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ABSTRACT

Molecular representation learning (MRL) plays a vital role in high-precision drug
discovery. Currently, people represent molecules in different modalities (such as
sequences, graphs, and images), and have developed many MRL methods. How-
ever, three key challenges hinder further progress in the field of MRL: (i) Lack
of systematic and unified evaluation on models of different modalities, resulting
in unfair comparisons or being affected by randomness; (ii) The specific advan-
tages between different molecular modalities are unclear; (iii) Lacking a unified
platform to integrate data of different modalities and a large number of MRL meth-
ods. Therefore, we propose the first MRL platform supporting different modal-
ities, called BenchMol, to integrate a large number of sing-modal MRL meth-
ods with different modalities and evaluate them systematically and fairly. Bench-
Mol has four attractive features: (i) Rich modalities: BenchMol supports 7 major
modalities of molecules, such as fingerprint, sequence, graph, geometry, image,
geometry image, and video; (ii) Comprehensive methods: BenchMol integrates
23 mainstream MRL methods to process these modalities; (iii) New benchmarks:
BenchMol constructs two new benchmarks based on PCQM4Mv2 and ChEMBL
34, called MBANet and StructNet, for a more systematic evaluation. (iv) Com-
prehensive evaluation: evaluation covers different aspects of molecules, such as
basic attributes and molecular types. Through BenchMol, we conduct large-scale
research on methods of different modalities and report many insightful findings.
We hope that BenchMol can help researchers quickly use MRL methods with dif-
ferent modalities on the one hand; and on the other hand, provide meaningful
insights into multi-modal MRL and help researchers choose appropriate represen-
tations in downstream tasks. We open-sourced BenchMol in Github.

1 INTRODUCTION

Figure 1: Schematic diagram of ”C(O)C(=0)NC”
with different modalities. The molecule is repre-
sented in 7 different modalities: (a) Fingerprint,
(b) Sequence, (c) Graph, (d) Geometry graph, (e)
2D image, (f) 3D geometry image, and (g) video.

Molecular representation learning (MRL) is
a prerequisite for high-precision drug discov-
ery (Li et al., 2022; Catacutan et al., 2024).
With the development of deep learning, re-
searchers have developed a large number of
MRL methods in recent years (Yi et al.,
2022). According to the different representa-
tion forms of molecules, existing methods rep-
resent molecules in 7 different modalities (as
shown in Figure 1) and use modality-specific
techniques to extract molecular representations,
namely molecular sequence (Kim et al., 2021;
Ross et al., 2022), graph (Hu et al., 2020a; Liu
et al., 2022a), geometry (Fuchs et al., 2020;
Satorras et al., 2021), image (Xiang et al.,
2023), geometry image (Xiang et al., 2024a)
and video (Xiang et al., 2024b).

Challenges. Despite the remarkable success of MRL, there are still three key challenges in its devel-
opment that hinder the further development of multi-modal MRL methods:
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I. Unfair comparison. Differences in evaluation strategies lead to incomparable or unfair com-
parisons between methods. We summarize four differences in the evaluation process, includ-
ing the method for dividing the dataset (Rong et al., 2020; Ross et al., 2022), the range of
parameter optimization (Hu et al., 2020a; Wang et al., 2022), the standardization of labels
(Ross et al., 2022; Zhou et al., 2023), and the selection of random seed (Zeng et al., 2022;
Wang et al., 2022; Xia et al., 2023). For example, MoLFormer (Ross et al., 2022) uses ran-
dom scaffold split to divide the dataset and is compared with MolCLR (Wang et al., 2022)
and GraphMVP-C (Liu et al., 2022a) which use strict scaffold split. In general, it is easier to
achieve good performance on datasets with random scaffold split than on datasets with scaf-
fold split. Compared to previous studies (Hu et al., 2020a) that use the same hyperparameters
for different tasks and run 10 replicates, MolCLR performs independent hyperparameter op-
timization for different tasks and runs 3 replicates. BARTSmiles (Chilingaryan et al., 2022),
Uni-Mol (Zhou et al., 2023) and MoLFormer use label regularization to compare with other
methods. Hu et al. and Xia et al. use consistent random seeds from 0 to 9 to initialize the
model while a large number of studies (Rong et al., 2020; Zeng et al., 2022; Wang et al., 2022)
do not explicitly state the random seeds, which may result in a benchmark deviation. There-
fore, it is necessary to build a platform to fairly evaluate methods with different modalities,
which will pave the way for researchers to explore scientific questions instead of falling into
biases caused by experimental differences.

II. Incomplete evaluation for different modality data. MRL is evolving towards a multi-modal
direction, relying on various technology stacks, such as sequence modalities based on Natural
Language Processing (NLP) (Devlin et al., 2019; Lewis et al., 2020), graph modality based
on graph deep learning (Xu et al., 2018), geometry modality based on geometry deep learning
(Monti et al., 2017; Atz et al., 2021), and image, geometry image and video modalities based
on Computer Vision (CV) (He et al., 2020; Kirillov et al., 2023). Currently, a large number
of methods based on different modalities have been developed in the field of MRL (Hu et al.,
2020a; Ross et al., 2022; Zeng et al., 2022). Intuitively, the data and encoding methods be-
tween different modalities are different, which may lead to their preference for different types
of molecules. However, this preference is still unclear and deserves further exploration. In
addition, researchers often focus on the task of molecular property prediction from Molecu-
leNet Wu et al. (2018) in the evaluation of MRL (Xiang et al., 2023; Xia et al., 2023; Xiang
et al., 2024a). However, a single evaluation is not comprehensive for studying preferences
in molecular representation of different modalities. Here, We introduce the Molecular Ba-
sic Attribute (MBANet) benchmark built from IEM (Xiang et al., 2024a) and the StructNet
benchmark built from the ChemBL 34 database (Zdrazil et al., 2024), as shown in Figure 2, to
further evaluate the ability of these models to identify essential molecular attributes and mine
information from different types of molecules.

III. Lack of a unified platform supporting diverse modalities. MRL methods of different
modalities are scattered in various corners of the Internet with different development envi-
ronments and different running pipelines. It is challenging to integrate various methods with
different modalities into a unified platform to support multiple modality data. Currently, there
remains a blank in the molecular-based platform supporting diverse modalities. We hope to
propose a unified molecular platform to provide meaningful insights for multi-modal MRL
and facilitate the use and development of multi-modal molecules by researchers.

Contributions. In this work, we aim to provide the first MRL platform unified diverse modalities
(called BenchMol) covering a large number of existing algorithms and re-evaluate existing methods
in a fair and comprehensive manner. Our contributions are summary as follows:

• Unified and flexible platform for supporting different molecular modalities. BenchMol is a
flexible and easy-to-use toolkit, which integrates 7 molecular modalities into a unified framework.
Meanwhile, BenchMol provides a complete pipeline from raw data to the evaluation of the final
model, which includes data preprocessing (57 modality extractors), predefined models (6 sequence
models, 13 graph models, 9 geometry models and at least 900 visual models), training strategies
(linear probing and fine-tuning) and a large number of evaluation metrics.

• Novel benchmarks. We propose two benchmarks, MBANet and StructNet, to explore the advan-
tages of existing models in basic molecular information (12 atoms, 4 bonds and 8 attributes) and
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Figure 2: (a) Schematic diagram of MBANet. (b) Schematic diagram of StructNet. 6 conditions are
num ring, average degree, num amide, has branch, num amide and molecular weight. 6 rules are
acyclic (A) rule, complete chain (CC) rule, acyclic chain (AC) rule, macrocyclic peptide (MP) rule,
macromolecule (M) rule and reticular (R) rule. (c) 6 types of molecules in StructNet.

the preferences for 6 different types of molecules (acyclic chain, acyclic, complete chain, macro,
macrocyclic peptide, reticular molecules), respectively.

• Experiment comprehensively and fairly. With BenchMol, we train at least 57,060 models,
including 6,960 models on linear probing of 12 MoleculeNet, 900 models on fine-tuning of 3
datasets from MBANet, and 49,200 models on fine-tuning of 60 datasets from StructNet.

• Meaningful insights. Based on extensive experiments and rigorous comparisons, we provide
many meaningful insights, including 9 main finds. Here, we highlight several important conclu-
sions: (1) In tasks related to molecular properties, fingerprint or sequence modalities tend to be se-
lected in non-pretrained models, while geometry graph modalities tend to be selected in pretrained
models; (2) Video modality excels at atomic-level and attribute-level tasks and graph/geome-
try modality excels at bond-level tasks; (3) With regard to molecular preferences, the geometry
modality prefers acyclic molecules, the fingerprint and graph modalities prefer cyclic molecules,
and the vision-based modalities prefer macrocyclic and reticular molecules.

2 RELATED WORKS

Molecular representation learning (MRL). Existing MRL can be mainly divided into the fol-
lowing categories, including sequences, 2D topological graphs, 3D geometric graphs, 2D images,
3D geometry images, and videos. Sequence-based methods represent molecules as 1-dimensional
strings (such as SMILES) and use NLP-related techniques to learn molecular representations (Ross
et al., 2022; Zheng & Tomiura, 2024). Graph-based methods treat the atoms and bonds of molecules
as nodes and edges in a graph and use GNN and its variants to extract features (Hu et al., 2020a;
Wang et al., 2022). Image-based methods treat molecules as a flat image and use computer vi-
sion (CV)-related techniques for processing (Zeng et al., 2022; Xiang et al., 2023; Zhang et al.,
2023). Subsequently, considering the importance of geometric information in molecules, geometric
deep learning methods represent molecules as geometric graphs and extract information from them
(Schütt et al., 2021; Liu et al., 2022b). Meanwhile, image-based methods render the geometric in-
formation of molecules into geometry images and perform feature extraction (Xiang et al., 2024a).
Recently, video-based methods have been proposed, which represent the conformation of molecules
as a video and extract features (Xiang et al., 2024b). Given that MRL is rapidly evolving towards dif-
ferent modalities, it is necessary to aggregate these methods with different modalities into a unified
platform and accelerate the development and use of researchers.

Molecular benchmark platforms. OGB (Hu et al., 2020b) proposes a set of diverse, challeng-
ing and realistic benchmark datasets covering molecular graphs, which mainly focus on graph data.
Molecule3D (Xu et al., 2021) develops a benchmark that includes a dataset with precise ground-
state geometries of approximately 4 million molecules, and provides a few baseline methods based
on DeeperGCN (Li et al., 2023) and DAGNN (Yang et al., 2021). Deng et al. (2023) focuses on
the evaluation of molecular fingerprints and 2D graphs. MOLGRAPHEVAL (Wang et al., 2024)
focuses on evaluating the impact of different pre-training strategies based on 2D graphs. Geom3D
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(Liu et al., 2024) focuses on geometric data of different biological entities (such as molecules, pro-
teins, crystalline materials). However, with the increase in modality data, the integration of multiple
fields has raised concerns about fairness and comprehensiveness in evaluation protocols. Different
from the above mentioned methods, BenchMol is the first molecular benchmark platform unified
multiple molecular modalities, which integrates 7 different modalities (fingerprint, sequence, graph,
geometry, image, geometry image, and video) and provides a easy-to-use interface for access.

3 PRELIMINARIES

There is a molecule m with na atoms and nb bonds and the representation of different modalities is
as follows:

Fingerprint. Molecular Fingerprints F are a compact, fixed-size representation, where F ∈ Rnfp

and nfp represents the dimension of molecular fingerprint. Currently, there are many fingerprints
developed (Mason et al., 2001), such as 167-dimensional MACCS (Molecular ACCess System)
(Durant et al., 2002), ECFPx with custom dimension (Rogers & Hahn, 2010), 210-dimensional
RDKit2D (Landrum et al., 2016). You can read (Hou et al., 2024) for more details about fingerprints.

Sequence. A molecule is regarded as a string sequence, such as SMILES (Weininger et al., 1988),
SELFIES (Krenn et al., 2020) and IUPAC (Kuhn et al., 2004). These sequences are split into tokens
by a tokenizer with word segmentation rules, which is formalized as S = {s0, s1, ..., sna

}, where
sna

represents a token. Currently, the most commonly used molecular sequence is SMILES and a
large number of technologies (Kim et al., 2021; Ross et al., 2022) are developed based on it. In this
paper, we focus on the study of molecular SMILES because of its popularity.

Graph. A molecular graph G = (V, E) consists of a set of nodes V ∈ Rna×nf and edges E ∈ Rnb ,
where nf represents the feature number of atom (e.g., atom type) (Hu et al., 2020a; Xia et al., 2023).
Assume that there are two atoms v and u in V , E represents an adjacency matrix A ∈ Rna×na

that indicates whether v and u are connected, where A[v, u] = 0 means there is no edge (bond)
otherwise it means there is an edge (bond). In practical applications, since bonds have multiple
chemical properties (e.g., bond types), the adjacency matrix A can be easily extended to A∗ ∈
Rna×na×db , where db represents the number of chemical properties of the bond (Liu et al., 2022a;
Wang et al., 2022). For example, the type of the bond formed by nodes v and u can be formalized
as A∗[v, u, it] = {0, 1, 2, 3, 4}, where it represents the index describing the bond type, 0 represents
no bond, 1 represents a single bond, 2 represents an aromatic bond, and so on.

Geometry. Geometry graph introduces the 3-dimensional coordinates of atoms based on graph
(Zhou et al., 2023; Satorras et al., 2021), which is formalized as Ĝ = (V̂, Ê), where V̂ ∈ Rna,nf+3.
Please note that in practical applications, models do not include edge information or use fully con-
nected adjacency matrices to represent edge information when processing geometric graphs.

Image, Geometry Image and Video. Molecular images (Xiang et al., 2023), geometry images
Xiang et al. (2023) and videos (Xiang et al., 2024b) are based on visual representations of molecules,
which are atom- and bond-independent and are made up of a bunch of pixels. We describe the
importance of the visual modality in Appendix C.3. Using RDKit (Landrum, 2013), the SMILES of
a molecule can be converted into a molecular image UI ∈ R224×224×3 (Figure 1(e)). The geometry
image (Figure 1(f)) and video (Figure 1(g)) of the molecule take into account the 3D structural
information of the molecule and are generated using PyMOL (DeLano et al., 2002). See Appendix
B for details of visual rendering. Formally, the geometry image and video can be represented as
UG ∈ R4×224×24××3 and UV ∈ R60×224×24××3, respectively, where 4 and 60 represent the number
of views in the geometry image and the number of frames in the video.

4 BENCHMOL: BENCHMARK PLATFORM WITH DIVERSE MODALITIES

4.1 OVERVIEW OF BENCHMOL

As shown in Figure 3, BenchMol consists of 5 modules. The Dataset Collector Module provides 3
types of benchmarks (Section 4.2). The Modality Extractor Module is used for data preprocessing,
which converts raw data into input for models of specific modalities (4.3). The Model Initializer
Module is used to initialize a large number of models (Section 4.4). The Training Strategy Module

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

is used to provide model trainers, including linear probing and fine-tuning (Section 4.5). The Evalu-
ation Metric Module provides the indicators required for classification and regression tasks (Section
4.6). For a discussion of the motivation and potential impact of BenchMol, see Appendix C.1.

Figure 3: Overview of the proposed BenchMol.

4.2 DATASET COLLECTOR MODULE

In BenchMol, we provide three benchmarks, MoleculeNet (Wu et al., 2018), MBANet and Struct-
Net. We contribute MBANet and StructNet to systematically analyze the preferences and perfor-
mance of different modal methods. See Appendix C.2 for details of the motivation and practicality
of the benchmarks. Next, we introduce the construction process of MBANet and StructNet.

MBANet. MBANet aims to study the ability of different methods to capture molecular basic infor-
mation, including atom distributions, bond distributions, and basic attributes. As shown in Figure
2(a), we first sample 10,000 molecules from PCQM4Mv2 (Hu et al., 2017). Then, we count the
number of atoms and bonds in each molecule, which are formalized as Ka = {ka1 , ka2 , ..., ka12}
and Kb = {kb1, kb2, kb3, kb4}, respectively, where Ka ∈ Z12 and Kb ∈ Z4 represent the count
of 12 types of atoms (C, N, O, F, S, Cl, Br, P, Si, B, Se, Ge) and 4 types of bonds (SINGLE,
AROMATIC, DOUBLE, TRIPLE). Subsequently, we further extracted 8 basic attributes, including
{molecular weight, MolLogP, MolMR, BalabanJ, NumHAcceptors, NumHDonors, NumValence-
Electrons, TPSA}, which are formalized as Kk ∈ R8. Finally, we can generate three different types
of datasets: MBANetatom = {m,Ka}, MBANetbond = {m,Kb}, and MBANetattr = {m,Kk},
where m represents molecules. See Appendix D.1 for details and limitation analysis of the MBANet.

StructNet. StructNet is designed to evaluate the preference of models with varying modalities for
molecule types. As shown in Figure 2(b), we first collect over 14.4 million the latest molecules from
ChemBL 34. Then, we predefine 6 different conditions, including the number of rings, average
degree, presence of branches, maximum number of rings, number of amides, and molecular weight.
Based on the molecular SMILES sequences, we leverage RDKit to generate these conditions. Then,
we formulate 6 rules to classify molecules into different types: acyclic, complete chain, acyclic
chain, macrocyclic peptide, reticular, and macromolecule. As shown in Figure 2(c), the application
of these rules enables us to identify molecules exhibiting diverse characteristics. For example, a
molecule generated by the acyclic chain rule is a chain-like molecule without any rings. Ultimately,
we group the molecules based on the Assay ChEMBL ID defined in ChemBL 34 and select the top
10 assays with the largest number of samples to construct StructNet. It is worth noting that these
result in the creation of 60 datasets within StructNet, with 10 for each molecule type. See Appendix
D.2 for details of the StructNet.

4.3 MODALITY EXTRACTOR MODULE

In order to obtain mode-specific input from the original molecular SMILES data, we define modality
extractors as follows:

• 44 fingerprint extractors. We predefine 6 types of 44 common molecular fingerprints in Bench-
Mol, including circular- (ECFPx, FCFPx), path- (RDKx, HashTT), substructure- (MACCS),

5
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longer-version-, pharmacophore- (TPATF), and physicochemistry-based (RDKit descriptors) fin-
gerprints.

• 2 types of sequence tokenizers. We include 2 common tokenizers for processing molecular
SMILES, which come from CHEM-BERT (Kim et al., 2021) and MoLFormer.

• 2 types of graph featurizers. We incorporate 2 common graph featurizers, which come from Hu
et al. (2020a) and OGB library (Hu et al., 2020b).

• 7 types of geometry featurizers. We integrate 7 geometry graph construction methods based on
Hu et al. (2020a), OGB library, Geom3D, and Uni-Mol, which covers the input formats required
by existing geometric deep learning methods. In particular, for Geom3D, we generate 4 combina-
tions of featurizers by pairwise combining whether to use fully connected edges and whether to
use only node features.

• 2 types of image renderers. We build two visualization renderers based on RDKit and PyMOL to
generate 2D images, 3D geometry images, and videos, which are referenced by ImageMol, IEM,
and VideoMol, respectively.

4.4 MODEL INITIALIZER MODULE

After obtaining data of different modalities, we define several modality-specific factory to initialize
model for extracting features. Table 1 shows the models based on different modalities supported in
BenchMol. BenchMol not only supports existing pre-trained models, but also includes a large num-
ber of non-pre-trained basic models. Especially for vision-based models, BenchMol is compatible
with the timm library (Wightman, 2019) and supports more than 900 vision models.

Table 1: The supported models in BenchMol.

Modality Type Pre-training Models Models w/o Pre-training

1D Sequence CHEM-BERT (Kim et al., 2021), CHEM-
RoBERTa (Kim et al., 2021), MoLFormer
(Ross et al., 2022)

BERT (Devlin, 2018), RoBERTa (Liu, 2019),
Transformer Rotate (Ross et al., 2022)

2D Graph EdgePred (Hu et al., 2020a), ContextPred (Hu
et al., 2020a), infomax (Hu et al., 2020a),
masking (Hu et al., 2020a), GraphMVP (Liu
et al., 2022a), MolCLR (Wang et al., 2022),
CGIP-Graph (Xiang et al., 2023), MoleBERT
(Xia et al., 2023)

GIN (Xu et al., 2018), GAT (Veličković et al.,
2018), GCN (Li et al., 2021), GraphSAGE
(Hamilton et al., 2017), DeeperGCN (Kipf &
Welling, 2016)

3D Geometry Graph Uni-Mol (Zhou et al., 2023) SchNet (Schütt et al., 2017), DimeNet
(Gasteiger et al.), DimeNetPlusPlus
(Gasteiger et al., 2020), TFN (Thomas
et al., 2018), SE3 Transformer (Fuchs
et al., 2020), EGNN (Satorras et al., 2021),
SphereNet (Coors et al., 2018), PaiNN
(Schütt et al., 2021)

2D Image ImageMol (Zeng et al., 2022), CGIP-Image
(Xiang et al., 2023), MaskMol (cheng et al.,
2024) More than 900 vision models based on

timm (Wightman, 2019)
3D Geometry Image IEM (Xiang et al., 2024a)

Video VideoMol (Xiang et al., 2024b)

4.5 TRAINING STRATEGY MODULE

In training strategy module, we provide two training strategies, linear probing and fine-tuning. In
linear probing, to improve efficiency, we define a modality-specific feature extractor and pre-extract
features based on a given pre-trained model. Then, we define a trainer to train a fully connected
layer directly on the features. In fine-tuning, given a model name, BenchMol will train the entire
model on the given task.

4.6 EVALUATION METRIC MODULE

BenchMol supports multiple evaluation metrics for classification and regression tasks. For classi-
fication tasks, the metrics include Accuracy, Area Under Receiver Operating Characteristic Curve
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(ROC-AUC), F1-Score, Area Under the Precision-Recall Curve (AUPR), Precision, Recall, Kappa,
Matthews. For regression tasks, the metrics include Mean Absolute Error (MAE), Mean Squared
Error (MSE), Root-Mean Squared Error (RMSE), Spearman’s Rank Correlation Coefficient, Pear-
son’s Correlation Coefficient, Coefficient of Determination (R2). Users have the liberty to select
specific metrics for evaluating the model.

4.7 USE OF BENCHMOL

Table 2: Benchmarking 7 different modality
methods on 8 classification tasks with average
ROC-AUC (%) and 4 regression tasks with
average RMSE performance from 12 MPP
datasets. The modality types from top to bot-
tom are fingerprint, sequence, graph, geome-
try graph, image, geometry image, and video.
L means the number of layers, -I and -G mean
the modalities are image and geometry im-
age, respectively. Note that the geometry im-
ages and videos use the BGR format. The
green background represents top-6 models

in performance.

Model Classification (↑) Regression (↓)

mcfp4 2048 71.66 1.255
ecfp4 2048 69.81 1.300

maccs 70.54 1.302
physchem 63.16 1.454

atompair 2048 70.28 1.189
rdkDes 63.19 1.648

Chem-BERT-8L 73.41 1.093
MolFormer 69.58 1.293

EdgePred 60.73 1.665
ContextPred 66.90 1.461

infomax 66.35 1.409
masking 62.53 1.490
MolCLR 65.50 1.369

MoleBERT 72.28 1.320
GraphMVP 65.78 1.401
CGIP-Graph 67.05 1.552

Uni-Mol (10 conf) 74.13 1.144

ImageMol 62.63 1.507
MaskMol 63.03 1.441

CGIP-Image 61.94 1.556
IEM-I 60.95 1.577

IEM-G (10 conf) 70.29 1.212

VideoMol 69.03 1.222

BenchMol is a flexible and easy-to-use frame-
work for MRL and you can find detailed user
instructions in Appendix A. Through sim-
ple and direct code invocations (syntax is
from benchmol import package ), users can

easily implement the entire pipeline of MRL from
initial data loading to the final model evaluation.
Specifically, the use case of image modality is
shown in Appendix A.6. The entire pipeline just
mentioned can be completed with only 4 lines of
effective code.

5 EXPERIMENTS

5.1 EXPERIMENTS SETTINGS

Settings. To ensure the fairness and comprehen-
siveness of the experimental results, unless other-
wise stated, all experiments are performed under
strictly consistent settings. Specifically, we use
the same hyperparameter search range and report
the test set results with the best validation perfor-
mance on 12 molecular property prediction (MPP)
benchmarks from MoleculeNet, 3 attribute datasets
from MBANet, and a total of 60 molecular activity
datasets of 6 different molecular types from Struct-
Net. Meanwhile, we repeat the experiment 10 times
with the same and large number of random seeds
from 0 to 9 and report the mean and standard vari-
ance. See the Appendix E.1, the Appendix E.2 and
the Appendix E.3 for details of baselines, hyper-
parameter search and training loss. The computa-
tional efficiency is discussed in the Appendix J.

Data Split and Metrics. All evaluation datasets
are split into 80% training, 10% validation and 10%
test sets. The 12 MPP datasets include 8 classifica-
tion datasets and 4 regression datasets with a strict scaffold split (Hu et al., 2020a). We follow the
suggestions of MoleculeNet and GraphMVP to use the ROC-AUC metric for classification tasks and
the RMSE metric for regression tasks. In the remaining MBANet and StructNet benchmarks, we
uniformly use RMSE for evaluation. We split MBANet benchmark by using ordered split. In Struct-
Net benchmark, except for acyclic rule and acyclic chain rule which are random split, the others are
strict scaffold split. This is because acyclic rule and acyclic chain rule cannot extract the scaffold.

5.2 LINEAR PROBING ON MOLECULENET

To evaluate the quality of features, we use the linear probing strategy to evaluate the performance of
molecular encoders on 12 MPP datasets. Specifically, BenchMol extracts features from modality-
specific data using a given encoder and trains and evaluates a single-layer fully connected network.
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Table 3: Effect of different numbers of conformations on 8 classification tasks (CLS) with ROC-
AUC and 4 regression tasks (REG) with RMSE from 12 MPP datasets. -R means no pre-training
and -G means the modalities are geometry image. The geometry images use the BGR format.

Uni-Mol-R Uni-Mol ResNet18-G-R IEM-G

CLS REG CLS REG CLS REG CLS REG

1 conf 65.80 1.308 73.75 1.162 58.73 1.568 64.66 1.406
10 conf 65.53 1.276 74.13 1.144 63.68 1.485 70.29 1.212

δ ↓0.41% ↑2.51% ↑0.52% ↑1.55% ↑8.43% ↑5.29% ↑8.71% ↑13.80%

Table 4: The average ROC-AUC
(%) and RMSE performance of non-
pretrained methods on 8 classification
tasks (CLS) and 4 regression tasks
(REG) from 12 MPP datasets. The
modality types from top to bottom are
sequence, graph, geometry graph, im-
age, geometry image, and video. L
means the number of layers and -G
means the modality is geometry im-
age. Note that the geometry images
and videos use the BGR format.

Model CLS (↑) REG (↓)

BERT-8L-R 68.94 1.264
MolFormer-R 70.40 1.319

GIN-R 63.21 1.576

Uni-Mol-R 65.80 1.308
Uni-Mol-R (10 conf) 65.53 1.276

ResNet18-R 55.34 1.682

ResNet18-G-R 58.73 1.568
ResNet18-G-R (10 conf) 63.68 1.485

VideoMol-R 61.16 1.526

Findings. Table 2, Table 3 and Table 4 show the perfor-
mance of encoders with different modalities in BenchMol.
More detailed results about MPP in Appendix F and Tables
S20, S21, S22, S23, S24. We summarize these findings as
follows:

1) Models from 6 modalities are in the top 6 in per-
formance. In Table 2, the top 6 performances on the
classification task are Uni-Mol (10 conf), Chem-BERT-
8L, MoleBERT, mcfp4 2048, maccs, IEM-G (10 conf)
and the top 6 performances on the regression task are
Chem-BERT-8L, Uni-Mol (10 conf), AtomPair, IEM-
G (10 conf), VideoMol, mcfp4 2048. Our analysis re-
veals that the top 6 include 6 modalities, except for
the 2D image modality, indicating their advancement
in linear probing. For the image modality, we find that
it relies more on the fine-tuning stage. The Table S24
shows that ImageMol has a significant performance im-
provement from 62.5% to 71.9% after fine-tuning, with
a performance improvement of 15.0%. There are two
possible reasons: one is that there is too little informa-
tion in 2D images to learn generalized knowledge in
the pre-training stage, and the second is that the pre-
training task still needs to be further improved. Our findings suggest using geometry images or
videos to achieve better performance in vision-based representations. In Appendix K.6, we also
study the impact of RGB and BGR formats.

