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ABSTRACT

Rotary Position Embeddings (RoPE) are widely used in Transformers to encode
positional information in token representations, yet the internal frequency structure
of RoPE remains poorly understood. Previous studies have reported conflicting
findings on the roles of high- and low-frequency dimensions, offering empirical
observations but no unifying explanation. In this paper, we present a systematic
framework that bridges these disparate results. We introduce Frequency Entropy
(FE), a metric that quantifies the effective utilization of each RoPE frequency
dimension, and we provide an analysis of how RoPE’s sinusoidal components
contribute to model representations on a per-dimension basis. Based on an analysis
of the Llama-4 model, which incorporates both RoPE and NoPE layers, we find
that the periodicity captured by FE appears in RoPE layers but not in NoPE layers.
Furthermore, FE identifies dimensions in which energy concentrates under RoPE.
These characteristics are observed across the spectrum rather than being confined
to specific dimensions. Moreover, attenuating extreme-entropy dimensions at
inference yields downstream accuracy that is statistically indistinguishable from
the baseline, with modest perplexity improvements on average, suggesting that such
dimensions are often redundant. Overall, FE provides a simple, general diagnostic
for RoPE with implications for analysis and design.

1 INTRODUCTION

Position representations in Transformers (Vaswani et al., 2017) are a crucial factor determining
their ability to handle long-range dependencies. Among these representations, Rotary Position
Embeddings (RoPE) (Su et al., 2021) have become standard in many of the latest large language
models, including Llama (Touvron et al., 2023; Grattafiori et al., 2024), Qwen (Yang et al., 2024;
2025a), and Gemma (Team et al., 2024a), and have contributed to improved performances in long-text
processing. However, the design of RoPE was introduced empirically, and the role of each frequency
dimension and how they are utilized within the model remain unclear.

In recent years, several analyses at the RoPE dimension level have been reported. For example,
Barbero et al. (2024) observed that high-frequency components contribute to positional pattern
formation, while low-frequency components contribute to semantic information. They also demon-
strated that replacing part of the low-frequency components with NoPE (Kazemnejad et al., 2023)
does not significantly affect model performance. On the other hand, Chiang & Yogatama (2025)
showed that high-frequency components are scarcely utilized and can be removed without impacting
performance. Furthermore, Hong et al. (2024) pointed out that the low-frequency component is
essential for modeling long-range dependencies in specific attention heads. Previous analyses of
ROPE have largely relied on visual inspection of heatmaps and coarse division into high- versus
low-frequency components. The Llama-4 (Meta, 2025) model introduces iRoPE, which combines
interleaved NoPE layers with frequency scaling to extend context length, though its internal frequency
dynamics remain largely unexplored. These examples highlight the conflicting reports regarding the
role of each RoPE dimension, and analysis remains observation-based, lacking a unified theoretical
and empirical understanding.

In this paper, we mathematically formalize the contribution of each frequency dimension and introduce
Frequency Entropy (FE), a classical quantitative measurement framework. It comprises two
complementary metrics, Spectrum Frequency Entropy (Spectrum FE) and Sequence Frequency
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Figure 1: Example of our Frequency Entropy. Left: Frequency Entropy (FE) per rotary pair, where
the horizontal axis is the entropy value and the vertical axis is the pair index j € {0,...,d/2 — 1}.
Right: Query ¢5-norms across rotary pairs, where the horizontal axis is sequence length (L = 4096)
and the vertical axis is the pair index.

Entropy (Sequence FE), and makes RoPE’s spectral behavior measurable on a per-dimension basis.
Figure 1 illustrates the method. We compute these entropies on a Llama-4 model with RoPE and
NoPE layers and find that Spectrum FE quantifies power concentration in the Fourier domain and
reveals band-limited rotation pairs with sustained energy, while Sequence FE measures token-wise
regularity and detects persistent oscillations of rotation pairs induced by RoPE. Furthermore, these
signatures are absent in layers with NoPE.

To probe the functional relevance without fine-tuning, we conduct a targeted attenuation study. For
rotation pairs whose FE falls below a threshold, we reduce their contribution on attention during
inference by multiplying the corresponding query and key channels by a constant o < 1, keeping
all other parameters fixed. The experimental results demonstrate that suppressing low-Sequence-
FE dimensions leaves perplexity and downstream accuracy unchanged, whereas suppressing low-
Spectrum-FE dimensions worsens perplexity. In addition, attenuating high-Spectrum-FE outliers
has a negligible effect on the perplexity and the downstream accuracy. These results indicate that
persistent oscillations induced by RoPE are largely redundant, while band-limited components carry
a task-relevant signal.

