functions, F(S), contained in the rightmost column of Table [2] as F(S | i) for the
score functions that use the Gaussian likelihood function to form hypotheses and F(S | ¢) for the score
functions that use the Bernoulli likelihood function to form hypotheses. F(S | ¢) contains a summation,
> icg(lilogq — log(ql; — I; + 1)), that is the sum of individual-specific values derived from I;, I;, and q.
Given that each individual is distinct, F((S'|q) = ;.5 F(si | ¢), where s; is the subset of S that contains
only individual 4, satisfies the ALTSS property. Similarly, F'(S | p) contains a summation, », ¢ A;, that is

the sum of individual-specific values A; derived from I;, I;, and p. Therefore F(S | u) = Yoses F(silp),
where s; is the subset of S that contains only individual i, satisfies the ALTSS property.

A.1.2 Pseudocode of Fast Subset Scan Algorithm for Conditional Bias Scan

Algorithm [2] is the pseudocode for the Fast Subset Scan (FSS) algorithm used in the CBS framework (Neill,
2012). The FSS algorithm aims to find the subgroup, S*, with the most anomalous signal for the observed
event variable, I (i.e., the highest score F/(S*)) in a dataset, D. For CBS, this signal is in the form of a bias
(according to one of the fairness definitions in Table [1)) against members of subgroup S* of the protected
class (A = 1). The dataset passed to the FSS algorithm by CBS contains only individuals ¢ in the protected
class, and FSS compares their values of the event variable I; to the estimated expectations I; under the null
hypothesis of no bias. The method for estimating I; is performed prior to running the FSS scan step and is
described in detail in Section 221

At the initialization of FSS, placeholder variables are created that will hold the highest-scoring (most
anomalous) subset (S5*), and S*’s corresponding information (6*, Score*), found across all iterations (Lines|T}
. At the beginning of an iteration, a random subset is picked (set of attribute-values) as the starting subset,
Stemp, With the exception of the first iteration where the starting subset includes all attribute values, as
shown in the if-else statement starting on Line [bl For each iteration of this algorithm, we repeatedly choose a
random attribute to scan (i.e., we scan over subsets of its attribute values) as shown in Lines until
convergence (i.e., when all attributes have been scanned without increasing the score F(Siemp))-

For each attribute X¢emp to be scanned, for each of its attribute values, Xtempi, we score the subset S Xtemp,
containing only the records with the given value of that attribute (X¢emp = Xtempi)7 and matching subset
Stemp on all other attributes in X. We write this as Sx,,,,,. < Sretazed 0 £5 € Dt Xyemp = Xtemp, 1, in

temp

Line where S{gjgged is the relaxation of subset Siepmp to include all values for attribute Xieyp. Along
with scoring this attribute-value subset S Xiemp, 1 WE find the two values of 6 where F'(S Xtcmpi) =0, Omin, and
Omaz,;, and the 6 that maximizes F(SXtempi ), OnmLE,;, with the exception of attribute-value subsets Sx,.,,,.

that are not positive for any value of 6. This is shown in the for-loop in Lines

Line @ states that 0,4, and 0,4, must be adjusted according to the direction of the scan to enforce
that the found parameters 0,,;,, and 0,,4,, adhere to the restrictions set by the direction of the scan. The
constraints necessary for the scans to detect biases in the positive and negative directions are fully specified
in Table 2] For positive scans that have score functions that utilize the Gaussian likelihood function to
form hypotheses, 0,,in, = max(0, 0,:,,) and for negative scans that utilize the Gaussian likelihood function,
Omaz; = min(0, O,,4,,). For positive scans that have score functions that utilize the Bernoulli likelihood
function to form hypotheses, 0, = max(1, 0pn,) and for negative scans that utilize the Bernoulli likelihood
function, 0,42, = min(1, Opmaz,). Attribute-value subsets S,.,,, should not be considered when choosing
subsets for S5#88r¢82t¢ for positive scans where 0,42, < 0 Or Opq., < 1 for scans using the Gaussian likelihood
function or Bernoulli likelihood function in F'(S), respectively. Conversely, attribute-value subsets Sx,,,.,
should not be considered when choosing subsets for S288'¢83t¢ for negative scans where 0, > 0 0T O, > 1
for scans using the Gaussian likelihood function or Bernoulli likelihood function in F'(S), respectively.

We sort the 0,,in, and Opq., values found across all the attribute values of the attribute we are scanning
in ascending order in Line 23] These form a list of intervals over the domain of §. For each interval, we
calculate a midpoint of that interval, and aggregate all the attribute-value subsets that have a positive score,
F(S), when 6 equals the midpoint of that interval in Lines If the aggregated subset of attribute values
with the maximum score across all the intervals is greater than the score of Siepp, we update Siemp and
all of its accompanying information (Oemp, Scoreiemp) to equal the maximum-scoring subset of aggregated
attribute-values across all the intervals and its accompanying information, as shown in Lines 3}48] Therefore,

24



Published in Transactions on Machine Learning Research (01/2026)

Algorithm 2 Fast Subset Scan (FSS) for Conditional Bias Scan

Require: n;e.5 > 0, (Xi,fi, I;) Vi € D where A; = 1,direction € {positive, negative}
1 S* « {}
2: Score® + —©
3. 0% +— —o0
4: for j < 1...nj4ers do

if j ==1 then

Stemp  all attribute-values for each attribute in X

10:
11:
12:
13:

14:
15:
16:

17:

18:

19:
20:
21:

22:
23:

24:
25:
26:

27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:

else

Stemp < random nonempty subset of attribute-values for each attribute in X

end if

Otemp < argmaxy(F (Stemp | 6))
Scoreremp < F(S | Oremp)

Nattributes < number of attributes in X
Nscanned < 0

while

Ngcanned < Nattributes 4O

> mark all attributes as un-
scanned

Xiemp < randomly selected attribute that is marked as unscanned

for

Xtempi S Xtemp do

SXromp,  Stebired 0 {i € D : Xiemp = Xtemp, }

aminia amami — arge(F(SXtempi 0) = O)

0MLE¢ = arg maXG(F(SXtmpi ‘ 9))

Score; < F(Stemp, | OmLE,)

Adjust Omin, and 6,42, depending on the direction of scan

end for
Ointervals < {Omin;s Omaz; VX temp; € Xiemp} in ascending order

Scoreinterval — —00

Sinterval — {}
einterval <~ —00

for

k<« 1...length(Ointervais) — 1 do
Szggregate i {}
pmid 9<k>+29<k+1>
for Xtempi € Xtemp do
if Score; > 0 and O,ip, < Hz“id and Opa0, > Hglid then
Szggregate — S}z:ggregate U SXtemm
end if
end for
08878 ¢+ arg max, (F(SE88" | 9))
aggregate « F(Szggrega‘ce | azggregate)

Score,,
. t
if Scorei®8" 8" > Scoreintervar then
aggregate

Scoreinterval < Scorey,

at
Sinterval — Szggrega ¢

rat
einterval — ezggrega ¢

end if

end for

> for all attribute-values in
Xtemp
> see Appendix [A.T.2] for defi-

sps relazed
nition of S{5

> exception noted

pendix

in Ap-

> explained in text of Ap-

pendix

> all values of § where F(S) =
0 VXtemp; € Xtemp, indexed
by Q(k) below

>not to be confused with

eintervals
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43: if Scoreiemp < Scoreintervar then

44: Scoretemp < Scoreinterval

45: Stemp — Sinter’ual

46: Htemp — Hinterval

4T Nscanned < 0 > mark all attributes as un-
scanned

48: end if

49: Nscanned < MNscanned + 1 > mark attribute Xiemp as
scanned

50: end while

51: if Score* < Scoreiemp then

52: Score* < Scoreiemp

53: S* < Stemp

54: 0" < Otemp

55: end if

56: end for

57: return S*, Score*, 6*

Stemp is continuously updated as higher scoring subsets are found as we scan over all the attributes and their
attribute values.

At the end of an iteration, if the found subset, Stemyp, has a higher score than the global maximum scoring
subset S*, then S* and its accompanying information (6%, Score*) are replaced with Siemp and Stiemp’s
accompanying information, as shown in Lines Once all the iterations have completed, the subset with
the maximum score found across all iterations is returned, S*, with its score , Score* = F(S*|6*), and
accompanying 6* parameter in Line [57}

McFowland III et al.| (2023) show that a similar multidimensional scan algorithm, used for heterogeneous
treatment effect estimation, will converge with high probability to a near-optimal subset when run with
multiple iterations.