2) The visual modality contributes the greatest diversity in dual-modal fusion. The success of
multi-modal fusion depends on the diversity of prediction results from different modalities Dong
et al. (2020). Here, we evaluate the difference in prediction between the two modalities using
RMSE and Pearson correlation coefficient on 8 classification datasets from MoleculeNet. As
shown in Table S46, We find that the top 6 with the largest differences in RMSE and Pearson
coefficient are all related to vision-based modalities (image, geometry image and video), which
suggests that combining other modalities with the visual modality will hopefully increase the
diversity of predictions of multi-modal models. We also discuss the modal diversity on HIV
dataset in Appendix K.1.

3) Multiple conformations can significantly improve the performance of the geometry image.
Since molecules have multiple conformations, we compare here the performance differences
between single and multiple conformations. Here we follow the suggestion of Zhou et al. and
use 10 conformations. We use geometry-based methods (Uni-Mol-R, Uni-Mol) and geometery
image-based methods (ResNet18-G-R, and IEM-G). Table 3 indicates that Uni-Mol-R and Uni-
Mol have almost consistent performance between 1 conformation and 10 conformations, namely
65.8% v.s. 65.5% and 73.75% v.s. 74.13% (For Uni-Mol ablation on data scale see Appendix
K.2). However, we observe that ResNet18-G-R and IEM-G have significant performance gains
from 1 conformation and 10 conformations, i.e. 58.73% v.s. 63.68% and 64.66% v.s. 70.29%.
For a detailed analysis of why multi-conformation has a large performance gain for geometric
images, see Appendix K.3.

4) Inductive bias of identifying substructures in sequence is beneficial for predicting molecular
properties. Table 4 shows the performance of non-pretrained models. Here, we exclude hand-
crafted feature-based fingerprints and focus solely on discussing methods based on automatic
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feature extraction. We find that BERT-8L-R and MolFormer-R can achieve high performance
on 12 MPP tasks without any pre-training, surpassing many other modality pre-training methods
(such as GraphMVP, MolCLR, ImageMol, etc.). This provides evidence that the inductive bias
based on the sequence is consistent with the molecule. Even without any training, the extracted
features can retain the original molecular information. See Appendix K.4 and Appendix K.5 for
a more detailed analysis.

Table 5: The RMSE performance on
MBANetatom, MBANetbond, MBANetattr,
which are abbreviated as MBAatom, MBAbond,
MBAattr. Sequence, graph, geometry graph,
geometry image, and video represent BERT-6L,
GIN-R, TFN, ResNet18-I-R, ResNet18-G-R,
and ResNet18-G-R, respectively.

Modalities MBAatom MBAbond MBAattr

Sequence 0.522 2.641 11.448
Graph 0.340 0.602 8.514

Geometry Graph 0.177 0.309 3.091
Image 0.350 1.630 6.951

Geometry Image 0.268 1.586 4.848

Video 0.156 1.048 2.660

5.3 FINE-TUNING ON MBANET

Figure 4: (a) Distribution of cosine similarity of
C-C and C-N. (b) t-SNE visualization of GIN-R
and ResNet18-V-R using labels of k-Means.

Findings. The MBANet benchmark defines tasks related to molecular attributes (atom, bond, molec-
ular weight, etc.). Here we focus on deep learning representation and ignore fingerprint methods
because some fingerprints directly contain this information. For fairness, Table 5 shows the RMSE
performance of non-pretrained models with different modalities on MBANetatom, MBANetbond,
and MBANetattr. The best performance in each modality is selected as representative of the per-
formance of that modality and the results of all 30 methods in in Appendix G and Tables S25±S26,
S27, S28±S29. We summarize the following findings:

5) Video modality excels at tasks related to atoms and basic attributes. In Table 5, video modal-
ity achieves the best performance on MBANetatom and MBANetattr and geometry graph modal
achieve the best performance on MBANetbond. In particular, as shown in Table S28, we find
that the video modality has obvious advantages over other modalities in learning simple MW
(Molecular Weight), MR (Molar Refractivity), VE (Valence Electrons) and TPSA (Topological
Polar Surface Area).

6) The inductive bias of the graph weakens the ability to discriminate at atoms. The inductive
bias of graph message passing increases the similarity between atoms of different types and
makes the discrimination between different atoms confusing. To prove this point, we use the two
most common atomic relationships (C-C, C-N). Specifically, we use GIN-R to extract the atomic
features of C and N in the molecule respectively and calculate the cosine similarity of C-C and
C-N. Figure 4(a) shows the distribution of cosine similarity. We find that the distributions of C-C
and C-N are very similar with a low Kullback-Leibler Divergence (KLD) (Kullback & Leibler,
1951) of 0.019, which means that GIN-R may be limited in distinguishing C and N atoms.

7) Video modality are easier to learn local information of molecules than graph modality. We
choose GIN-R (graph modality) and ResNet18-V-R (video modality) without pre-training models
for fairness. To study the ability of GIN-R and ResNet18-V-R in extracting local information, we
use t-SNE Van der Maaten & Hinton (2008) to visualize their representations on MBANetatom
and use k-Means (MacQueen, 1967) to cluster the labels of the samples into 10 clusters, and
the labels of each cluster are used as the labels for t-SNE visualization. Figure 4(b) shows that
ResNet18-V-R with Davies-Bouldin index (DBI) (Davies & Bouldin, 1979) of 2.57 has better
clustering effect than GIN-R with DBI of 4.69 (DBI is an indicator for evaluating clustering
and the smaller the value, the better), indicating the advantage of visual modality in learning
molecular locality. See Appendix K.7 for a more detailed analysis.
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In Appendix H, we further expand the data scale of MBANet and verify the validity of the findings.

5.4 FINE-TUNING ON STRUCTNET
Table 6: The average RMSE performance on AC
(acyclic chain), A (acyclic), CC (complete chain), M
(macro), MP (macrocyclic peptide) and R (reticular) of
StructNet. We select the methods with the best average
performance on 10 datasets from different modalities for
presentation. Geom Image represents Geometry Image.
The green background represents top-3 performance.

AC A CC M MP R

Fingerprint 10.619 12.508 9.228 18.290 9.436 2.478

Sequence 10.439 12.520 9.307 18.918 9.385 2.485

Graph 10.459 12.536 9.246 18.109 10.956 2.496

Geometry 10.284 12.192 9.249 18.596 9.424 2.471

Image 10.550 12.473 9.259 19.136 9.321 2.454
Geom Image 10.430 12.482 9.306 18.846 9.343 2.467

Video 10.441 12.444 9.352 18.923 9.339 2.469

Findings. Table 6 shows the average
performance of methods with different
modalities on StructNet. We also re-
port detailed results on in Appendix I and
Tables S31±S32, S33±S34, S35±S36,
S37±S38, S39±S40, S41±S42. We sum-
marize the following findings:

8) The geometry graph modal-
ity prefers acyclic (AC and A)
molecules; The fingerprint and
graph modalities prefer cyclic (CC
and M) molecules; The visual-
based modalities (Image, Geometry
Image, and Video) prefer macro-
cyclic peptide (MP) and reticular
(R) molecules. Table 6 shows the
experimental results of different
modalities without pre-training. First, we find that geometry graph achieves the best perfor-
mance on acyclic chain molecules and acyclic molecules, which indicates that it prefers acyclic
molecules. Then, we find that fingerprint and graph modalities achieve good performance on
complete chain molecules and macro molecules. We speculate that it may be suitable for cyclic
molecular structures and further counted the number of rings in complete chain molecules and
macro molecules. we find that more than 93.6% of the complete chain molecules and all macro
molecules are cyclic, which indicates that graph prefers cyclic structures. Finally, we find that
vision-based modalities can achieve the best performance on macrocyclic peptide molecules and
reticular molecules. The top 3 in performance are image, video and geometry image modalities,
which indicates that vision-based modalities prefer macrocyclic peptide molecules and reticular
molecules. We also provide the details of significance test in Appendix K.8 to validate the
robustness of conclusions.

9) Pre-training tasks may fail for certain types of molecules. We are surprised to find many pre-
training tasks may fail. For example, graph-based pre-training tasks achieve worse performance
than unpre-trained GIN in complete chain molecules in Table S35 and image-based pre-training
tasks achieve worse performance than unpre-trained ResNet18 in reticular molecules in Table
S41. This suggests that in molecules with certain specific types, we need to design special pre-
training for them to improve performance.

6 CONCLUSION

We first proposed a unified and flexible platform supporting different molecular modalities, called
BenchMol, to promote reproducibility in the molecular representation learning (MRL) community,
which provides the entire pipeline from raw data to final model evaluation and ensures fair and
comprehensive benchmarking. Subsequently, we proposed two new benchmarks, MBANet and
StructNet, to explore the performance and preferences of existing models on different modalities.
Finally, we used BenchMol to train at least 57,060 models and provided many meaningful insights.
BenchMol reviews and integrates mainstream MRL models with 7 different modalities, allowing
researchers to easily understand these models and quickly iterate on them.

Limitations and Future Works: Currently, BenchMol does not support multi-modal fusion. In
the future, we plan to continue maintaining BenchMol and upgrading it to a multi-modal fusion
platform. This enhanced platform will be capable of further improving molecular representation and
tackling interaction-based tasks such as drug-drug interaction (DDI), drug-target interaction (DTI),
and protein-protein interaction (PPI). Furthermore, while BenchMol currently focuses on evaluating
its performance in MRL, it is important to note that its applicability is not restricted to the molecular
domain. We hope to leave the exploration of more fields to the community for verification.
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7 REPRODUCIBILITY STATEMENT

For reproducibility, we open sourced BenchMol and made all data publicly accessible at Github.
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A BENCHMOL TOOLKIT USER GUIDE

A.1 OVERVIEW

Here, we will go through the usage instructions of BenchMol in detail to demonstrate the flexibility
and user-friendliness of BenchMol. In addition to the two contributed benchmarks (MBANet and
StructNet), user interfaces of BenchMol are divided into four modules: Modality Extractor, Model
Initializer, Training Strategy, and Evaluation Metric. Since words alone cannot fully demonstrate
the full functionality of BenchMol, we next will focus on describing the main features here.

A.2 MODALITY EXTRACTOR

Given a molecule, BenchMol can transform this molecule into different modalities, including fin-
gerprint (can be viewed as a row-type or table-type modality), sequence, graph, geometry, image,
and video. We describe several main modality extraction steps in detail below:

• Fingerprint Modality. Listing 1 shows the script for extracting 44 fingerprints. By changing the
parameter fp name, different fingerprint types can be extracted.

• Sequence Modality. BenchMol automatically extracts sequence modality from SMILES by using
a predefined function collate(), which tokenizes a batch of molecular data.

• Graph and Geometry Modalities. Listing 2 shows the script for extracting geometry modality
from molecular sdf file. By changing the parameter graph feat extractor, different geometry types
can be extracted. For graph modality, the extraction process is similar to that of geometry modality,
which defines two methods to generate graphs.

• Image Modality. BenchMol defines a function loadSmilesAndSave(smiles, path) which takes a
smiles as input saves the molecule image to a path.

• Geometry Image and Video Modalities. BenchMol defines a method with parameter img type
to extract different types of visual modalities by changing the value of img type.

1 from benchmol.data_process.molecules import FPGeneration
2

3 fg = FPGeneration()
4 features = fg.get_fingerprints(
5 df, fp_name="maccs", smiles_column_name="smiles"
6 )

Listing 1: Transforming process from molecules to fingerprint modality.

1 if graph_feat_extractor == "ogb":
2 x, edge_index, edge_attr, coords = mol_to_3d_graph_data_ogb(sdf_path)
3 elif graph_feat_extractor == "jure":
4 x, edge_index, edge_attr, coords = mol_to_3d_graph_data_jure(sdf_path

)
5 elif graph_feat_extractor == "geom3d":
6 x, edge_index, edge_attr, coords = mol_to_graph_data_obj_simple_3D(

sdf_path, pure_atomic_num=False)
7 elif graph_feat_extractor == "geom3d_pure_atomic_num":
8 x, edge_index, edge_attr, coords = mol_to_graph_data_obj_simple_3D(

sdf_path, pure_atomic_num=True)
9 elif graph_feat_extractor == "geom3d_full_edge":

10 x, edge_index, edge_attr, coords =
mol_to_graph_data_obj_simple_3D_full_edge(sdf_path, pure_atomic_num=
False)

11 elif graph_feat_extractor == "geom3d_pure_atomic_num_full_edge":
12 x, edge_index, edge_attr, coords =

mol_to_graph_data_obj_simple_3D_full_edge(sdf_path, pure_atomic_num=
True)

13 elif graph_feat_extractor == "unimol":
14 atoms, coords, smi, scaffold = unimol_data(sdf_path)
15 else:
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16 raise Exception("graph_feat_extractor {} is undefined".format(
graph_feat_extractor))

Listing 2: Transforming process from molecules to geometry modality.

A.3 MODEL INITIALIZER

As shown in Listing 3, BenchMol define 4 factories to initialize models for handling different
modalities, including SmilesModelFactory, GraphModelFactory, GeometryModelFactory, and Im-
ageModelFactory. Through these factory classes, we can easily initialize various models by giving
the model name and necessary parameters (such as the configuration of the neck model related to
the task).

1 # SmilesModelFactory for sequence modality
2 class SmilesModelFactory(torch.nn.Module):
3 def __init__(self, model_name, head_arch, num_tasks, vocab_path,

d_dropout=0, head_arch_params=None, pretrain_path=None, device="cpu",
**kwargs):

4 ...
5 def forward(self, batch):
6 ...
7 def get_model(self):
8 ...
9

10 # GraphModelFactory for graph modality
11 class GraphModelFactory(torch.nn.Module):
12 def __init__(self, model_name, head_arch, num_tasks, head_arch_params

=None, pretrain_gnn_path=None, model_key=None, num_layer=5, emb_dim
=300, JK="last", dropout=0.5, graph_pooling="mean", gnn_type="gin",
update_predictor=True, **kwargs):

13 ...
14 def forward(self, batch):
15 ...
16 def get_model(self, update_predictor=True):
17 ...
18

19 # GeometryModelFactory for geometry modality
20 class GeometryModelFactory(torch.nn.Module):
21 def __init__(self, model_name, head_arch, num_tasks, head_arch_params

=None, pretrain_gnn_path=None, model_key=None, emb_dim=300, args=None
, **kwargs):

22 ...
23 def forward(self, batch):
24 ...
25 def get_model(self, args, num_tasks, node_class, edge_class):
26 ...
27

28 # ImageModelFactory for image/geometry-image/video modality
29 class ImageModelFactory(torch.nn.Module):
30 def __init__(self, model_name, head_arch, num_tasks, pretrained=False

, head_arch_params=None, **kwargs):
31 ...
32 def forward(self, x):
33 ...
34 def get_model(self):
35 ...

Listing 3: The model factories of different modalities.

A.4 TRAINING STRATEGY

BenchMol provides two training strategies, linear probing and fine-tuning.
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Linear Probing. To improve the efficiency of linear probing, BenchMol designs 6 extractors to
extract feature representations from molecules of different modalities. A core idea of these extractors
is that given a pre-trained model and a molecule, the feature extractor will return features of a specific
modality. As shown in 4, BenchMol defines an interface FeatureExtractor, which is an abstract class
with two abstract methods: extract features() and return features(). Subsequently, we defined an
implementation class for each modality to extract features from the corresponding modality. The
specific details class is as follows:

• FingerprintExtractor. The features of fingerprint can be extracted by giving the fingerprint name
and SMILES sequence.

• SmilesFeatureExtractor. The sequence features are generated from molecular SMILES se-
quences.

• GraphFeatureExtractor. The graph features can be extracted from graph modality given a pre-
trained graph model.

• ImageFeatureExtractor. The image feature can be extracted from image modality given a pre-
trained image model.

• MCImageFeatureExtractor. The features of geometry image and video can be extracted given a
corresponding pre-trained model.

• MVImageFeatureExtractor. The extractor is used to extract features from molecular geometry
images or videos with multiple conformers.

1 @dataclasses.dataclass
2 class FeatureExtractor(abc.ABC):
3

4 @abc.abstractmethod
5 def extract_features(self):
6 pass
7

8 @abc.abstractmethod
9 def return_features(self):

10 pass

Listing 4: General interface of modality extractor.

Fine-Tuning. Fine-tuning refers to training the pre-trained model and the network related to the
downstream task at the same time. With BenchMol, fine-tuning of different modes can be achieved
very easily. Appendix A.6 shows fine-tuning on image modality. Similar to the image modality, we
can also easily implement fine-tuning of other modalities.

A.5 EVALUATION METRIC

BenchMol provides a large number of metrics for classification and regression tasks and users can
switch between different evaluation metrics at will by specifying the eval metric parameter. The
following shows the evaluation indicators supported by different tasks:

• Classification task: accuracy, ROC-AUC, F1-score, AUPR, Precision, Recall, Kappa coefficient,
Matthews coefficient.

• Regression task: MAE, MSE, RMSE, Ppearman coefficient, Pearson coefficient, R2 coefficient.

A.6 USE CASE FOR IMAGE MODALITY

We assume that there is a requirement: there are a batch of molecular images and corresponding
binary labels of active or inactive. We first need to divide these data into training set, validation set
and test set. Then, we need to use a ViT network to train on the training set and use the ROC-AUC
metric to evaluate on the validation set. Finally, we need to obtain the results of the test set based
on the best performance on the validation set. We can easily achieve this with BenchMol. Listing 5
shows instructions for using BenchMol in image modality, which shows the flexibility and ease of
use of BenchMol. We can see that only 4 lines of effective code are needed to complete the training
of the model, which are lines #10, #15, #23, and #28.
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1 from benchmol.dataloader.image_dataset import TrainValTestFromCSVFactory
2 from benchmol.trainer import Trainer
3 from benchmol.model_pools import ImageModelFactory
4

5 # Take the image modality and classification task as an example
6 modality="image"
7 task_type = "classification"
8

9 # define Model with backbone as ViT and neck as arch4 for n tasks
10 model = ImageModelFactory(
11 model_name="vit_small_patch16_224", head_arch="arch4",

head_arch_params={"inner_dim": 128, "dropout": 0.2, "activation_fn":
"gelu"}, num_tasks=2

12 )
13

14 # define Dataset
15 factory = TrainValTestFromCSVFactory(
16 dataroot, csv_path, data_type="image", image_dir_name="image",

task_type=task_type, batch_size=16, num_workers=8
17 )
18 train_loader = factory.get_dataloader(split="train")
19 valid_loader = factory.get_dataloader(split="valid")
20 test_loader = factory.get_dataloader(split="test")
21

22 # define Trainer
23 trainer = Trainer(
24 model, modality, train_loader, valid_loader, test_loader, task_type,

criterion=nn.BCEWithLogitsLoss(reduction="none"), optimizer=Adam(
model.parameters(), lr=0.001, weight_decay=1e-5), device="cuda:0"

25 )
26

27 # training and evaluation
28 results = trainer.train(num_epochs=100, eval_metric="ROCAUC",

valid_select="max", min_value=-np.inf, save_finetune_ckpt=True,
save_dir="./experiments/")

29

30 # Output model results
31 print("results: {}\n".format(results))

Listing 5: The use case on image modality with classification task and ROC-AUC metric.

B VISUAL RENDERING OF MOLECULE

We describe in detail how to render molecules as images, geometry images, and videos:

• Rendering of image: Following CGIP (Xiang et al., 2023), the molecualr image is generated by
the MolsToGridImage() method of RDKit. This method takes the SMILES sequence of a molecule
as input and generates an image of length 224, width 224, and 3 channels.

• Rendering of geometry image: Molecular images represent the 2D planar structure of molecules.
However, molecules have three-dimensional conformational information. Following IEM (Xiang
et al., 2024a), we use PyMOL to render the 3D structure of the molecule. Since the 3D structure
is easily obscured when displayed on a single image, 4 viewing angles are used to render the
molecule from different angles. Therefore, through multi-view rendering with PyMOL, we can
obtain 4 geometric images with different vies for a molecule, which can be formulated as a matrix
of 4× 224× 224× 3.

• Rendering of video: VideoMol (Xiang et al., 2024b) represents the 3D image of a molecule as
a video. Specifically, a molecular video is constructed by rotating a molecule along the x-axis,
y-axis, and z-axis. During the rotation process, VideoMol captures 60 frames at equal intervals
to represent the molecular video. Therefore, we use PyMOL to render the molecule with 3D
information and generate a 60-frame video, which can be formulated as a matrix of 60 × 224 ×
224× 3.
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C DISCUSSION

C.1 MOTIVATION AND POTENTIAL IMPACT OF BENCHMOL

Motivation. The main motivations for BenchMol are to address the following research gaps in the
field of chemical machine learning: (1) There is a lack of fair and comprehensive evaluation of
methods across different modalities; (2) The strengths and differences of different modalities are
still unknown, which limits the development of multi-modal fusion; and (3) There is a lack of a
unified and easy-to-use platform to integrate methods across different modalities. With BenchMol,
researchers can easily use and compare various molecular representation learning methods.

Potential Impact. The two benchmarks MBANet and StructNet proposed in this paper have impor-
tant impacts on promoting certain chemical problems, which are summarized as follows:

• MBANet aims to evaluate the ability of different methods to capture basic molecular information
that is critical for many chemical problems. For example, the distribution of atoms and bonds is
crucial for understanding the three-dimensional structure of a molecule [1] and aids in molecular
dynamics simulations [2]. Predicting the basic attributes of a molecule helps design molecules
with specific properties [3]. Attributes such as molecular weight, MolMR (molecular refractive
index), and NumHDonors (number of hydrogen bond donors) can be used to infer the biological
activity of a molecule and its interaction with its target [4].

• StructNet aims to explore the preferences of various methods for molecules of different structural
types and it is of great significance for certain specific targets. For example, molecules targeting
KRAS targets are often macromolecules, and the model needs to learn and predict in the sample
space of macromolecules [5]; a class of antiviral and antimalarial drugs usually have chain-like
molecular structures, while molecules targeting fibroblast activation protein (FAP) usually exhibit
non-cyclic structures. These chemical preferences indicate that it is important to select appropriate
molecular modalities to work more effectively in different scenarios.

C.2 MOTIVATION AND PRACTICALITY OF BENCHMARK DATASETS

MBANet. The motivation and practicality of MBANet are as follows:

• Motivation. Currently, a large number of benchmarks focus on mapping molecules to complex
properties or biological activities. However, it is a complex process for models to learn to map
molecules to complex properties or biological activities, which may be related to the regulatory
network of molecules from a microscopic perspective. This complex process is not conducive to
describing the model’s understanding of the basic properties of molecules. In this paper, we hope
to clarify the understanding of the most basic attributes of molecules by different modalities. This
basic attribute reflects the properties directly related to the molecule and has nothing to do with
the complex regulatory network. This has always been a research gap but is also crucial for the
model to understand molecules. Therefore, we design MBANet to evaluate the model’s ability to
understand the basic attributes of molecules.

• Practicality. From a practical point of view, the basic attributes evaluated by MBANet are closely
related to complex properties or biological activities. For example, LogP is an important indicator
of BBBP and it and TPSA are two key physicochemical parameters in drug design (Prasanna &
Doerksen, 2009), affecting drug absorption, distribution, metabolism, excretion and toxicity.

We hope that this simple, decoupled basic task can provide reference and more thinking for modality
selection on related active tasks. In addition, we will consider providing more complex prediction
tasks for MBANet in future work to make it more comprehensive. However, in this paper, we prefer
to study this unique aspect.

StructNet. We describe the motivation and practicality of classifying molecules into different types
based on their 2D structural patterns (e.g., acyclic, acyclic chain, cyclic chain, macrocyclic peptide,
macromolecule, and reticular molecule). Molecular structure is intimately linked to molecular prop-
erties, so that certain drug targets exhibit preferences for specific molecular structures, and some
therapeutic applications correspond to molecules with particular structures. For instance:
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• Macrocyclic peptides are increasingly being recognized for their therapeutic potential in target-
ing aberrant protein-protein interactions (PPIs), with several macrocyclic peptide-based oncology
drugs already approved by the U.S. Food and Drug Administration (FDA) for clinical application
(Yang et al., 2022).

• Due to the mechanism of action of the KRAS target involving covalent binding with a cysteine
generated by the mutation of glycine at the 12th position in proteins, the designed molecules tend
to have a larger molecular weight, resulting in a relatively larger binding area, more stable binding,
and stronger specificity. Therefore, molecules targeting KRAS targets tend to be macromolecules
(Cox & Der, 2024).

• Acyclic single-chain fragment variable (scFv) molecules target fibroblast activation protein (FAP)
(Baum et al., 2007) and have applications in CAR-T cell therapy (Niu et al., 2024; Loureiro et al.,
2023).

• As structural analogues to the chain molecules defined herein, acyclonucleoside phosphonates
(ANPs) exhibit a distinctive acyclic structure (Bessières et al., 2024), which constitute a signif-
icant class of compounds with antiviral and anticancer properties (Holỳ, 2006), and they harbor
substantial potential as candidates for antimalarial drug development (Cheviet et al., 2020).

Thus, we have introduced StructNet, which categorizes based on 2D structural patterns, with the aim
of offering insights and suggestions on model selection for drug design targeting specific structures
and the future optimization directions for various models.

C.3 THE IMPORTANCE OF MOLECULAR VISUAL MODALITIES

Currently, molecular visual modalities consist of image, geometry image, video. Compared with
previous molecular representations (such as SMILES or graph), the importance of molecular visual
modalities is reflected in the following four aspects:

• Direct representation of structural and geometric information: Compared with previous
SMILES or graph representations, molecular visual modalities naturally retain structural and ge-
ometric properties such as atom type, chemical bond type, bond angle, spatial conformation, etc.
through pixel information (color, texture, etc.). Molecular videos can further describe the dynamic
information of molecules, which is particularly important for tasks involving molecular geometry
or dynamic behavior;

• Stronger interpretability: Molecular visual modalities show the molecular structure and its dy-
namic behavior in an intuitive form, which is convenient for humans to understand and analyze the
features learned by the model. For example, through technologies such as GradCAM (Selvaraju
et al., 2017), researchers can intuitively understand how the model makes decisions;

• Enriching molecular representation technology: Molecular visual modalities can use another
technology stack (computer vision) to extract potential features from molecular images, geometry
images or videos, enriching existing molecular representation technology;

• Independence of the number of atoms and bonds: Molecular visual modalities are pixel-based
representations, which are independent of the number of atoms and bonds. At present, drug dis-
covery is increasingly biased towards large molecules. Significantly different from SMILES and
graph, visual modalities have the unique advantage that the computational cost does not increase
with the number of atoms and bonds, which will be of great benefit in drug development of large
molecules.

Molecular visual modalities are particularly suitable for the following tasks, which rely on the spatial
configuration or dynamic characteristics of molecules:

• General molecular representation: Image-, geometry-image- and video-based methods have
achieved excellent performance in various drug discovery tasks, just like other molecular repre-
sentation methods (as shown in Table S20 and Table S21, etc.). Therefore, they can be used for
general representation of drug discovery tasks;

• Multi-modal fusion: Obviously, visual modalties are different from previous molecular represen-
tation learning methods. Through multi-modal fusion or cross-modal contrastive learning tasks,
more diversity will be provided to further improve the performance of drug discovery. As shown
in Appendix K.1, Table S47 and Table S48, video has the largest differences with other modalities;

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

• Tasks related to atomic molecular distribution and basic properties: As shown in Table 5,
video modality can achieve the best performance on atom-level and attr-level tasks of MBANet.
Therefore, the video modality makes up for the lack of understanding of atomic distribution and
basic properties of other modal representations;

• Virtual screening of macrocyclic or reticular structures: As shown in Table 6, images and
videos can achieve the best performance on MP and R tasks on StructNet. Therefore, images
or videos make up for the lack of understanding of macrocyclic peptide (MP) and reticular (R)
structures by other modalities, such as virtual screening of PPI targets (Cox & Der, 2024).

