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Abstract

Various artificial neural networks developed by engineers are now proposed as1

models of parts of the brain, such as the ventral stream in the primate visual2

cortex. After being trained on large datasets, the network activations are compared3

to recordings of biological neurons. A key question is how much the ability of4

predicting neural responses actually tells us. In particular, do these functional5

tests about neurons activation allow us to distinguish between different model6

architectures? We benchmark existing techniques to correctly identify a model7

by replacing the brain recordings with recordings from a known ground truth8

neural network, using the most common identification methods. Even in the setting9

where the correct model is among the candidates, we find that system identification10

performance is quite variable, depending significantly on factors independent of11

the ground truth architecture, such as scoring function and dataset. In addition, we12

show limitations of the current approaches in identifying higher-level architectural13

motif, such as convolution and attention.14

1 Introduction15

The dominant approach for machine learning engineers in search of better models has been to use16

standard benchmarks to rank model performance. This practice has driven much of the progress in17

the machine learning community. A standard comparison benchmark enables the broad validation of18

successful ideas. Recently such benchmarks have found their way into neuroscience with the advent19

of frameworks like Brain-Score [13], and Algonauts [2], where artificial models compete to predict20

recordings from brains. Can engineering approaches like these be helpful in the natural sciences?21

While such absolute rankings may be a good measure of absolute performance in approximating the22

neural responses, it is, however, an open question whether they are sufficient to validate or falsify23

scientific hypotheses in neuroscience. For instance, one of the central questions in neuroscience24

is about the conncections of neurons and their computational abstraction. In this regard, could the25

functional similarity imply by itself architectrual similarity? Consider the conjecture that similarity26

of responses between model units and brain neurons may allow us to conclude that brain activity fits27

better, for instance, a convolutional motif rather than a dense architecture. If this were actually true,28

it would mean that functional similarity effectively also constrains architecture. Then the need for29

a separate test of the model at the level of anatomy would become, at least in part, less critical for30

model validation.31

We describe here an attempt to benchmark the most popular similarity measures by replacing the brain32

recordings with data generated by a variety of specific known networks, with drastically different33

architectural motifs, such as convolution vs. attention, thus providing a hopefully useful groundtruth.34

We also discuss factors that contribute to improving architectural identifiability.35
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2 Background and Methods36

2.1 Similarity Measures37

The two predominant approaches to evaluating computational models of the brain are using metrics38

based on single-unit response predictivity and population-level representational similarity. Consistent39

with the typical approaches, we study the following neural predictivity scores: Linear Regression and40

Centered Kernel Alignment (CKA).41

In computational neuroscience, we usually have a neural system (brain) that we are interested in42

modeling. We call this network a target and the proposed candidate model a source. Formally, for43

a layer with p1 units in a source model, let X ∈ Rn×p1 be the matrix of representations with p144

features over n stimulus images. Similarly, let Y ∈ Rn×p2 be a matrix of representations with p245

features of the target model (or layer) on the same n stimulus images.46

Linear Regression Closely following the procedure developed by previous works [13, 15, 3], we47

linearly project the feature space of a single layer in a source model to map onto a single unit48

in a target model (a column of Y ). The linear regression score is the Pearson’s correlation r(·, ·)49

coefficient between the predicted responses of a source model and the ground-truth target responses50

to a set of stimulus images. We use ridge regressions with the regularization parameter λ = 1 for our51

main experiments and we show the effect of varying the value in Appendix (Figure 6).52

β̂ = argminβ ||Y −XSβ||2F + λ||β||2F (1)

LR(X,Y ) = r(XSβ̂, Y ) (2)

To reduce computational costs without sacrificing predictivity, we apply sparse random projection53

S ∈ Rp1×q1 for q1 << p1, on the activations of the source model [3]. We use 90% of the stimulus54

images for linear fitting and test on 10%, cross-validated 10 times. We randomly subsample 300055

units for each target layer and use the median of them as the aggregate score.56

Centered Kernel Alignment Another widely used type of metric builds upon the idea of measuring57

the representational similarity between the activations of two neural networks for each pair of images.58

While variants of this metric abound, including RSA or re-weighted RSA [10, 8], we use CKA [4]59

as [9] showed strong correspondence between layers of models trained with different initializations,60

which we will further discuss as a validity test we perform. Recent work [6] notes that under certain61

conditions linear CKA is equivalent to a whitened representational dissimilarity matrix (RDM) in62

RSA. We consider linear CKA in this work:63

CKA(X,Y ) =
||Y TX||2F

||XTX||F ||Y TY ||F
(3)

2.2 Identifiability Index64

To quantify how selective neural predictivity scores are when a source matches the target architec-65

ture compared to when the architecture differs between source and target networks, we define an66

identifiability index as:67

Identifiability Index =
Score(source = target)− Mean Score(source ̸= target)
Score(source = target) + Mean Score(source ̸= target)

(4)

2.3 Simulated Environment68

If a target network is a brain, it is essentially a black box, making it challenging to understand69

the properties or limitations of the comparison metrics. Therefore, we instead use artificial neural70

networks of our choice as targets for our experiments. We investigate the reliability of a metric71

to compare models, mainly to discriminate the underlying computations specified by the model’s72

architecture.73
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Figure 2: Linear regression (Top) and CKA (Bottom) scores for artificial neural networks. We use
different initialization seeds for source networks of the same architecture type as the target, except for
MLP-Mixer-B/16 (bar plots with patterns), for which we test identical weights, the most ideal setting.