Across experiments, we observe that oscillatory and band-limited behaviors occur throughout the
spectrum rather than only at specific frequencies or extremes. Consequently, the conventional high-
versus low-frequency dichotomy is insufficient. FE provides a spectrum-aware, model-agnostic lens
that reconciles prior mixed observations and informs pruning, reweighting, and the design of future
positional schemes.

2 BACKGROUND AND RELATED WORK

2.1 ROTARY PoOSITION EMBEDDING (ROPE)

ROPE (Su et al., 2021) has become the de facto standard positional embedding method in many of
the latest large language models, such as Llama (Touvron et al., 2023; Grattafiori et al., 2024) Qwen
(Yang et al., 2025a), and Gemma (Team et al., 2024a). RoPE introduces position information by
applying a rotation to the query and key vectors in the self-attention mechanism. This property allows
ROPE to encode relative positional information while preserving compatibility with an absolute token
index.

Am,n = (Rn,GQn)T(Rm,Okm) = qumfn,e km (])
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The rotation matrix R, ¢ € R4%d i the block-diagonal rotation matrix, defined as follows:

[cos(nBy) —sin(nb) 0 0 0 0 T
sin(no) cos(nbp) 0 0 0 0
0 0 cos(nbr) —sin(nb) 0 0
Ry = O O sin(nb1) Cos.(nel) 0 0
(j 0 0 0 e cos(néd/g,l) - sin(n'Gd/g,l)
L 0 0 0 0 e sin(n@d/z_l) COS(n@d/Q_l)_

@

where A € RIXL, g, € RY*4 is the n-th query when the number of dimensions is d and 7 is the
absolute position (0 < n < L — 1) when the sequence length is L, and k,,, € R'*? is the m-th key
(0 <m < L —1). Typically, the rotation angles are chosen as the base of RoPE 6; = 100002/ /d
(j=0,..., % — 1). In practice, the base values 6 in RoPE are typically set to be quite large. For
example, # = 10,000 is adopted in the Gemma model (Team et al., 2024a) and Llama-2 (Touvron
et al., 2023), # = 500,000 is used in Llama-3 (Xiong et al., 2024), and # = 1,000,000 is employed in
Qwen-3 (Yang et al., 2025a). RoPE provides a complex phase concept of relative offsets for attention
across all layers and all heads while remaining parameter-free and hardware-friendly.

2.2 UTILIZATION OF INFORMATION WITHIN ROPE

The distribution and utilization of information within RoPE at the dimensional level remain only
partially understood. An early perspective at the attention-head level emphasized the low-frequency
structure as necessary for long-distance modeling. Hong et al. (2024) identified “positional heads”
whose activations align with token distance. Ablating these heads—dominated by lower-frequency
(slower-varying) RoPE dimensions—substantially degrades the long-context performance. A second
line of empirical evidence dissected pretrained models to associate roles with high and low frequency.
(Barbero et al., 2024) reported that high-frequency components drive distinctive off-diagonal “posi-
tional” attention patterns, whereas low-frequency components correlate more with semantic content.
Further, replacing parts of the low-frequency spectrum with NoPE-like (Kazemnejad et al., 2023)
variants leaves performance largely intact or even improved in small-to-mid-scale settings. These
results suggest redundancy within portions of the low-frequency subspace. A third line of work
has argued almost the converse for the high-frequency end: Chiang & Yogatama (2025) measured
the per-dimension utilization and showed that dimensions with larger rotation angles (i.e., higher
frequencies) are weakly used. This points to an over-allocation of representational capacity to rapid
positional oscillations that downstream layers seldom exploit.

Methodologically, existing analyses have tended to employ broad classifications such as high-
frequency/low-frequency, lacking a unified metric that transcends dimensions. Taken together, these
findings create a tension: (i) particular heads critically depend on low-frequency structure for long-
range dependencies (Hong et al., 2024); (ii) parts of the low-frequency spectrum appear semantically
entangled and sometimes dispensable (Barbero et al., 2024); yet (iii) high-frequency dimensions look
under-utilized and safely removable (Chiang & Yogatama, 2025).