In general, molecules exist in the physical world. Currently, due to the limitations of molecular
imaging technology, molecular images/geometry images/videos are obtained by economical image
rendering technology. However, with the continuous advancement of molecular imaging technology,
it is promising to directly represent molecules and inference about them in a visual way.

D BENCHMARKS

Here, we present the details of the two proposed sets of benchmarks: MBANet and StructNet.

D.1 MBANET

MBANet is used to evaluate the performance of deep learning models in understanding the basic
information of molecules, aiming to measure whether the model can effectively capture the low-
level core features related to molecules. In the fields of cheminformatics and drug development, the
basic information of molecules (such as atomic information, bond information, molecular weight,
TPSA and other basic attributes) is crucial for predicting molecular activity, drug-target interactions,
and chemical reactivity. Therefore, MBANet attempts to examine the model’s capabilities at these
basic levels and explore whether the model can accurately capture these basic features by learning
molecules.

MBANet has a total of 10,000 molecules and includes three groups of prediction tasks, namely pre-
diction of atoms MBANetatom, bonds MBANetbond and basic attributes MBANetattr. We check
MBANet for duplication according to canonical SMILES and find that only 25 molecules are dupli-
cated in canonical SMILES. Therefore, the impact on the evaluation is negligible. In the MBANet
benchmark, the model needs to predict the atomic distribution, bond distribution, and basic attributes
given a molecule. The Figure S1, Figure S2, and Figure S3 show the distribution information of
MBANetatom, MBANetbond and MBANetattr respectively. In particular, we describe the meaning
of each attribute in MBANetattr in detail as follows:

• Molecular Weight: The sum of the relative atomic masses of all atoms in a molecule, usually
expressed in daltons (Da) or grams per mole (g/mol). It is a fundamental property that affects a
compound’s physical and chemical behavior.

• MolLogP (LogP): The logarithmic value of the distribution coefficient ratio (P) of a compound
in n-octanol (oil) and water. It indicates the hydrophobicity or lipophilicity of the molecule, with
higher values suggesting greater affinity for lipid environments.

• MolMR (Molecular Refractivity): A calculated property that reflects the volume and polariz-
ability of a molecule. It is used to estimate the interactions of the molecule with its environment,
including its ability to penetrate biological membranes.

• BalabanJ (Balaban’s J Index): A topological index that measures the complexity of a molecular
structure. It is used in quantitative structure-activity relationship (QSAR) studies to correlate
molecular structure with biological activity.

• NumValenceElectrons (Number of Valence Electrons): The total number of valence electrons
present in the atoms of a molecule. This property is important for understanding the chemical
reactivity and bonding behavior of the compound.

• TPSA (Topological Polar Surface Area): A measure of the polar surface area of a molecule,
calculated based on its structure. TPSA is often used to predict a compound’s absorption, perme-
ability, and bioavailability.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

• NumHAcceptors (Number of Hydrogen Bond Acceptors): The count of atoms in a molecule
that can accept hydrogen bonds, typically involving oxygen and nitrogen atoms. This property is
crucial for evaluating molecular interactions in biological systems.

• NumHDonors (Number of Hydrogen Bond Donors): The count of atoms that can donate hy-
drogen bonds, usually hydrogen atoms attached to electronegative atoms like nitrogen or oxygen.
This property influences a molecule’s interaction with biological targets.

Figure S1: The distribution figures of MBANetatom. (a)-(i) represent the distribution information
of C, N, Si, O, F, Br, P, S, Cl, B, Se, Ge respectively.

Figure S2: The distribution figures of MBANetbond. (a)-(d) represent the distribution information
of single, triple, aromatic, double bonds respectively.

MBANet Task Settings and Limitation Analysis. The reasons why we incorporate atoms with
skewed distribution histograms into MBANet and design MBANet as a regression task and the
evaluation metric of RMSE are as follows:

• Reasons for including atoms (Si, Br, P, S, Cl, B, Se, Ge) and bonds (TRIPLE) with skewed
distribution histograms. This consideration is mainly to reflect the wide applicability of the
evaluation. Even if the data distribution of some atoms and bonds is skewed, they reflect the
actual chemical distribution. For the special case of Ge, it is a good choice to remove the task of
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Figure S3: The distribution figures of MBANetattr. (a)-(h) represent the distribution information of
molecular weight, MolLogP, MolMR, BalabanJ, NumValenceElectrons, TPSA, NumHAcceptors,
NumHDonors respectively.

this atom. But we still prefer to keep it. In detail, in our training process, the absence of Ge atoms
is also a supervision label, that is, the number of Ge atoms is 0. Therefore, when training, the
model needs to predict that there is no Ge in a molecule, which also reflects the learning ability of
the model in this case. In addition, we can also see from Table S25 that Ge has little effect on the
results, which will not affect the main conclusions given in the paper. Therefore, we tend to keep
these atoms and bonds with skewed distributions;

• Reasons for choosing regression tasks. Given that the chemical space of molecules is extremely
wide, it is difficult for us to exhaustively list all possible numbers of atoms and bonds because
they are still expanding. Therefore, using regression tasks is a more intuitive choice, which is
not limited by the number of specific classification tasks and is more suitable for handling such
complex situations.

• Reasons for using RMSE evaluation. The reason why we choose to use RMSE (Root Mean
Squared Error) instead of Spearman or Pearson correlation coefficient in regression tasks is mainly
because the correlation coefficient only reflects the relative ranking or linear correlation between
the predicted value and the true value and cannot directly quantify the actual error of the prediction.
In the task of predicting the distribution of atoms and bonds, we need the model to accurately
predict the number of certain atoms or bonds in a molecule. Therefore, we prefer to use RMSE to
evaluate the performance of the model.

Although atoms with skewed distribution histograms have little impact on the final conclusion, we
have to acknowledge that MBANet may be affected by atoms with extremely skewed count his-
tograms, which may introduce noise to the final metrics.

D.2 STRUCTNET

StructNet has a total of 6 different molecular types, including reticular (R)-, acyclic (A)-, complete
chain (CC)-, acyclic chain (AC)-, macrocyclic peptide (MP)-, macro (M)-molecules. The scenarios
corresponding to these six different types of molecules are of great significance in drug discovery.
For example, molecules targeting KRAS targets tend to be large molecules and the model needs to
learn and predict in the sample space of large molecules (Cox & Der, 2024). Here, we first give the
specific 6 screening rules for each type of molecule, as follows:
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• R rule for reticular molecules. Reticular molecules exhibit better structural stability, drug load-
ing capacity, and controllable release due to their complex cross-linked pore structure and larger
specific surface area, making them suitable for multiple fields such as drug carriers, tissue engi-
neering, and drug controlled release systems. Because reticular molecules are highly cross-linked
structures composed of multiple interwoven molecular chains, similar to a network mesh. The
more cross-linking (chemical bonds) between atoms, the higher the average degree. So we define
molecules with average degree greater than 2.33 as reticular molecules.

• A rule for acyclic molecules. Acyclic molecules usually have higher reactivity and spatial adapt-
ability, and can better bind to active sites that cyclic structures cannot reach smoothly due to steric
hindrance in cyclic structures. Thus, We retain molecules with ring number equal to 0.

• CC rule for complete chain molecules. Compared to other structural molecules, chain molecules
serve as drug molecules or carriers, based on their better flexibility and adaptability, high speci-
ficity and affinity, targeting specific biological targets to achieve precise treatment or drug delivery.
Chain molecule is a long chain structure composed of a main molecular chain with few branches,
where most of the atoms have a degree of 2. Therefore, We retain molecules where the ratio of
branched atoms (atoms with degree greater than 2) to the total number of atoms is less than 0.2.

• AC rule for acyclic chain molecules. Strictly speaking, chain molecules do not have cyclic
structures. Therefore, based on custom chain molecules, we retain molecules where the ratio of
branched atoms (atoms with degree greater than 2) to the total number of atoms is less than 0.255
and the number of rings is equal to 0 as acyclic chain molecules.

• MP rule for macrocyclic peptide molecules. As one of the hot topics in the field of drug de-
velopment today, macrocyclic peptides have high targeting, excellent pharmacokinetic properties,
and low immunogenicity. Some macrocyclic peptides even have strong penetration ability. These
advantages make macrocyclic peptides have broad application prospects in drug development and
treatment. Therefore, we chose macrocyclic peptides as a class of structural molecules to study.
We retain molecules with a maximum number of rings greater than 12 and a number of peptide
bonds greater than 0 according to the definition of macrocyclic peptide, which refer to compounds
connected by peptide bond (amide bond) and possessing a large cyclic structure.

• M rule for macro molecules. Large molecule targeted drugs, such as monoclonal antibodies,
generally act on targets on the cell surface and have strong specificity. Moreover, compared to
traditional small molecule targeted drugs, large molecule drugs have a longer half-life, which
greatly reduces the frequency of medication. Therefore, We keep molecules with molecular weight
greater than 900 as macro molecules.

After filtering according to the above rules, for each molecular type, the top 10 assay with the
largest number of molecules are selected to further construct the StructNet, which means that each
molecular type has 10 datasets. In particular, for multiple trials on the same SMILES, we only keep
one and use the mean of multiple trials as the label. We show the statistics of the datasets with
different molecular types in Tables S1, S2, S3, S4, S5 and S6.

Table S1: The 10 datasets composed of reticu-
lar molecules in StructNet, called R, with scaf-
fold split.

Assay ChEMBL ID Train/Valid/Test Standard Type

CHEMBL4888485 512/64/65 Inhibition(%)
CHEMBL1614458 391/49/49 Potency(nM)
CHEMBL1614459 277/35/35 Potency(nM)
CHEMBL1613914 241/30/31 Potency(nM)
CHEMBL1614421 161/54/54 Potency(nM)
CHEMBL1614087 155/52/52 Potency(nM)
CHEMBL1614249 148/49/50 Potency(nM)
CHEMBL1614236 139/46/47 Potency(nM)
CHEMBL1614544 130/44/44 Potency(nM)
CHEMBL1614038 127/43/43 Potency(nM)

Table S2: The 10 datasets composed of acyclic
molecules in StructNet, called A, with random
split.

Assay ChEMBL ID Train/Valid/Test Standard Type

CHEMBL4513082 271/34/34 Inhibition(%)
CHEMBL4495582 271/34/34 Inhibition(%)
CHEMBL1614458 246/31/31 Potency(nM)
CHEMBL4303805 164/56/56 Inhibition(%)
CHEMBL4808149 164/56/56 Inhibition(%)
CHEMBL4296187 164/56/56 Inhibition(%)
CHEMBL4808150 163/55/55 Inhibition(%)
CHEMBL4296188 153/52/52 Inhibition(%)
CHEMBL4649955 153/51/51 Percent Effect(%)
CHEMBL4649949 153/51/51 Percent Effect(%)

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Table S3: The 10 datasets composed of com-
plete chain molecules in StructNet, called CC,
with scaffold split.

Assay ChEMBL ID Train/Valid/Test Standard Type

CHEMBL4649949 1410/176/177 Percent Effect(%)
CHEMBL4649948 1410/176/177 Percent Effect(%)
CHEMBL4649955 1393/174/175 Percent Effect(%)
CHEMBL4888485 1336/167/167 Inhibition(%)
CHEMBL4296187 1005/126/126 Inhibition(%)
CHEMBL4296188 956/120/120 Inhibition(%)
CHEMBL4296802 907/113/114 Inhibition(%)
CHEMBL1614459 852/106/107 Potency(nM)
CHEMBL1614458 689/86/87 Potency(nM)
CHEMBL1614530 540/68/68 Potency(nM)

Table S4: The 10 datasets composed of acyclic
chain molecules in StructNet, called AC, with
random split.

Assay ChEMBL ID Train/Valid/Test Standard Type

CHEMBL1614458 145/49/49 Potency(nM)
CHEMBL4513082 137/47/47 Inhibition(%)
CHEMBL4495582 137/47/47 Inhibition(%)
CHEMBL4296187 124/42/42 Inhibition(%)
CHEMBL4296188 115/39/39 Inhibition(%)
CHEMBL1614361 110/38/38 Potency(nM)
CHEMBL4303805 108/36/36 Inhibition(%)
CHEMBL4649955 107/36/36 Percent Effect(%)
CHEMBL4649949 107/36/36 Percent Effect(%)
CHEMBL4649948 107/36/36 Percent Effect(%)

Next, we describe the details of the standard type. The standard type in the ChEMBL database
refers to the type of biological or chemical measurement that is being recorded in the database
for a particular bioactivity or assay, which defines the specific biological endpoint or property that
has been measured for a compound. The standard types included in StructNet benchmarks are as
follows:

Table S5: The 10 datasets composed of macro-
cyclic peptide (MP) molecules in StructNet,
with scaffold split.

Assay ChEMBL ID Train/Valid/Test Standard Type

CHEMBL4888485 384/48/48 Inhibition(%)
CHEMBL2354301 336/42/42 AC50(nM)
CHEMBL3880198 168/56/57 Ki(nM)
CHEMBL4420271 150/50/51 Inhibition(%)
CHEMBL4419595 150/50/51 Inhibition(%)
CHEMBL4420282 136/45/46 IC50(nM)
CHEMBL3214979 129/44/43 AC50(nM)
CHEMBL4420277 124/42/42 Inhibition(%)
CHEMBL4419601 124/42/42 Inhibition(%)
CHEMBL4419606 124/42/42 IC50(nM)

Table S6: The 10 datasets composed of macro
molecules in StructNet, called M, with scaffold
split.

Assay ChEMBL ID Train/Valid/Test Standard Type

CHEMBL4420282 1125/141/141 IC50(nM)
CHEMBL4419606 985/123/124 IC50(nM)
CHEMBL4420281 580/72/73 Inhibition(%)
CHEMBL3881498 569/71/72 Inhibition(%)
CHEMBL4419605 568/71/72 Inhibition(%)
CHEMBL4420271 555/69/70 Inhibition(%)
CHEMBL4419595 555/69/70 Inhibition(%)
CHEMBL3881499 548/69/69 IC50(nM)
CHEMBL4420273 418/52/53 Inhibition(%)
CHEMBL4419597 418/52/53 Inhibition(%)

• Inhibition means the inhibition rate under certain conditions, and its unit is %.

• Potency means the dosage at which a drug achieves a certain pharmacological effect, and its unit
is nM.

• Percent Effect means the percentage of physiological effects caused by a drug, measuring the
efficacy of the drug, and its unit is %.

• AC50 means 50% the maximum active concentration. The concentration at which a drug reaches
50% of its maximum effect under specific conditions. its unit is nM.

• Ki means inhibition constant, which is the concentration of the free inhibitor corresponding to the
binding of 50% of the enzyme to the inhibitor. its unit is nM.

• IC50 means 50% inhibitory concentration, which is the concentration of the inhibitor required to
achieve a 50% inhibitory effect. its unit is nM.

In StructNet, an Assay ChEMBL ID corresponds to an assay. For example, CHEMBL1614458
represents a biological assay: qHTS Assay for Inhibitors of Aldehyde Dehydrogenase 1
(ALDH1A1). CHEMBL1614459 is qHTS Assay for Lipid Storage Modulators in Drosophila S3
Cells. CHEMBL1613914 is qHTS Assay for Inhibitors of Human Jumonji Domain Containing
2E (JMJD2E). You can easily find the description of all assays in StructNet by following the link
https://www.ebi.ac.uk/chembl/assay report card/{using your Assay ChEMBL ID in here}/.

It is worth noting that when constructing StructNet from ChEMBL, considering that the isomerism
phenomenon of drug molecules may significantly affect the measurement results of its biological
activity, we only use SMILES as the merging condition of multiple experiments instead of canon-
ical SMILES. We filtered through RDKit’s isomericSmiles condition and find that all SMILES are
isomers, so we retain the differences between SMILES. We also present the results of repeatability
detection using canonical SMILES. As shown in Tables S7, S8, S9, S10, S11, S12, we find that in
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most datasets, the duplication of canonical SMILES is not obvious. Notably, we perform an iso-
mer check for SMILES using RDKit on all molecules where canonical SMILES was repeated. The
results show that these SMILES repeated in canonical formats sequences are isomers.

Table S7: Statistics after deduplication using
canonical SMILES in reticular molecules from
StructNet, called R. #Mol represents the total
number of molecules. #Unique represents the
number of molecules after removing duplicates.
Ratio represents 1− #Unique

#Mol × 100.

Assay ChEMBL ID #Mol / #Unique / #Ratio

CHEMBL1613914 302 / 300 / 0.7%
CHEMBL1614038 213 / 213 / 0%
CHEMBL1614087 259 / 257 / 0.8%
CHEMBL1614236 232 / 232 / 0%
CHEMBL1614249 247 / 246 / 0.4%
CHEMBL1614421 269 / 264 / 1.9%
CHEMBL1614458 489 / 486 / 0.6%
CHEMBL1614459 347 / 346 / 0.3%
CHEMBL1614544 218 / 215 / 1.4%
CHEMBL4888485 641 / 637 / 0.6%

Table S8: Statistics after deduplication using
canonical SMILES in acyclic molecules from
StructNet, called A. #Mol represents the total
number of molecules. #Unique represents the
number of molecules after removing duplicates.
Ratio represents 1− #Unique

#Mol × 100.

Assay ChEMBL ID #Mol / #Unique / #Ratio

CHEMBL1614458 308 / 302 / 1.9%
CHEMBL4296187 274 / 274 / 0%
CHEMBL4296188 257 / 257 / 0%
CHEMBL4303805 276 / 273 / 1.1%
CHEMBL4495582 339 / 331 / 2.4%
CHEMBL4513082 339 / 331 / 2.4%
CHEMBL4649949 255 / 255 / 0%
CHEMBL4649955 255 / 255 / 0%
CHEMBL4808149 274 / 269 / 1.8%
CHEMBL4808150 273 / 268 / 1.8%

Table S9: Statistics after deduplication us-
ing canonical SMILES in complete chain
molecules from StructNet, called CC.

Assay ChEMBL ID #Mol / #Unique / #Ratio

CHEMBL1614458 862 / 855 / 0.8%
CHEMBL1614459 1065 / 1064 / 0.1%
CHEMBL1614530 676 / 676 / 0%
CHEMBL4296187 1257 / 1257 / 0%
CHEMBL4296188 1196 / 1196 / 0%
CHEMBL4296802 1134 / 1134 / 0%
CHEMBL4649948 1763 / 1762 / 0.1%
CHEMBL4649949 1763 / 1762 / 0.1%
CHEMBL4649955 1742 / 1741 / 0.1%
CHEMBL4888485 1670 / 1669 / 0.1%

Table S10: Statistics after deduplication using
canonical SMILES in acyclic chain molecules
from StructNet, called AC.

Assay ChEMBL ID #Mol / #Unique / #Ratio

CHEMBL1614361 186 / 184 / 1.1%
CHEMBL1614458 243 / 240 / 1.2%
CHEMBL4296187 208 / 208 / 0%
CHEMBL4296188 193 / 193 / 0%
CHEMBL4303805 180 / 179 / 0.6%
CHEMBL4495582 231 / 228 / 1.3%
CHEMBL4513082 231 / 228 / 1.3%
CHEMBL4649948 179 / 179 / 0%
CHEMBL4649949 179 / 179 / 0%
CHEMBL4649955 179 / 179 / 0%

Table S11: Statistics after deduplication us-
ing canonical SMILES in macrocyclic peptide
molecules from StructNet, called MP.

Assay ChEMBL ID #Mol / #Unique / #Ratio

CHEMBL2354301 420 / 131 / 68.8%
CHEMBL3214979 216 / 87 / 59.7%
CHEMBL3880198 281 / 243 / 13.5%
CHEMBL4419595 251 / 221 / 12%
CHEMBL4419601 208 / 180 / 13.5%
CHEMBL4419606 207 / 181 / 12.6%
CHEMBL4420271 251 / 221 / 12%
CHEMBL4420277 208 / 180 / 13.5%
CHEMBL4420282 227 / 198 / 12.8%
CHEMBL4888485 480 / 480 / 0%

Table S12: Statistics after deduplication using
canonical SMILES in macro molecules from
StructNet, called M.

Assay ChEMBL ID #Mol / #Unique / #Ratio

CHEMBL3881498 712 / 696 / 2.2%
CHEMBL3881499 686 / 666 / 2.9%
CHEMBL4419595 694 / 657 / 5.3%
CHEMBL4419597 523 / 507 / 3.1%
CHEMBL4419605 711 / 693 / 2.5%
CHEMBL4419606 1232 / 1187 / 3.7%
CHEMBL4420271 694 / 657 / 5.3%
CHEMBL4420273 523 / 507 / 3.1%
CHEMBL4420281 725 / 707 / 2.5%
CHEMBL4420282 1407 / 1358 / 3.5%

E EXPERIMENT SETTINGS

E.1 BASELINES

To comprehensively evaluate the performance of different modality-based methods, we selected a
large number of common baselines for each modality. However, since BenchMol supports many
baseline methods, it is difficult for us to cover all baseline methods. Therefore, we select methods
based on whether they are representative and leave the remaining methods to the community for ver-
ification and exploration. Even so, we have selected a large number of baselines and the conclusions
we draw are also statistically significant.
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Table S13: The 6 common fingerprints for benchmarking evaluation.

No. Baselines Descriptions

1 mcfp4 2048 MCFP4 (Morgan Connectivity Fingerprints) with dimension 2048 and radius 2, which
is a variant of ECFP4 based on the Morgan algorithm and is a classical approach
for generating circular fingerprints that focus on capturing connectivity patterns in
molecules

2 ecfp4 2048 ECFP4 (Extended Connectivity Fingerprints) with dimension 2048 and radius 2, which
is a circular topological fingerprint that encodes information about a molecule’s atomic
connectivity and its local environment

3 maccs 166-dimensional MACCS (Molecular ACCess System) keys are a type of molecular
fingerprint that is widely used in cheminformatics to represent molecular structures

4 physchem physchem (physicochemical) fingerprints is based on molecular physicochemical prop-
erties

5 atompair 2048 2048-dimensional AtomPair fingerprints, which represents molecules based on pairs of
atoms and the shortest path (in bonds) between them, encoding both the atom types and
their relative positions within a molecule

6 rdkDes rdkDsc (RDKit Descriptors) are a set of predefined molecular descriptors calculated
using the RDKit cheminformatics toolkit

Table S14: The sequence-based baselines for benchmarking evaluation.

No. Baselines Descriptions

1 BERT-6L 6-layer BERT model, which comes from Chem-BERT with random initialization
2 BERT-8L/BERT-8L-R 8-layer BERT model, which comes from Chem-BERT with random initialization
3 RoBERTa-12L 12-layer RoBERTa model, which comes from Chem-RoBERTa with random initialization
4 molformer-R/MolFormer-R MolFormer with random initialization
5 Chem-BERT-6L 6-layer Chem-BERT
6 Chem-BERT-8L 8-layer Chem-BERT
7 CHEM-RoBERTa-12L 12-layer CHEM-RoBERTa
8 Molformer/MolFormer MolFormer

We describe the selected baselines for different modalities below:

• Fingerprint. Table S13 shows 6 commonly used molecular fingerprinting methods.

• Sequence. The baselines here use molecular sequences as input. As shown in Table S14, we use
8 common sequence-based models for benchmarking evaluation.

• Graph. The baselines here use molecular graphs as input. The Table S15 shows 9 graph-based
baselines for benchmarking evaluation.

• Geometry Graph. The baselines here use molecular geometry graph as input. In the paper, the
word ”geometry” alone refers to the geometry graph. The Table S16 shows 9 geometry-based
baselines for benchmarking evaluation.

• Image. The baselines here use molecular images as input. The Table S17 shows 5 image-based
baselines for benchmarking evaluation.

• Geometry Image. The baselines here use molecular geometry images as input. The Table S18
shows 6 geometry image-based baselines for benchmarking evaluation.

• Video. The baselines here use molecular videos as input. The Table S19 shows 4 video-based
baselines for benchmarking evaluation.

E.2 HYPERPARAMETERS SEARCH

In molecular property prediction, we use a linear probing strategy to train all models. To be fair, the
hyperparameter search ranges for all models are the same. We set the batch size to 32 and perform
grid search on learning rates of 0.001, 0.005, 0.01, and 0.05. In the MBANet task, all models use the
same hyperparameters (batch size of 8 and learning rate of 0.005) to train the models. In StructNet,
we set the batch size to 8 and perform grid search on learning rates of 0.001, 0.005.

To eliminate the influence of randomness, we used a uniform set of 10 random seeds ranging from
0 to 9 to calculate the mean and variance in all experiments in this paper.
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Table S15: The 9 graph-based baselines for benchmarking evaluation.

No. Baselines Descriptions

1 GIN-R GIN model with random initialization
2 EdgePred

-

3 ContextPred
4 infomax
5 masking
6 MolCLR
7 MoleBERT
8 GraphMVP
9 CGIP-Graph

Table S16: The 9 geometry-based baselines for benchmarking evaluation.

No. Baselines Descriptions

1 Uni-Mol-R (1 conf) Uni-Mol with random initialization, which uses 1 conformation during fine-tuning
2 Uni-Mol (1 conf) pre-trained Uni-Mol, which uses 1 conformation during fine-tuning
3 Uni-Mol-R (10 conf) Uni-Mol with random initialization, which uses 10 conformations during fine-tuning
4 Uni-Mol (10 conf) pre-trained Uni-Mol, which uses 10 conformations during fine-tuning
5 SchNet

-
6 EGNN
7 TFN
8 SE3 Transformer
9 PaiNN

E.3 TRAINING LOSS

In MoleculeNet benchmark, there are 8 classification tasks and 4 regression tasks. For classification
tasks, we use cross entropy loss. For regression tasks, we use MSE loss. In MBANet and StructNet
benchmarks, we use MSE loss because they are regression tasks.

F MORE RESULTS ON MOLECULENET

F.1 DETAILED RESULTS

Table S20 and Table S21 show the ROC-AUC performance on 8 classification tasks and RMSE per-
formance on 4 regression tasks from MoleculeNet, respectively. In classification tasks, as shown in
Table S20, we find that fingerprint-based atompair 2048 achieves the best performance on Sider and
BACE, which shows that fingerprinting is a simple and effective method for property prediction. The
sequence-based MolFormer-R achieves state-of-the-art performance on BBBP and ClinTox without
any pre-training, which indicates that sequence have a strong inductive bias for molecular prop-
erty prediction. The graph-based MoleBERT, geometry-based Uni-Mol (10 conf), and geometry
image-based IEM-G (10 conf) achieved the best performance on Tox21, ToxCast and MUV, HIV,
respectively. These findings suggest that different modalities have certain preferences for different
tasks, which can further establish guiding ideas for multi-modal learning of molecules.

In addition, in Table S21, we find the superiority of fingerprints on the regression task of property
prediction, which achieves the best performance on 3 (Lipo, Malaria and CEP) out of 4 datasets.

F.2 RESULTS OF GEOMETRY IMAGE AND VIDEO WITH RGB FORMAT

Images are available in RGB and BGR formats, and it is meaningful to study the difference between
RGB and BGR for images. Here, we report the results using RGB format images as input. Table S22
and Table S23 show the results of 6 vision-based methods on 8 classification tasks and 4 regression
tasks from MoleculeNet using RGB-format images. We find that using RGB or BGR as the input of
the visual modality has little impact on performance.
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Table S17: The 5 image-based baselines for benchmarking evaluation.

No. Baselines Descriptions

1 ResNet18-R image-based ResNet18 without pre-training
2 ImageMol

-
3 MaskMol
4 CGIP-Image
5 IEM -I

Table S18: The 6 geometry image-based baselines for benchmarking evaluation.