3 Results74

3.1 Different models trained on a large-scale dataset reach equivalent neural predictivity75
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Figure 1: Linear regression scores
of deep neural networks for brain
activations in the macaque visual
cortex.

We compare various neural networks based on different com-76

ponents, such as convolutional layers, attention layers, and skip77

connections as the models of the brain via the Brain-Score78

framework [13]. Our experiments show that the differences79

between markedly different neural network architectures are80

minimal after training (Figure 1), consistent with the previ-81

ous work [13, 11, 3]. The performance difference is minimal,82

with the range of scores having a standard deviation < 0.0383

(for V2=0.021, V4=0.023, IT=0.016) except for V1. For V1,84

VOneNets [5], which explicitly build in properties observed85

from experimental works in neuroscience, significantly out-86

perform other models. This suggests that architectures with87

different computational operations reach almost equivalent per-88

formance after training on the same large-scale dataset, i.e.,89

ImageNet.90

3.2 Identification of architectures in an ideal setting91

One interpretation of the result would be that different architectures are indeed equally good (or bad)92

models of the visual cortex. An alternative explanation would be that the method we use to compare93

models has limitations in identifying the precise computational operation. To test the hypothesis, we94

consider the case where underlying target neural networks are known instead of being a black box as95

with biological brains.96

Linear Regression We first compare various source models with a target network, the same architec-97

ture as one of the source models and is trained on the same dataset but initialized with a different seed.98

We use images of synthetic objects [12] to be consistent with the evaluation pipeline of Brain-Score.99

For most target layers, except for those in VGG11, source layers with the highest score are layers100

in the same network type (Figure 2 top). However, strikingly, for early and intermediate layers of101

target VGG11, the best-matched layers belong to a source model that is not VGG11. The first layer102

of ResNet18 is also predicted best by ViT-B/32. In other words, given the activations of VGG11,103
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Figure 3: Top Sample images of each stimulus image type. Bottom Two Rows Architectural
identifiability index using CKA and regression for different types of stimulus images.

for instance, and based on linear regression scores, we would make an incorrect prediction that the104

system’s underlying architecture is closest to a ResNet18.105

In addition, because of our ideal setting, where an identical network is one of the source models,106

we expect to see a significant difference between matching and non-matching models. However, for107

some target layers in AlexNet and ResNet18, although the layer with the highest score may be the108

matching layer in the same architecture, linear regression scores for other source models do not show109

a significant decrease in predictivity.110

CKA Next, we replace linear regression with CKA for the similarity measure. For all layers of the111

target models, the ground-truth source models achieve the highest score with a significant margin112

(Figure 2 bottom). To examine how robust CKA is when only a subset of target neurons are available,113

as with the neural recordings of biological brains, we also test including 1% of target units. We114

show that the correct source model can still be identified for most layers, but start to observe some115

layers that are either incorrect or have similar scores across models (Figure 5). Overall, the degree of116

identifiability decreases, and we expect settings that are more consistent with biology will have even117

more constraints and noise.118

3.3 Effects of the stimulus distribution on identifiability119

A potentially significant variable in comparing models of the brain is the type of stimulus images.120

What types of stimulus images are suited for evaluating competing models? In Brain-Score, stimulus121

images for comparing models of the high-level visual areas, V4 and IT, are images of synthetic122

objects [12]. In contrast, those for the lower visual areas, V1 and V2, are images of texture and noise123

[7]. To examine the effect of using different stimulus images, we test images of synthetic objects124

(3200 images), texture and noise (135 images), and ImageNet (3000 images), which are also the125

training dataset for models.126

In Figure 3, we analyze Identifiability Index for different stimulus images. More natural stimulus127

images (i.e., synthetic objects and ImageNet) show higher identifiability than texture and noise128

images. Notably, even for early layers in target models, which would correspond to V1 and V2 in the129

visual cortex, texture and noise images fail to give higher identifiability.130

3.4 Challenges of identifying key architectural motifs131

Hypotheses for a more biologically plausible design principle of models often involve key high-level132

architectural motifs. For instance, whether recurrent connections are crucial in visual processing133
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Figure 4: CNNs and ViTs of different architectural variants are compared with two CNNs and a ViT
target networks. Each datapoint is the maximum score of an architecture for corresponding target
layers. Markers with darker shades indicate mean score of the corresponding model class, and error
bars are standard deviation.