2.3 1ROPE

Llama-4 (Meta, 2025) introduces iRoPE, which augments RoPE with two key changes. First, it
utilizes an interleaved layer design where rotary position embeddings are applied only to alternating
attention layers, while the others operate without explicit positional signals (NoPE; Kazemnejad et al.,
2023), encouraging content-based long-range reasoning. Second, iRoPE scales the RoPE rotation
angles by a factor o < 1, slowing phase growth and extending the effective positional range well
beyond the training context. Despite these advances, the internal behavior of iRoPE remains largely
unexplored.

2.4 FREQUENCY ENTROPY

Frequency entropy (also called spectral entropy) quantifies the uncertainty of a signal’s frequency
distribution by applying Shannon’s entropy (Shannon & Weaver, 1949) to its power spectrum. Let
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P(f;) be the power spectral density at the i-th discrete frequency bin, where i = 1,..., N and N is
the total number of frequency bins obtained from the discrete Fourier transform. We normalize the

spectrum to obtain a probability mass function p; = Zpg@)") . The frequency entropy is calculated as
j J

H=— Zpl- logy pi.- 3)

When desired, H can be normalized by log, N to yield 0 < H < 1. A low value of H indicates
that the spectral energy is concentrated in a few frequencies and is therefore highly ordered—for
example, as in a pure tone—whereas a high value indicates that the energy is spread across many
frequencies and is therefore more disordered, as in white noise. Thus, frequency entropy provides a
single quantitative measure of the flatness or peakiness of a spectrum. This metric is widely used in
signal processing and information theory (Misra et al., 2004; Sucic et al., 2014).

3 FREQUENCY ENTROPY: A NEW LENS FOR ROTARY POSITION EMBEDDINGS

After RoPE, each pair is rotated by an angle n6;/o_; with 6;/5_; determined by the RoPE base. We
are interested in how strongly each rotary pair exhibits narrow-band, RoPE-driven periodicity along
the sequence, as opposed to content-driven, broadband variability.

Core idea. For each rotary pair, we construct a 1D block observable along the token axis and
measure its frequency entropy (FE), defined as the Shannon entropy of the power spectrum. To
quantify the utilization of each dimension, we introduce two new evaluation metrics: Spectrum
Frequency Entropy (SpectrumFE) and Sequence Frequency Entropy (SequenceFE). SpectrumFE
evaluates which frequency components are present at any given moment. SequenceFE evaluates how
periodic or irregular the energy fluctuations are in each dimension. Our FE is computed as follows:

1. Split the query into d/2 RoPE blocks and compute the £5-norm of each, treating the resulting
length-L vector as a discrete signal (Section 3.1).

2. Compute two variants of power spectrum and applying Shannon entropy (Shannon &
Weaver, 1949) to its power spectrum as shown in Eq. (3) (Sections 3.2 and 3.3).

Low entropy indicates that the time series is dominated by a small number of frequencies, while high
entropy indicates spectrally diverse, content-modulated dynamics. This yields a per-pair score that is
model-agnostic, scale-free, and comparable across layers, heads, and architectures.

3.1 FrRoM ROPE BLOCKS TO A DISCRETE FREQUENCY SIGNAL

To measure the usage of frequencies, we start by noting any Cauchy-Schwarz equalities following
(Barbero et al., 2024). The effect of the j-th frequency component on the activation A,, ,,, is upper
bounded by the £>-norm of the query and key components, i.e., |(g}’, k,(%)ﬂ < ||q£f)|\2 ||k§,{) ll2
(j=0,..., % — 1). For a fixed block j, we collect these vectors across the sequence by

}T e RL. )

j)HQv

s; = [1gllas g2, -+, g4Iz

where L is the sequence length. Therefore, we assume that the set of ¢o-norms ||q£f ) |l2 of queries
after RoPE constitutes a discrete signal. We calculate the frequency entropy of the d/2 discrete signal
patterns and measure the frequency utilization rate. In practical terms, measuring the ¢s-norm of a
query after RoPE is natural: the rotation aligns the representation with the frequency blocks actually
used in the logit and preserves norms, so Hqg ) |2 is both position-invariant and directly interpretable.
We treat Eq. (4) as a discrete-time signal.