A.1.3 Computational Complexity of the Fast Subset Scan Algorithm

The computational complexity of the fast subset scan can be expressed as the product of the number of
iterations (nters), the number of covariate attributes (m), the number of passes through the attributes
required for convergence (Z), and the time needed to process a single attribute (Algorithm [2} Lines .
Z is generally small (no more than 10-20). Optimizing over all non-empty subsets of values for a given
attribute, conditional on the current subsets of values for all other attributes, requires aggregation of data for
the subsets Sy,.,,, (Line[l7), computing and sorting the 0,,in, and 04z, values (Lines [18123)), and scoring
the aggregated subsets (Lines . Aggregation requires a pass through the data and is thus an O(n)
operation, where n is the number of data elements. The remaining steps require O(|V|log|V|) time, where
|[V] is the arity (number of attribute values) for the current attribute Xyem,. Thus the total complexity can
be written as O(nitersmZ(n + |V]log |V])), where |V]log |V| is averaged over all attributes.

A.2 Derivation of Score Functions in Table

In this section, we provide derivations of the Gaussian and Bernoulli log-likelihood ratio score functions F'(S)
shown in Table

A.2.1 Derivation of Gaussian Score Function

For the Gaussian score function, we compare the null hypothesis Hy: A; ~ N(0,0) to the alternative
hypothesis H1(S): A; ~ N(u,0), Vi€ S, and A; ~ N(0,0), Vi ¢ S. Here, p is the maximum likelihood value
of the free parameter (additive shift in log-odds) for the alternative hypothesis H;(S), conditional on the
constraints for y listed in Table 2} Specifically, for over-estimation bias, p is constrained to be less than 0,
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while for under-estimation bias, p is constrained to be greater than 0. We can then write F'(S) as follows,
where D represents a data set and S represents a subgroup, S C D, as defined in Section

Pr(D | Hy(5))

FU5) =108 =5 (5 o)
o A% Pr(D | Hi(S); i)
~ T (D[ H)

1 (Ai—p)? 1 A7
maxy [[;e g —75=exp (_ 507 ) [Ligs = exp (— 2=
1 A2
[Licp s exp (— 552
1 (A —p)?
max, [[;cq —=exp (7 557

A2
Mics 5 o (~ %)
AF — (A — N)2>
=1 ot S S S P
0g max H exp (

202
€S

A2 — (A2 4+ 2 = 2uA,)
e |

202

= log

= log

2 X i) — 2
 u(SiesA) ISl
W 202

The maximum likelihood value of p can be obtained by setting the first derivative of F'(S) with respect to u
to zero and enforcing the constraints on p listed above:

Zies Ai

if > ,cgA: <0 and we are searching for over-estimation bias;

1]
= ; A"/ . . . . .
H= % if > °,cg A >0 and we are searching for under-estimation bias;
0 otherwise.

Finally, plugging in this value of x into the equation for F(S), we obtain:

(ZiesAi)Z

if Zie s A; <0 and we are searching for over-estimation bias;

202[9]
F(S) = oA . . . . .
() % if > ,cg A >0 and we are searching for under-estimation bias;
0 otherwise.

A.2.2 Derivation of Bernoulli Score Function

For the Bernoulli score function, we compare the null hypothesis Hy: odds(I;) = ﬁ to the alternative
hypothesis Hy(S): odds(I;) = qlffv, Vi € S, and odds(I;) = 125, Vi & S. Here, g is the maximum likelihood
value of the free parameter (multipiicative shift in odds) for the alternative hypothesis H;(S), conditional on
the constraints for ¢ listed in Table 2| (As discussed in Section I is the estimate of Pr(I; = 1| X3, C;)
under the condition that I L A|(C,X). As defined in Section the variables represented by I and C
change depending on the scan type.) Equivalently, we can write the null hypothesis as Hy: I; ~ Bernoulli(fi),

and the alternative hypothesis as H;(S): I; ~ Bernoulli (qf' i?ﬂ), Vie S, and I; ~ Bernoulli(fi)7 Vi S.

For over-estimation bias, ¢ is constrained to be less than 1, and for under-estimation bias, g is constrained to
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be greater than 1. We can then write:

Pr(D | H,(5))

F(S) =18 =5, DTy
o maxg Pr(D | Hi(S);q)
~ T (D Hy)

ol I; 1-1, 1-1; L N1-1;
maxg [[;es (qfi_fi_H) (qI},—I}H) Hi¢s (IZ> (1 - IZ->
N\ Li N\ 1-1I;
e (£) (1-1)
~ Ii ~ 1711
ql; 1—1;
naxy HiGS (qfi*fH*l) (qfiffiJrl)
N\ Li N\ 1-1I;
Mes (5) (1-1)
q I; 1 1-1I;
= log max _ _ _ _
* g«(qh—fﬂrl) (qu_Ii+1>

= max Z(IZ log(q) — log(ql; — I; +1)).
i€S

= log

= log

As in the Gaussian case, the maximum likelihood value of ¢ can be obtained by setting the first derivative of
F(S) with respect to ¢ to zero, obtaining the equation:

o ql;

€S €S

Unlike the Gaussian case, there is no closed-form solution. However, the right-hand side of the equation is an
increasing function of ¢, enabling us to obtain the value of ¢ that satisfies the equation by binary search. Let
q* denote the (unconstrained) value of ¢ found in this way. Then, to enforce the constraints above, we observe

that ¢* > 1 if and only if >, o l;i > > g I;, and similarly that ¢* < 1 if and only if Yoiesli <D ics li
Thus we can write:

Zies([i 10g(q*) - log(q*fi - fz + 1)) if Zies I < Zies fl
and we are searching for over-estimation bias;
F(S) = { Yies(Lilog(q®) —log(q"Li = I; + 1)) if Yoicali > Y ics s
and we are searching for under-estimation bias;

0 otherwise.

A.3 Conditional Bias Scan Framework Parameters

Table [4] contains all the parameter settings needed to run Conditional Bias Scan.

B Evaluation Appendices for Section [3|

B.1 Adaptations of the Benchmark Methods for Evaluation

Both GerryFair and MultiAccuracy Boost provide implementations of their methods on GitHub (Neel et al.,
2019; [Kim et al., 2019b)). Our goal was to use their provided code with minimal changes as benchmarks in
Sections 3] and [@] However, GerryFair and MultiAccuracy Boost do not provide the functionality to indicate
whether to audit for bias in the positive direction (under-estimation bias) or bias in the negative direction
(over-estimation bias). For example, when auditing for the subgroup, S*, of a protected class, A, with the
most anomalous deviation in the false positive rate compared to the analogous subgroup in the non-protected
class, GerryFair and MultiAccuracy Boost, in their native form, do not allow one to specify if the deviation
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Table 4: Table with all parameters needed to run Conditional Bias Scan.

Parameter Attribute

Sections for

Parameter Purpose Values Reference
Binary attribute which defines whether
.. each individual is a member of the
Membership in . . .
Protected Class plrotected class. We w1sh to 1dent1fy an’y o
. . biases that are present in the classifier’s
Indicator Variable (A) - . .
predictions or recommendations that impact
the protected class.
Separation scan
for recommendations;
Separation scan
for predictions;
Scan Type The subcategory of the scan type. Sufficiency scan 2.1
for recommendations;
Sufficiency scan
for predictions
The event of interest for the scan.
. The abstracted event variable must
Event, Variable (1) be defined as either the outcome, Y5 Py Poin % -1
prediction, or recommendation variable.
The conditional variable for the scan.
Conditional Variable The abstracted conditional variable must Y. P: P ol b1
©) be defined as either the outcome, 4 bin ’
prediction, or recommendation variable.
For value-conditional scans, this is the
Field value (z) of value on which we are conditioning the
Conditional Variable conditional variable (C). Defining a field None; 0; 1 21 2.2} 2.3} |A.1
(C=2) value results in scans that detect
different forms of fairness violations.
List of Attributes for List of attributes to scan over
. 20 2.1} |A.1
Forming Subgroups (X) to form subgroups.
Specifies whether we are detecting
Direction of Bias under-estimation bias (positive direction) Positive; Negative 2.1} 2.3} |A.1
or over-estimation bias (negative direction).
List of attributes used for conditioning
when producing I. In this paper we use
List of Attriblites the same attributes to form subgroups b 9
for Estimating I (X) and produce I. This does not necessarily ’
have to be the case for all applications
of CBS.
The non-negative integer-valued scalar
penalty that is subtracted from the score
Subgroup Complexity function for e:ach subgroup depegding on 0t
Penalty the subgroup’s total .numbelr of included (default value: 1) 2.3
values for each covariate X' ... X™, not
including covariates for which all
values are included.
. Specifies the number of iterations 1+
Scan Iterations to rurFthe fast subset scanning algorithm. (default value: 500) 2.3 (A1

The table above lists the parameter, purpose of the parameter, possible values of the parameter, when applicable, and

the sections in our paper where this parameter is described in further detail.

should be an increase (or decrease) of the false positive rate for subgroup S*. This lack of functionality makes
the results from CBS substantially different than those returned by GerryFair and MultiAccuracy Boost.