No. Baselines Descriptions

1 ResNet18-G-R geometry image-based ResNet18 without pre-training
2 IEM-G IEM using geometry images as input
3 ResNet18-G-R (10 conf) geometry image-based ResNet18 without pre-training, which uses 10 conformations during fine-tuning
4 IEM-G (10 conf) IEM using geometry images as input, which uses 10 conformations during fine-tuning
5 ViT-G-R ViT without pre-training, which is the bachbone of VideoMol and uses geometry image as input
6 VideoMol-G pre-trained VideoMol, which uses geometry image as input

F.3 RESULTS OF FINE-TUNING

Fine-tuning is a common strategy to maximize the performance of pre-trained models on down-
stream tasks. To compare the performance difference between linear probing and fine-tuning, we
fine-tune Uni-Mol, Molformer, ImageMol and VideoMol using their public source code. Specifi-
cally, we use the officially released no-H pre-trained weight and the corresponding optimal hyper-
parameters to fine-tune Uni-Mol 1.

The Table S24 shows the fine-tuning performance of Uni-Mol, Molformer, ImageMol, and Video-
Mol on 6 classification tasks (Tox21, ToxCast, Sider, HIV, BBBP and BACE) from MoleculeNet.
Overall, except for Molformer, fine-tuning on other methods helps improve the performance com-
pared to linear probing. In particular, we find that after fine-tuning, the image modality improves
performance by 14.98% compared to linear probing. The significant performance improvement
indicates that the image modality currently relies on detailed fine-tuning to further improve perfor-
mance.

G MORE RESULTS ON MBANET

G.1 ATOM

Table S25 shows the average RMSE performance of a large number of baselines on MBANetatom
for 12 atom distribution prediction tasks (C, N, O, F, S, Cl, Br, P, Si, B, Se and Ge) with 10 seeds.
Table S26 shows the corresponding standard deviation. We find that IEM-V based on video modality
achieves the best performance on half of the atom prediction tasks, which shows the advantages of
video-based modality. At the same time, we also find that models based on images and geometry
images also achieve good performance, such as CGIP-Image and IEM-G (1 conf), indicating that
the model can accurately count the number of atoms from the image. Furthermore, we observe
that sequence- and graph-based models perform poorly on MBANetatom, indicating that the global
representations extracted by sequence- and graph-based models are not conducive to atomic-level
prediction tasks.

G.2 BOND

Table S27 shows the average RMSE performance of a large number of baselines on MBANetatom
for 4 bond distribution prediction tasks (single bond, aromatic bond, double bond, and triple bond)
with 10 seeds. We find that the geometry-based TFN model has strong predictive power at the bond
level, which suggests that utilizing both molecular geometry and bond information can effectively
improve the model’s understanding of bond distribution compared to graph models that only use

1https://github.com/deepmodeling/Uni-Mol/tree/main/unimol#molecular-property-prediction
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Table S19: The 4 video-based baselines for benchmarking evaluation.

No. Baselines Descriptions

1 ResNet18-V-R video-based ResNet18 without pre-training
2 IEM-V IEM using video as input
3 VideoMol-R VideoMol without pre-training
4 VideoMol pre-trained VideoMol, which uses video as input

Table S20: The ROC-AUC (%) performance on 8 classification tasks with linear probing using
BenchMol. The modality types from top to bottom are fingerprint, sequence, graph, geometry graph,
image, geometry image, and video. -R means no pre-training, L means the number of layers, -I, -
G, and -V mean the modalities are image, geometry image, and video, respectively. Note that the
geometry images and videos use the BGR format.

Model BBBP Tox21 ToxCast Sider ClinTox MUV HIV BACE Avg

mcfp4 2048 64.9±0.3 73.5±0.1 61.9±0.0 65.0±0.1 83.0±0.2 73.4±0.3 73.8±0.3 77.8±1.0 71.66
ecfp4 2048 63.9±0.1 71.2±0.1 59.7±0.1 64.2±0.0 76.9±0.1 70.1±0.1 72.0±0.1 80.5±0.6 69.81

maccs 66.6±0.3 70.1±0.0 61.7±0.0 63.8±0.1 85.1±0.2 71.9±0.5 70.7±1.5 74.4±1.2 70.54
physchem 61.8±0.1 62.6±0.1 59.4±0.1 57.7±0.9 66.4±5.7 69.6±0.1 66.7±0.0 61.1±2.5 63.16

atompair 2048 65.5±0.3 73.1±0.3 64.8±0.1 66.2±0.0 63.9±0.4 70.4±0.2 74.8±0.2 83.5±1.3 70.28
rdkDes 59.3±0.5 64.1±0.2 60.5±0.2 54.0±0.7 56.2±0.0 66.1±1.1 68.8±0.0 76.5±0.0 63.19

BERT-8L-R 68.7±0.9 72.0±0.3 62.1±0.2 56.6±0.5 82.6±1.4 64.0±1.8 71.1±1.6 74.4±1.5 68.94
Chem-BERT-8L 69.2±0.2 75.5±0.1 62.6±0.1 62.6±0.1 83.3±0.6 77.6±1.2 78.2±0.2 78.3±0.3 73.41
MolFormer-R 74.6±0.5 71.6±0.3 61.5±0.3 55.9±0.3 86.2±0.3 67.2±1.6 71.2±0.5 75.0±1.6 70.40
MolFormer 63.3±0.2 72.1±0.1 61.4±0.1 63.4±0.2 68.2±3.3 75.4±0.8 74.5±0.4 78.3±1.8 69.58

GIN-R 57.3±0.3 69.3±0.3 58.3±0.4 56.2±0.8 64.9±0.4 69.6±1.1 66.9±1.2 63.2±0.3 63.21
EdgePred 52.1±1.0 67.1±0.3 56.4±0.0 54.5±0.6 55.0±2.7 65.8±0.2 67.6±0.5 67.3±2.8 60.73

ContextPred 57.6±0.3 70.6±0.1 60.7±0.0 60.8±1.0 58.6±3.2 76.4±0.3 72.4±1.3 78.1±0.2 66.90
infomax 62.4±0.0 68.6±0.2 59.2±0.1 58.5±0.7 60.1±2.2 76.4±0.3 71.9±0.3 73.7±1.0 66.35
masking 57.9±0.4 68.9±0.2 58.2±0.0 58.8±0.2 52.2±0.4 70.7±1.4 65.5±0.5 68.0±0.2 62.53
MolCLR 63.5±0.1 69.0±0.0 61.4±0.1 58.6±0.3 64.2±1.0 65.0±1.4 72.1±0.3 70.2±0.2 65.50

MoleBERT 66.3±0.1 77.1±0.1 65.0±0.1 63.9±0.1 74.8±3.4 79.7±0.2 76.2±0.1 75.2±0.9 72.28
GraphMVP 64.2±0.4 69.5±0.1 60.6±0.1 58.6±0.1 56.7±1.5 68.6±0.4 71.6±0.4 76.4±0.1 65.78
CGIP-Graph 66.4±0.9 71.5±0.3 58.6±0.0 57.5±0.1 70.3±0.2 72.5±3.4 73.6±0.8 66.0±3.7 67.05

Uni-Mol-R 66.3±1.0 67.6±0.1 62.4±0.1 59.2±0.1 59.2±0.4 59.5±1.6 74.7±0.2 77.5±0.7 65.80
Uni-Mol 69.8±0.1 74.5±0.1 65.6±0.4 60.2±0.4 84.3±0.4 78.5±0.2 78.4±0.1 78.7±0.5 73.75

Uni-Mol-R (10 conf) 64.6±0.4 67.7±0.1 63.1±0.1 59.3±1.2 58.6±0.2 56.5±1.8 77.2±0.1 77.2±0.1 65.53
Uni-Mol (10 conf) 69.3±0.6 75.2±0.1 65.8±0.5 61.6±0.4 85.1±4.4 80.3±0.7 77.5±0.1 78.2±0.2 74.13

ResNet18-R 52.4±0.1 53.8±0.1 54.7±0.0 55.8±0.1 65.3±0.2 49.8±1.7 52.8±0.2 58.1±2.2 55.34
ImageMol 60.5±0.5 66.4±0.3 59.0±0.3 58.2±0.2 64.5±2.6 61.3±1.3 70.8±0.9 60.3±1.0 62.63
MaskMol 62.3±1.1 65.9±0.1 60.1±0.1 59.1±0.7 56.4±0.7 58.8±3.2 74.4±0.6 67.2±1.2 63.03

CGIP-Image 56.2±0.3 66.0±0.0 55.6±0.0 57.2±0.3 68.0±0.3 63.1±0.0 69.5±0.1 59.9±0.3 61.94
IEM -I 59.7±0.1 65.8±0.2 57.1±0.1 56.8±0.9 57.8±3.6 56.8±1.0 72.2±0.5 61.4±0.6 60.95

ResNet18-G-R 55.2±0.0 58.2±0.2 57.4±0.2 55.7±0.1 60.0±0.4 54.3±3.7 71.5±0.4 57.5±1.9 58.73
IEM-G 64.1±0.2 69.0±0.3 60.9±0.2 56.0±1.0 55.8±0.8 60.8±2.0 75.5±0.7 75.2±0.6 64.66

ResNet18-G-R (10 conf) 60.1±0.0 62.3±0.1 59.8±0.1 57.1±0.4 67.5±0.1 57.0±0.3 74.3±0.0 71.3±1.3 63.68
IEM-G (10 conf) 68.1±0.4 71.9±0.2 63.9±0.1 61.5±0.8 68.6±1.0 68.7±1.1 80.0±0.4 79.6±1.2 70.29

VideoMol-R 59.7±0.2 61.3±0.1 59.2±0.4 55.2±1.4 60.0±0.1 53.1±1.5 75.4±0.4 65.4±2.1 61.16
VideoMol 63.4±0.7 73.5±0.1 63.9±0.2 60.3±0.3 63.8±2.9 75.3±0.9 76.8±1.2 75.2±0.4 69.03

bond information. In addition, compared with SE3-Transformer and Uni-Mol, TFN is more suitable
for capturing local bond information.

G.3 BASIC ATTRIBUTES

The Table S28 shows the average RMSE performance of a large number of baselines on MBANetattr
for 8 basic attribute prediction tasks (MW, LogP, MR, BalabanJ, #HA, #HD, #VE, TPSA) with 10
seeds. The Table S29 shows the corresponding standard deviation. We find that graph modality
achieves the best performance on LogP, BalabanJ, HA and HD and video modality achieves the
best performance on MW, MR, VE and TPSA. In particular, IEM-V equipped with video modality
achieves the best average performance, which is 54.2% higher than IEM-G using geometry image
modality (from 4.916 to 2.254), indicating the superiority of combining IEM with video modality.
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Table S21: The RMSE performance on 4 regression tasks with linear probing using BenchMol. Note
that the geometry images and videos use the BGR format.

Model ESOL Lipo Malaria CEP Avg

mcfp4 2048 1.510±0.017 0.833±0.001 1.096±0.001 1.582±0.001 1.255
ecfp4 2048 1.658±0.019 0.902±0.001 1.088±0.001 1.551±0.000 1.300

maccs 1.339±0.014 0.980±0.002 1.128±0.001 1.759±0.002 1.302
physchem 1.713±0.020 0.994±0.003 1.155±0.001 1.953±0.001 1.454

atompair 2048 1.220±0.006 0.817±0.002 1.087±0.000 1.632±0.003 1.189
rdkDes 1.830±0.001 1.067±0.003 1.166±0.002 2.529±0.001 1.648

BERT-8L-R 1.102±0.041 1.005±0.005 1.161±0.005 1.786±0.008 1.264
Chem-BERT-8L 0.858±0.013 0.823±0.003 1.106±0.002 1.584±0.006 1.093
MolFormer-R 1.278±0.007 0.994±0.003 1.157±0.005 1.845±0.001 1.319
MolFormer 1.350±0.016 0.936±0.004 1.123±0.004 1.764±0.006 1.293

GIN-R 1.780±0.013 1.078±0.004 1.148±0.002 2.299±0.004 1.576
EdgePred 2.396±0.019 1.075±0.001 1.134±0.002 2.053±0.006 1.665

ContextPred 1.520±0.010 1.031±0.006 1.129±0.003 2.165±0.007 1.461
infomax 1.450±0.012 1.035±0.007 1.131±0.004 2.018±0.012 1.409
masking 1.696±0.011 1.065±0.002 1.130±0.006 2.070±0.004 1.490
MolCLR 1.506±0.013 0.931±0.006 1.114±0.003 1.925±0.005 1.369

MoleBERT 1.544±0.006 0.897±0.001 1.105±0.001 1.735±0.004 1.320
GraphMVP 1.623±0.008 0.959±0.012 1.143±0.002 1.879±0.009 1.401
CGIP-Graph 2.494±0.020 0.903±0.006 1.113±0.004 1.696±0.009 1.552

Uni-Mol-R 1.048±0.019 0.999±0.004 1.146±0.002 2.038±0.010 1.308
Uni-Mol 1.003±0.005 0.856±0.004 1.113±0.001 1.676±0.004 1.162

Uni-Mol-R (10 conf) 0.997±0.017 0.984±0.008 1.149±0.002 1.974±0.006 1.276
Uni-Mol (10 conf) 0.978±0.005 0.839±0.004 1.109±0.002 1.648±0.008 1.144

ResNet18-R 1.917±0.004 1.108±0.002 1.166±0.001 2.535±0.000 1.682
ImageMol 1.655±0.021 1.053±0.008 1.150±0.008 2.169±0.003 1.507
MaskMol 1.329±0.034 1.056±0.005 1.160±0.004 2.219±0.006 1.441

CGIP-Image 1.710±0.023 1.078±0.001 1.149±0.001 2.287±0.001 1.556
IEM -I 1.730±0.028 1.057±0.005 1.156±0.001 2.364±0.002 1.577

ResNet18-G-R 1.561±0.015 1.073±0.002 1.164±0.001 2.472±0.001 1.568
IEM-G 1.313±0.008 0.974±0.003 1.155±0.001 2.180±0.001 1.406

ResNet18-G-R (10 conf) 1.359±0.015 1.055±0.003 1.161±0.002 2.364±0.001 1.485
IEM-G (10 conf) 0.936±0.023 0.887±0.006 1.155±0.001 1.868±0.007 1.212

VideoMol-R 1.520±0.017 1.058±0.006 1.163±0.001 2.364±0.003 1.526
VideoMol 1.085±0.011 0.887±0.003 1.137±0.004 1.780±0.003 1.222

Table S22: The ROC-AUC (%) performance on 8 classification tasks from MoleculeNet with RGB
format with linear probing using BenchMol. The first 4 are geometry image-based methods, and the
last 2 are video-based methods.

Model BBBP Tox21 ToxCast Sider ClinTox MUV HIV BACE Avg

ResNet18-G-R 56.2±0.2 59.9±0.1 57.1±0.1 53.8±0.1 59.2±0.5 57.9±0.8 72.4±0.8 63.3±1.4 59.98
IEM-G 64.5±0.6 69.5±0.4 61.3±0.3 56.1±1.0 49.7±0.7 61.8±0.7 75.2±0.8 76.5±0.2 64.33

ResNet18-G-R (10 conf) 58.7±0.0 62.8±0.1 58.5±0.1 56.3±0.1 68.0±0.1 57.3±0.6 74.8±0.6 69.2±0.6 63.20
IEM-G (10 conf) 65.7±1.3 73.2±0.2 63.8±0.2 59.8±0.2 58.3±0.2 68.8±0.7 78.5±0.0 80.3±0.1 68.55

VideoMol-R 60.6±0.3 60.6±0.1 58.8±0.4 57.2±0.2 59.1±0.0 53.9±1.7 76.7±0.4 61.0±1.9 60.99
VideoMol 66.5±0.2 73.7±0.2 63.2±0.2 61.8±0.2 57.2±2.8 74.0±0.5 75.2±0.5 76.6±0.8 68.53

H EXPANDING MBANET TO 30,000 MOLECULES

In order to study the generalization of MBANet’s conclusions, we further expand MBANet to
30,000 molecules, referred to as MBANet30K . As shown in Table S30, we find that the results
of MBANet30K are not significantly different from the results on the original MBANet (see Table
5). For example, the video modality still achieves the best performance in tasks related to atoms and
basic attributes. Therefore, the conclusion of MBANet is effective after further expanding the scale
of MBANet to 30K.
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Table S23: The RMSE performance on 4 regression tasks with RGB format with linear probing
using BenchMol.

Model ESOL Lipo Malaria CEP Avg

ResNet18-G-R 1.715±0.007 1.080±0.002 1.163±0.001 2.469±0.000 1.607
IEM-G 1.194±0.007 0.981±0.001 1.170±0.001 2.130±0.002 1.369

ResNet18-G-R (10 conf) 1.395±0.013 1.048±0.005 1.163±0.001 2.392±0.002 1.500
IEM-G (10 conf) 0.968±0.017 0.893±0.004 1.132±0.005 1.874±0.004 1.217

VideoMol-R 1.515±0.025 1.050±0.009 1.165±0.001 2.337±0.003 1.517
VideoMol 1.035±0.005 0.867±0.005 1.099±0.004 1.760±0.006 1.190

Table S24: The ROC-AUC (%) performance on 6 classification tasks from MoleculeNet with fine-
tuning setting under 10 random seeds ranging from 0 to 9. We fine-tune these models using their
public code. Specifically, we evaluate Uni-Mol using the officially released no-H pre-trained weight
and the corresponding optimal hyperparameters. FT denotes the average performance of fine-tuning
on 6 datasets. LP denotes the average result of linear probing, which is obtained by Table S20. δ
denotes (FT

LP − 1) ∗ 100%. Note that IEM and VideoMol use the BGR format.

Tox21 ToxCast Sider HIV BBBP BACE FT LP δ

Uni-Mol (1 conf) 78.3 (0.4) 68.7 (0.5) 63.7 (1.3) 79.2 (1.0) 69.6 (2.0) 81.0 (3.9) 73.4 71.2 ↑ 3.11%
Uni-Mol (10 conf) 78.8 (0.7) 69.0 (0.5) 63.6 (1.4) 79.2 (0.9) 69.9 (2.7) 81.7 (3.4) 73.7 71.3 ↑ 3.41%

Molformer 47.4 (2.1) 56.2 (1.5) 61.1 (1.0) 74.6 (0.9) 69.5 (1.0) 80.9 (1.9) 65.0 69.6 ↓ 6.65%
ImageMol 75.5 (1.0) 65.6 (0.9) 64.9 (1.3) 76.8 (1.3) 70.5 (1.3) 78.1 (3.5) 71.9 62.5 ↑ 14.98%
VideoMol 78.8 (0.5) 66.7 (0.5) 66.3 (0.9) 79.4 (0.5) 70.7 (2.2) 82.4 (0.9) 74.1 69.0 ↑ 7.27%

I MORE RESULTS ON STRUCTNET

I.1 ACYCLIC CHAIN MOLECULES

Table S31 and Table S32 show the average RMSE performance and corresponding standard devia-
tion of the baselines on 10 acyclic chain datasets, respectively. Overall, each modality has baselines
that make it into the top 5 in terms of performance. From the average performance, we find the
effectiveness of graph pre-training strategies on acyclic chain molecules because 4 (MoleBERT, in-
fomax, MolCLR and masking) of the top 5 methods are graph-based pre-training methods. We
also find that even without pre-training, SchNet can still achieve good performance on acyclic
chain molecules, ranking second, which demonstrates the effectiveness of geometric methods on
this type of molecules. Furthermore, we find that the non-pre-trained vision-based ResNet18-G-R
and ResNet18-V-R also achieve top-5 performance, which indicates the effectiveness of these visual
representations.

I.2 ACYCLIC MOLECULES

Table S33 and Table S34 show the average RMSE performance and corresponding standard devia-
tion of the baselines on 10 acyclic datasets, respectively. Here, we find the effectiveness of graph
pre-training methods because the top 5 methods on performance are all based on graph pre-training
methods, such as MoleBERT, ContextPred, masking, CGIP-Graph and infomax. When no pre-
training is performed, the geometry-based TFN model achieves the best performance, demonstrating
the advantage of geometric methods on acyclic molecules.

I.3 COMPLETE CHAIN MOLECULES

Table S35 and Table S36 show the average RMSE performance and corresponding standard devia-
tion of the baselines on 10 complete chain datasets, respectively. We find that molecular fingerprint-
based maccs achieves the best average performance, surpassing a number of pre-training methods,
demonstrating the advantages of maccs on complete chain molecules.

Notably, we observe that a large number of graph-based and image-based pre-training strategies fail
on this type of molecules. Specifically, 6 out of 8 graph-based pre-training methods (EdgePred,
ContextPred, infomax, masking, MoleBERT and CGIP-Graph) and all 4 image-based pre-training
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Table S25: The average RMSE performance on MBANetatom with 10 seeds. The modality types
from top to bottom are sequence, graph, geometry graph, image, geometry image, and video. -R
means no pre-training, L means the number of layers, -I, -G, and -V mean the modalities are image,
geometry image, and video, respectively. The green background represents top-5 performance.

Models #C #N #O #F #S #Cl #Br #P #Si #B #Se #Ge Mean

BERT-6L 2.001 0.810 1.460 0.742 0.322 0.422 0.206 0.014 0.023 0.237 0.012 0.009 0.522
BERT-8L 2.011 0.807 1.479 0.727 0.321 0.420 0.210 0.027 0.022 0.238 0.014 0.015 0.524

RoBERTa-12L 2.309 0.806 1.463 0.722 0.319 0.426 0.196 0.022 0.035 0.233 0.010 0.012 0.546
molformer-R 2.288 0.819 1.514 0.702 0.321 0.423 0.204 0.025 0.036 0.241 0.019 0.021 0.551

Chem-BERT-6L 1.985 0.801 1.453 0.730 0.320 0.425 0.205 0.019 0.031 0.247 0.013 0.026 0.521
Chem-BERT-8L 2.002 0.805 1.491 0.722 0.323 0.422 0.197 0.024 0.022 0.239 0.023 0.013 0.524

CHEM-RoBERTa-12L 2.186 0.807 1.468 0.708 0.319 0.430 0.200 0.017 0.024 0.234 0.010 0.007 0.534
Molformer 2.121 0.798 1.448 0.702 0.322 0.423 0.201 0.022 0.034 0.238 0.035 0.023 0.531

GIN-R 1.445 0.520 0.376 0.392 0.459 0.366 0.195 0.035 0.042 0.234 0.009 0.002 0.340
EdgePred 1.396 0.586 0.354 0.442 0.197 0.300 0.189 0.036 0.045 0.234 0.011 0.002 0.316

ContextPred 1.353 0.532 0.366 0.406 0.283 0.315 0.193 0.058 0.031 0.234 0.031 0.006 0.317
infomax 1.427 0.593 0.372 0.418 0.211 0.296 0.188 0.036 0.027 0.235 0.012 0.002 0.318
masking 1.481 0.529 0.412 0.406 0.337 0.305 0.184 0.034 0.035 0.233 0.024 0.004 0.332
MolCLR 1.375 0.533 0.395 0.344 0.395 0.355 0.187 0.034 0.037 0.233 0.012 0.001 0.325

MoleBERT 1.552 0.487 0.378 0.380 0.197 0.260 0.191 0.045 0.044 0.233 0.019 0.016 0.317
CGIP-Graph 1.165 0.310 0.318 0.207 0.115 0.127 0.190 0.041 0.037 0.233 0.017 0.008 0.231
GraphMVP 1.324 0.519 0.390 0.428 0.452 0.325 0.192 0.030 0.031 0.236 0.008 0.004 0.328

Uni-Mol-R (1 conf) 1.436 0.713 0.741 0.352 0.143 0.161 0.168 0.061 0.044 0.235 0.015 0.002 0.339
Uni-Mol (1 conf) 1.466 0.784 0.756 0.362 0.144 0.156 0.156 0.043 0.029 0.225 0.020 0.005 0.346

TFN 0.602 0.337 0.290 0.207 0.117 0.149 0.139 0.047 0.037 0.176 0.015 0.010 0.177
SE3 Transformer 1.773 0.849 1.475 0.720 0.312 0.410 0.195 0.019 0.020 0.234 0.010 0.015 0.503

ResNet18-I-R 1.332 0.608 0.747 0.473 0.210 0.321 0.194 0.047 0.029 0.234 0.007 0.004 0.350
ImageMol 1.340 0.578 0.750 0.485 0.225 0.321 0.194 0.054 0.035 0.232 0.007 0.002 0.352

CGIP-Image 1.251 0.581 0.713 0.462 0.224 0.305 0.196 0.040 0.025 0.234 0.005 0.005 0.337
MaskMol 2.096 0.818 1.466 0.706 0.325 0.432 0.198 0.034 0.028 0.242 0.016 0.017 0.532

IEM-I 1.324 0.580 0.738 0.489 0.210 0.326 0.195 0.043 0.025 0.233 0.009 0.003 0.348

ResNet18-G-R 0.939 0.349 0.467 0.409 0.165 0.343 0.198 0.045 0.056 0.223 0.012 0.013 0.268
IEM-G (1 conf) 0.803 0.327 0.452 0.338 0.152 0.313 0.196 0.050 0.046 0.232 0.009 0.003 0.243

ResNet18-V-R 0.520 0.154 0.215 0.225 0.087 0.191 0.156 0.043 0.140 0.129 0.008 0.001 0.156
IEM-V 0.354 0.130 0.186 0.148 0.074 0.119 0.164 0.021 0.058 0.220 0.007 0.002 0.124

Table S26: The standard deviation on MBANetatom with 10 seeds. The modality types from top
to bottom are sequence, graph, geometry graph, image, geometry image, and video. -R means no
pre-training, L means the number of layers, -I, -G, and -V mean the modalities are image, geometry
image, and video, respectively.

Models #C #N #O #F #S #Cl #Br #P #Si #B #Se #Ge

BERT-6L 0.216 0.035 0.082 0.058 0.007 0.015 0.026 0.010 0.012 0.009 0.011 0.006
BERT-8L 0.218 0.028 0.079 0.043 0.013 0.007 0.027 0.022 0.014 0.008 0.008 0.010

RoBERTa-12L 0.134 0.017 0.079 0.024 0.009 0.013 0.004 0.021 0.025 0.004 0.010 0.013
molformer-R 0.187 0.064 0.109 0.023 0.007 0.014 0.010 0.024 0.032 0.013 0.011 0.021

Chem-BERT-6L 0.213 0.012 0.079 0.051 0.008 0.017 0.017 0.014 0.024 0.014 0.008 0.017
Chem-BERT-8L 0.177 0.028 0.070 0.038 0.009 0.013 0.004 0.022 0.021 0.007 0.026 0.012

CHEM-RoBERTa-12L 0.188 0.018 0.091 0.028 0.011 0.018 0.004 0.016 0.022 0.004 0.012 0.006
Molformer 0.162 0.012 0.093 0.016 0.010 0.015 0.006 0.025 0.018 0.011 0.037 0.020

GIN-R 0.313 0.129 0.076 0.054 0.095 0.027 0.015 0.027 0.024 0.004 0.013 0.003
EdgePred 0.254 0.154 0.089 0.094 0.036 0.098 0.004 0.015 0.026 0.004 0.010 0.002

ContextPred 0.211 0.167 0.077 0.128 0.121 0.073 0.010 0.030 0.017 0.004 0.029 0.008
infomax 0.172 0.088 0.102 0.187 0.065 0.097 0.004 0.031 0.018 0.004 0.011 0.002
masking 0.362 0.167 0.099 0.139 0.139 0.078 0.006 0.022 0.023 0.004 0.018 0.006
MolCLR 0.196 0.143 0.076 0.085 0.079 0.032 0.006 0.015 0.014 0.004 0.014 0.001

MoleBERT 0.389 0.120 0.105 0.085 0.066 0.104 0.006 0.016 0.024 0.003 0.014 0.025
CGIP-Graph 0.175 0.055 0.046 0.040 0.035 0.036 0.008 0.020 0.016 0.009 0.010 0.005
GraphMVP 0.248 0.144 0.103 0.146 0.078 0.021 0.008 0.021 0.018 0.005 0.009 0.006

Uni-Mol-R (1 conf) 0.133 0.086 0.057 0.025 0.031 0.030 0.018 0.021 0.029 0.013 0.005 0.002
Uni-Mol (1 conf) 0.123 0.081 0.045 0.042 0.035 0.042 0.029 0.011 0.013 0.009 0.025 0.005

TFN 0.092 0.069 0.038 0.025 0.025 0.039 0.053 0.014 0.008 0.040 0.016 0.011
SE3 Transformer 0.179 0.081 0.231 0.033 0.006 0.037 0.003 0.018 0.025 0.006 0.016 0.030

ResNet18-I-R 0.095 0.040 0.062 0.037 0.013 0.034 0.002 0.031 0.015 0.004 0.003 0.006
ImageMol 0.116 0.037 0.052 0.029 0.026 0.046 0.003 0.027 0.017 0.003 0.005 0.002

CGIP-Image 0.095 0.027 0.044 0.028 0.028 0.027 0.002 0.013 0.012 0.003 0.003 0.007
MaskMol 0.136 0.023 0.115 0.017 0.010 0.015 0.004 0.021 0.022 0.010 0.013 0.013

IEM-I 0.072 0.032 0.038 0.037 0.013 0.038 0.003 0.019 0.012 0.005 0.008 0.004

ResNet18-G-R 0.171 0.030 0.067 0.069 0.045 0.173 0.005 0.016 0.024 0.011 0.009 0.030
IEM-G (1 conf) 0.063 0.025 0.043 0.084 0.036 0.069 0.006 0.033 0.026 0.006 0.005 0.004

ResNet18-V-R 0.179 0.023 0.032 0.048 0.014 0.044 0.041 0.031 0.036 0.030 0.006 0.001
IEM-V 0.062 0.041 0.038 0.052 0.020 0.042 0.047 0.015 0.065 0.022 0.005 0.003
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Table S27: The average RMSE (standard deviation) performance on MBANetbond with 10 seeds.
The modality types from top to bottom are sequence, graph, geometry graph, image, geometry
image, and video. -R means no pre-training, L means the number of layers, -I, -G, and -V mean the
modalities are image, geometry image, and video, respectively. The green background represents
top-5 performance.