3.2 SPECTRUM FREQUENCY ENTROPY

We measure the spectral complexity of this sequence using normalized spectral entropy. For a given
signal s;, first compute the short-time Fourier transform (STFT) to obtain the power spectrum, as

F—1 2

Ska = |>_ s[tH +njw(n] e FRn| 5)

n=0
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where t(t = 0,1,2,...,T — 1) is each frame, w[n] is the analysis window, and Sy ; is the power
spectrum at frequency bin k(k = 0,1,2,..., K — 1). We set the frame length F’ to 1024, hop length
H to 512, and sequence length L to 4096. Therefore, the frequency bin is K = g + 1 =513 and
number of frames 1" = LL_TFJ + 1 = 7. Second, the power spectrum for each frame is normalized
to form a probability distribution, as

Sk =0 Sk
k= o1 Sk= T (6)
ijo Sj T
Next, the Shannon entropy H (Shannon & Weaver, 1949) is calculated as
= — > i logypy. )

To obtain a scale-free measure, We divide by the maximal entropy Hiax = log, K, yielding the
normalized spectral entropy H= T The normalized spectral entropy H represents the Spectrum

Frequency Entropy (SpectrumFE) quantifying the temporal spectral diversity of the query L/3-norm
51gna1 Finally, since RoPE orgamzes the embedding into 5 two dimensional rotary pairs, we compute

H for each pairindex 57 € 0,..., 5 — 1. Hence, the entropy is defined along j and yields a length—f
vector (H, ..., H 4 _1), with one Value per rotary pair.

3.3 SEQUENCE FREQUENCY ENTROPY

For a given signal s;, first compute the discrete Fourier transform (DFT) to obtain the power spectrum
as follows:

Sk =1 sijle” EM? k=01, L-1 8)
Next, discard the DC component (k = 0) and restrict to the positive frequencies 1 < k < é - 1L

Define the total positive—frequency energy and normalize to obtain a probability distribution over
these frequencies:

pk:l%7 k=1,...,|%| -1 9)
Finally, the Shannon entropy H{ (Shannon & Weaver, 1949) is calculated as
[L/2]-1
H=- Z i logsy pi. (10)
k=1

To obtain a scale-free measure, We divide by the maximal entropy Hmax = log, K, yielding the
normalized spectral entropy H = H— The normalized spectral entropy H represents the Sequence
Frequency Entropy (SequenceFE), quantifying the temporal spectral diversity of the query L{s-norm
signal Finally, since RoPE organizes the embedding into g two-dimensional rotary pairs, we compute
H for each pair index j € 0, ..., § — 1. Hence, the entropy is defined along j and yields a length-%
vector (Hy, ..., H 44 1), with one Value per rotary pair.

4 ANALYSIS VIA FREQUENCY ENTROPY

In this section, we investigate the characteristic behavior of RoPE. To isolate their contribution, we
compare queries that employ RoPE with those using no positional encoding (NoPE), enabling a direct
identification of RoPE-specific effects. For this purpose, we primarily analyze the Llama-4 model
with iRoPE, which alternates RoPE and NoPE across attention layers. !

!The analysis of keys is in Appendix A, and the layer-wise analysis is in Appendix B. We also conduct the
same analysis on models that apply RoPE in all layers and heads, including Llama-3, Qwen3, and Gemma2. See
Appendix C for details.
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Figure 2: Scatter plots of each FE value in the L1ama-4-Scout-17B-16E-Instruct model. Columns:
layer 6, layer 1, layer 3 (left to right). Rows: SpectrumFE, SequenceFE, and query ¢2-norm map.
Top/middle: pair index in RoPE j (x) vs. normalized entropy H; (y). Bottom: j (y) vs. token index

n (x); color denotes ||q£Lj) |l2- All results are shown for head 0. The pair index j is rotation patterns.
Sequence length L = 4096.

4.1 SETTINGS

We conduct experiments using the L1ama-4-Scout-17B-16E-Instruct (Meta, 2025) model with a
head dimension of 128 and RoPE with 64 rotation patterns, 48 transformer layers, and 40 attention
heads. In the Llama-4-Scout-17B-16E-Instruct model, a total of (64 x 48 x 40) = 122,880
frequency-entropy values are computed. For evaluation, we sample text at random from the
wikitext-103-raw-v1 split of the WikiText-103 dataset (Merity et al., 2017) and then concate-
nate the samples to form sequences of exactly 4096 tokens. Each such sequence is passed to the
model, and we extract the attention query vectors during inference. We then compute each frequency
entropy from these queries.