For GerryFair’s auditor, given the type of error rate to audit (false negative rate or false positive rate), they
train four linear regressions using the features (X) as dependent variables with the following four sets of

labels:

1. Two linear regressions with the zero set as labels.
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2. One linear regression with the labels set to a measurement that assigns positive costs for predictions
that deviate in the positive direction (when the predictions are greater than the observed global error
rate), and negative costs otherwise.

3. One linear regression with the labels set to a measurement that assigns positive costs for predictions
that deviate in the negative direction (when the predictions are less than the observed global error
rate), and negative costs otherwise.

They use the predictions from the linear regressions to flag a subset of data where the predictions from the
linear regression trained with the zero set labels are greater than the values predicted by the linear regression
trained with the costs representing deviations of the predictions from the observed baseline error rate metric of
interest as labels. Two linear regressions are used to estimate deviations of the predictions from the observed
error rate baseline, and therefore they form two subgroups: (1) a subgroup with rows that are estimated to
have predictions that are greater than the baseline for the metric of interest; and (2) a subgroup with rows
that are estimated to have predictions that are less than the baseline for the metric of interest. The original
GerryFair implementation uses a custom heuristic to decide which subgroup has more significant biases and
returns that subgroup accordingly. The subgroup with the rows that are estimated to have predictions that
are greater than the metric of interest more closely aligns with the concept of auditing for bias in the positive
direction or auditing for under-estimation bias. Since CBS provides the functionality of auditing for biases of
a specific direction, we add an option to GerryFair that allows the auditor to parameterize which direction
of bias they are interested in, specifically by overriding GerryFair’s automated process described above for
deciding which subgroup from the two subgroups that represent over- and under-estimation bias has the
largest deviation from the baseline, making GerryFair’s results more comparable to CBS.

For each simulation, we ran GerryFair two times, once to detect bias in the form of systematic increases in
the false positive rate, and once to detect bias in the form of systematic increases in the false negative rate.
In each case, we allow GerryFair to use all covariates (X) to make the predictions used to form subgroups,
including the protected class category. This resulted in two result sets for GerryFair for each simulation.
We present the result set in Section 3| that had the highest overall accuracy for most of the simulations,
which is the GerryFair setup for detecting increased false positive rate for subgroups of the protected class A.
GerryFair returns a subgroup that could contain individuals in both the protected class and the non-protected
class. To have the accuracy measurements for GerryFair and CBS be comparable, we filter the subgroup
returned by GerryFair to only include individuals in the protected class before calculating the subgroup’s
accuracy.

MultiAccuracy Boost is an iterative algorithm where, on each iteration, it audits for a subgroup with

inaccuracies and then corrects that subgroup’s predicted log-odds. More specifically, for each iteration:

1. A custom heuristic is calculated for all rows of data, similar to an absolute residual, where larger
values represent a larger deviation between the observed labels and predictions.

2. The residuals of all the rows’ predictions and observed outcomes are calculated.
3. The full data is split into a training and holdout set.

4. Three partitions of data are created for the training data, hold out data, and the full dataset:

(a) A partition containing all the rows.
(b) A partition containing all the rows with predictions greater than 0.50.
(c) A partition containing all the rows with predictions less than or equal to 0.50.

5. For each of the partitions of data constructed in Step [4}

(a) A ridge regression classifier (using o = 1.0) is trained using the respective partition in the
training data, with the covariates X and the sensitive attribute A as features and the custom
heuristic calculated in Step [I] as labels.

(b) The ridge regression classifier is used to make predictions for the respective partition in the
holdout data.
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(c) If the average of the predictions multiplied by the residuals for the partition set in the hold out
data is greater than 1074, then the predicted log-odds for the respective partition in the full
dataset is shifted by the predictions multiplied by 0.1.

(d) If the predicted log-odds are updated, the iteration terminates and no other partitions of data
are evaluated for that iteration.

The steps above are slightly modified for the scenario of a classifier that produces a singular probability of a
positive outcome whereas the original MultiAccuracy Boost was designed for was a bivariate outcome vector
from an Inception-ResNet-v1 model. To make MultiAccuracy Boost audit for bias in one direction, when
calculating whether a partition of the data’s predicted log-odds should be updated using the holdout data to
remove an inaccuracy, we override the residuals that are negative with 0. In effect, we only consider rows with
negative outcomes when deciding which partition of predictions have inaccuracies that need to be corrected
on a given iteration. This was the least invasive modification we could make to MultiAccuracy Boost to have
it solely consider bias in the positive direction when deciding which subgroup’s predicted log-odds to update.
When using this slight adaptation, we see an increase in the overall average accuracy for the simulations
by approximately 8% for MultiAccuracy Boost compared to a version of MultiAccuracy Boost without the
modification intended to account for directional bias.

Since the auditor and correction method are functioning in tandem, we run all iterations of the algorithm
and log each subgroup (i.e., partition) that was detected as needing a correction to its predicted log-odds and
its associated score calculated in Step After the algorithm terminates, we find the partition with the
highest score and return its associated partition in the full data set. The decision to return the partition with
the highest score across all the iterations of MultiAccuracy Boost in the simulations is motivated by the fact
that MultiAccuracy Boost’s auditor has no theoretical guarantees of detecting the most inaccurate partition
on a specific iteration of the algorithm. Similarly to GerryFair, MultiAccuracy Boost detects a subgroup that
contains members of the protected class and non-protected class. We filter all the individuals in the returned
subgroup to only contain individuals who are part of the protected class before calculating the accuracy of
the returned partition.

One distinction between these methods and CBS is that their auditors were intended to be used in conjunction
with another process to improve a classifier or predictions. Therefore, their auditors were designed to have the
level of detection accuracy necessary to discern which subgroups or partitions of data need to be corrected,
either by modifying the classifier or by post-processing their predicted log-odds. Given that both methods
suggest that they can be used for auditing purposes, they are appropriate choices as benchmarks for CBS,
but it is important to note that CBS was specifically designed to have a high accuracy for bias detection,
whereas that was not necessarily an explicit intention of GerryFair or MultiAccuracy Boost.

B.2 Explanation of the Additive Term (¢'"“¢) for the True Log-Odds used in the Generative Model for
the Semi-Synthetic Data

For the evaluation simulations described in Section [3] when producing the true log-odds that are used to
determine the outcomes, Y, and predicted values, P or Py;,, we add a term to each row’s true log-odds,
Lirue of a value drawn from a Gaussian distribution €/"¢ ~ N(0, 0¢;ye) where o4y = 0.6. We add this
term to the true log-odds to ensure that when the true probabilities (expit(Li"“¢)) for the rows of Spias in the
protected class A are injected with fig,¢, this results in a violation of the fairness definition for sufficiency.

To illustrate this further, for the remainder of this section we will focus on sufficiency scan for predictions, but
our explanation below is applicable for sufficiency scan for recommendations as well. Sufficiency implies that
the outcomes Y are conditionally independent of membership in the protected class A given the predictions
P and covariates X, that is, Y L A| (P, X). Assume that we have predictions that are independent of the
outcome conditional on the covariates, Y L P | X. Since the outcome is independent of the predictions
conditional on the covariates, the definition of sufficiency simplifies to Y L A | X. This simplification of
sufficiency reduces sufficiency scans to finding the subgroup in the protected class with the largest base rate
difference from its corresponding subgroup in the non-protected class regardless of that subgroup’s predictions.
Therefore, it is not evaluating sufficiency violations because these base rate differences are independent of the
predictions. Consequentially, when there is no base rate difference between the protected and non-protected
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Figure 4: Average accuracy (with 95% CI) for biases injected of figep = 0.50 or g,y = 0.50 into subgroup
Shias Of the protected class A, for CBS, GerryFair, and MultiAccuracy Boost, as a function of varying base
rate difference § between protected and non-protected class for subgroup Spi.s. Left: increasing predicted
probabilities by pisep = 0.50. Right: decreasing true probabilities by fis, ¢ = 0.50.

class conditional on the covariates, (Y L A | X), in order for sufficiency to be violated, Y L A | (P, X), we
must also have Y / P | X. This is formally stated in Theorem [B.1

Theorem B.1. To have violations of the sufficiency definition, Y L A| (P, X), when there are no base rate
differences between the protected class and non-protected class conditional on the covariates, Y L A| X, the
predictions and outcomes must be conditionally dependent given the covariates, Y J P|X.