or whether the brain implements computations like attention layers in transformers. The details134

beyond the key motif may vary, and it is unlikely that models align with the brain at every level, from135

low-level specifics to high-level computation. Thus, an ideal method for comparing models should136

help separate the key properties of interest while being invariant to other confounds.137

Considering it is a timely question, with the increased interests in transformers as models of the brain138

in different domains [14, 1], we focus on the problem of identifying convolution vs. attention. We139

test 12 Convolutional Neural Networks and 8 Vision Transformers of different architectures, and to140

maximize identifiability, we use ImageNet stimulus images. For CKA, we include 1% of target units.141

Overall, Figure 4 shows that mean CKA and regression scores are higher when target and source142

models belong to the same model class. However, several layers do not show statistically significant143

difference between the two model classes based on Welch’s t-test with p < 0.01 used as a threshold144

(for CKA, layer 8 of VGG13, layers 2 and 8-16 of ResNet34, and layers 0 and 6-21 of ViT-L/16; for145

regression, layers 2-6 of VGG13, layers 0-10 of ResNet34, and layer 0 of ViT-L/16).146

The significant variance among source models suggests that model class identification can be incorrect147

depending on the precise variation we choose, especially if we rely on a limited set of models. A148

quick but essential remedy for this issue is to include wide-ranging variants of a model class rather149

than to test a single model before concluding high-level key computations.150

4 Discussion151

Under idealized settings, we tested the identifiability of various artificial neural networks with152

differing architectures. We present two contrasting interpretations of model identifiability based on153

our results, one optimistic (glass half full) and one pessimistic (glass half empty).154

Glass half full: Despite the many factors that can lead to variable scores, both linear regression and155

CKA give reasonable identification capability under unrealistically ideal conditions, with identifiabil-156

ity improving as a function of depth. We find CKA has slightly better reliability than linear regression157

under these ideal conditions.158

Glass half empty: However, system identification is highly variable and dependent on the properties159

of the target architecture and the stimulus data used to probe the candidate models. For architecture-160

wide motifs, like convolution vs attention, there is significant overlap in scores across almost all161

layers.162
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A Appendix240

A.1 Model details for Section 4.1: Brain-Score241

Below is the full list of models tested on the benchmarks of Brain-Score as reported in Section 4.1.242

In addition to testing vision models pre-trained on ImageNet available from PyTorch’s torchvision243

model package version 0.12, we test VOneNets that are pre-trained on ImageNet and made publicly244

available by the authors [5]. VOneNets are also a family of CNNs.245

Convolutional Networks: AlexNet, VGG11, VGG13, VGG19, ResNet18, ResNet34, ResNet50,246

ResNet101, VOneAlexNet, VOneResNet50, VOnetCORnet-S247

Transformer Networks: ViT-B/16, ViT-B/32, ViT-L/16, ViT-L/32248

A.2 Model details for Section 4.5: finding the key architectural motif249

For each target network reported in Section 4.5, namely VGG13, ResNet34, and ViT-L/16, below250

is the full list of source models tested to compare two model classes, CNN and transformer. For251

Tokens-to-token ViTs (T2T) [16], we use models pre-trained on ImageNet and released by the authors.252

All other models are also pre-trained on ImageNet, available from PyTorch’s torchvision model253

package version 0.12.254

Convolutional Networks: AlexNet, VGG11, VGG13, VGG16, VGG13_bn, ResNet18, ResNet34,255

ResNet50, Wide-ResNet50_2, SqueezeNet1_0, Densenet121, MobileNet_v2256

Transfomer Networks: ViT-B/16, ViT-B/32, ViT-L/16, ViT-L/32, T2T-ViT_t-14, T2T-ViT_t-19,257

T2T-ViT-7, T2T-ViT-10258

A.3 Model details: number of layers included for each model259

Table 1
Model Number of Layers

AlexNet 10
Densenet121 30

MLP-Mixer_B16_224 24
Mobilenet_v2 14

ResNet18 10
ResNet34 18
ResNet50 18

Squeezenet1_0 13
T2T_ViT_10 13
T2T_ViT_7 10

T2T_ViT_t_14 17
T2T_ViT_t_19 22

VGG11 10
VGG13 12

VGG13_BN 12
VGG16 15

ViT_B_16 12
ViT_B_32 12
ViT_L_16 24
ViT_L_32 24

Wide_ResNet50_2 18
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A.4 Supplementary to Figure 2260
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Figure 5: CKA scores when only a subset (1%) of units in a target model are available to be recorded.
The constraint is tested to examine whether CKA is reliable in a setting closer to a biological
experiment.
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A.5 Ridge regression regularization coefficient261
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(b) Regularization coefficient λ = 0.5
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(c) Identifiability index for different regularization coefficient values

Figure 6: Results for varying the value of ridge regression regularization coefficient. Stimuli images
are from ImageNet.
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