Models #SINGLE #AROMATIC #DOUBLE #TRIPLE Mean

SMILES

BERT-6L 5.092±0.271 3.626±0.176 1.240±0.113 0.606±0.047 2.641
BERT-8L 5.254±0.275 3.543±0.218 1.180±0.107 0.616±0.044 2.648

RoBERTa-12L 5.520±0.313 3.652±0.190 1.210±0.142 0.628±0.075 2.753
molformer-R 5.623±0.247 3.624±0.302 1.315±0.114 0.592±0.049 2.788

Chem-BERT-6L 5.211±0.251 3.602±0.163 1.271±0.105 0.582±0.024 2.666
Chem-BERT-8L 4.937±0.686 3.758±0.436 1.237±0.159 0.597±0.038 2.632

CHEM-RoBERTa-12L 5.548±0.246 3.645±0.197 1.289±0.230 0.621±0.041 2.776
Molformer 5.367±0.266 3.621±0.231 1.215±0.059 0.611±0.032 2.703

Graph

GIN-R 0.988±0.099 1.002±0.124 0.273±0.060 0.145±0.032 0.602
EdgePred 1.005±0.094 0.970±0.135 0.256±0.096 0.157±0.054 0.597

ContextPred 1.001±0.236 0.965±0.161 0.190±0.044 0.155±0.045 0.578
infomax 0.999±0.236 0.980±0.110 0.219±0.098 0.171±0.055 0.592
masking 0.994±0.158 0.967±0.103 0.233±0.065 0.178±0.064 0.593
MolCLR 1.072±0.136 1.004±0.137 0.242±0.059 0.206±0.113 0.631

MoleBERT 1.039±0.210 0.910±0.133 0.196±0.043 0.151±0.050 0.574
CGIP-Graph 0.851±0.227 1.075±0.159 0.237±0.045 0.190±0.085 0.588
GraphMVP 1.157±0.196 0.969±0.120 0.229±0.053 0.138±0.044 0.623

Geometry Graph

Uni-Mol-R (1 conf) 4.156±0.212 3.140±0.203 1.151±0.160 0.606±0.053 2.263
Uni-Mol (1 conf) 4.195±0.263 3.203±0.265 1.184±0.166 0.600±0.039 2.296

TFN 0.380±0.060 0.452±0.203 0.280±0.063 0.125±0.016 0.309
SE3 Transformer 2.580±0.939 3.432±1.017 1.079±0.428 0.478±0.217 1.892

Image

ResNet18-I-R 2.508±0.234 2.515±0.192 1.010±0.070 0.486±0.038 1.630
ImageMol 2.535±0.183 2.358±0.173 1.012±0.071 0.499±0.049 1.601

CGIP-Image 2.503±0.283 2.324±0.153 1.025±0.079 0.510±0.044 1.591
MaskMol 5.066±0.329 3.720±0.356 1.237±0.187 0.601±0.036 2.656

IEM-I 2.655±0.232 2.423±0.178 1.059±0.078 0.543±0.111 1.670

Geometry Image
ResNet18-G-R 2.167±0.205 2.519±0.189 1.079±0.160 0.578±0.036 1.586
IEM-G (1 conf) 2.236±0.224 2.402±0.102 1.008±0.093 0.591±0.030 1.560

Video
ResNet18-V-R 1.310±0.150 1.704±0.122 0.740±0.138 0.437±0.167 1.048

IEM-V 1.194±0.157 1.596±0.138 0.650±0.069 0.421±0.131 0.965

methods (ImageMol, CGIP-Image, MaskMol and IEM-I) produce negative transfer in performance.
This shows that for complete chain molecules, we need to further design more suitable pre-training
tasks to improve the performance of the model on this type of molecules.

I.4 MACRO MOLECULES

Table S37 and Table S38 show the average RMSE performance and corresponding standard de-
viation of the baselines on 10 macro-molecule datasets, respectively. In general, the graph-based
methods show great advantages on macromolecules because the green areas are concentrated in
the graph-based methods. At the same time, we observe that all molecules in the dataset have
rings. Therefore, this indicates that graph-based models are suitable for macro molecules with rings.
Furthermore, we find that molecular fingerprints are the second best modality overall compared
to the graph modality, indicating that fingerprints are a good alternative for macro molecules with
rings. We find that half of the graph-based methods have the problem of negative transfer on macro
molecules, such as EdgePred, infomax, masking, MoleBert, which deserves further study in the
future.

I.5 MACROCYCLIC PEPTIDE MOLECULES

Table S39 and Table S40 show the average RMSE performance and corresponding standard devia-
tion of the baselines on 10 macrocyclic peptide datasets, respectively. Overall, image-based methods
show great advantages as 4 (CGIP-Image, MaskMol, IEM-I, ResNet18-I-R) out of the top 5 base-
lines are vision-based methods, which shows the advantages of image modality on macrocyclic
peptides. Additionally, we found the limitation of fingerprinting on macrocyclic peptides, with only
2 results out of 66 achieving top-5 performance. If we only observe the non-pretrained methods, we
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Table S28: The average RMSE performance on MBANetattr with 10 seeds. The modality types
from top to bottom are sequence, graph, geometry graph, image, geometry image, and video. -R
means no pre-training, L means the number of layers, -I, -G, and -V mean the modalities are image,
geometry image, and video, respectively. The green background represents top-5 performance.

Models MW LogP MR BalabanJ #HA #HD #VE TPSA Mean

BERT-6L 39.046 1.087 9.068 0.572 1.261 0.997 15.733 23.823 11.448
BERT-8L 39.414 1.092 8.988 0.579 1.198 0.939 15.709 23.853 11.471

RoBERTa-12L 47.678 0.969 10.315 0.415 1.401 0.990 18.931 24.872 13.197
molformer-R 45.182 1.121 10.428 0.534 1.261 1.051 18.099 25.567 12.906

Chem-BERT-6L 38.875 1.030 8.749 0.541 1.240 0.968 15.677 23.714 11.349
Chem-BERT-8L 38.660 1.043 8.813 0.600 1.170 0.941 15.539 23.422 11.273

CHEM-RoBERTa-12L 47.740 0.962 10.214 0.539 1.395 0.954 18.540 24.814 13.145
Molformer 43.787 1.105 9.434 0.624 1.295 1.096 17.079 25.100 12.440

GIN-R 30.627 0.944 9.947 0.530 0.800 0.877 13.438 10.946 8.514
EdgePred 26.004 0.825 7.613 0.661 0.811 0.748 9.433 8.925 6.878

ContextPred 27.664 0.822 7.389 0.599 0.773 0.754 9.318 8.387 6.963
infomax 26.379 0.761 7.152 0.585 0.721 0.694 9.176 8.827 6.787
masking 25.193 0.713 6.516 0.502 0.694 0.846 9.081 8.740 6.536
MolCLR 28.482 0.803 9.801 0.603 0.675 0.685 11.910 10.982 7.993

MoleBERT 23.475 0.650 6.062 0.495 0.788 0.714 8.871 8.795 6.231
CGIP-Graph 16.019 0.674 4.833 0.384 0.614 0.447 6.075 4.991 4.255
GraphMVP 28.781 0.761 9.264 0.704 0.662 0.813 11.588 10.157 7.841

Uni-Mol-R (1 conf) 36.526 1.081 9.017 0.640 1.103 1.171 14.486 22.852 10.859
Uni-Mol (1 conf) 37.862 1.101 8.893 0.533 0.918 1.095 14.419 22.263 10.886

TFN 10.075 0.688 3.408 0.534 0.713 0.654 3.380 5.279 3.091
SE3 Transformer 33.948 0.888 11.641 0.568 1.126 0.920 19.913 24.265 11.659

ResNet18-I-R 23.070 0.921 6.251 0.601 0.935 0.746 8.721 14.364 6.951
ImageMol 21.691 0.908 5.686 0.629 0.807 0.811 7.971 13.566 6.509

CGIP-Image 23.269 0.955 6.382 0.494 0.851 0.801 8.844 14.549 7.018
MaskMol 40.568 1.073 9.277 0.553 1.149 0.993 16.432 24.063 11.764

IEM-I 22.673 0.865 5.906 0.544 0.871 0.784 8.365 14.144 6.769

ResNet18-G-R 15.357 0.813 4.709 0.574 0.794 0.655 6.930 8.951 4.848
IEM-G (1 conf) 15.694 0.745 4.834 0.468 0.713 0.717 6.960 9.193 4.916

ResNet18-V-R 8.121 0.750 2.661 0.582 0.711 0.656 3.870 3.929 2.660
IEM-V 6.542 0.703 2.280 0.417 0.726 0.707 2.699 3.961 2.254

find that the 3 vision-based modalities are the best because their performance is in the top 3. This
suggests that we can make some further efforts in the future and propose some vision-based methods
for the prediction of macrocyclic peptides.

I.6 RETICULAR MOLECULES

Table S41 and Table S42 show the average RMSE performance and corresponding standard de-
viation of the baselines on 10 reticular datasets, respectively. We find that image-based methods
without any pre-training achieve the best average performance on reticular molecules compared to
many pre-trained methods, which suggests that the image modality is suitable for processing retic-
ular molecules. If we only look at the non-pretrained methods, the three vision-based modalities
achieve the best top 3 performance. In addition, we find that all vision-based pre-training methods
suffer from negative transfer problems on reticular molecules, which deserves to be further studied
and explored in the future.

J COMPUTATIONAL EFFICIENCY

In virtual screening, computational efficiency of models is very important. Here, we analyze the
number of parameters of different modal methods and their computational efficiency in training and
inference. All evaluation are performed on 1 GeForce RTX 4090 GPU and with a batch size of 8. As
shown in Table S43, we find that the video modality takes the most time. This is because a molecular
video consists of 60 frames, which greatly increases the time cost. Secondly, we find that the image,
SMILES and geometry graph modalities have larger parameter counts, such as MaskMol, CHEM-
RoBERTa and Uni-Mol, which is due to the fact that they utilize the architecture of transformer and
its variants.
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Table S29: The standard deviation performance on MBANetattr with 10 seeds. The modality types
from top to bottom are sequence, graph, geometry graph, image, geometry image, and video. -R
means no pre-training, L means the number of layers, -I, -G, and -V mean the modalities are image,
geometry image, and video, respectively.

Models MW LogP MR BalabanJ #HA #HD #VE TPSA

BERT-6L 1.476 0.253 0.866 0.209 0.434 0.176 0.769 1.356
BERT-8L 1.547 0.259 0.916 0.213 0.310 0.145 0.779 1.373

RoBERTa-12L 2.329 0.077 0.910 0.170 0.313 0.140 1.335 2.093
molformer-R 1.529 0.213 1.332 0.247 0.252 0.277 1.360 2.695

Chem-BERT-6L 1.452 0.158 1.199 0.277 0.299 0.182 0.810 1.246
Chem-BERT-8L 1.734 0.159 0.989 0.294 0.274 0.167 0.938 1.322

CHEM-RoBERTa-12L 2.195 0.058 0.938 0.262 0.306 0.117 1.239 2.150
Molformer 1.678 0.210 1.102 0.285 0.294 0.329 1.072 2.522

GIN-R 2.209 0.290 1.356 0.178 0.192 0.269 0.939 2.655
EdgePred 2.390 0.213 1.193 0.231 0.161 0.110 1.481 1.197

ContextPred 2.546 0.180 1.127 0.169 0.178 0.084 0.985 1.142
infomax 3.192 0.137 0.920 0.186 0.116 0.089 0.765 1.403
masking 3.185 0.148 0.774 0.116 0.070 0.195 0.873 1.323
MolCLR 3.530 0.254 1.126 0.220 0.100 0.104 1.155 2.636

MoleBERT 2.107 0.045 0.824 0.163 0.138 0.080 1.129 0.654
CGIP-Graph 1.406 0.188 0.698 0.171 0.210 0.108 0.719 0.667
GraphMVP 3.009 0.179 1.105 0.196 0.095 0.105 1.259 1.657

Uni-Mol-R (1 conf) 4.428 0.136 1.514 0.305 0.183 0.208 2.452 2.007
Uni-Mol (1 conf) 3.155 0.155 1.411 0.244 0.098 0.297 1.957 1.797

TFN 1.837 0.122 0.679 0.244 0.092 0.065 0.506 1.458
SE3 Transformer 0.083 0.003 0.039 0.025 0.019 0.009 0.026 0.017

ResNet18-I-R 0.718 0.073 0.692 0.223 0.185 0.090 0.922 1.735
ImageMol 1.206 0.105 0.342 0.319 0.089 0.134 0.871 0.527

CGIP-Image 0.931 0.176 0.308 0.155 0.133 0.114 0.781 1.046
MaskMol 1.477 0.247 0.773 0.244 0.246 0.127 1.449 1.322

IEM-I 1.057 0.065 0.380 0.238 0.106 0.078 0.974 0.717

ResNet18-G-R 1.190 0.156 0.484 0.162 0.132 0.085 0.616 0.499
IEM-G (1 conf) 1.812 0.043 0.898 0.151 0.063 0.129 1.103 0.664

ResNet18-V-R 1.083 0.102 0.363 0.274 0.224 0.126 0.704 0.408
IEM-V 0.845 0.085 0.107 0.136 0.205 0.185 0.496 0.539

Given the high temporal cost of the video modality, we further discuss the impact of different num-
bers of frames on the computational cost. As shown in Table S44, We find that adjusting the number
of frames can effectively improve computational efficiency. Therefore, we can try to reduce the
number of frames when computing resources are limited.

Next, we analyze how long it takes the model to perform virtual screening on 10,000 molecules. As
shown in Table S45, we find that the video modality required more time for virtual screening, while
the other modalities took comparable time.

K IN-DEPTH ANALYSIS OF INSIGHTS

K.1 PREDICTION DIVERSITY BETWEEN DIFFERENT MODALITIES ON HIV DATASET

Here, we study the pairwise diversity of different modalities, including feature diversity and pre-
diction diversity, on a single dataset. Especially, we select the dataset with the largest number of
samples from MoleculeNet based on single-task classification as an example, namely HIV, because
a larger number of samples will provide a more stable conclusion. We use mcfp 2048, Chem-
BERT-8L, MoleBERT, Uni-Mol (10 conf), MaskMol, IEM-G, and VideoMol as representatives
of each modality (fingerprint, sequence, geometry graph, image, geometry image, video) because
they achieve excellent performance on 8 molecular property prediction tasks based on classifica-
tion tasks. The ROC-AUC performances of mcfp 2048, Chem-BERT-8L, MoleBERT, Uni-Mol (10
conf), MaskMol, IEM-G (10 conf), and VideoMol on the HIV test set are 74.1%, 78.8%, 76.7%,
77.8%, 75.1%, 80.5% and 78.3% respectively.

As shown in Table S47 and Table S48, we find that different modalities have different degrees of
differences in the logits of predicting HIV, including RMSE differences and Pearson differences,
which provides evidence that fusing different molecular modalities can increase the diversity of
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Table S30: The RMSE performance on MBANet30Katom, MBANet30Kbond, MBANet30Kattr with 3 seeds.
*-R, TFN and SE3 Transformer represent non-pre-trained models, and the others are pre-trained
models.

Models MBANet30Katom MBANet30Kbond MBANet30Kattr

SMILES-based

BERT-6L 0.647 2.020 10.961
BERT-8L 0.645 2.014 10.936

RoBERTa-12L 0.644 2.030 11.223
molformer-R 0.646 2.042 11.159

Chem-BERT-6L 0.647 2.019 10.960
Chem-BERT-8L 0.647 2.019 10.960

CHEM-RoBERTa-12L 0.644 2.042 11.249
Molformer 0.646 2.046 11.031

Graph-based

GIN-R 0.339 0.627 6.711
EdgePred 0.306 0.613 6.480

ContextPred 0.312 0.605 6.508
infomax 0.325 0.612 6.313
masking 0.315 0.606 6.323
MolCLR 0.329 0.627 6.873

MoleBERT 0.309 0.607 6.259
CGIP-Graph 0.243 0.574 5.710
GraphMVP 0.317 0.621 6.868

Geometry-based

Uni-Mol-R (1 conf) 0.504 1.977 10.299
Uni-Mol (1 conf) 0.510 1.979 10.247

TFN 0.187 0.239 2.913
SE3 Transformer 0.642 2.070 11.087

Image-based

ResNet18-I-R 0.359 1.176 6.263
ImageMol 0.355 1.156 6.224

CGIP-Image 0.358 1.163 6.400
MaskMol 0.641 1.984 10.748

IEM-I 0.358 1.198 6.433

Geometry-based
ResNet18-G-R 0.242 1.139 5.164
IEM-G (1 conf) 0.245 1.136 5.315

Video-based
ResNet18-V-R 0.145 0.779 2.504

IEM-V 0.140 0.751 2.216
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Table S31: The average RMSE performance on 10 acyclic chain (AC) datasets from Struct-
Net. AC#1, AC#2, AC#3, AC#4, AC#5, AC#6, AC#7, AC#8, AC#9 and AC#10 represent
CHEMBL1614458 Potency, CHEMBL4513082 Inhibition, CHEMBL4495582 Inhibition,
CHEMBL4296187 Inhibition, CHEMBL4296188 Inhibition, CHEMBL1614361 Potency,
CHEMBL4303805 Inhibition, CHEMBL4649955 Potency, CHEMBL4649949 Potency and
CHEMBL4649948 Potency, respectively. The green background represents top-5 performance.

Models AC#1 AC#2 AC#3 AC#4 AC#5 AC#6 AC#7 AC#8 AC#9 AC#10 Mean

mcfp4 2048 0.932 0.143 17.976 19.208 7.337 1.226 29.222 14.469 7.497 9.194 10.720
ecfp4 2048 0.954 0.147 18.022 19.186 7.399 1.290 29.415 14.468 7.482 9.194 10.756

maccs 1.044 0.151 17.191 19.148 7.091 1.159 29.277 14.473 7.468 9.190 10.619
physchem 0.795 0.155 18.122 19.271 7.318 1.159 29.234 14.483 7.517 9.202 10.726

atompair 2048 1.098 0.152 17.962 18.759 7.241 1.420 29.572 14.474 7.301 9.192 10.717
rdkDes 1.049 0.133 17.167 19.349 6.984 1.317 29.046 14.470 7.497 9.186 10.620

BERT-6L 0.757 0.400 15.976 19.173 6.818 1.175 28.848 14.499 7.594 9.379 10.462
BERT-8L 0.757 0.392 15.977 19.179 6.822 1.167 28.892 14.502 7.585 9.350 10.462

RoBERTa-12L 0.758 0.370 15.959 19.219 6.817 1.177 28.730 14.500 7.603 9.367 10.450
molformer-R 0.758 0.389 15.952 19.168 6.822 1.176 28.682 14.496 7.595 9.353 10.439

Chem-BERT-6L 0.757 0.442 15.980 19.164 6.821 1.171 28.918 14.502 7.597 9.348 10.470
Chem-BERT-8L 0.757 0.426 15.994 19.169 6.822 1.177 28.997 14.499 7.597 9.365 10.480

CHEM-RoBERTa-12L 0.760 0.416 15.984 19.196 6.818 1.174 28.965 14.502 7.601 9.359 10.478
Molformer 0.758 0.414 15.962 19.132 6.820 1.171 28.681 14.498 7.590 9.342 10.437

GIN-R 0.774 0.261 14.889 19.617 7.059 1.187 28.948 14.524 7.767 9.564 10.459
EdgePred 0.968 0.152 16.519 19.331 6.899 1.175 29.197 14.382 7.451 9.184 10.526

ContextPred 0.780 0.183 15.162 19.280 7.100 1.240 29.121 14.463 7.364 9.086 10.378
infomax 0.795 0.238 14.463 19.223 6.971 1.301 29.171 14.412 7.676 9.202 10.345
masking 0.757 0.185 14.693 19.193 7.122 1.208 29.123 14.463 7.699 9.224 10.367
MolCLR 0.773 0.200 14.899 19.312 6.817 1.195 28.959 14.308 7.681 9.445 10.359

MoleBERT 0.823 0.172 14.211 19.087 6.713 1.309 29.213 14.481 7.462 9.178 10.265
CGIP-Graph 0.806 0.160 14.426 19.914 6.859 1.264 29.180 14.442 7.876 9.290 10.422
GraphMVP 0.820 0.231 13.950 19.430 7.132 1.244 29.649 14.449 7.860 9.191 10.396

SchNet 0.828 0.324 13.176 19.230 7.347 1.360 29.318 14.485 7.513 9.262 10.284
EGNN 0.759 0.217 15.898 19.134 6.818 1.212 29.331 14.446 7.534 9.318 10.467
TFN 0.883 0.469 15.922 18.951 7.101 1.448 28.928 14.382 7.608 9.275 10.497

SE3 Transformer 0.868 0.334 15.426 18.934 6.967 1.435 29.001 14.621 7.886 9.537 10.501
PaiNN 2.365 0.708 15.725 18.935 7.885 1.604 30.369 14.485 7.993 9.645 10.971

Uni-Mol-R (1 conf) 0.758 0.411 15.935 19.185 6.819 1.175 28.797 14.499 7.606 9.370 10.455
Uni-Mol (1 conf) 0.758 0.418 15.864 19.196 6.817 1.179 28.814 14.483 7.568 9.353 10.445

ResNet18-I-R 0.759 0.328 16.341 19.140 6.888 1.195 29.084 14.455 7.908 9.404 10.550
ImageMol 0.781 0.355 16.109 19.259 6.970 1.252 29.039 14.368 7.948 9.470 10.555

CGIP-Image 0.768 0.247 16.281 19.147 6.897 1.196 28.980 14.525 8.170 9.625 10.584
MaskMol 0.759 0.404 15.962 19.161 6.821 1.172 28.944 14.491 7.576 9.319 10.461

IEM-I 0.762 0.199 16.288 19.166 6.819 1.229 29.279 14.421 7.879 9.498 10.554

ResNet18-G-R 0.775 0.334 16.538 18.802 6.737 1.139 29.115 14.524 7.560 9.290 10.481
IEM-G (1 conf) 0.771 0.218 15.876 19.294 6.996 1.155 28.986 14.733 7.664 9.242 10.494

ViT-G-R 0.758 0.359 15.962 19.165 6.827 1.176 28.662 14.462 7.582 9.344 10.430
VideoMol-G 0.759 0.401 15.970 19.157 6.822 1.172 28.680 14.476 7.580 9.350 10.437

ResNet18-V-R 0.769 0.359 16.196 18.761 6.821 1.156 29.119 14.435 7.475 9.323 10.441
IEM-V 0.771 0.210 15.798 18.949 6.813 1.175 29.280 14.432 7.460 9.311 10.420
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Table S32: The standard deviation on 10 acyclic chain (AC) datasets from StructNet. AC#1, AC#2,
AC#3, AC#4, AC#5, AC#6, AC#7, AC#8, AC#9 and AC#10 represent CHEMBL1614458 Potency,
CHEMBL4513082 Inhibition, CHEMBL4495582 Inhibition, CHEMBL4296187 Inhibition,
CHEMBL4296188 Inhibition, CHEMBL1614361 Potency, CHEMBL4303805 Inhibition,
CHEMBL4649955 Potency, CHEMBL4649949 Potency and CHEMBL4649948 Potency, re-
spectively.