Proof. Let us assume that (i) there are no base rate differences between protected and non-protected class
conditional on the covariates, Y L A | X; (ii) outcomes are independent of the predictions conditional on
the covariates, Y L P | X; and (iii) violations of the sufficiency definition exist, Y } A| (P, X). We will
show that these three statements lead to a contradiction. First, (Y L P|X) and (Y L A| X) together imply
that Y L (P, A) | X. Furthermore, using the weak union axiom for conditional independence, Y L (P, A) | X
implies that Y L. A | (P, X), which contradicts (iii). Since these three statements cannot all be true, we know
that no base rate differences (i) and violations of sufficiency (iii) together imply that the outcomes cannot be
independent of the predictions conditional on the covariates, Y [ P | X. O

To ensure that Y ¥ P| X, the predictions P must carry information about the outcomes Y that is not carried
in X. By adding the term €/"“¢ to the true log-odds for each row, given that the predicted log-odds (and
the corresponding predicted probabilities P; and binarized recommendations P; p;,) and the outcomes Y are
both derived from the true log-odds, this ensures that Y ¥ P | X in the evaluation simulations because P
carries information about Y, in the form of the added row-wise terms (drawn from a Gaussian distribution),
that are captured in Y, but are not captured in X.

B.3 Additional Evaluation Simulations

This section includes additional evaluation simulations and their accompanying results conducted to further
examine CBS’s performance.

Firstly, we investigated the case where we have both an injected bias signal (jtsep = 0.50 or psuf = 0.50) and
an injected base rate shift § in subgroup Sp;.s of the protected class A (Figure [4)). We examined the extent
to which positive and negative shifts for § either help or harm the detection accuracy of the various methods.
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Figure 5: Average accuracy (with 95% CI) as a function of the amount of bias injected into subgroup Sias
of the protected class A, for four variants of CBS, GerryFair, and MultiAccuracy Boost. Left: increasing
predicted log-odds by p.,. Right: decreasing true log-odds by f,, ;-

Thus we run two separate sets of experiments, each defined by differing initial setups injecting a fixed and
constant bias signal into subgroup Spiqs for protected class A of: (1) psep = 0.50, and (2) psyr = 0.50. Then,
for both experiments, (1) and (2), we vary the injected base rate shift ¢ from -0.50 to +0.50. A positive base
rate shift (6 > 0) means Sp;qs in the protected class A has a higher base rate, while a negative base rate shift
(6 < 0) means Spiqs in the protected class A has a lower base rate, as compared to Spiqs in the non-protected
class.

In the leftmost plot of Figure @, where a separation violation is injected with a signal of pgsep = 0.50,
we can observe, as expected, that Sp;.s is detected with near-perfect accuracy with separation scans for
recommendations and predictions, as well as sufficiency scan for predictions. These results are in line with
those displayed in Figure[l| where the injected signal of fiscp, for Spiqs is increased but the base rate difference
is unchanged (6 = 0) for Sp;,s in protected class A compared to Spies in the non-protected class. Additionally,
in the leftmost plot of Figure[d] we see that the detection accuracy for the sufficiency scan for recommendations
of Spies increases as the base rate difference, 9, for Sp;qs decreases. This is in line with the results contained
in Figure [2| where conditioning on the binary recommendation, P; p;y, is not sufficient in these simulations
to capture the decrease in true probabilities, and, therefore, negative base rate shifts (6 < 0) for Sp;qs are
detected as sufficiency violations.

In the rightmost plot of Figure @ where a sufficiency violation is injected with a signal of ug, s = 0.50, the
sufficiency scans for recommendations and predictions detect Sp;qs With near-perfect accuracy independent
of the base rate shift injected into Sp;qs. This is both expected and consistent with the results contained
in Figure Additionally, as is documented in prior research and we show empirically in Figure [2| for
well-calibrated models, base rate difference in Sp;qs for the protected class A will result in separation
violations (Chouldechoval 2017). This is consistent with the results in the rightmost plot of Figure {4] which
show that as we inject a positive base rate shift (6 > 0) into subgroup Spi.s of protected class A, the
separation scans detect Sp;qs With near-perfect accuracy.

Lastly, the method we use in Section [3| for injecting bias signal or shifting the base rate of the affected
subgroup Sp;qs in the protected class A involves increasing or decreasing the true probabilities and predicted
probabilities. CBS is designed to detect a constant, additive shift in the true and/or predicted log-odds
(not the true and/or predicted probabilities) for a subgroup, Spi.s, in the protected class A in comparison
to that subgroup in the non-protected class (as shown in the alternative hypotheses contained in Table .
Therefore, our main simulations are designed to ensure that CBS is robust to injected biases and base rate
shifts that do not take the same form as CBS’s modeling assumptions, specifically, do not take the form
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Figure 6: Average accuracy (with 95% CI) as a function of the base rate difference ¢’ between protected and
non-protected class for subgroup Sp;qs, for four variants of CBS, GerryFair, and MultiAccuracy Boost. Note
that predictions are well calibrated, uj., = g, ; = 0.

of additive shifts in the true and/or predicted log-odds. With that said, for comparison purposes, we also
examine injected biases and base rate shifts that take the form of shifts in the true and/or predicted log-odds.
The resulting Figures 5] and [6] can be directly compared to Figures [I] and [2] respectively. Specifically, we
perform the following simulations:

o We increase the predicted log-odds, L redict Psep fOr Spias in the protected class A. Note, this
shift is performed prior to the predicted probabilities, P;, being drawn for all the data.

o We decrease the true log-odds, L{™¢ by u’suf for Spies in the protected class A. This shift is
performed after predicted probabilities have been drawn for all the data. After the true log-odds,
L?“e, have been decreased by u;u ¥ for Spies in the protected class A, outcomes Y; are redrawn
specifically for the rows of S5 in the protected class.

« We simultaneously shift the true and predicted log-odds, L{™¢ and L redict 1y 8 for Shias in the
protected class A. Outcomes are redrawn for Sy, in the protected class A after the shift by ¢’ is
performed.

In Figure [5, we observe that the injected signals for u’sep and g, 7 (represented as shifts in the predicted

and true log-odds, L redict and Lirue respectively) have an effect on CBS’s detection accuracy that is nearly
identical to the predicted and true probability shifts (psep and pig, s respectively) shown in Figure Similarly,
in Figure[6] we see that the base rate shift created by simultaneously shifting the true and predicted log-odds,
Lirve and LY redict by §' for Spias in the protected class A has an effect on CBS’s detection accuracy that is
nearly identical to the simultaneous shift of the true and predicted probabilities of Sp;s in the protected class
A by 6 as shown in Figure 2] Therefore, we can conclude that CBS performs well for both a constant additive
shift in the true and/or predicted log-odds (consistent with its modeling assumptions), as shown in Figures
and [0 and also achieves high detection power for non-additive shifts as shown in Section [3| Figures [I] and [2|

B.4 Robustness Analyses of Evaluation Simulations for Parameters o, and op,cdict

In this section, we examine the robustness of our results in Section [3| by varying the parameters opreqict and
Otrue from their default values of 0.2 and 0.6 respectively.

First, we examine the impact of varying o eqict- Recall that each predicted log-odds, L redict s drawn from
a Gaussian distribution centered at the true log-odds, with standard deviation opredict. Thus opredict can be
interpreted as the average amount of random error in the classifier’s predictions as compared to the true
log-odds values. We run three separate sets of experiments with different initial setups:

(1) We alter Sp;qs in the protected class A by injecting a bias of fisep = 0.50 (separation violation).

(2) We alter Spiqs in the protected class A by injecting a bias of pg,r = 0.50 (sufficiency violation).
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Figure 7: Average accuracy (with 95% CI) for biases and base rate shifts injected into subgroup Sp;,s of the
protected class A, for CBS, GerryFair, and MultiAccuracy Boost, as a function of varying parameter opredict-
Left: increasing predicted probabilities by fisep = 0.50. Center: decreasing true probabilities by fis,, ¢ = 0.50.
Right: base rate difference § = 0.25, for prgep = prsur = 0.
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Figure 8: Average accuracy (with 95% CI) for biases and base rate shifts injected into subgroup Sp;qs of the
protected class A, for CBS, GerryFair, and MultiAccuracy Boost, as a function of varying parameter osye.
Left: increasing predicted probabilities by fisep = 0.50. Center: decreasing true probabilities by pig,f = 0.50.
Right: base rate difference § = 0.25, for prgep = prsur = 0.

(3) We create a positive base rate difference for Sp;,s in the protected class A of § = 0.25.

For each initial setup,, we run CBS and the competing methods while varying oppeaict between 0 and
2. Accuracies are averaged over 100 semi-synthetic datasets for each experiment. The experiments where
tsep = 0.50 and g, r = 0.50 analyze the robustness to opreqice of the evaluation simulations for whereas
the experiments where = 0.25 analyze the robustness to opredict Of the evaluation simulations for

In Figure m we observe that large amounts of noise oprcqict harm the accuracy of the separation scans for
injected biases ftsy = 0.50 which shift the true probabilities in subgroup Syiqs for the protected class. When
Opredict 1 large, we see a reduction in accuracy for the sufficiency scan for recommendations for injected
biases ftsep = 0.50, which is expected given this scan’s initial lower accuracy detection with recommendations
with a moderate value of noise in the recommendations.