4.2 ANALYSIS RESULTS

What characteristics does SpectrumFE capture? In Fig. 2, the top panel shows scatter plots
of SpectrumFE per rotary pair, and the bottom panel shows the corresponding query {s-norm
maps. In the query ¢3-norm map of layer 6, we observed contiguous stretches of rotary-pair indices
with persistently elevated norms. We refer to contiguous ranges of rotary-pair indices that exhibit
persistently high query ¢5 norms as frequency bands. Similar banded patterns were also reported by
Barbero et al. (2024) and are especially evident in positional heads. Dimensions with the smallest
SpectrumFE align with pronounced band-limited patterns in the ¢5-norm maps, indicating that
SpectrumFE captures the frequency-band structure. Across RoPE-applied layers, SpectrumFE values
predominantly lie in the range 0.2-0.6. The SpectrumFE distribution in the NoPE layer (layer 3)
yields a markedly different profile from the RoPE layers. In the NoPE layer (layer 3), multiple
frequency bands are observed in the query ¢>-norm maps.

What characteristics does SequenceFE capture? In Fig. 2, the middle panel presents scatter plots
of SequenceFE per rotary pair. In layer O (RoPE layer), pairs with the smallest SequenceFE exhibit
clear periodic oscillations in the corresponding query ¢>-norm maps, whereas in layer 3 (NoPE layer),
no periodic pattern is observed and SequenceFE values rarely fall below 0.8. These observations
indicate that SequenceFE is sensitive to periodic structure along the token axis. Across RoPE-applied
layers, SequenceFE predominantly ranges from 0.2 to 0.6. In contrast, in the NoPE layer (layer 3),
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Figure 3: Scatter plots of FE values across all heads in the L1ama-4-Scout-17B-16E-Instruct
model. Columns: layer 0, layer 3, layer 47 (left to right). Layer O is the RoPE layer, while the others
are NoPE layers. Rows: entropy scatter plots for SpectrumFE and SequenceFE. Scatter plots show
pair index in RoPE j (x) vs. normalized entropy H; (y). We vary the color intensity of the scatter
points by head. The pair index j is rotation patterns.

no periodicity emerges and the SequenceFE distribution concentrates near 1.0, yielding a markedly
different profile from the RoPE layers (layers O and 6).

Effect of the NoPE Layer The bottom row of Fig. 2 shows query #2-norm heatmaps indicating that
ROPE layers and the NoPE layer at layer 3 exhibit markedly different behavior. From SpectrumFE,
the shallow NoPE layer (layer 3) exhibits more frequency bands than the RoPE layer. Meanwhile,
from SequenceFE, the NoPE layer does not show rotating pairs and therefore does not exhibits clear
periodic oscillations.

Entropy Landscapes Across Layers and Heads Fig. 3 shows scatter plots of each FE per rotary
pair in all heads. In the SpectrumFE plot, the shallow NoPE layer (layer 3) exhibits more dimensions
with frequency-band-like characteristics than the RoPE layer. Furthermore, the SpectrumFE distribu-
tion is widely scattered. However, as the layer deepens (final layer 47), the number of dimensions
with band-like characteristics decreases, and the SpectrumFE distribution converges within a certain
range. In the SequenceFE plot, the shallow RoPE layer (layer 0) indicates that there are several
periodic dimensions. However, in the NoPE layer, this periodic dimension disappears for all heads,
regardless of whether the layer is shallow or deep. These results suggest that NoPE may attenuate the
periodic structure characteristic of RoPE and emphasize frequency bands.

4.3 WHY SPECTRUMFE SHOWS BANDS AND SEQUENCEFE SHOWS PERIODICITY ?

In summary, our analysis separates two types of structure in RoPE-driven attention: Spectrum
Frequency Entropy reveals band-focused allocation across rotary pairs, and Sequence Frequency
Entropy reveals tokenwise periodicity. NoPE may weaken the latter while preserving or highlighting
the former. Deep layer may reduce both band sharpness and periodicity.

Why SpectrumFE shows bands? SpectrumFE takes a short-time spectrum of the query-norm for
each rotary pair by STFT and measures the Shannon entropy over frequency bins. Entropy is low
when energy sits in a few bins and high when it is spread out. Therefore, plotting low SpectrumFE
across indices (bins) forms a contiguous low-entropy region, i.e., a frequency band.

Why SequenceFE shows periodicity? SequenceFE uses a global Fourier spectrum along the token
axis by DFT and measures the entropy over positive frequencies. Low entropy means a simple,
near-single-tone signal, and high entropy means a complex or noise-like signal. With RoPE active, a
rotary pair advances at an almost constant step per token, so the query oscillates at a fixed frequency.
If we remove RoPE, the fixed-rate oscillation vanishes, energy spreads, and SequenceFE rises.