Models AC#1 AC#2 AC#3 AC#4 AC#5 AC#6 AC#7 AC#8 AC#9 AC#10

mcfp4 2048 0.008 0.003 0.056 0.008 0.009 0.004 0.013 0.005 0.003 0.002
ecfp4 2048 0.008 0.004 0.053 0.008 0.008 0.004 0.021 0.005 0.004 0.002

maccs 0.011 0.006 0.045 0.006 0.009 0.004 0.025 0.006 0.009 0.006
physchem 0.013 0.028 0.050 0.012 0.026 0.008 0.020 0.012 0.006 0.013

atompair 2048 0.008 0.003 0.056 0.011 0.006 0.004 0.028 0.007 0.005 0.003
rdkDes 0.013 0.003 0.085 0.009 0.008 0.007 0.015 0.006 0.007 0.008

BERT-6L 0.000 0.062 0.060 0.050 0.005 0.013 0.253 0.007 0.019 0.034
BERT-8L 0.000 0.058 0.069 0.066 0.007 0.013 0.269 0.003 0.018 0.053

RoBERTa-12L 0.002 0.082 0.022 0.061 0.003 0.009 0.406 0.006 0.017 0.029
molformer-R 0.002 0.082 0.005 0.034 0.005 0.004 0.216 0.008 0.016 0.042

Chem-BERT-6L 0.001 0.077 0.044 0.041 0.015 0.009 0.310 0.005 0.027 0.038
Chem-BERT-8L 0.000 0.094 0.059 0.051 0.012 0.005 0.241 0.006 0.019 0.041

CHEM-RoBERTa-12L 0.003 0.081 0.038 0.049 0.004 0.008 0.315 0.009 0.022 0.030
Molformer 0.001 0.097 0.031 0.042 0.006 0.010 0.249 0.011 0.007 0.073

GIN-R 0.017 0.101 1.137 0.412 0.265 0.047 0.305 0.194 0.279 0.341
EdgePred 0.558 0.029 1.804 0.107 0.109 0.033 0.073 0.257 0.199 0.156

ContextPred 0.023 0.028 0.473 0.117 0.145 0.022 0.142 0.045 0.043 0.162
infomax 0.026 0.047 0.333 0.168 0.166 0.034 0.093 0.092 0.303 0.130
masking 0.014 0.020 1.020 0.080 0.328 0.016 0.237 0.030 0.177 0.102
MolCLR 0.028 0.049 0.570 0.215 0.269 0.024 0.430 0.176 0.145 0.271

MoleBERT 0.045 0.020 0.555 0.172 0.073 0.031 0.128 0.026 0.069 0.019
CGIP-Graph 0.018 0.032 1.051 0.721 0.208 0.055 0.374 0.042 0.131 0.142
GraphMVP 0.076 0.047 1.503 0.528 0.234 0.068 0.498 0.064 0.394 0.076

SchNet 0.030 0.124 1.182 0.634 0.283 0.076 0.395 0.080 0.096 0.172
EGNN 0.001 0.148 0.089 0.065 0.011 0.025 0.195 0.143 0.024 0.359
TFN 0.093 0.157 0.598 0.110 0.149 0.052 0.266 0.231 0.129 0.143

SE3 Transformer 0.045 0.098 0.721 0.182 0.182 0.058 0.472 0.267 0.303 0.231
PaiNN 0.305 0.240 0.915 0.366 0.443 0.138 0.562 0.244 0.280 0.365

Uni-Mol-R (1 conf) 0.001 0.068 0.064 0.091 0.005 0.006 0.154 0.008 0.022 0.034
Uni-Mol (1 conf) 0.001 0.089 0.161 0.067 0.026 0.015 0.178 0.071 0.050 0.049

ResNet18-I-R 0.010 0.113 0.217 0.174 0.095 0.038 0.399 0.119 0.326 0.181
ImageMol 0.023 0.184 0.421 0.398 0.267 0.057 0.694 0.161 0.531 0.539

CGIP-Image 0.013 0.099 0.663 0.602 0.248 0.036 0.337 0.111 0.419 0.650
MaskMol 0.003 0.074 0.069 0.053 0.005 0.015 0.262 0.020 0.061 0.039

IEM-I 0.009 0.038 0.772 0.178 0.317 0.059 0.464 0.183 0.417 0.571

ResNet18-G-R 0.010 0.076 0.368 0.290 0.159 0.020 0.354 0.175 0.205 0.097
IEM-G (1 conf) 0.026 0.110 0.268 0.607 0.231 0.021 0.381 0.634 0.189 0.172

ViT-G-R 0.001 0.078 0.141 0.080 0.014 0.023 0.165 0.120 0.026 0.046
VideoMol-G 0.002 0.120 0.225 0.056 0.007 0.023 0.070 0.030 0.031 0.043

ResNet18-V-R 0.009 0.081 0.264 0.118 0.030 0.018 0.141 0.063 0.102 0.088
IEM-V 0.022 0.088 0.284 0.224 0.191 0.028 0.278 0.147 0.181 0.207
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Table S33: The average RMSE performance on 10 acyclic (A) datasets from StructNet. A#1,
A#2, A#3, A#4, A#5, A#6, A#7, A#8, A#9, A#10 represent CHEMBL4513082 Inhibition,
CHEMBL4495582 Inhibition, CHEMBL1614458 Potency, CHEMBL4303805 Inhibition,
CHEMBL4808149 Inhibition, CHEMBL4296187 Inhibition, CHEMBL4808150 Inhibition,
CHEMBL4296188 Inhibition, CHEMBL4649955 Potency, CHEMBL4649949 Potency, respec-
tively. The green background represents top-5 performance.

Models A#1 A#2 A#3 A#4 A#5 A#6 A#7 A#8 A#9 A#10 Mean

mcfp4 2048 0.134 17.750 0.666 15.248 26.727 17.738 14.628 6.490 13.084 13.108 12.557
ecfp4 2048 0.130 17.746 0.626 15.214 26.740 17.713 14.622 6.544 13.029 13.147 12.551

maccs 0.140 17.387 0.670 15.129 26.760 17.704 14.634 6.537 13.085 13.109 12.516
physchem 0.154 17.765 0.531 15.208 26.739 17.823 14.634 6.430 13.073 13.107 12.546

atompair 2048 0.135 17.996 0.782 15.394 26.721 17.548 14.626 6.431 13.104 12.989 12.573
rdkDes 0.139 17.284 0.697 15.379 26.736 17.843 14.629 6.369 12.982 13.019 12.508

BERT-6L 0.131 17.418 0.566 15.311 27.162 17.480 14.636 6.437 13.004 13.079 12.522
BERT-8L 0.130 17.410 0.566 15.306 27.158 17.480 14.637 6.425 13.006 13.081 12.520

RoBERTa-12L 0.133 17.415 0.567 15.370 27.225 17.477 14.636 6.401 13.001 13.052 12.528
molformer-R 0.130 17.423 0.566 15.369 27.206 17.479 14.650 6.386 13.005 13.100 12.531

Chem-BERT-6L 0.131 17.410 0.566 15.406 27.194 17.479 14.638 6.425 13.004 13.070 12.532
Chem-BERT-8L 0.132 17.417 0.567 15.302 27.178 17.479 14.639 6.425 13.001 13.066 12.521

CHEM-RoBERTa-12L 0.132 17.420 0.566 15.397 27.186 17.409 14.638 6.413 13.002 13.031 12.519
Molformer 0.131 17.421 0.566 15.277 27.167 17.476 14.637 6.380 13.003 13.045 12.510

GIN-R 0.191 15.578 0.590 15.626 27.423 18.694 14.554 6.319 13.169 13.217 12.536
EdgePred 0.147 49.805 0.578 15.623 26.868 17.992 13.821 6.215 13.253 13.072 15.737

ContextPred 0.185 12.660 0.585 15.560 26.788 17.876 13.928 5.881 13.180 12.875 11.952
infomax 0.258 14.447 0.545 15.551 26.784 17.795 14.156 6.176 13.288 12.475 12.147
masking 0.156 13.128 0.558 15.562 26.814 17.769 14.119 6.133 13.330 13.102 12.067
MolCLR 0.137 15.522 0.575 15.826 27.120 17.939 14.544 6.352 13.077 13.121 12.421

MoleBERT 0.216 12.496 0.552 15.343 26.824 17.704 13.605 5.633 13.124 12.936 11.843
CGIP-Graph 0.198 12.395 0.603 16.262 26.659 18.565 14.677 5.770 13.118 12.598 12.085
GraphMVP 0.142 11.831 0.599 16.323 26.701 19.174 14.528 6.195 13.233 12.997 12.172

SchNet 0.222 13.636 0.610 16.680 27.419 17.531 15.177 6.390 13.279 13.253 12.420
EGNN 0.134 16.746 0.576 16.158 27.181 17.527 14.781 6.403 13.072 13.110 12.569
TFN 0.177 14.336 0.641 15.314 27.021 17.453 14.530 6.396 13.071 12.981 12.192

SE3 Transformer 0.238 15.176 0.614 15.491 27.222 17.475 14.308 6.304 13.118 13.172 12.312
PaiNN 0.696 13.416 2.167 18.349 27.323 17.384 16.141 6.584 13.122 13.161 12.834

Uni-Mol-R (1 conf) 0.132 17.340 0.566 15.348 27.166 17.481 14.639 6.433 13.004 13.070 12.518
Uni-Mol (1 conf) 0.128 17.376 0.566 15.315 27.197 17.476 14.639 6.445 13.002 13.097 12.524

ResNet18-I-R 0.138 16.694 0.563 15.507 27.018 17.474 14.811 6.434 13.090 12.996 12.473
ImageMol 0.151 16.214 0.579 16.242 27.165 17.776 14.850 6.419 13.295 13.152 12.584

CGIP-Image 0.150 16.349 0.571 16.651 26.953 17.626 14.790 6.434 13.458 12.982 12.596
MaskMol 0.131 17.421 0.566 15.463 27.129 17.481 14.651 6.419 13.002 13.091 12.535

IEM-I 0.149 15.975 0.576 16.437 27.383 17.741 15.097 6.432 13.101 13.196 12.609

ResNet18-G-R 0.138 16.497 0.554 15.922 27.006 17.590 14.619 6.388 13.092 13.010 12.482
IEM-G (1 conf) 0.157 15.366 0.575 16.170 26.945 17.570 14.585 6.411 13.040 13.208 12.403

ViT-G-R 0.130 17.219 0.565 15.261 27.183 17.479 14.632 6.381 13.006 13.048 12.490
VideoMol-G 0.127 17.197 0.562 15.282 27.145 17.457 14.637 6.422 13.008 13.042 12.488

ResNet18-V-R 0.137 16.421 0.551 15.785 27.007 17.519 14.554 6.388 13.019 13.063 12.444
IEM-V 0.135 13.842 0.556 16.536 26.973 17.539 14.681 6.415 13.053 13.075 12.281
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Table S34: The standard deviation on 10 acyclic (A) datasets from StructNet. A#1, A#2,
A#3, A#4, A#5, A#6, A#7, A#8, A#9, A#10 represent CHEMBL4513082 Inhibition,
CHEMBL4495582 Inhibition, CHEMBL1614458 Potency, CHEMBL4303805 Inhibition,
CHEMBL4808149 Inhibition, CHEMBL4296187 Inhibition, CHEMBL4808150 Inhibition,
CHEMBL4296188 Inhibition, CHEMBL4649955 Potency, CHEMBL4649949 Potency, respec-
tively.

Models A#1 A#2 A#3 A#4 A#5 A#6 A#7 A#8 A#9 A#10

mcfp4 2048 0.003 0.014 0.002 0.007 0.002 0.008 0.009 0.006 0.004 0.011
ecfp4 2048 0.003 0.012 0.002 0.008 0.002 0.006 0.020 0.007 0.011 0.027

maccs 0.008 0.021 0.006 0.006 0.008 0.005 0.006 0.017 0.015 0.016
physchem 0.017 0.017 0.002 0.008 0.011 0.014 0.003 0.017 0.015 0.005

atompair 2048 0.003 0.010 0.004 0.006 0.004 0.009 0.004 0.010 0.004 0.022
rdkDes 0.013 0.009 0.005 0.005 0.007 0.012 0.005 0.014 0.013 0.067

BERT-6L 0.005 0.018 0.001 0.097 0.111 0.002 0.011 0.034 0.007 0.037
BERT-8L 0.003 0.017 0.001 0.096 0.108 0.004 0.011 0.022 0.009 0.031

RoBERTa-12L 0.012 0.012 0.004 0.109 0.138 0.004 0.011 0.058 0.005 0.059
molformer-R 0.003 0.009 0.001 0.140 0.144 0.004 0.018 0.047 0.010 0.076

Chem-BERT-6L 0.004 0.011 0.000 0.246 0.161 0.001 0.013 0.023 0.008 0.035
Chem-BERT-8L 0.005 0.012 0.003 0.132 0.161 0.003 0.014 0.041 0.008 0.059

CHEM-RoBERTa-12L 0.005 0.007 0.002 0.096 0.068 0.218 0.015 0.071 0.005 0.067
Molformer 0.005 0.006 0.001 0.027 0.069 0.009 0.015 0.059 0.008 0.077

GIN-R 0.048 2.463 0.019 0.493 0.559 0.813 0.334 0.077 0.271 0.284
EdgePred 0.014 35.577 0.020 0.302 0.155 0.082 0.460 0.215 0.110 0.123

ContextPred 0.038 2.445 0.026 0.203 0.081 0.124 0.604 0.497 0.181 0.153
infomax 0.053 3.404 0.024 0.176 0.045 0.105 0.474 0.396 0.209 0.561
masking 0.016 2.483 0.015 0.234 0.062 0.147 0.430 0.472 0.251 0.024
MolCLR 0.014 2.662 0.018 0.549 0.317 0.412 0.265 0.183 0.204 0.300

MoleBERT 0.082 1.515 0.022 0.114 0.094 0.074 0.270 0.310 0.064 0.187
CGIP-Graph 0.049 1.801 0.041 0.548 0.037 0.552 0.314 0.199 0.164 0.210
GraphMVP 0.015 2.054 0.036 0.947 0.029 0.803 0.501 0.295 0.148 0.317

SchNet 0.053 2.075 0.037 1.866 0.644 0.347 0.735 0.144 0.337 0.604
EGNN 0.016 1.135 0.020 0.926 0.256 0.143 0.178 0.036 0.021 0.085
TFN 0.036 3.056 0.047 0.158 0.570 0.187 0.492 0.103 0.138 0.177

SE3 Transformer 0.035 1.728 0.037 0.228 0.259 0.059 0.173 0.120 0.108 0.158
PaiNN 0.333 2.170 0.279 1.693 0.536 0.193 0.558 0.200 0.134 0.258

Uni-Mol-R (1 conf) 0.015 0.134 0.001 0.148 0.165 0.004 0.013 0.023 0.012 0.079
Uni-Mol (1 conf) 0.006 0.075 0.017 0.161 0.190 0.012 0.013 0.069 0.011 0.082

ResNet18-I-R 0.011 0.972 0.026 0.181 0.089 0.106 0.170 0.072 0.078 0.178
ImageMol 0.022 1.743 0.035 0.605 0.519 0.317 0.326 0.121 0.319 0.187

CGIP-Image 0.019 1.598 0.030 1.923 0.278 0.307 0.107 0.202 0.753 0.175
MaskMol 0.003 0.008 0.002 0.350 0.175 0.004 0.016 0.015 0.011 0.062

IEM-I 0.014 1.901 0.023 1.000 0.652 0.513 0.498 0.121 0.069 0.308

ResNet18-G-R 0.011 0.509 0.013 0.504 0.290 0.073 0.037 0.051 0.118 0.092
IEM-G (1 conf) 0.025 2.382 0.020 0.934 0.404 0.147 0.309 0.083 0.219 0.274

ViT-G-R 0.006 0.112 0.006 0.133 0.104 0.015 0.009 0.029 0.024 0.083
VideoMol-G 0.005 0.083 0.010 0.158 0.156 0.071 0.013 0.045 0.020 0.090

ResNet18-V-R 0.011 0.382 0.009 0.313 0.246 0.116 0.050 0.043 0.053 0.039
IEM-V 0.012 1.533 0.015 1.862 0.596 0.402 0.073 0.176 0.174 0.071
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Table S35: The average RMSE performance on 10 complete chain (CC) datasets from
StructNet. CC#1, CC#2, CC#3, CC#4, CC#5, CC#6, CC#7, CC#8, CC#9, CC#10 repre-
sent CHEMBL4649949 Potency, CHEMBL4649948 Potency, CHEMBL4649955 Potency,
CHEMBL4888485 Inhibition, CHEMBL4296187 Inhibition, CHEMBL4296188 Inhibition,
CHEMBL4296802 Inhibition, CHEMBL1614459 Potency, CHEMBL1614458 Potency,
CHEMBL1614530 Potency, respectively. The green background represents top-5 perfor-
mance.

Models CC#1 CC#2 CC#3 CC#4 CC#5 CC#6 CC#7 CC#8 CC#9 CC#10 Mean

mcfp4 2048 17.626 14.213 11.076 9.284 18.121 5.909 14.239 1.051 0.602 0.948 9.307
ecfp4 2048 17.678 14.256 11.091 9.291 18.067 5.858 14.282 1.064 0.625 0.964 9.318

maccs 17.395 14.265 11.041 9.247 18.068 5.537 14.311 0.995 0.537 0.885 9.228
physchem 17.742 14.407 11.040 9.257 18.084 5.905 14.344 0.948 0.451 0.841 9.302

atompair 2048 17.660 14.087 11.088 9.285 18.097 5.817 14.034 1.064 0.534 0.874 9.254
rdkDes 17.751 14.402 11.014 9.271 18.110 5.851 14.206 0.912 0.433 0.894 9.284

BERT-6L 17.709 14.406 11.045 9.275 18.169 5.879 14.406 0.934 0.435 0.824 9.308
BERT-8L 17.712 14.406 11.045 9.274 18.165 5.874 14.404 0.934 0.433 0.823 9.307

RoBERTa-12L 17.737 14.407 11.045 9.272 18.266 5.870 14.409 0.934 0.434 0.823 9.320
molformer-R 17.726 14.407 11.046 9.268 18.193 5.870 14.374 0.934 0.434 0.824 9.308

Chem-BERT-6L 17.705 14.406 11.046 9.272 18.180 5.872 14.396 0.934 0.434 0.824 9.307
Chem-BERT-8L 17.713 14.406 11.045 9.271 18.159 5.874 14.388 0.934 0.433 0.823 9.305

CHEM-RoBERTa-12L 17.733 14.406 11.044 9.280 18.303 5.868 14.455 0.934 0.434 0.823 9.328
Molformer 17.718 14.407 11.046 9.276 18.197 5.870 14.383 0.934 0.432 0.823 9.309

GIN-R 17.559 14.186 11.039 9.372 18.325 5.641 14.118 0.938 0.447 0.831 9.246
EdgePred 17.914 14.217 11.055 9.288 18.701 5.552 14.202 0.957 0.438 0.821 9.314

ContextPred 17.841 14.436 11.087 9.291 18.628 5.543 14.196 0.972 0.429 0.821 9.324
infomax 18.285 14.604 11.040 9.211 18.331 5.527 14.115 0.995 0.438 0.814 9.336
masking 18.085 14.417 11.029 9.287 18.432 5.604 14.120 0.973 0.444 0.822 9.321
MolCLR 17.590 14.171 10.998 9.299 18.305 5.625 14.098 0.946 0.437 0.825 9.229

MoleBERT 18.257 14.654 11.208 9.234 18.375 5.663 14.139 0.998 0.456 0.880 9.386
CGIP-Graph 17.800 14.195 10.993 11.150 18.333 5.657 14.238 0.980 0.429 0.840 9.462
GraphMVP 17.589 14.122 11.025 9.320 18.422 5.567 14.088 0.946 0.441 0.827 9.235

SchNet 17.605 14.351 11.030 9.314 18.156 5.638 14.338 0.951 0.438 0.826 9.265
EGNN 17.736 14.414 11.045 9.284 18.399 5.855 14.715 0.935 0.436 0.824 9.364
TFN 17.719 14.240 11.012 9.198 17.996 5.797 14.208 0.999 0.455 0.865 9.249

SE3 Transformer 17.699 14.283 11.047 9.337 17.923 5.872 14.104 1.000 0.468 0.879 9.261
PaiNN - 14.604 11.048 9.470 18.300 5.267 14.461 1.650 0.659 1.592 -

Uni-Mol-R (1 conf) 17.703 14.406 11.045 9.297 18.126 5.681 14.355 0.937 0.434 0.824 9.281
Uni-Mol (1 conf) 17.690 14.405 11.037 9.329 18.129 5.621 14.353 0.938 0.435 0.824 9.276

ResNet18-I-R 17.658 14.169 11.066 9.215 18.126 5.809 14.346 0.936 0.435 0.831 9.259
ImageMol 17.655 14.236 11.068 9.167 18.191 5.781 14.471 0.939 0.437 0.839 9.278

CGIP-Image 17.713 14.285 11.023 9.246 18.172 5.695 14.264 0.939 0.432 0.835 9.260
MaskMol 17.702 14.406 11.046 9.274 18.224 5.876 14.478 0.935 0.434 0.823 9.320

IEM-I 17.659 14.279 11.029 9.270 18.099 5.757 14.319 0.941 0.439 0.826 9.262

ResNet18-G-R 17.744 14.659 10.991 9.284 18.198 5.802 14.534 0.935 0.435 0.823 9.340
IEM-G (1 conf) 17.664 14.552 11.079 9.221 18.244 5.743 14.632 0.937 0.436 0.835 9.334

ViT-G-R 17.722 14.410 11.043 9.253 18.166 5.873 14.397 0.934 0.434 0.824 9.306
VideoMol-G 17.726 14.404 11.046 9.260 18.201 5.853 14.394 0.934 0.433 0.824 9.308

ResNet18-V-R 17.852 14.613 10.966 9.309 18.343 5.709 14.537 0.939 0.431 0.823 9.352
IEM-V 17.768 14.611 11.010 9.282 18.352 5.627 14.474 0.939 0.434 0.825 9.332
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Table S36: The standard deviation on 10 complete chain (CC) datasets from StructNet. CC#1, CC#2,
CC#3, CC#4, CC#5, CC#6, CC#7, CC#8, CC#9, CC#10 represent CHEMBL4649949 Potency,
CHEMBL4649948 Potency, CHEMBL4649955 Potency, CHEMBL4888485 Inhibition,
CHEMBL4296187 Inhibition, CHEMBL4296188 Inhibition, CHEMBL4296802 Inhibition,
CHEMBL1614459 Potency, CHEMBL1614458 Potency, CHEMBL1614530 Potency, respec-
tively.

Models CC#1 CC#2 CC#3 CC#4 CC#5 CC#6 CC#7 CC#8 CC#9 CC#10

mcfp4 2048 0.007 0.001 0.001 0.009 0.004 0.005 0.003 0.002 0.002 0.002
ecfp4 2048 0.011 0.001 0.002 0.016 0.006 0.006 0.008 0.002 0.003 0.003

maccs 0.005 0.004 0.004 0.020 0.005 0.031 0.004 0.002 0.008 0.006
physchem 0.005 0.001 0.001 0.016 0.001 0.006 0.001 0.003 0.002 0.002

atompair 2048 0.005 0.004 0.005 0.015 0.001 0.131 0.005 0.013 0.003 0.005
rdkDes 0.004 0.000 0.003 0.003 0.001 0.004 0.002 0.002 0.000 0.002

BERT-6L 0.016 0.000 0.002 0.009 0.073 0.008 0.113 0.000 0.003 0.000
BERT-8L 0.017 0.000 0.003 0.016 0.074 0.013 0.111 0.001 0.003 0.000

RoBERTa-12L 0.067 0.000 0.003 0.015 0.096 0.025 0.123 0.001 0.005 0.000
molformer-R 0.024 0.000 0.001 0.017 0.037 0.014 0.056 0.000 0.004 0.001

Chem-BERT-6L 0.013 0.000 0.002 0.012 0.080 0.008 0.106 0.000 0.002 0.000
Chem-BERT-8L 0.018 0.000 0.002 0.012 0.084 0.012 0.109 0.000 0.003 0.000

CHEM-RoBERTa-12L 0.069 0.000 0.005 0.009 0.094 0.018 0.112 0.001 0.004 0.000
Molformer 0.027 0.000 0.003 0.013 0.044 0.014 0.047 0.000 0.003 0.000

GIN-R 0.296 0.125 0.041 0.105 0.202 0.096 0.159 0.015 0.021 0.009
EdgePred 0.268 0.160 0.100 0.059 0.282 0.092 0.208 0.012 0.005 0.008

ContextPred 0.383 0.256 0.108 0.078 0.276 0.073 0.221 0.014 0.006 0.010
infomax 0.479 0.205 0.087 0.072 0.169 0.082 0.171 0.025 0.009 0.018
masking 0.306 0.263 0.090 0.047 0.177 0.113 0.247 0.009 0.012 0.018
MolCLR 0.230 0.176 0.046 0.074 0.139 0.091 0.161 0.013 0.020 0.005

MoleBERT 0.563 0.180 0.116 0.092 0.153 0.179 0.090 0.023 0.017 0.031
CGIP-Graph 0.282 0.187 0.065 2.305 0.183 0.153 0.338 0.020 0.007 0.037
GraphMVP 0.233 0.122 0.048 0.083 0.291 0.097 0.224 0.018 0.015 0.009

SchNet 0.144 0.165 0.041 0.106 0.117 0.227 0.278 0.011 0.011 0.009
EGNN 0.122 0.080 0.058 0.046 0.628 0.060 0.473 0.001 0.007 0.001
TFN 0.259 0.264 0.053 0.109 0.161 0.116 0.114 0.023 0.012 0.026

SE3 Transformer 0.069 0.112 0.041 0.131 0.083 0.088 0.056 0.026 0.021 0.035
PaiNN - 0.265 0.092 0.098 0.096 0.120 0.168 0.156 0.106 0.195

Uni-Mol-R (1 conf) 0.029 0.001 0.003 0.040 0.033 0.188 0.054 0.003 0.003 0.000
Uni-Mol (1 conf) 0.041 0.004 0.014 0.103 0.036 0.146 0.058 0.005 0.003 0.000

ResNet18-I-R 0.296 0.139 0.051 0.130 0.120 0.075 0.198 0.007 0.012 0.008
ImageMol 0.232 0.297 0.092 0.136 0.271 0.078 0.323 0.009 0.005 0.019

CGIP-Image 0.217 0.162 0.025 0.119 0.122 0.100 0.143 0.009 0.005 0.016
MaskMol 0.006 0.001 0.005 0.013 0.057 0.008 0.193 0.001 0.002 0.001

IEM-I 0.249 0.290 0.081 0.083 0.231 0.076 0.254 0.006 0.009 0.008

ResNet18-G-R 0.135 0.195 0.041 0.057 0.109 0.041 0.200 0.009 0.006 0.005
IEM-G (1 conf) 0.145 0.121 0.113 0.056 0.114 0.094 0.391 0.009 0.007 0.014

ViT-G-R 0.032 0.010 0.006 0.045 0.083 0.019 0.116 0.000 0.001 0.001
VideoMol-G 0.037 0.012 0.003 0.046 0.124 0.023 0.080 0.001 0.003 0.001

ResNet18-V-R 0.152 0.126 0.023 0.051 0.098 0.051 0.249 0.004 0.005 0.002
IEM-V 0.115 0.107 0.027 0.093 0.207 0.156 0.171 0.006 0.010 0.009
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Table S37: The average RMSE performance on 10 macro (M) datasets from StructNet. M#1,
M#2, M#3, M#4, M#5, M#6, M#7, M#8, M#9, M#10 represent CHEMBL4420282 IC50,
CHEMBL4419606 IC50, CHEMBL4420281 In, CHEMBL3881498 In, CHEMBL4419605 In,
CHEMBL4420271 In, CHEMBL4419595 In, CHEMBL3881499 IC50, CHEMBL4420273 In,
CHEMBL4419597 In, respectively. OOM represents the Exception of Out Of Memory (OOM)
on single GPU of RTX 4090 Ti (24G). The green background represents top-5 performance.