Second, we examine the impact of varying o¢,.. Recall that each individual’s true log-odds is a deterministic
(linear) function of their covariate values X; plus a term, €i"*¢, drawn from a Gaussian distribution centered at
0 with a standard deviation of ope. Thus the parameter oy, represents the variation between individuals’
true log-odds based on characteristics other than the covariate values X; used by CBS. Moreover, since each
individual’s predicted log-odds is drawn from a Gaussian distribution centered at the true log-odds, these
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characteristics are assumed to be known and incorporated into the classifier, thus creating the dependency
Y f P| X when o¢pye > 0. In other words, o4 represents the average amount of signal in the predictions
P (for predicting the outcome Y') that is not already present in the covariates X.

We run three separate sets of experiments, with the same initial setups described in |(1)H(3)lwhere we alter
Shias in the protected class A by injecting a bias of usep = 0.50, injecting a bias of pe,r = 0.50, and
creating a base rate difference of & = 0.25 respectively. Similarly, for each setup |(1)] we run CBS and the
competing methods while we vary o4, between 0 and 2 for each experiment. Accuracies are averaged over
100 semi-synthetic datasets for each experiment. The experiments where pse, = 0.50 and pg,, 5 = 0.50 analyze
the robustness to oy of the evaluation simulations for |(Q1), whereas the experiments where § = 0.25
analyze the robustness to 0. of the evaluation simulations for

In Figure 8] we observe that small values of o4, harm the accuracy of the separation scans for injected
bias jisus = 0.50 while making them more likely to detect base rate shifts § > 0 in subgroup Spis for the
protected class. Most interestingly, when oy, is small, we see a substantial reduction in accuracy for the
sufficiency scans for injected bias pigp = 0.50. This reduced performance for oty ~ 0 follows from our
argument in Section above: oy = 0 implies Y L P | X, and if we also have no base rate difference
between the protected and non-protected classes (Y L A | X), this implies Y L A| P, X. In other words,
even if a bias is injected into the predicted probabilities (and recommendations) in subgroup Spies for the
protected class, the sufficiency-based definition of fairness is not violated, and thus the injected bias cannot
be accurately detected.

B.5 Estimates of Compute Power

For all of the experiments in Section [3] Appendix[B-3] and Appendix[B.4] with the exception of the experiments
displayed in Figure |5(and Figure @ we used a university’s high-performance computing (HPC) services. We
completed all these simulations with 100 jobs that used one node, one core (CPU), and 7 GB of memory
each. Each of these jobs performed 1,344 CBS runs, and each job was alive for approximately 9 days. To
perform the experiments displayed in Figure [5] and Figure [6] as well as additional robustness checks, we used
15 shared, university compute servers running CentOS with 16-64 cores (CPU) and 16-256 GB of memory.
Each server performed 15-120 runs of CBS concurrently, and ran for approximately 9 days. We estimate that
to run all of the simulations and robust checks (1,344 CBS ruuns in total) for a single data set using shifts in
the predicted and true probabilities for injecting bias and base rate shifts, this would take approximately 9
days. We estimate that to run all of the simulations and robustness checks (1,504 CBS runs in total) for
a single data set using shifts in the predicted and true log-odds for injecting bias and base rate shifts, this
would take approximately 32.5 hours. Lastly, to run an individual CBS scan for the COMPAS data (150
iterations), it takes on average approximately 90 seconds. A single run of CBS takes a similar runtime for the
German Credit Data.

C Case Studies Appendices for Section [4]

C.1 Case Study of COMPAS Appendices

C.1.1 Calibration Curve Plots for Estimating / for COMPAS

The method presented in Section to estimate the event variable I for individuals in the protected class
under the null hypothesis Hy: I L A|(C, X) relies on two models being well-specified: (1) the propensit

score model for estimating Pr(A = 1| X); and (2) the outcome model for estimating I = E[I | C, X]. Figure@
contains the calibration curves for all propensity score models for all CBS runs on the COMPAS data; note
that this curve is computed using all data for fitting Pr(A = 1| X), which includes all instances in the entire
dataset D. Figure [L0] contains the calibration curves for all outcome models for all CBS runs on the COMPAS
data; note that this curve is computed using all data for fitting I = E[I | C, X], which only includes the
individuals in the non-protected class (A; = 0) and, depending on the scan, may have further restrictions on
the conditional variable C. For our COMPAS case study, we used logistic regression for all of these models.
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Figure 9: Calibration curves for all propensity score models used to estimate Pr(A = 1| X) when generating
1, for all CBS runs on the COMPAS data represented in Table

COMPAS's Outcome Models with Quantile Binning (5 bins)
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Figure 10: Calibration curves for all outcome models used to estimate I= E[I | C, X], using propensity
score-weighted data from the non-protected class, for all CBS runs on the COMPAS data represented in
Table
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C.1.2 Full Results of COMPAS Case Study
Table [l contains the full set of COMPAS results for CBS.

- Observed Metric Observed Metric
Log-Likelihood s
Scan Detected Ratio Metric for Sensitive for Complement
Type Subgroup (S5*) (F(5*)) Detected Subgroup Detected Subgroup

(Num. of Defendants) (Num. of Defendants)

Sensitive Attribute: Black Defendants compared to Non-Black Defendants

Sep. Pred. Males 42.4 FPE 0.45 (1168) 0.35 (1433)

Sep. Rec. Males 102.3 FPR 0.44 (1168) 0.19 (1433)

Suff. Pred. Females 2.21 CAL 0.37 (549) 0.34 (626)

Suff. Rec. Age 25+ with 0-5 priors 0.37 PPV 0.50 (581) 0.52 (404)

Sensitive Attribute: White Defendants compared to Non-White Defendants
Sep. Pred. - 0.0 FPE - -
Females under age 25

Sep. Rec. . . 2.01 FPR 0.71 (31) 0.56 (70)
with no priors

Suff. Pred. Under age 25 2.36 CAL 0.49 (347) 0.58 (1000)

Suff. Rec. Females under age 25 0.41 PPV 0.39 (57) 0.47 (110)

Sensitive Attribute: Native American Defendants compared to Non-Native American Defendants

Sep. Pred. All Native American defendants 0.45 FPE 0.49 (6) 0.39 (3357)

Sep. Rec. All Native American defendants 0.53 FPR 0.50 (6) 0.30 (3357)

Suff. Pred. All Native American defendants 0.14 CAL 0.45 (11) 0.46 (6161)

Suff. Rec. - 0.0 PPV - -

Sensitive Attribute: Asian Defendants compared to Non-Asian Defendants

Sep. Pred. - 0.0 FPE - -

Sep. Rec. — 0.0 FPR — -

Suff. Pred.  Arrested on misdemeanor charges 3.16 CAL 0.00 (12) 0.38 (2190)

Suff. Rec. 6+ priors 0.11 PPV 0.00 (1) 0.76 (965)
Sensitive Attribute: Hispanic Defendants compared to Non-Hispanic Defendants

Sep. Pred. — 0.0 FPE —

Sep. Rec. - 0.0 FPR - -

Suff. Pred. All Hispanic defendants 0.26 CAL 0.37 (509) 0.46 (5663)

Suff. Rec. All Hispanic defendants 2.48 PPV 0.56 (141) 0.63 (2610)

Sensitive Attribute: Male Defendants compared to Female Defendants

Sep. Pred. Asian 0.63 FPE 0.30 (22) 0.22 (1)

Sep. Rec. Asian and Hispanic 22.5 FPR 0.21 (286) 0.05 (57)

Suff. Pred. Native Americans age 25+ 31.4 CAL 0.14 (7) 1.00 (2)

Suff. Rec. Native Americans age 25+ 14.1 PPV 0.25 (4) 1.00 (2)

Sensitive Attribute: Female Defendants compared to Male Defendants

Sep. Pred. White 1.51 FPE 0.38 (312) 0.35 (969)

Sep. Rec. White 12.5 FPR 0.29 (312) 0.20 (969)

Suff. Pred. Under age 25 18.7 CAL 0.38 (246) 0.60 (1101)

Suff. Rec. Under age 25 13.2 PPV 0.44 (167) 0.68 (699)
Sensitive Attribute: Defendants under age 25 compared to Defendants age 25+

Sep. Pred. All defendants under age 25 128.2 FPE 0.51 (593) 0.37 (2770)

Sep. Rec. All defendants under age 25 159.3 FPR 0.53 (403) 0.25 (1583)