Why bands can persist in NoPE for SpectrumFE? Even without rotational oscillation, the
model may up-weight some rotary pairs due to content or architectural bias. This uneven allocation
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still concentrates energy for those indices within short windows, keeping SpectrumFE low over
a contiguous set of indices. At the same time, the per-token signal is not strongly periodic, so
SequenceFE remains high.

5 FILTERING OUT OUTLIER DIMENSIONS

Low SpectrumFE reflects band-limited behavior, while low SequenceFE reflects strong periodicity.
The following question arises: Are frequency bands and periodicity redundant elements for the model,
or are they essential components? In this section, guided by Frequency Entropy, we intervene in
ROPE by selectively weighting these rotary pairs to mitigate their contribution.

5.1 WEIGHTED ROPE

If Frequency Entropy is below a certain threshold, we weight the corresponding RoPE dimension to

reduce its effect. We call this Weighted RoPE. Let H(-"»7) ¢ [0,1] denote the Frequency Entropy

in the query for layer [, head h, and rotary pair j. Given a threshold 7 € (0, 1) and a RoPE weight
a €10,0.1,...,0.9], we set a weighted factor as follows:

b — {0" i HY <, (a1

1, otherwise.

We modulate the RoPE transformation applied to the j-th rotary pair of the query at token position m.
Let Rﬁb’f;“) € R2*2 denote the standard RoPE rotation for pair j in layer [ and head h. We obtain

the weighted query subvector by scaling the usual rotation with o'**J, which acts as a soft mask that
attenuates the contribution of low-entropy pairs while leaving others unchanged, as

g = oM R ) (12)
Intuitively, for low-entropy pairs, we slow the phase growth and attenuate periodicity; for other pairs,
ROoPE remains unchanged. We calculate the FE for each key and perform the same processing.

5.2 PERPLEXITY

Settings Four publicly available large language models were used for the evaluation:
Llama-4-Scout-17B-16E (Meta, 2025), gemma-2-9b-it (Team et al., 2024b), Qwen3-8B (Yang
et al., 2025b), and Meta-L1lama-3-8B (Grattafiori et al., 2024). We evaluated the inference perplexity
on the test set of the wikitext-103 dataset (Merity et al., 2016). For the threshold parameter 7, we
adopted different settings according to the entropy metric. For Spectrum Frequency Entropy, we
examined two regimes: one where T was greater than 0.4 and one where 7 was less than 0.2. For
Sequence Frequency Entropy, we observed that outliers occurred only at low values, so we evaluated
the case where 7 was less than 0.6. No fine-tuning was performed in any of the experiments.

Results To examine the contribution of outliers, we plotted the perplexity for each weight « to
visualize how different weighting values affect model performance. Figure 4 presents the overall
perplexity results. When SpectrumFE reduced the dimensions with 7 < 0.2, perplexity increased as
the weight o decreased. This indicates that dimensions with 7 < 0.2 in SpectrumFE contribute to
model performance and may be important components for the model—in other words, frequency
bands may be important. Furthermore, when SpectrumFE reduced dimensions with 7 > 0.4,
perplexity decreased slightly as the weight o became smaller. However, the overall performance
remained nearly identical, suggesting that dimensions with outlier values of 7 > 0.4 may be
unnecessary or redundant for the model. Next, when SequenceFE reduced dimensions with 7 < 0.6,
perplexity decreased slightly as the weight o became smaller. Notably, the decrease in perplexity
was larger for the Llama-4 model than for the other models, suggesting that periodicity may be
unnecessary or redundant for the model. The Llama-3 model had a smaller impact on perplexity, but
the trend was the same as other models.
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Figure 4: Perplexity as a function of the RoPE weight o under entropy-based gating. The horizontal
axis shows the weight « in Weighted RoPE and the vertical axis shows perplexity. We evaluate two
settings for Sequence FE: 7 > 0.4 and 7 < 0.2. For Spectrum FE, we use 7 < 0.6 because outliers
occur only at low values.

Table 1: Downstream task performance in original RoPE and WeightedRoPE.