Models M#1 M#2 M#3 M#4 M#5 M#6 M#7 M#8 M#9 M#10 Mean

mcfp4 2048 0.842 0.709 36.331 35.451 36.827 26.782 26.682 0.564 10.862 10.851 18.590
ecfp4 2048 0.710 0.713 36.158 33.518 36.615 26.653 26.561 0.575 10.713 10.688 18.290

maccs 0.869 0.786 36.413 34.200 36.770 26.679 26.492 0.601 10.637 10.616 18.406
physchem 1.076 0.831 35.838 32.765 36.639 26.662 26.570 0.600 10.980 10.952 18.291

atompair 2048 0.612 0.628 35.734 33.803 35.983 26.669 26.585 0.503 11.601 11.564 18.368
rdkDes 1.041 0.832 40.833 36.886 41.905 29.449 29.207 0.606 11.388 11.377 20.352

BERT-6L 1.300 0.903 36.815 35.817 36.874 26.559 26.571 0.582 11.909 11.853 18.918
BERT-8L 1.306 0.898 36.823 35.839 36.876 26.580 26.568 0.583 11.872 11.878 18.922

RoBERTa-12L 1.329 0.906 37.413 36.289 37.288 26.644 26.636 0.583 11.894 11.878 19.086
molformer-R 1.337 0.906 37.330 36.212 37.327 26.557 26.612 0.583 11.919 11.867 19.065

Chem-BERT-6L 1.277 0.889 36.779 35.954 36.853 26.553 26.583 0.583 11.887 11.882 18.924
Chem-BERT-8L 1.290 0.887 36.737 35.725 36.862 26.594 26.552 0.582 11.894 11.883 18.901

CHEM-RoBERTa-12L 1.337 0.906 37.431 36.444 37.381 26.671 26.634 0.582 11.898 11.878 19.116
Molformer 1.304 0.898 37.262 36.103 37.371 26.536 26.597 0.583 11.893 11.862 19.041

GIN-R 0.779 0.721 35.136 32.007 35.215 26.727 26.231 0.552 11.798 11.928 18.109
EdgePred 0.748 0.723 35.367 31.874 35.741 26.849 26.630 0.543 11.657 11.320 18.145

ContextPred 0.746 0.721 35.374 32.078 35.355 27.409 26.911 0.543 11.047 10.866 18.105
infomax 0.703 0.719 35.799 33.396 35.739 27.274 27.130 0.540 10.738 10.743 18.278
masking 0.745 0.721 35.604 33.802 36.443 27.499 28.014 0.539 10.836 10.800 18.500
MolCLR 0.748 0.732 34.697 32.272 35.083 26.350 26.484 0.553 11.872 11.825 18.062

MoleBERT 0.720 0.715 35.893 34.593 37.110 27.696 27.373 0.549 11.054 11.034 18.674
CGIP-Graph 0.833 0.669 36.427 33.055 36.285 24.291 24.490 0.541 11.836 11.771 18.020
GraphMVP 0.653 0.666 34.532 31.745 35.121 26.295 26.539 0.544 11.773 12.108 17.998

SchNet 1.031 0.830 36.449 36.212 36.957 27.075 26.859 0.576 11.439 11.464 18.889
EGNN 1.239 0.878 36.260 35.416 37.008 26.572 26.741 0.583 11.923 11.885 18.851
TFN OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM

SE3 Transformer OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
PaiNN 1.037 0.818 35.869 34.985 36.468 27.390 27.432 0.667 10.664 10.629 18.596

Uni-Mol-R (1 conf) 1.204 0.844 36.517 34.971 36.851 28.186 27.917 0.582 11.849 11.895 19.082
Uni-Mol (1 conf) 1.200 0.807 36.111 34.295 36.725 28.650 28.009 0.582 11.532 11.578 18.949

ResNet18-I-R 1.105 0.798 37.524 36.284 37.624 27.383 28.096 0.587 10.899 11.057 19.136
ImageMol 1.046 0.824 36.738 36.452 36.875 27.436 26.879 0.589 11.131 11.037 18.901

CGIP-Image 1.026 0.806 37.396 35.472 36.816 27.184 26.762 0.575 11.020 10.913 18.797
MaskMol 1.239 0.822 36.689 35.752 36.899 26.572 26.585 0.583 11.670 11.807 18.862

IEM-I 1.059 0.813 38.558 36.142 37.955 27.290 26.979 0.587 10.958 11.065 19.141

ResNet18-G-R 1.149 0.879 37.156 36.673 37.427 27.010 27.011 0.587 12.009 12.243 19.214
IEM-G (1 conf) 1.131 0.838 36.978 36.031 37.440 27.364 27.154 0.590 11.901 11.810 19.124

ViT-G-R 1.301 0.896 35.611 35.991 37.137 26.564 26.600 0.583 11.900 11.877 18.846
VideoMol-G 1.302 0.903 36.874 35.920 37.085 26.564 26.588 0.583 11.899 11.868 18.959

ResNet18-V-R 1.053 0.796 36.607 36.057 37.164 27.163 26.784 0.582 11.709 11.310 18.923
IEM-V 0.994 0.793 36.746 36.019 36.957 28.258 28.066 0.583 11.485 11.987 19.189
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Table S38: The standard deviation on 10 macro (M) datasets from StructNet. M#1,
M#2, M#3, M#4, M#5, M#6, M#7, M#8, M#9, M#10 represent CHEMBL4420282 IC50,
CHEMBL4419606 IC50, CHEMBL4420281 In, CHEMBL3881498 In, CHEMBL4419605 In,
CHEMBL4420271 In, CHEMBL4419595 In, CHEMBL3881499 IC50, CHEMBL4420273 In,
CHEMBL4419597 In, respectively. OOM represents the Exception of Out Of Memory (OOM)
on single GPU of RTX 4090 Ti (24G).

Models M#1 M#2 M#3 M#4 M#5 M#6 M#7 M#8 M#9 M#10

mcfp4 2048 0.006 0.010 0.019 0.009 0.017 0.008 0.010 0.008 0.007 0.009
ecfp4 2048 0.010 0.007 0.028 0.008 0.018 0.015 0.011 0.016 0.003 0.004

maccs 0.004 0.002 0.025 0.013 0.014 0.015 0.032 0.007 0.003 0.004
physchem 0.001 0.002 0.017 0.008 0.020 0.010 0.010 0.002 0.013 0.012

atompair 2048 0.004 0.013 0.007 0.016 0.006 0.047 0.005 0.003 0.016 0.022
rdkDes 0.003 0.000 0.026 0.018 0.025 0.017 0.015 0.000 0.011 0.015

BERT-6L 0.056 0.025 0.514 0.331 0.363 0.068 0.056 0.002 0.020 0.064
BERT-8L 0.045 0.025 0.496 0.320 0.352 0.146 0.053 0.003 0.046 0.031

RoBERTa-12L 0.015 0.009 0.599 0.752 0.569 0.207 0.099 0.002 0.025 0.018
molformer-R 0.019 0.009 0.513 0.820 0.624 0.057 0.093 0.002 0.016 0.020

Chem-BERT-6L 0.061 0.017 0.425 0.337 0.339 0.065 0.060 0.002 0.027 0.025
Chem-BERT-8L 0.058 0.013 0.364 0.346 0.320 0.124 0.044 0.002 0.038 0.031

CHEM-RoBERTa-12L 0.022 0.008 0.642 0.650 0.550 0.284 0.090 0.002 0.037 0.018
Molformer 0.064 0.018 0.501 0.567 0.512 0.043 0.076 0.003 0.051 0.036

GIN-R 0.054 0.019 1.238 1.170 1.317 0.685 1.049 0.020 0.439 0.491
EdgePred 0.051 0.037 1.405 1.179 1.225 0.446 0.774 0.013 0.859 0.390

ContextPred 0.030 0.032 1.071 1.146 0.721 1.136 0.778 0.007 0.206 0.118
infomax 0.023 0.020 1.333 2.169 0.763 0.955 0.588 0.012 0.118 0.146
masking 0.035 0.020 1.377 1.143 0.858 1.004 1.364 0.008 0.250 0.236
MolCLR 0.031 0.030 1.148 1.466 1.021 0.608 1.087 0.009 0.634 0.387

MoleBERT 0.024 0.036 0.785 2.217 0.208 0.983 0.999 0.012 0.372 0.306
CGIP-Graph 0.030 0.018 0.971 2.610 0.898 0.328 0.684 0.015 0.624 0.789
GraphMVP 0.010 0.024 1.335 0.634 0.642 1.095 0.554 0.011 0.485 0.773

SchNet 0.049 0.024 0.318 0.924 0.237 0.319 0.412 0.003 0.336 0.412
EGNN 0.055 0.046 0.311 0.984 0.490 0.071 0.521 0.001 0.061 0.093
TFN OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM

SE3 Transformer OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
PaiNN 0.137 0.074 0.462 0.869 0.328 0.346 0.158 0.039 0.174 0.253

Uni-Mol-R (1 conf) 0.034 0.023 0.264 0.943 0.434 0.840 1.233 0.001 0.097 0.029
Uni-Mol (1 conf) 0.082 0.021 0.616 0.706 0.429 0.499 1.006 0.002 0.397 0.315

ResNet18-I-R 0.103 0.033 1.086 1.646 0.763 0.727 0.773 0.012 0.316 0.467
ImageMol 0.100 0.043 1.841 1.757 1.742 1.004 1.180 0.030 0.373 0.696

CGIP-Image 0.062 0.055 1.532 0.893 1.185 0.890 0.833 0.020 0.594 0.591
MaskMol 0.069 0.038 0.462 0.285 0.304 0.071 0.056 0.002 0.302 0.200

IEM-I 0.084 0.040 0.810 2.070 0.928 1.225 0.823 0.016 0.374 0.470

ResNet18-G-R 0.092 0.037 0.565 1.196 0.565 0.444 0.648 0.009 0.638 0.483
IEM-G (1 conf) 0.073 0.029 1.173 1.450 0.720 0.948 0.665 0.020 0.595 0.336

ViT-G-R 0.061 0.017 0.082 0.379 0.344 0.054 0.047 0.003 0.019 0.022
VideoMol-G 0.053 0.024 0.541 0.467 0.437 0.054 0.068 0.002 0.050 0.032

ResNet18-V-R 0.051 0.022 0.567 0.846 0.585 0.523 0.373 0.005 0.372 0.477
IEM-V 0.039 0.033 0.820 1.774 0.970 0.814 0.891 0.010 0.524 0.647
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Table S39: The average RMSE performance on 10 macrocyclic peptide (MP) datasets from
StructNet. MP#1, MP#2, MP#3, MP#4, MP#5, MP#6, MP#7, MP#8, MP#9, MP#10
represent CHEMBL4888485 Inhibition, CHEMBL2354301 AC50, CHEMBL3880198 Ki,
CHEMBL4420271 Inhibition, CHEMBL4419595 Inhibition, CHEMBL4420282 IC50,
CHEMBL3214979 AC50, CHEMBL4420277 Inhibition, CHEMBL4419601 Inhibition,
CHEMBL4419606 IC50, respectively. OOM represents the Exception of Out Of Memory
(OOM) on single GPU of RTX 4090 Ti (24G). The green background represents top-5 perfor-
mance.

Models MP#1 MP#2 MP#3 MP#4 MP#5 MP#6 MP#7 MP#8 MP#9 MP#10 Mean

mcfp4 2048 10.134 0.405 1.012 25.835 25.835 0.838 0.293 15.057 15.057 0.970 9.544
ecfp4 2048 10.227 0.624 1.055 26.031 26.031 0.874 0.467 15.113 15.113 1.020 9.656

maccs 10.172 0.374 0.923 25.612 25.612 0.904 0.274 14.935 14.935 1.001 9.474
physchem 10.157 0.374 1.037 29.923 29.923 0.964 0.564 16.133 16.133 0.998 10.621

atompair 2048 10.034 0.422 0.921 25.458 25.458 0.911 0.278 14.918 14.918 1.041 9.436
rdkDes 10.169 0.381 1.044 32.574 32.574 1.050 0.933 17.745 17.745 1.085 11.530

BERT-6L 10.129 0.371 0.866 25.152 25.152 0.963 0.271 15.017 15.017 0.976 9.391
BERT-8L 10.124 0.371 0.866 25.132 25.132 0.963 0.272 15.005 15.005 0.980 9.385

RoBERTa-12L 10.124 0.371 0.873 24.697 24.697 0.963 0.270 15.522 15.522 0.942 9.398
molformer-R 10.130 0.371 0.866 24.772 24.772 0.963 0.274 15.571 15.571 0.955 9.424

Chem-BERT-6L 10.130 0.371 0.863 25.203 25.203 0.963 0.272 15.009 15.009 0.985 9.401
Chem-BERT-8L 10.128 0.371 0.872 25.183 25.183 0.963 0.273 15.050 15.050 0.957 9.403

CHEM-RoBERTa-12L 10.120 0.371 0.872 25.312 25.312 0.963 0.267 15.500 15.500 0.934 9.515
Molformer 10.130 0.371 0.865 25.667 25.667 0.963 0.268 15.038 15.038 0.948 9.496

GIN-R 10.526 0.385 0.771 27.702 27.007 1.191 0.261 19.136 21.544 1.034 10.956
EdgePred 10.410 0.359 0.774 25.692 25.676 0.886 0.265 14.951 14.917 0.956 9.489

ContextPred 10.156 0.366 0.791 25.773 25.807 0.814 0.273 14.912 14.923 0.955 9.477
infomax 10.070 0.340 0.823 24.658 24.503 0.817 0.286 14.716 14.612 0.946 9.177
masking 10.241 0.359 0.793 25.620 25.734 0.841 0.276 14.906 14.905 0.933 9.461
MolCLR 10.407 0.347 0.768 25.422 25.268 0.854 0.261 15.241 15.083 0.954 9.461

MoleBERT 10.059 0.352 0.863 25.321 25.316 0.806 0.284 14.893 14.895 0.937 9.373
CGIP-Graph 10.297 0.400 0.802 25.667 25.939 0.867 0.274 14.617 14.627 0.890 9.438
GraphMVP 10.454 0.385 0.789 25.686 25.381 0.864 0.264 15.423 15.122 0.990 9.536

SchNet 10.414 0.399 0.881 25.031 25.274 0.989 0.302 15.002 14.996 0.955 9.424
EGNN 10.117 0.371 0.877 26.386 26.386 0.963 0.272 15.245 15.245 0.929 9.679
TFN 10.106 0.364 0.868 OOM OOM OOM 0.363 OOM OOM OOM -

SE3 Transformer 10.370 0.341 0.742 OOM OOM OOM 0.320 OOM OOM OOM -
PaiNN 10.626 0.434 0.909 25.160 25.260 1.234 0.495 14.880 14.897 1.178 9.507

Uni-Mol-R (1 conf) 10.133 0.371 0.857 25.031 25.031 0.963 0.272 15.572 15.572 0.958 9.476
Uni-Mol (1 conf) 10.134 0.369 0.864 24.991 24.991 0.963 0.273 15.457 15.457 0.955 9.445

ResNet18-I-R 10.024 0.377 0.898 24.988 24.988 0.963 0.286 14.862 14.862 0.964 9.321
ImageMol 10.373 0.378 0.846 24.654 24.654 0.993 0.286 15.471 15.471 0.917 9.404

CGIP-Image 10.222 0.370 0.877 24.718 24.718 0.962 0.284 15.036 15.036 0.857 9.308
MaskMol 10.124 0.371 0.860 24.771 24.771 0.963 0.271 15.005 15.005 0.979 9.312

IEM-I 10.155 0.373 0.864 24.413 24.413 0.961 0.278 15.411 15.411 0.906 9.319

ResNet18-G-R 10.075 0.375 0.882 25.039 24.956 0.971 0.275 14.958 14.939 0.959 9.343
IEM-G (1 conf) 10.139 0.377 0.910 25.727 25.148 0.997 0.278 15.290 15.137 0.969 9.497

ViT-G-R 10.120 0.371 0.869 25.615 25.637 0.963 0.268 15.121 15.151 0.961 9.508
VideoMol-G 10.133 0.372 0.870 24.677 24.677 0.962 0.273 15.649 15.607 0.968 9.419

ResNet18-V-R 9.968 0.373 0.871 24.936 25.080 0.965 0.274 14.978 14.974 0.966 9.339
IEM-V 10.086 0.380 0.946 25.360 25.621 1.007 0.282 15.320 15.463 0.995 9.546
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Table S40: The standard deviation on 10 macrocyclic peptide (MP) datasets from Struct-
Net. MP#1, MP#2, MP#3, MP#4, MP#5, MP#6, MP#7, MP#8, MP#9, MP#10 rep-
resent CHEMBL4888485 Inhibition, CHEMBL2354301 AC50, CHEMBL3880198 Ki,
CHEMBL4420271 Inhibition, CHEMBL4419595 Inhibition, CHEMBL4420282 IC50,
CHEMBL3214979 AC50, CHEMBL4420277 Inhibition, CHEMBL4419601 Inhibition,
CHEMBL4419606 IC50, respectively. OOM represents the Exception of Out Of Memory
(OOM) on single GPU of RTX 4090 Ti (24G).

Models MP#1 MP#2 MP#3 MP#4 MP#5 MP#6 MP#7 MP#8 MP#9 MP#10

mcfp4 2048 0.015 0.005 0.014 0.057 0.057 0.002 0.002 0.003 0.003 0.008
ecfp4 2048 0.012 0.026 0.018 0.008 0.008 0.001 0.004 0.005 0.005 0.003

maccs 0.008 0.007 0.014 0.042 0.042 0.004 0.004 0.006 0.006 0.017
physchem 0.006 0.001 0.005 0.050 0.050 0.000 0.043 0.035 0.035 0.012

atompair 2048 0.037 0.010 0.006 0.012 0.012 0.001 0.009 0.007 0.007 0.008
rdkDes 0.002 0.000 0.004 0.026 0.026 0.011 0.033 0.022 0.022 0.018

BERT-6L 0.006 0.000 0.012 0.189 0.189 0.000 0.003 0.110 0.110 0.038
BERT-8L 0.014 0.000 0.018 0.198 0.198 0.000 0.004 0.136 0.136 0.035

RoBERTa-12L 0.006 0.001 0.022 0.020 0.020 0.000 0.017 0.357 0.357 0.033
molformer-R 0.007 0.001 0.011 0.038 0.038 0.000 0.011 0.368 0.368 0.033

Chem-BERT-6L 0.007 0.001 0.013 0.170 0.170 0.000 0.003 0.106 0.106 0.019
Chem-BERT-8L 0.003 0.000 0.013 0.241 0.241 0.000 0.005 0.129 0.129 0.040

CHEM-RoBERTa-12L 0.010 0.001 0.011 1.380 1.380 0.000 0.015 0.471 0.471 0.051
Molformer 0.005 0.001 0.011 0.490 0.490 0.000 0.008 0.115 0.115 0.023

GIN-R 0.366 0.030 0.077 1.631 1.546 0.153 0.014 3.520 2.601 0.039
EdgePred 0.604 0.010 0.027 0.178 0.163 0.113 0.013 0.049 0.030 0.060

ContextPred 0.094 0.014 0.032 0.082 0.040 0.021 0.008 0.026 0.026 0.062
infomax 0.085 0.010 0.067 0.364 0.707 0.038 0.011 0.329 0.289 0.061
masking 0.458 0.013 0.084 0.929 0.170 0.043 0.014 0.025 0.020 0.038
MolCLR 0.218 0.016 0.070 0.542 0.314 0.062 0.005 0.559 0.429 0.038

MoleBERT 0.111 0.014 0.062 0.238 0.245 0.010 0.011 0.017 0.018 0.027
CGIP-Graph 0.429 0.027 0.087 1.038 0.644 0.038 0.013 0.335 0.151 0.067
GraphMVP 0.345 0.012 0.067 0.957 0.812 0.057 0.016 0.924 0.550 0.057

SchNet 0.309 0.006 0.083 0.635 0.814 0.025 0.008 0.184 0.228 0.028
EGNN 0.141 0.001 0.047 1.582 1.582 0.000 0.004 0.430 0.430 0.046
TFN 0.161 0.023 0.128 OOM OOM OOM 0.032 OOM OOM OOM

SE3 Transformer 0.188 0.018 0.054 OOM OOM OOM 0.013 OOM OOM OOM
PaiNN 0.225 0.018 0.063 0.413 0.467 0.311 0.079 0.224 0.206 0.315

Uni-Mol-R (1 conf) 0.010 0.001 0.028 0.054 0.054 0.000 0.003 0.136 0.136 0.033
Uni-Mol (1 conf) 0.018 0.003 0.039 0.063 0.063 0.000 0.005 0.262 0.262 0.040

ResNet18-I-R 0.272 0.009 0.034 0.310 0.310 0.012 0.017 0.083 0.083 0.033
ImageMol 0.489 0.020 0.066 1.230 1.230 0.075 0.014 0.655 0.655 0.092

CGIP-Image 0.278 0.007 0.060 0.831 0.831 0.035 0.020 0.760 0.760 0.022
MaskMol 0.018 0.002 0.016 0.098 0.098 0.001 0.004 0.119 0.119 0.034

IEM-I 0.288 0.010 0.055 1.126 1.126 0.032 0.010 0.564 0.564 0.048

ResNet18-G-R 0.073 0.008 0.036 0.235 0.296 0.011 0.010 0.112 0.150 0.035
IEM-G (1 conf) 0.199 0.011 0.064 0.973 0.447 0.032 0.023 0.518 0.425 0.049

ViT-G-R 0.055 0.002 0.015 0.412 0.514 0.000 0.006 0.080 0.099 0.039
VideoMol-G 0.034 0.002 0.018 0.007 0.007 0.002 0.007 0.219 0.238 0.038

ResNet18-V-R 0.325 0.007 0.022 0.397 0.527 0.006 0.009 0.121 0.136 0.041
IEM-V 0.320 0.015 0.094 0.420 0.566 0.032 0.014 0.457 1.033 0.050

50



2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2025

Table S41: The average RMSE performance on 10 reticular (R) datasets from StructNet. R#1, R#2,
R#3, R#4, R#5, R#6, R#7, R#8, R#9, R#10 represent CHEMBL4888485 In, CHEMBL1614458 P,
CHEMBL1614459 P, CHEMBL1613914 P, CHEMBL1614421 P, CHEMBL1614087 P,
CHEMBL1614249 P, CHEMBL1614236 P, CHEMBL1614544 P, CHEMBL1614038 P, re-
spectively. The green background represents top-5 performance.

Models R#1 R#2 R#3 R#4 R#5 R#6 R#7 R#8 R#9 R#10 Mean

mcfp4 2048 19.359 0.539 0.903 0.585 0.644 0.880 0.597 0.525 0.947 0.578 2.556
ecfp4 2048 19.335 0.606 0.965 0.615 0.719 0.924 0.651 0.641 0.939 0.730 2.613

maccs 19.325 0.443 0.723 0.472 0.637 0.857 0.569 0.438 0.981 0.536 2.498
physchem 19.352 0.440 0.695 0.409 0.601 0.807 0.433 0.496 0.956 0.589 2.478

atompair 2048 19.358 0.557 0.907 0.734 0.675 0.961 0.649 0.574 1.039 0.559 2.601
rdkDes 19.338 0.511 0.692 0.386 0.670 0.823 0.652 0.664 1.004 0.895 2.564

BERT-6L 19.700 0.438 0.664 0.396 0.590 0.807 0.388 0.451 0.999 0.429 2.486
BERT-8L 19.702 0.439 0.664 0.396 0.590 0.807 0.387 0.451 1.000 0.429 2.487

RoBERTa-12L 19.696 0.430 0.664 0.396 0.589 0.807 0.387 0.452 0.999 0.433 2.485
molformer-R 19.691 0.434 0.664 0.397 0.590 0.807 0.388 0.450 0.999 0.428 2.485

Chem-BERT-6L 19.665 0.438 0.664 0.395 0.591 0.807 0.387 0.451 1.001 0.429 2.483
Chem-BERT-8L 19.697 0.437 0.664 0.396 0.589 0.807 0.387 0.451 0.999 0.429 2.486

CHEM-RoBERTa-12L 19.701 0.425 0.664 0.397 0.590 0.807 0.392 0.452 0.997 0.432 2.486
Molformer 19.688 0.438 0.664 0.396 0.589 0.807 0.388 0.450 1.001 0.429 2.485

GIN-R 19.678 0.437 0.672 0.432 0.595 0.829 0.397 0.462 1.008 0.449 2.496
EdgePred 19.410 0.426 0.641 0.395 0.587 0.829 0.416 0.457 1.011 0.452 2.462

ContextPred 19.442 0.458 0.667 0.407 0.581 0.841 0.394 0.449 1.035 0.407 2.468
infomax 19.379 0.450 0.684 0.427 0.593 0.871 0.435 0.496 1.064 0.447 2.485
masking 19.478 0.450 0.712 0.393 0.572 0.855 0.411 0.468 1.058 0.452 2.485
MolCLR 19.542 0.437 0.656 0.416 0.591 0.822 0.397 0.465 1.014 0.425 2.477

MoleBERT 19.360 0.470 0.716 0.416 0.572 0.831 0.462 0.466 1.032 0.458 2.478
CGIP-Graph 19.240 0.493 0.633 0.410 0.585 0.841 0.445 0.479 1.051 0.443 2.462
GraphMVP 19.271 0.472 0.666 0.422 0.586 0.839 0.406 0.476 1.026 0.439 2.460

SchNet 19.639 0.459 0.719 0.432 0.575 0.874 0.400 0.478 0.987 0.425 2.499
EGNN 19.549 0.432 0.665 0.397 0.590 0.807 0.387 0.451 0.999 0.432 2.471
TFN 19.576 0.511 0.716 0.477 0.613 0.911 0.476 0.552 1.097 0.519 2.545

SE3 Transformer 19.644 0.457 0.691 0.536 0.547 0.866 0.480 0.535 1.069 0.491 2.532
PaiNN 19.317 1.385 1.393 0.978 1.160 1.377 0.962 1.326 1.594 0.888 3.038

Uni-Mol-R (1 conf) 19.565 0.431 0.664 0.396 0.590 0.807 0.388 0.450 1.001 0.428 2.472
Uni-Mol (1 conf) 19.529 0.426 0.665 0.398 0.591 0.808 0.395 0.451 1.001 0.428 2.469

ResNet18-I-R 19.346 0.429 0.672 0.397 0.585 0.817 0.394 0.456 1.010 0.430 2.454
ImageMol 19.618 0.447 0.751 0.423 0.605 0.835 0.431 0.487 1.052 0.459 2.511

CGIP-Image 19.459 0.425 0.679 0.408 0.596 0.818 0.393 0.471 0.999 0.437 2.468
MaskMol 19.660 0.430 0.664 0.396 0.588 0.807 0.388 0.450 1.000 0.426 2.481

IEM-I 19.474 0.440 0.688 0.401 0.591 0.816 0.394 0.455 1.005 0.432 2.470

ResNet18-G-R 19.500 0.430 0.663 0.403 0.589 0.824 0.393 0.458 0.987 0.426 2.467
IEM-G (1 conf) 19.796 0.433 0.676 0.413 0.590 0.843 0.397 0.467 1.010 0.445 2.507

ViT-G-R 19.654 0.436 0.664 0.397 0.585 0.807 0.387 0.450 0.998 0.422 2.480
VideoMol-G 19.667 0.434 0.665 0.397 0.589 0.809 0.390 0.451 0.999 0.428 2.483

ResNet18-V-R 19.529 0.424 0.676 0.395 0.585 0.822 0.390 0.457 0.984 0.430 2.469
IEM-V 19.726 0.429 0.672 0.414 0.581 0.839 0.401 0.471 1.017 0.464 2.501
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Table S42: The standard deviation on 10 reticular (R) datasets from StructNet. R#1, R#2, R#3,
R#4, R#5, R#6, R#7, R#8, R#9, R#10 represent CHEMBL4888485 In, CHEMBL1614458 P,
CHEMBL1614459 P, CHEMBL1613914 P, CHEMBL1614421 P, CHEMBL1614087 P,
CHEMBL1614249 P, CHEMBL1614236 P, CHEMBL1614544 P, CHEMBL1614038 P, re-
spectively.