Suff. Pred. - 0.0 CAL - -

Suff. Rec. - 0.0 PPV - -
Sensitive Attribute: Defendants age 25+ compared to Defendants under age 25

Sep. Pred. - 0.0 FPE - -

Sep. Rec.  Asians arrested on felony charges 0.74 FPR 0.20 (10) 0.00 (1)

Suff. Pred. Males with 0-5 priors 92.7 CAL 0.35 (2867) 0.59 (1041)

Suff. Rec. Males with 0-5 priors 53.0 PPV 0.52 (772) 0.67 (641)

Continued on next page...
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- Observed Metric Observed Metric
Log-Likelihood s
Scan Detected Ratio Metric for Sensitive for Complement
Type Subgroup (S5*) (F(5*)) Detected Subgroup Detected Subgroup

(Num. of Defendants)  (Num. of Defendants)

Sensitive Attribute: Defendants with no priors compared to Defendants with 1+ priors

Sep. Pred. - 0.0 FPE - -

Sep. Rec. - 0.0 FPR - -
Suff. Pred. All defendants with no priors 111.6 CAL 0.29 (2085) 0.54 (4087)
Suff. Rec. All defendants with no priors 51.0 PPV 0.46 (553) 0.67 (2198)

Sensitive Attribute: Defendants with 1-5 priors compared to Defendants with no or 6+ priors
Sep. Pred. Under age 25 3.28 FPE 0.54 (227) 0.49 (366)
Sep. Rec. Under age 25 12.6 FPR 0.64 (227) 0.47 (366)
Suff. Pred. Black defendants of age 25+ 2.17 CAL 0.42 (1038) 0.55 (1328)
Suff. Rec. Male defendants of age 25+ 26.8 PPV 0.54 (595) 0.70 (981)
Sensitive Attribute: Defendants 6+ priors compared to Defendants with 0-5 priors
Sep. Pred. All defendants with 6+ priors 83.9 FPE 0.54 (349) 0.38 (3014)
Sep. Rec. All defendants with 6+ priors 126.9 FPR 0.66 (349) 0.26 (3014)
Suff. Pred. - 0.0 CAL - -
Suff. Rec. Asian 0.42 PPV 0.00 (1) 0.83 (6)
Sensitive Attribute: Defendants arrested on felony charges compared to Defendants arrested on misdemeanor charges
Sep. Pred. White females 2.45 FPE 0.42 (139) 0.34 (173)
Sep. Rec. White females 9.56 FPR 0.38 (139) 0.21 (173)
Suff. Pred. - 0.0 CAL - -
Suff. Rec. - 0.0 PPV - -
Sensitive Attribute: Defendants arrested on misdemeanor charges compared to Defendants arrested on felony charges

Sep. Pred. - 0.0 FPE - -
Sep. Rec. Native Americans with 1-5 priors 1.67 FPR 1.00 (2) 0.00 (1)
Suff. Pred. Females 3.51 CAL 0.26 (491) 0.41 (684)
Suff. Rec. All defendants arrested 10.7 PPV 0.55 (736) 0.66 (2015)

on misdemeanor charges

Table 5: Full results from CBS scans run on COMPAS data. Sep. Pred. is short for separation scan for predictions in the
positive direction where the metric FPE stands for E[P |Y = 0, X]. Sep. Rec. is short for separation scan for recommendations
in the positive direction where the metric FPR, i.e. false positive rate, is Pr(Py;, = 1| Y = 0, X). Suff. Pred. is short for
sufficiency scan for predictions in the negative direction where the metric CAL, i.e. calibration, is Pr(Y = 1| P, X). Suff. Rec. is
short for sufficiency scan for recommendations in the negative direction where the metric PPV, i.e. positive predictive value,
is Pr(Y = 1| Py, = 1, X). The third column contains the log-likelihood ratio, F/(S*) defined in Equation for the detected
subgroup, S*, listed in the second column. Note, bold scores of F(S*) are statistically significant with p-value <.05 measured
by permutation testing, as described in Section @ For example, for the separation scan for recommendations with Black
defendants as the sensitive attribute (second row), Black males had a false positive rate of 0.44 (n = 1168) compared to 0.19 for
non-Black males (n = 1433).

C.1.3 Discussion of COMPAS Results for Benchmark Methodologies

Our evaluation of CBS, GerryFair, and MultiAccuracy Boost (Section |3) uses semi-synthetic data that
maintains the covariate distribution of COMPAS. The evaluation simulations follow a framework that
employs certain generative assumptions for injecting bias into subgroups. The limitations of these generative
assumptions used in our framework are discussed in detail in Section [6} In this Appendix, we provide the
results of the benchmark methodologies (GerryFair and MultiAccuracy Boost) run on the original COMPAS
data, and compare these results to the CBS results for the COMPAS case study in Section [l We include
these results to highlight the differences between CBS and the benchmark methodologies on a non-synthetic
dataset, showing the benefits of CBS in a setting without the generative model assumptions used in Section

We ran GerryFair and MultiAccuracy Boost using the same COMPAS data, preprocessing steps, and setup
described in Section 4 We report two sets of results: (1) the results of these methodologies (GerryFair
and MultiAccuracy Boost) with their out-of-the-box settings; and (2) the results when using the minimum
modifications needed to adapt these methods for under-estimation and over-estimation bias, described in
Appendix We include both of these results to display the methodologies’ default functionality, which we
assume is the intended setting for practitioners, and to obtain a set of results for COMPAS data that can be
used to contextualize the differences between these benchmark methodologies and CBS in a real-world setting.

39



Published in Transactions on Machine Learning Research (01/2026)

GerryFair and MultiAccuracy Boost provide demonstration code that uses probabilities as the predictive
output to be audited, and therefore we use the same P; calculated for each defendant based on their COMPAS
risk score, as described in Section [4]

GerryFuair Results: When running GerryFair to detect intersectional biases in false positive rates, with race,
sex, and the indicator variable of whether defendants are under the age of 25 marked as sensitive attributes,
the detected subgroup consists of all defendants aged 25+ who are not Black or Native American. This
subgroup is systematically advantaged rather than disadvantaged: non-reoffending defendants in the detected
subgroup have an average predicted risk E(P | Y = 0) = 0.32, while non-reoffending defendants not included
in this subgroup have an average predicted risk E(P | Y = 0) = 0.45. When modified to perform a directional
scan to search for a systematically disadvantaged subgroup, GerryFair detects a subpopulation consisting
of three distinct, marginal groups—all defendants under 25, all Black defendants, and all Native American
defendants—rather than an intersectional or contextual subgroup.

MultiAccuracy Boost Results: MultiAccuracy Boost chooses between three partitions of data on each iteration
of the algorithm, where the chosen partition has its probabilities adjusted. When running MultiAccuracy
Boost with its default settings on COMPAS, the highest scoring partition is found on the first iteration.
This partition consists of all defendants in the initial iteration that had higher probabilities (P > 0.50), and
therefore each of those defendants’ probabilities gets adjusted depending on MultiAccuracy Boost’s custom
residual heuristic metric (see Appendix. Given that there are large overlaps in the covariate spaces of the
partition that gets its predictions adjusted and the other partitions, the best way to describe this partition’s
covariate space is based on the coefficients of the classifier used to model the custom residual heuristic metric,
as described in Appendix [B.I] where larger values contribute to larger adjustments needed to the probabilities
of the defendants in the detected subgroup. The factors that are associated with defendants in this partition
needing larger adjustments to their probabilities include defendants with no priors and Hispanic defendants.
We note that this algorithm is stochastic, but these covariates consistently show a positive association with
larger values of the adjustment heuristic.

When running MultiAccuracy Boost using the modifications described in Appendix to detect directional
bias, the highest scoring partition is found on the first iteration of the algorithm. We find that the factors
that estimate the level of adjustments needed to the defendant’s probabilities include defendants with no
priors, Hispanic and Female defendants, defendants of age 25+, and defendants arrested on misdemeanor
charges.