Model HellaSwag Truthful QA MMLU

baseline +WeightedRoPE baseline +WeightedRoPE baseline +WeightedRoPE

Llama-4 17B 66.67 66.67 97.32 97.99 60.05 60.81
Llama-3 8B 60.16 60.16 84.85 84.85 34.21 34.21
Qwen3 8B 58.94 58.92 95.31 95.31 57.89 57.89
Gemma-29B  61.02 61.21 98.83 98.83 72.81 72.81

5.3 DOWNSTREAM TASK

Settings Based on the above experimental results, we hypothesize that the outlier dimensions of
SpectrumFE for 7 > 0.4 and the periodic dimensions of SequenceFE for 7 < 0.6 are redundant.
To investigate whether these dimensions affect downstream tasks, we evaluated Weighted RoPE
across multiple tasks. We fixed « to 0.1 for Weighted RoPE, applying the weight « to both the
outlier dimensions of SpectrumFE at 7 > 0.4 and the periodic dimensions of SequenceFE at 7 < 0.6.
Performance was measured on a diverse set of benchmark tasks including HellaSwag (Zellers et al.,
2019), Truthful QA (Lin et al., 2022), and MMLU (Hendrycks et al., 2021) to assess both reasoning
and factual capabilities.

Results Table 1 lists the experimental results. For all tasks, no significant difference was observed
between RoPE, which performs no operations, and WeightedRoPE. Only the llama-4 model showed
a slight improvement in performance. This suggests that the dimension where SpectrumFE becomes
an outlier and the periodic dimension where SequenceFE decreases may not contribute to model
performance and could be redundant.

6 CONCLUSION

In this work, we introduced frequency entropy (FE), a metric that quantifies the effective utilization
of each RoPE frequency dimension, and analyzed how the sinusoidal components of RoPE contribute
to the model representation. SpectrumFE can identify the frequency band of RoPE, and reducing
the contribution of this band degrades model performance, indicating it is a crucial component.
Furthermore, SequenceFE can identify the periodic dimension of RoPE. Reducing the contribution of
this dimension does not change model performance and may even improve it for some models. This
suggests the periodic dimension may be redundant or unnecessary. Furthermore, these frequency
bands and periodic dimensions do not exist in fixed dimensions. This resolves the confusion of
previous research: namely, importance clusters in model-dependent frequency bands whose positions
varied across heads and layers were often reported as “low” or “high” frequency effects, but these
may have been observations of different band locations. We expect FE to function as a practical,
model-independent diagnostic tool for position coding.
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A ADDITIONAL EXPERIMENTS ON KEY

We also compute our spectral entropy (SpectrumFE and SequenceFE) from the keys in
Llama-4-Scout-17B-16E-Instruct (Meta, 2025) model. The analysis procedure is the same
as in Section 4.

Analysis Results Figure 5 shows the scatter plots for each FE and the /5-norm heatmap for the
keys. In RoPE layers, we observe both frequency bands and periodic dimensions in queries and in
keys. FE aligns with these observations and shows the same trend for keys. Keys contain a larger
number of periodic dimensions than queries (e.g. 5-th Layer). In NoPE layers, we see the same
qualitative pattern as in queries: periodic dimensions are rarer, while frequency bands are detected
frequently.
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Figure 5: Scatter plots of each FE value in the L1ama-4-Scout-17B-16E-Instruct model. Columns:
layer 6, layer 1, layer 3 (left to right). Rows: SpectrumFE, SequenceFE, and key {2-norm map.

Top/middle: pair index in RoPE j (x) vs. normalized entropy H; (y). Bottom: j (y) vs. token index

n (x); color denotes || k) |l2. All results are shown for head 0. The pair index j is rotation patterns.
Sequence length L = 4096.
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B ADDITIONAL EXPERIMENTS ON ALL LAYERS

Figures 6 and 7 show the results of SpectrumFE and SequenceFE across all layers of the
Llama-4-Scout-17B-16E model.

SpectrumFE in all layers First, we discuss the scatter plots for SpectrumFE in Fig. 6. Comparing
the shallow RoPE layer and the NoPE layer, the NoPE layer exhibits a significantly broader distribu-
tion, whereas the RoPE layer’s distribution is less extensive. However, as the layer depth increases,
the NoPE layer’s distribution converges. Even in the RoPE layer, the distribution converges, though
not as much as in the NoPE layer, suggesting the influence of deepening. On the other hand, low
SpectrumFE values are observed regardless of layer depth, indicating that the frequency band is
observed in every layer.