Discussion: There are several takeaways to highlight about the results of GerryFair and MultiAccuracy Boost
for COMPAS:

e GerryFair’s original implementation of its auditor does not allow the user to select between detection
of over-estimation bias and detection of under-estimation bias. This results in a detected subgroup
of non-reoffending defendants that is advantaged rather than disadvantaged, benefiting from lower
predicted risk.

e With our modification to detect directional bias, GerryFair finds a large subpopulation consisting
of all Black defendants, all Native American defendants, and all defendants under the age of 25.
The results of CBS for separation scans for predictions (Appendix [C.1.2)) show some similarities
with GerryFair’s results — that is, for each of the three protected classes included in GerryFair’s
results, the subgroups detected by CBS within the protected class also have positive scores. The
major distinction is that GerryFair is not detecting intersectional or contextual subgroups within the
protected class, such as the subgroup of Black males detected by CBS. In contrast, CBS identifies
that non-reoffending Black male defendants have a higher predicted risk compared to non-reoffending
non-Black male defendants, and that this identified racial disparity is more significant than the
disparity between all non-reoffending Black defendants and all non-reoffending non-Black defendants.

o More generally, GerryFair appears to lack the flexibility of CBS to specify a single protected class and
search for intersectional or contextual subgroups within that protected class for whom bias is present.
In the given example, it identifies some individuals using characteristics unrelated to race, and the
marginal subgroups of all Black defendants who did not reoffend and all Native American defendants
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who did not reoffend respectively. This is consistent with our evaluation results in Section [3] in which
GerryFair was able to reliably detect marginal biases (for simulation parameter py;qs = 1) but had
low power to detect smaller, more subtle subgroup biases.

e The results of MultiAccuracy Boost suggest that while MultiAccuracy Boost provides a black-box
auditor tool, its auditor does not provide interpretable results. This is because the algorithm forms
subgroups based only on prediction thresholding, which results in these subgroups having overlapping
covariate spaces. This, in combination with the method’s inability to audit for specific biases for
specified protected class attributes, results in the algorithm neglecting to find important intersectional
biases. This is evident from the factors that describe over-estimation bias being defendants of age
25+, defendants with no priors, Hispanic and female defendants, which somewhat aligns with CBS’s
results for sufficiency scan for predictions for COMPAS, but does not have the capabilities to also
find more subtle biases such as the subgroup of Asian defendants arrested on misdemeanor charges
affected by over-estimation bias.

In summary, we believe that the above results demonstrate the advantages of CBS as compared to competing
methods, as an auditor for detecting intersectional and contextual biases in a real-world context.

C.2 Case Study of German Credit Data

We present the results of using CBS to audit for predictive bias in algorithmically-generated risk scores for
customers in the German Credit Data (Hofmann, 1994)). This dataset contains information about 1,000
customers from a German financial institution. Each row of the dataset represents a customer. For each
customer, various pieces of demographic, socioeconomic, and financial information are available, as well as a
label generated by the financial institution indicating whether each customer is a “good” (trustworthy for
credit) or “bad” (untrustworthy for credit) customer. This dataset is often used in the fair machine learning
literature to evaluate the predictive bias of models estimating credit risk. This is also the context we assume
for these data. We include these appendices to demonstrate the use of CBS for an additional dataset. This
case study also provides an example of running CBS on a notably smaller data set: the German Credit Data
is less than one sixth of the size of the COMPAS data in terms of rows. Below we provide the same set of
results as those shown for COMPAS above.

C.2.1 Preprocessing of German Credit Data

We use a publicly available version of the German Credit Data that has mapped the keys in the original
Statlog data file to their decoded categories (Datahub.io, [2019).

We follow the feature selection and preprocessing methods documented in [Kamiran & Calders| (2009), which
is one of the first publications that used these data for fair machine learning research. For each customer, we
use the following information:

e Whether the customer is under age 26 or age 26+.
e Whether the customer owns, rents, or lives in their housing for free.

e The customer’s gender and marital status. These were initially coded as one variable. For CBS we
create two separate categories for gender and marital status. Additionally, we create two high-level
categories for marital status: single or married/separated/divorced/widowed (i.e., “non-single”).

e The customer’s credit history. We recode this category to the following schema: previously delayed
credit/ critical credit/other existing credit or no credit/all credit paid. This involved combining
the “no credit/ all credit paid”, “all paid”, and “existing credit paid” categories because of their
overlap. Additionally, we combine previously delayed credit and critical credit/ other existing credit
categories because of a lack of clear differences between the categories. The main motivation of
these simplifications was to ensure that each category was not overlapping and thus to increase
interpretability. We note that there is a lack of granularity specifying if the customer has never
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had credit before or has no credit because they have paid off all their previous credit for most of
the customers in the data set. This is why we see a correlation between customers being labeled as
untrustworthy for credit and customers in the category of “no credit/all paid”.

e Whether a customer is considered a trustworthy or untrustworthy customer for credit by the financial
institution. An untrustworthy customer is coded as a positive outcome and a trustworthy customer
as a negative outcome for consistency with the COMPAS case study’s outcome label.

Unlike COMPAS, which provides both an algorithmically-generated risk score and an observed outcome
for each row, the German Credit Data only provides the label of whether a customer is trustworthy or
untrustworthy for credit, which is commonly used as an outcome variable. To produce the equivalent of an
algorithmically-generated risk score for each customer, which we will subsequently audit for predictive bias,
we train a logistic regression model using credit history, age (under 26 or age 26+), and housing ownership as
predictors and the binary indicator of whether the customer is trustworthy or untrustworthy for credit as
the label. We use this model to produce the predicted probability that each customer is untrustworthy for
credit. These predicted probabilities, and the corresponding binarized recommendations as to whether each
customer is predicted high-risk or low-risk of being untrustworthy for credit, are the predictive risk scores
that we audit with CBS. This modeling approach is an example of “fairness through unawareness” because it
does not use the two sensitive attributes (gender and marital status) as predictors in training to produce its
predictions and recommendations. We will examine whether the predictions and recommendations produced
by this model still contain predictive biases, as identified by CBS.

C.2.2 Scans for the German Credit Data

We preprocessed the outcome variable (whether a customer is trustworthy or untrustworthy for credit) in a
similar fashion to the COMPAS outcome variable. A positive outcome represents a less desirable real-world
result. For the German Credit Data, this means that a positive outcome represents an observed untrustworthy
customer for credit. Therefore, we run the same scans in terms of conditional variables and direction for the
German Credit Data that we ran for COMPAS. For the separation scans, we detect positive deviations for the
protected class attribute in E(P|Y =0, X) and Pr(Py,, = 1|Y = 0,X), i.e., increase in average predicted
risk for trustworthy customers and increase in FPR (probability of being predicted high-risk for trustworthy
customers), respectively. For the sufficiency scans, we detect a negative deviation for the protected class
in Pr(Y = 1| P,X) and Pr(Y = 1| Py, = 1, X), i.e., decreased probability of being an untrustworthy
customer conditional on predicted risk and conditional on being predicted as high-risk, respectively. For
the separation and sufficiency scans for recommendations, we threshold the probability risk-scores by 0.5 to
construct recommendations: Py, = 1{P > 0.5}. Given the smaller dataset size (as compared to COMPAS)
and highly-correlated predictor variables, we found that logistic regression was inadequate for computing
propensity scores and for the outcome model (predicting the probabilities I using data from the non-protected
class). Thus we use a more flexible model- a gradient boosting classifier with Platt scaling — to ensure that
our predictions are well-calibrated when computing propensity scores and when estimating I. All scans were
run for 500 iterations with a penalty equal to 1.

C.2.3 Calibration Curve Plots for Estimating I for German Credit Data

The method presented in Section to estimate the event variable I for individuals in the protected class
under the null hypothesis Hy: I L A|(C, X) relies on two models being well-specified: (1) the propensit
score model for estimating Pr(A = 1| X); and (2) the outcome model for estimating I = E[I | C, X]. Figure
contains the calibration curves for all propensity score models for all CBS runs on the German Credit Data;
note that this curve is computed using all data for fitting Pr(A = 1| X'), which includes all instances in the
entire dataset D. Figure [I2] contains the calibration curves for all outcome models for all CBS runs on the
German Credit Data; note that this curve is computed using all data for fitting I = E[I | C, X], which only
includes the individuals in the non-protected class (4; = 0) and, depending on the scan, may have further
restrictions on the conditional variable C'. For our German Credit Data case study, we used gradient boosting
classifiers with Platt scaling for all of these models.
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German Credit Data's Propensity Score Models with Quantile Binning (5 bins
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Figure 11: Calibration curves for all propensity score models used to estimate Pr(A = 1| X) when generating
1, for all CBS runs on the German Credit Data represented in Table @

German Credit Data's Outcome Models with Quantile Binning (5 bins)
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Figure 12: Calibration curves for all outcome models used to estimate I= E[I | C, X], using propensity
score-weighted data from the non-protected class, for all CBS runs on the German Credit Data represented
in Table
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C.2.4 Results of German Credit Data Case Study

Table[6] contains the full set of German Credit Data results for CBS. We observe that the statistically significant
biases detected by separation scans are those corresponding to subpopulations with higher base rates (i.e.,
higher probability of being labeled “untrustworthy” for credit): customers with all paid or no previous credit,
younger customers, and customers who have free housing or rent their housing. For sufficiency scans, we
detect only a single statistically significant bias: conditional on predicted risk, older female customers with all
paid or no previous credit who own their housing are significantly less likely to be labeled as “untrustworthy”
than older female customers with all paid or no previous credit who rent or have free housing.

As described in Appendix [C.2.1] we purposely excluded the gender and marital status features when modeling
the risk scores. Since the exclusion of sensitive features alone does not guarantee that a model will produce
predictions without predictive biases, we examine gender biases detected in the logistic regression model’s risk
scores. It is notable that a sufficiency scan for recommendations identifies a subgroup of female customers
who own or rent their housing, have critical, previously delayed, or other existing credit, and are aged 26
or older who are flagged as high-risk for credit. This subgroup has a lower rate of being untrustworthy for
credit (0.12) compared to the equivalent group of male customers predicted as high-risk for credit, where
the rate of being untrustworthy for credit is 0.19. This scan additionally detects that male customers who
have free housing and are predicted as high-risk have a lower rate of being untrustworthy for credit (0.37)
as compared to female customers who have free housing and are predicted as high-risk (0.58). Although
neither of these detected subgroups is statistically significant, they do represent deviations, in the form of
miscalibrated predictions, that disadvantage a subgroup of customers based on their gender as compared
to the opposite gender. This suggests that removing gender and marital status as predictors may not be
sufficient to fully remove gender-related subgroup biases in the model predictions.
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Observed Metric

Log-Likelihood for Sensitive

Scan Detected

Observed Metric
for Complement

Type Subgroup (S*) (FR(ET;,?)) Metric Detected Subgroup Detected Subgroup
(Num. of Defendants)  (Num. of Defendants)
Sensitive Attribute: Customers under age 26
compared to Customers of age 26+
Sep. Pred. All customers under age 26 13.5 FPE 0.41 (110) 0.26 (590)
Sep. Rec. - 0.0 FPR - -
Suff. Pred. All customers under age 26 0.07 CAL 0.42 (190) 0.27 (810)
Suff. Rec. - 0.0 PPV — -
Sensitive Attribute: Customers of age 26+
compared to Customers under age 26
Sep. Pred. - 0.0 FPE — -
Sep. Rec. - 0.0 FPR - -
Suff. Pred.  Single customers who own their housing 42.4 CAL 0.22 (366) 0.36 (42)
Suff. Rec. - 0.0 PPV - -
Sensitive Attribute: Female Customers compared to Male Customers
Sep. Pred. - 0.0 FPE - -
Sep. Rec. All Female Customers 0.08 FPR 0.11 (201) 0.03 (499)
Suff. Pred. Owns or rents their housing 7.31 CAL 0.12 (66) 0.19 (234)
with critical, previously delayed
or other existing credit of age 26+
Suff. Rec. - 0.0 PPV - -
Sensitive Attribute: Male Customers compared to Female Customers
Sep. Pred. - 0.0 FPE - -
Sep. Rec. Customers who have free housing 8.39 FPR 1.00 (2) 0.00 (1)
under age 26
Suff. Pred. Customers who have free housing 6.23 CAL 0.37 (89) 0.58 (19)
Suff. Rec. All Male customers 0.02 PPV 0.46 (24) 0.48 (44)
Sensitive Attribute: Single Customers compared to Non-Single Customers
Sep. Pred. - 0.0 FPE - -
Sep. Rec. Customers who have free housing 9.19 FPR 1.00 (2) 0.00 (1)
under age 26
Suff. Pred. Customers who have free housing 4.92 CAL 0.38 (85) 0.52 (23)
Suff. Rec. - 0.0 PPV - -
Sensitive Attribute: Non-Single Customers compared to Single Customers
Sep. Pred. - 0.0 FPE - -
Sep. Rec. Customers who rent their housing 2.39 FPR 0.42 (74) 0.09 (35)
Suff. Pred. - 0.0 CAL - -
Suff. Rec. All Non-Single Customers 0.54 PPV 0.45 (56) 0.58 (12)
Sensitive Attribute: Customers with all paid or no previous credit
compared to Customers with critical, previously delayed or other existing credit
Sep. Pred. All customers with 86.5 FPE 0.35 (397) 0.20 (303)
all paid or no previous credit
Sep. Rec. - 0.0 FPR - -
Suff. Pred. Single customers of age 26+ 1.55 CAL 0.28 (189) 0.15 (177)
who own their housing
Suff. Rec. 0.0 PPV - -
Sensitive Attribute: Customers with critical, previously delayed or other existing credit
compared to Customers with all paid or no previous credit
Sep. Pred. 0.0 FPE —
Sep. Rec. 0.0 FPR - -
Suff. Pred. Customers who own their housing 8.80 CAL 0.16 (267) 0.29 (340)
of age 26+
Suff. Rec. - 0.0 PPV — -

Continued on next page...
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- Observed Metric Observed Metric
Log-Likelihood s
Scan Detected Ratio Metric for Sensitive for Complement
Type Subgroup (S*) (F(5*)) Detected Subgroup Detected Subgroup

(Num. of Defendants)  (Num. of Defendants)

Sensitive Attribute: Customers with free housing
compared to Customers who rent or own their housing

Sep. Pred. All customers who have free housing 12.9 FPE 0.39 (64) 0.28 (636)
Sep. Rec. Customers under age 26 3.02 FPR 0.67 (3) 0.32 (107)
Suff. Pred. - 0.0 CAL - -
Suff. Rec. — 0.0 PPV - -

Sensitive Attribute: Customers who rent
compared to Customers with free housing or own their housing

Sep. Pred. All customers who rent their housing 5.62 FPE 0.38 (109) 0.27 (591)
Sep. Rec. - 0.0 FPR - -
Suff. Pred. Female customers 1.91 CAL 0.41 (95) 0.33 (215)
Suff. Rec. - 0.0 PPV — -

Sensitive Attribute: Customers who own their housing
compared to Customers with free housing or rent their housing

Sep. Pred. - 0.0 FPE - -

Sep. Rec. - 0.0 FPR - -

Suff. Pred. Female customers of age 26+ 81.2 CAL 0.33 (93) 0.50 (42)
with all paid or no previous credit

Suff. Rec. - 0.0 PPV - -

Table 6: Full results from CBS scans run on German Credit Data. Sep. Pred. is short for separation scan for predictions in the
positive direction where the metric FPE stands for E[P | Y = 0, X]. Sep. Rec. is short for separation scan for recommendations
in the positive direction where the metric FPR, i.e. false positive rate, is Pr(Py;, = 1| Y = 0, X). Suff. Pred. is short for
sufficiency scan for predictions in the negative direction where the metric CAL, i.e. calibration, is Pr(Y = 1| P, X). Suff. Rec. is
short for sufficiency scan for recommendations in the negative direction where the metric PPV, i.e. positive predictive value,
is Pr(Y = 1| Py, = 1, X). The third column contains the log-likelihood ratio, F'(S*) defined in Equation [} for the detected
subgroup, S*, listed in the second column. Note, bold scores of F(S*) are statistically significant with p-value <.05 measured by
permutation testing, as described in Section [2.4] Some subgroups are not included for binary sufficiency and binary separation
scans because the limited range of the predicted risk score prevented auditing with CBS. These are denoted with a “—” in the
Log-Likeliehood Ratio (F(S*)) column. We note that the three lowest-scoring subgroups for sufficiency scan for predictions had
higher observed rates in the detected group vs. comparison group. These observed rates were still lower than expected, resulting
in small but non-zero scores, given the systematic differences in other predictors between protected and non-protected class.
“Non-single” is short for the marital status attribute “Married/divorced/separated /widowed”.

C.2.5 German Credit Data Results for Benchmark Methodologies

We use the same setup described in Appendix for running the benchmark methodologies with their
default settings and with the modifications to account for directional bias. Additionally, we use the same
data and risk scores described in the other sections of Appendix [C.2]

GerryFair Results: When running GerryFair with its default settings of detecting positive or negative
deviations in the false positive rate in comparison to the global false positive rate with marital status and
gender marked as sensitive attributes, GerryFair detects a subgroup of single male customers with a slightly
decreased average predicted risk for credit of 0.27 for trustworthy customers in comparison to the global average
predicted risk score of 0.29 for trustworthy customers. This is a negative deviation in the false positive rate.
The German Credit dataset contains no single females. When running GerryFair to detect positive deviations
in the false positive rate, it detects a subgroup of credit-trustworthy married/divorced/separated /widowed
customers (i.e., “non-single”) who have a slightly increased average predicted risk of 0.30 in comparison to
the global expected risk score of 0.29 for all trustworthy customers.

MultiAccuracy Boost Results: The MultiAccuracy Boost results, both for its default settings and when
accounting for over-estimation bias, found no noteworthy associations between the coefficients of the predictors
used to estimate the custom residual heuristic used in MultiAccuracy Boost. This further substantiates our
claim that MultiAccuracy Boost does not have the capabilities to be easily used, in terms of interpretability,
as an auditing tool for subgroup predictive biases.
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