SequenceFE in all layers Next, we discuss the scatter plots of SequenceFE in Fig. 7. Comparing the
shallow RoPE layer and the NoPE layer, the RoPE layer exhibits a significantly broader distribution,
while the NoPE layer’s distribution is not as wide. This is exactly opposite to the trend observed in
SpectrumFE. However, as the layer deepens, the NoPE layer’s distribution widens, indicating that
periodic dimensions temporarily emerge in the NoPE layer. Near the final layer, however, the periodic
dimensions in the NoPE layer diminish. The RoPE layer maintains a certain number of periodic
dimensions even at deeper layers. These periodic dimensions primarily exist near high frequencies.
However, since these high-frequency periodic dimensions are not observed in the NoPE layer, NoPE
may play a role in mitigating periodic dimensions.
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Figure 6: Layer-wise scatter plots of SpectrumFE across all attention heads in
Llama-4-Scout-17B-16E-Instruct. The figure contains 48 panels arranged in 12 rows X
4 columns, with layer depth increasing left-to-right and then top-to-bottom (layers 0—47). Layers 3, 7,
11, 15, 19, 23, 27, 31, 35, 39, 43, and 47 use NoPE; all other layers use RoPE.
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Figure 7: Layer-wise scatter plots of SequenceFE across all attention heads in
Llama-4-Scout-17B-16E-Instruct. The figure contains 48 panels arranged in 12 rows X
4 columns, with layer depth increasing left-to-right and then top-to-bottom (layers 0-47). Layers 3, 7,
11, 15, 19, 23, 27, 31, 35, 39, 43, and 47 use NoPE; all other layers use RoPE.

18



Under review as a conference paper at ICLR 2026

C ADDITIONAL EXPERIMENTS ON OTHER ARCHITECTURES

We performed frequency entropy analysis not only on the L1ama-4-Scout-17B-16E model but also
on Meta-Llama-3-8B, gemma-2-9b-it, and Qwen3-8B. Note that unlike Llama-4, these models do
not possess a NoPE layer. All experimental settings are the same as in Section 4.

Llama-3 Figure 8 shows the FE analysis for the Llama-3 model. Only selected salient features are
marked. First, consistent with Llama-4 in Section 4, frequency bands are also observed in Llama-3.
These bands appear in most heads. In contrast, no periodic dimensions are identified, and SequenceFE
remains consistently high overall. The strongest band typically appears between the 39th and 42nd
dimensions on average, which differs from the band locations in the RoPE layers of Llama-4.

Gemma-2 Figure 9 shows the FE analysis for the Gemma-2 model. Frequency bands are observed
and they appear in most heads. In contrast, no periodic dimensions are identified, and SequenceFE
remains consistently high overall. The strongest band typically appears between the 115th and 120th
dimensions on average.

Qwen-3 Figure 10 shows the FE analysis for the Qwen-3 model. Frequency bands are observed
and they appear in most heads. In contrast, no periodic dimensions are identified, and SequenceFE
remains consistently high overall. The strongest band typically appears between the 48th and 50th
dimensions on average.

Frequency bands appear across models yet their locations are model dependent. In Llama-3, Gemma-
2, and Qwen-3, bands occur in many heads while the peak dimension differs across models, which
suggests that band position is governed by the RoPE base, the training length, and architectural factors
such as dimensionality and head configuration. In these model, periodic dimensions are ineffective or
at most very limited, since SequenceFE remains consistently high and clear periodic components are
not observed. Attenuating or pruning these periodic dimensions is likely to cause only a small drop in
performance, which is consistent with the downstream task results in Section 5.3. Moreover, since the
band is detected in most heads and explicitly reducing the contribution of the band dimensions lowers
performance (as shown in Section 5.2), we conclude that a specific frequency range is commonly
useful for attention computation.
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Figure 8: Meta-Llama-3-8B model (head 0). Columns: layer O and layer 4. Rows: SpectrumFE,

SequenceFE, and query ¢2-norm map. Top/middle: pair index j (x) vs. normalized entropy H i ).
Bottom: j (y) vs. token index n (x); color denotes quf ) l2- The pair index j is rotation patterns.
Sequence length L = 4096.
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Figure 9: Gemma-2-9b-it model (head 0). Columns: layer O and layer 16. Rows: SpectrumFE,
SequenceFE, and query ¢2-norm map. Top/middle: pair index j (x) vs. normalized entropy H; (y).

Bottom: j (y) vs. token index n (x); color denotes qu(lj ) |l2- The pair index j is rotation patterns.
Sequence length L = 4096.
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Figure 10: Qwen-3-8B model (head 0). Columns: layer 0 and layer 35. Rows: SpectrumFE,
SequenceFE, and query £-norm map. Top/middle: pair index j (x) vs. normalized entropy H; (y).
Bottom: j (y) vs. token index n (x); color denotes Hqgj ) |l2. The pair index j is rotation patterns.
Sequence length L = 4096.
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