Models R#1 R#2 R#3 R#4 R#5 R#6 R#7 R#8 R#9 R#10

mcfp4 2048 0.002 0.002 0.003 0.004 0.005 0.002 0.003 0.003 0.002 0.002
ecfp4 2048 0.002 0.004 0.005 0.005 0.005 0.002 0.003 0.003 0.004 0.002

maccs 0.034 0.004 0.006 0.003 0.003 0.005 0.005 0.002 0.004 0.003
physchem 0.008 0.005 0.001 0.002 0.005 0.001 0.017 0.015 0.001 0.037

atompair 2048 0.006 0.003 0.004 0.007 0.002 0.003 0.003 0.003 0.003 0.002
rdkDes 0.004 0.004 0.001 0.000 0.011 0.005 0.022 0.020 0.009 0.031

BERT-6L 0.093 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.003 0.003
BERT-8L 0.065 0.004 0.002 0.003 0.002 0.002 0.001 0.001 0.005 0.003

RoBERTa-12L 0.030 0.015 0.001 0.004 0.003 0.002 0.003 0.005 0.010 0.007
molformer-R 0.040 0.006 0.001 0.004 0.003 0.004 0.006 0.003 0.010 0.006

Chem-BERT-6L 0.058 0.005 0.001 0.003 0.002 0.001 0.002 0.002 0.003 0.002
Chem-BERT-8L 0.046 0.007 0.003 0.001 0.002 0.002 0.002 0.001 0.005 0.004

CHEM-RoBERTa-12L 0.020 0.008 0.002 0.004 0.004 0.001 0.014 0.005 0.006 0.007
Molformer 0.060 0.010 0.001 0.003 0.001 0.003 0.003 0.003 0.007 0.004

GIN-R 0.330 0.031 0.044 0.017 0.026 0.020 0.010 0.026 0.045 0.052
EdgePred 0.160 0.024 0.032 0.012 0.014 0.016 0.028 0.017 0.021 0.024

ContextPred 0.063 0.035 0.075 0.016 0.022 0.009 0.007 0.012 0.014 0.013
infomax 0.202 0.022 0.090 0.016 0.029 0.017 0.021 0.023 0.037 0.013
masking 0.079 0.030 0.100 0.006 0.007 0.011 0.008 0.018 0.024 0.010
MolCLR 0.123 0.060 0.018 0.010 0.016 0.007 0.015 0.021 0.030 0.021

MoleBERT 0.056 0.039 0.038 0.025 0.013 0.026 0.026 0.014 0.030 0.023
CGIP-Graph 0.200 0.053 0.024 0.023 0.026 0.021 0.025 0.015 0.049 0.029
GraphMVP 0.239 0.075 0.033 0.019 0.037 0.027 0.022 0.014 0.037 0.026

SchNet 0.191 0.024 0.057 0.037 0.006 0.039 0.009 0.012 0.024 0.008
EGNN 0.404 0.011 0.001 0.003 0.002 0.001 0.002 0.003 0.006 0.003
TFN 0.148 0.086 0.051 0.024 0.026 0.031 0.048 0.038 0.069 0.042

SE3 Transformer 0.194 0.040 0.053 0.060 0.025 0.028 0.036 0.049 0.069 0.038
PaiNN 0.197 0.124 0.141 0.104 0.050 0.131 0.047 0.113 0.115 0.042

Uni-Mol-R (1 conf) 0.121 0.007 0.001 0.002 0.002 0.003 0.002 0.002 0.002 0.003
Uni-Mol (1 conf) 0.088 0.010 0.004 0.009 0.004 0.001 0.006 0.004 0.007 0.004

ResNet18-I-R 0.173 0.013 0.021 0.014 0.015 0.012 0.010 0.012 0.027 0.018
ImageMol 0.533 0.036 0.094 0.021 0.041 0.022 0.032 0.047 0.052 0.028

CGIP-Image 0.126 0.012 0.017 0.018 0.011 0.012 0.013 0.016 0.031 0.015
MaskMol 0.066 0.007 0.004 0.005 0.003 0.002 0.003 0.003 0.006 0.003

IEM-I 0.137 0.033 0.030 0.017 0.009 0.017 0.019 0.010 0.035 0.019

ResNet18-G-R 0.128 0.021 0.016 0.012 0.008 0.009 0.013 0.012 0.023 0.011
IEM-G (1 conf) 0.255 0.020 0.023 0.016 0.024 0.036 0.012 0.021 0.035 0.024

ViT-G-R 0.046 0.009 0.001 0.004 0.008 0.005 0.002 0.003 0.013 0.008
VideoMol-G 0.065 0.019 0.002 0.005 0.010 0.004 0.003 0.005 0.008 0.011

ResNet18-V-R 0.171 0.016 0.007 0.006 0.005 0.008 0.006 0.009 0.016 0.014
IEM-V 0.241 0.023 0.012 0.019 0.012 0.016 0.017 0.017 0.033 0.031
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Table S43: Parameters and computational costs of different models with a batch size of 8. ”time cost
(30 epochs)” represents the total time required to train, evaluate, and test the model for 30 epochs on
10,000 molecules. The number of molecules for training, evaluation, and testing are 8,000, 1,000,
and 1,000, respectively. ”params” represents the number of parameters of the model.

Modality model time cost (30 epochs) params

SMILES

CHEM-BERT-no-pretrain 46.391 min 38.397M
CHEM-BERT 47.918 min 38.397M

CHEM-RoBERTa 98.599 min 85.495M
CHEM-RoBERTa-no-pretrain 86.776 min 85.495M

molformer-no-pretrain 41.306 min 25.511M
CHEM-BERT-origin-no-pretrain 96.216 min 51.001M

CHEM-BERT-origin 51.751 min 51.001M
molformer 39.692 min 25.511M

Graph

GIN RANDOM 20.487 min 1.862M
EdgePred 20.780 min 1.862M

ContextPred 20.277 min 1.862M
infomax 20.425 min 1.862M
masking 13.720 min 1.862M
MolCLR 20.795 min 1.862M

MoleBERT 20.827 min 1.862M
CGIP-Graph 25.292 min 3.793M
GraphMVP 20.698 min 1.862M

Geometry graph

Uni-Mol-R (1 conf) 35.763 min 47.600M
Uni-Mol (1 conf) 73.444 min 47.600M

TFN 273.258 min 8.663M
SE3 Transformer 257.265 min 10.126M

Image

ResNet18-I-R 26.215 min 11.183M
ImageMol 26.479 min 11.183M

CGIP-Image 27.817 min 11.183M
MaskMol 54.007 min 85.808M

IEM-I 25.387 min 11.183M

Geometry Image
ResNet18-G-R 89.537 min 11.183M
IEM-G (1 conf) 84.701 min 11.183M

Video
ResNet18-V-R 750.935 min 11.183M

IEM-V 934.883 min 11.183M

Table S44: The time required to train the model for 1 epoch using different numbers of frames.
The trained model is ResNet18-V-R. ”time cost (1 epoch)” is the total time taken to train on 8,000
molecules and evaluate on 2,000 molecules.

#Frame time cost (1 epoch)

1 2.024 min
3 2.786 min
5 4.169 min

10 5.934 min
30 13.836 min
60 25.849 min
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Table S45: Time required for the model to virtually screen 10,000 molecules.

Modality model inference time (1,000 molecules)

SMILES

CHEM-BERT-no-pretrain 2.301 s
CHEM-BERT 2.189 s

CHEM-RoBERTa 3.367 s
CHEM-RoBERTa-no-pretrain 3.315 s

molformer-no-pretrain 3.489 s
CHEM-BERT-origin-no-pretrain 2.652 s

CHEM-BERT-origin 2.341 s
molformer 3.441 s

Graph

GIN RANDOM 2.013 s
EdgePred 2.241 s

ContextPred 2.097 s
infomax 1.822 s
masking 2.254 s
MolCLR 1.633 s

MoleBERT 2.401 s
CGIP-Graph 1.884 s
GraphMVP 1.727 s

Geometry graph

Uni-Mol-R (1 conf) 3.301 s
Uni-Mol (1 conf) 2.924 s

TFN 6.372 s
SE3 Transformer 10.180 s

Image

ResNet18-I-R 4.151 s
ImageMol 2.106 s

CGIP-Image 2.111 s
MaskMol 2.600 s

IEM-I 2.147 s

Geometry Image
ResNet18-G-R 5.769 s
IEM-G (1 conf) 5.618 s

Video
ResNet18-V-R 73.419 s

IEM-V 73.163 s

information to improve performance. It is worth noting that we find that video have the largest
differences with other modalities in RMSE, which may provide a direction for future multi-
modal fusion on HIV dataset.

Table S46: Differences between different modalities on 8 classification datasets from MoleculeNet.
The gray background diagonal line is used as the boundary. The lower left corner and upper right
corner respectively represent the calculation of the RMSE (the larger the difference, the greater the
difference) and Pearson correlation coefficient (the smaller the difference, the greater the difference)
between the two modalities. The bold ones represent the top 6 most different modality combinations.

Fingerprint Sequence Graph Geometry Graph Image Geometry Image Video

Fingerprint - 0.425 0.530 0.439 0.238 0.367 0.369
Sequence 0.178 - 0.388 0.524 0.308 0.443 0.426

Graph 0.125 0.190 - 0.438 0.284 0.390 0.381
Geometry Graph 0.143 0.192 0.151 - 0.393 0.515 0.480

Image 0.137 0.199 0.158 0.148 - 0.362 0.325
Geometry Image 0.193 0.235 0.195 0.152 0.191 - 0.514

Video 0.170 0.210 0.175 0.161 0.178 0.187 -

Given the differences in predicted logits between multi-modal molecules, we further conduct an
exploratory experiment to find the upper limit of multi-modal fusion. We assume that the test set
labels have been obtained. We generate the final prediction logits by determining the minimum
difference between the prediction logits of different modalities and the true results. That is, for a
certain molecule, the prediction logit of which modality is closest to its true result, we assign this
prediction logit to this molecule. Finally, we obtained a ROC-AUC result of 99.7% on the HIV test
set. This strong improvement means that building a routing network or ranking algorithm for
selecting results based on models of different molecular modalities is a promising direction. We
also show the contribution of different modalities in Figure S4, which suggests that incorporating
video modality into multi-modal representation learning of molecules is promising in the future.
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Table S47: The RMSE in prediction results between different modalities on HIV dataset. The larger
the RMSE, the greater the difference between the two modes. Green indicates the top three with the
greatest differences, and bold indicates the greatest difference.

fingerprint sequence graph geometry graph image geometry image video

fingerprint 0 0.093046 0.100329 0.067156 0.058782 0.102035 0.177339
sequence 0.093046 0 0.110071 0.089303 0.103196 0.102689 0.157157

graph 0.100329 0.110071 0 0.108321 0.117101 0.125993 0.176838
geometry graph 0.067156 0.089303 0.108321 0 0.05556 0.091146 0.166107

image 0.058782 0.103196 0.117101 0.05556 0 0.098585 0.182885
geometry image 0.102035 0.102689 0.125993 0.091146 0.098585 0 0.153324

video 0.177339 0.157157 0.176838 0.166107 0.182885 0.153324 0

Table S48: The Pearson correlation coefficient in prediction results between different modalities
on HIV dataset. The smaller the Pearson correlation coefficient, the greater the difference between
the two modes. Green indicates the top three with the greatest differences, and bold indicates the
greatest difference.

fingerprint sequence graph geometry graph image geometry image video

fingerprint 1 0.58403 0.606879 0.519876 0.448639 0.387169 0.410779
sequence 0.58403 1 0.576967 0.650448 0.556317 0.572682 0.579381

graph 0.606879 0.576967 1 0.533092 0.450626 0.404815 0.441554
geometry graph 0.519876 0.650448 0.533092 1 0.660593 0.619167 0.58209

image 0.448639 0.556317 0.450626 0.660593 1 0.564617 0.516407
geometry image 0.387169 0.572682 0.404815 0.619167 0.564617 1 0.601794

video 0.410779 0.579381 0.441554 0.58209 0.516407 0.601794 1

K.2 WHY DO UNI-MOL FEATURES ALLOW FOR THE HIGH PERFORMANCE IN
MOLECULENET?

We speculate that the high performance of Uni-Mol benefits from its pre-training on 209 M molec-
ular conformations. To verify this speculation, we pre-trained Uni-Mol using 50K, 200K, and 2M
molecular conformations respectively and observed their performance on 8 classification datasets
from MoleculeNet. In details, we use the official code and parameters provided by Uni-Mol 2, and
pretrain with the first 50K, 200K and 2M conformations of pcqm4m-v2-train 3. The experimental
settings for linear probing on MoleculeNet are consistent with our paper. As shown in Table S49, we
find that the amount of pre-training data is very important for Uni-Mol to achieve good performance
on MoleculeNet.

Table S49: ROC-AUC performance of Uni-Mol pre-trained with different data sizes on 8 classifi-
cation tasks from MoleculeNet with linear probing and 10 different run seeds. In linear probing,
10 conformations per molecule are used. #Conf indicates the amount of data used for pre-training
Uni-Mol.

#Conf BBBP Tox21 ToxCast Sider ClinTox MUV HIV BACE Avg

Uni-Mol

50K 68.0±0.2 71.3±0.1 63.1±0.4 60.4±0.2 68.0±3.2 71.3±0.5 78.0±0.4 80.7±0.7 70.1
200K 65.0±0.9 73.9±0.2 64.0±0.8 62.6±0.3 62.6±1.5 72.4±1.0 76.2±1.0 79.2±0.7 69.5
2M 67.3±0.2 73.2±0.2 63.7±0.7 60.6±0.3 64.8±1.3 73.9±0.7 77.1±0.3 77.9±0.3 69.8

209M 69.3±0.6 75.2±0.1 65.8±0.5 61.6±0.4 85.1±4.4 80.3±0.7 77.5±0.1 78.2±0.2 74.1

K.3 WHY MULTIPLE CONFORMATIONS CAN SIGNIFICANTLY IMPROVE GEOMETRY IMAGE
PERFORMANCE?

Tables S20 and S21 show that multiple conformations can significantly improve the performance of
the geometric image modality (such as IEM-G) with little gain for geometric graph modality (such as
Uni-Mol). Here, we try to answer why this phenomenon occurs. We select BBBP, Tox21, ClinTox
and ToxCast and analyze them in terms of the direction and scale of the features from different

2https://github.com/deepmodeling/Uni-Mol/blob/main/unimol/README.md
3https://ogb.stanford.edu/docs/lsc/pcqm4mv2/
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Figure S4: Contribution of different modalities to prediction on the HIV test set.

conformations. We use IEM-G and Uni-Mol to extract features of 10 conformations from these 4
datasets.

• Direction between features from different conformations. Cosine similarity represents the sim-
ilarity between features in direction. As shown in Figure S5, the The lower left corner and upper
left corner show the difference between Uni-Mol and IEM-G in cosine similarity, respectively. Ob-
viously, we find that the cosine similarity of IEM-G is lower than that of Uni-Mol, which means
that IEM-G has more diversity of direction in extracting features of different conformations. The
cosine similarities of Uni-Mol are all above 99%, which means that multiple conformations are
difficult to provide additional information.

• Scale between features from different conformations. Euclidean distance represents the differ-
ence in feature scale. As shown in Figure S6, the lower left corner and upper left corner show the
differences between Uni-Mol and IEM-G in Euclidean distance, respectively. It is easy to observe
that IEM-G has a larger Euclidean distance than Uni-Mol, which means that IEM-G has a larger
difference in feature scale than Uni-Mol. It may bring more degrees of freedom to IEM-G in
feature space.

Furthermore, we plot the distribution of cosine similarity and Euclidean distance in Figure S7 . We
can see that the distribution of IEM-G is much flatter than that of Uni-Mol. In general, Figures S5,
S6, S7 show that the multi-conformational features extracted by IEM-G have more directional
diversity and scale diversity.

K.4 IMPORTANCE OF NUMBER OF LAYERS FOR SEQUENCE MODELS ON MOLECULENET

In the MoleculeNet experiment, we see that even without any pre-training, the features of sequence-
based MolFormer-R can still achieve excellent performance on MoleculeNet. Therefore, in order
to find out whether there is a correlation between the number of layers of MolFormer-R and its
performance, we perform ablation on the number of layers of the MolFormer-R. In MolFormer-R,
the default number of layers is 6. Here, we further set the number of layers to 1, 2, 4, and 8. As
shown in Table S50, we find that with the increase of the number of layers, except for the average
performance of the 6th layer, the average performance of other layers increased from 69.91% of
the 1st layer to 71.55% of the 8-layer, which suggests that further improving the performance by
increasing the number of layers of the sequence model is a possible direction to try.

K.5 WHY DOES THE SOME MODALITIES HAVE STRONG PERFORMANCE EVEN WITHOUT
TRAINING?

In the linear probing experiment of MoleculeNet, we find that some modalities (sequence and ge-
ometry) can still achieve good performance even without any training, especially the MolFormer-R
based on the sequence modality, which achieves an average ROC-AUC of 70.40% on 8 classifica-
tion tasks. We speculate that this is related to the inductive bias of the modality. Given the excellent
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Figure S5: Cosine similarity between different conformations on BBBP, Tox21, ClinTox, and Tox-
Cast. The white background in the lower left corner represents the features of different conforma-
tions extracted using Uni-Mol and the cosine similarity calculated, while the pink background in the
upper right corner represents those of IEM-G.

Figure S6: Euclidean distance between different conformations on BBBP, Tox21, ClinTox, and
ToxCast. The white background in the lower left corner represents the features of different confor-
mations extracted using Uni-Mol and the cosine similarity calculated, while the green background
in the upper right corner represents those of IEM-G. ”conf” 1 to ”conf 10” refer to 10 different
molecular conformations.

performance of the sequence modality without training, we speculate that the model’s ability to
recognize molecular substructures is the key to its performance.

To verify this conjecture, we use 6 fingerprints (mcfp4 2048, atompair 2048, ecfp4 2048, maccs,
physchem, rdkDes) and randomly initialized models from 6 different modalities (sequence, graph
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Figure S7: The distribution of cosine similarity and Euclidean distance between different conforma-
tions on BBBP, Tox21, ClinTox, and ToxCast datasets with Uni-Mol and IEM-G. The distribution
here is calculated by randomly sampling 2 from 10 conformations.

Table S50: Ablation study of the number of MolFormer-R layers using ROC-AUC metric and 10
runs. #layers indicates the number of layers in the setting.

#layers BBBP Tox21 ToxCast Sider ClinTox MUV HIV BACE Avg

MolFormer-R

1 68.9±0.4 71.0±0.1 61.6±0.4 56.9±0.3 82.6±0.8 68.8±1.7 70.2±0.7 79.3±0.9 69.91
2 71.5±0.9 71.1±0.1 61.8±0.4 57.2±0.5 81.4±0.6 68.1±1.5 70.8±0.7 78.5±1.3 70.05
4 69.4±0.8 70.9±0.2 62.3±0.2 57.2±0.2 82.4±0.2 67.1±1.9 72.0±0.6 89.7±0.7 71.38
6 74.6±0.5 71.6±0.3 61.5±0.3 55.9±0.3 86.2±0.3 67.2±1.6 71.2±0.5 75.0±1.6 70.40
8 75.1±0.6 71.2±0.2 61.7±0.3 55.4±0.4 79.8±1.6 67.8±1.9 70.4±0.8 91.0±2.0 71.55

geometry graph, image, geometry image, video) for feature extraction on 8 classification datasets
from MoleculeNet. In particular, the models from sequence, graph, geometry graph, image, geome-
try image and video are MolFormer-R, GIN-R, Uni-Mol-R, ResNet18-R, ResNet-G-R, VideoMol-R,
respectively. Subsequently, we extract the scaffolds of the molecules and select the top 10 scaffolds
with the highest counts as the substructures of the molecules. Finally, we sample 1,000 molecules
from each of the selected substructures and use t-SNE (Van der Maaten & Hinton, 2008) for di-
mensionality reduction and clustering visualization. Note that all molecules will be sampled if the
number of molecules containing a certain substructure is less than 1,000. To quantitatively analyze
the model’s ability to identify substructures, we calculate the Davis-Bouldin (DB) index (Davies &
Bouldin, 1979) between the features of dimensionality reduction and the substructure labels, which
is used to evaluate the clustering performance. DB index is a quantitative metric used to evaluate
clustering quality. The lower the value, the better the clustering quality.

Table S51 shows the DB Index for different methods. We calculate the Pearson correlation coeffi-
cient using the results of DB index in Table S51 and the results of ROC-AUC in Table S20 . Taking
BBBP as an example, we concatenate the results of BBBP on 12 methods in Table S51 into one
vector as the vector of DB index. Then, we find the corresponding 12 methods in Table S20 and
concatenate them into a ROC-AUC vector. Figure S8 shows the Pearson correlation coefficient cal-
culated using the DB index vector and the ROC-AUC vector. Obviously, we can draw a conclusion:
DB index is inversely proportional to ROC-AUC. This means that the inductive bias of identifying
substructures is important for predicting the properties of molecules.

Figure S9 shows t-SNE visualizations of different methods from 7 modalities on the HIV dataset. We
find that fingerprint-based mcfp4 2024, sequence-based MolFormer, graph-based GIN-R, and Uni-
Mol-R have a good inductive bias for identifying substructures, while the three vision-based modali-
ties (image-based ResNet18-R, geometric image-based ResNet-G-R, and video-based VideoMol-R)
need to rely on post-training. In particular, we find that MolFormer-R is consistent with mcfp4 2048
in the clustering distribution of some substructures, such as the red and cyan clusters, which may
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Table S51: The DB index of different models in 10 molecular substructures.

BBBP Sider Tox21 ToxCast HIV MUV ClinTox BACE

mcfp4 2048 1.4224 1.5532 6.0667 5.0185 3.1764 10.3910 7.2231 0.4158
atompair 2048 1.8361 2.6594 2.9751 2.8674 4.8532 2.8937 3.0130 0.3366

ecfp4 2048 5.2635 1.1886 5.9853 3.3846 1.5788 1.9715 2.2368 0.3092
maccs 1.4097 2.9680 22.9463 7.9525 3.8023 3.4787 3.4251 0.5501

physchem 6.2917 4.3235 9.3082 10.4890 14.9467 20.1449 17.7473 7.9298
rdkDes 7.9706 20.7415 6.2466 7.1217 15.3582 24.6885 5.0376 4.8888

MolFormer-R 2.0754 1.8347 3.5817 4.1549 7.7935 17.2643 2.3998 1.1253
GIN-R 1.2580 1.5947 7.4661 4.2741 6.4118 5.4392 3.5611 1.2960

Uni-Mol-R 1.5010 2.7910 4.4361 5.2003 6.0031 3.7354 3.9110 1.1853
ResNet18-R 14.1199 13.5737 34.2620 25.3775 28.6812 36.1045 16.4683 16.3196
ResNet-G-R 8.9312 14.8282 12.5358 39.0406 13.5395 16.4114 9.5849 8.7852
VideoMol-R 12.6038 6.4966 11.0884 10.6541 10.0499 6.7280 11.6074 12.0046

Figure S8: The Pearson correlation coefficient between the DB index vector and the ROC-AUC
vector on 8 classification datasets from MoleculeNet.

provide evidence for the similar performance of MolFormer-R and mcfp4 2048 on 8 classification
tasks from MoleculeNet, with average ROC-AUC performance of 70.40% and 71.66%, respectively.

Figure S9: The t-SNE visualization of methods from 7 modalities on HIV dataset with 10 substruc-
tures. The value in brackets is the DB index.
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K.6 WHY ARE GEOMETRIC IMAGES AND VIDEOS NOT SENSITIVE TO RGB AND BGR
FORMATS?

For images, RGB and BGR are two similar formats. Early OpenCV used BGR format by default
and current PIL uses RGB format by default. Here we study the impact of RGB and BGR on the
performance of geometry images and videos. Table S22 and Table S23 show the results for RGB. We
find no significant difference between RGB and BGR for geometry images and videos. For example,
VideoMol uses BGR (69.03%) better than RGB (68.53%) on classification tasks and RGB (1.190)
is better than BGR (1.222) on regression tasks. The relationship between BGR and RGB is similar
to image augmentation and the combination between them may further improve performance, just
like TTA (Test Time Augmentation) (Kimura, 2021).

A natural hypothesis about why geometric images and videos are insensitive to RGB and BGR
formats is that the features extracted from RGB and BGR images have high similarity. To verify this
hypothesis, we evaluate the cosine similarity between RGB features and BGR features extracted by
IEM-G on 12 molecular property prediction datasets. As shown in Figure S10, we find that IEM-G
has high similarity between RGB and BGR features ranging from 78.4% to 98.5%, which verifies
the rationality of our hypothesis. Furthermore, we also find that RGB images and BGR images
still have certain differences in features. Inspired by Appendix K.3, it is a promising direction to
use different formats of images to increase the diversity of molecules and further improve the
performance of the model by fusing images of different formats.

Figure S10: The cosine similarity between RGB and BGR features extracted by IEM-G on 12
molecular property prediction datasets.

K.7 WHY IS VIDEO MODALITY SO GOOD AT TASKS RELATED TO ATOMS AND
FUNDAMENTAL PROPERTIES?

For fairness, we select the unpretrained method with best performance in each modality as the
representative of the performance of that modality, namely BERT-6L (sequence modality), GIN-
R (graph modality), TFN (geometry modality), ResNet18-I-R (image modality), ResNet18-G-R
(geometry image modality), and ResNet18-V-R (video modality). We take the atomic distribution
prediction task in MBANet as an example for analysis.

In order to verify the robustness of the conclusion, we use coefficient of determination (R2) (Di Buc-
chianico, 2008) and Kullback-Leibler Divergence (KLD) (Kullback & Leibler, 1951) to evaluate
these methods on 6 common atomic distribution prediction tasks, including C, N, O, F, S, Cl. R2

and KLD are used to evaluate the explanatory power of the predicted results for the true results
(goodness of fit) and the difference between the predicted distribution and the true distribution, re-
spectively. As shown in Table S52 and Table S53, we can further conclude that molecular video
representation has advantages in atomic distribution prediction due to its superior performance on
R2 and KLD. Figure S11 also shows that the predicted results of the video modality have very similar
probability distributions to the true results.

Next, we analyze the principle behind video to achieve better results. Since sequence-, graph-,
and geometry-based methods have a similar learning paradigm, namely, message passing between
tokens/nodes through attention, we choose the graph modality-based GIN-R method as their repre-
sentative.
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Table S52: The R2 performance (The higher the better) between predicted results and true results
on 6 common atomic distribution prediction tasks from MBANet. The sequence, graph, geom-
etry graph, image, geometry image, and video represent BERT-6L, GIN-R, TFN, ResNet18-I-R,
ResNet18-G-R, and ResNet18-V-R, respectively.

C N O F S Cl

sequence -0.07169458 -0.319058707 -0.998515564 -0.605519986 -0.064993676 -0.012769986
graph -0.126330018 0.638550341 0.864461839 0.609151781 -0.945517063 0.24113214

geometry graph 0.763227582 0.819823027 0.887618303 0.900081873 0.818889618 0.876054287
image 0.202817709 0.416600559 0.498178795 0.55820686 0.454666281 0.531525685

geometry image 0.406215768 0.801209417 0.802587877 0.729413738 0.407258332 0.499188822
video 0.914670507 0.939035378 0.956766033 0.806362244 0.906643885 0.705495937

Table S53: The KLD performance (the smaller the better) between predicted results and true results
on 6 common atomic distribution prediction tasks from MBANet. The sequence, graph, geom-
etry graph, image, geometry image, and video represent BERT-6L, GIN-R, TFN, ResNet18-I-R,
ResNet18-G-R, and ResNet18-V-R, respectively.

C N O F S Cl

sequence 11.36941061 10.57263088 5.290512691 5.109889215 4.78485022 5.506043385
graph 1.649138246 0.802423623 0.361164172 0.545743367 0.929395787 0.601528091

geometry graph 0.184020462 0.976098698 1.227725127 0.430602355 1.102794542 0.850205376
image 0.220310553 0.613314328 1.830226786 0.334507478 0.1362694 0.459256267

geometry image 0.187400906 0.604782544 0.591080359 0.343508344 0.132136985 0.585412658
video 0.010882909 0.245992622 0.377055353 0.169471655 0.186108709 0.225095687

We first analyze why GIN-R performs poorly on the atom prediction task, which may be a chain
reaction affecting the estimation of molecular weight in MBANetattr. We conjecture that graph
message passing is not conducive to the model learning the semantics of a single node because the
representation of a node are determined by the representation of its neighbors. As shown in Table
S54, there is no relationship between the same atoms, which means that the information represented
by atoms is more affected by their neighbors than by themselves. For example, C#4 is at most 86%
similar to other carbon atoms (such as C#6), but is at most 95% similar to other types of atoms (such
as N#2). Therefore, the inductive bias towards capturing structural information causes the graph
modality to lose the ability to focus on the nodes themselves.

Table S54: Cosine similarity of pairwise atomic representations using GIN-R on the molecule
’N#Cc1cccc2nnc(C(F)(F)F)n12’. # indicates the atom number.

C#1 C#2 C#3 C#4 C#5 C#6 C#7 C#8 F#1 F#2 F#3 N#1 N#2 N#3 N#4

C#1 1.00 1.00 0.96 0.45 0.81 0.66 -0.04 -0.07 -0.18 -0.18 -0.18 0.22 0.34 0.13 0.61
C#2 1.00 1.00 0.98 0.51 0.84 0.71 0.00 -0.05 -0.18 -0.18 -0.18 0.28 0.40 0.19 0.66
C#3 0.96 0.98 1.00 0.65 0.92 0.83 0.12 -0.01 -0.16 -0.16 -0.16 0.41 0.57 0.36 0.78
C#4 0.45 0.51 0.65 1.00 0.82 0.86 0.51 0.15 0.05 0.05 0.05 0.89 0.95 0.84 0.87
C#5 0.81 0.84 0.92 0.82 1.00 0.98 0.32 0.08 -0.16 -0.16 -0.16 0.51 0.80 0.59 0.94
C#6 0.66 0.71 0.83 0.86 0.98 1.00 0.42 0.12 -0.13 -0.13 -0.13 0.55 0.89 0.70 0.98
C#7 -0.04 0.00 0.12 0.51 0.32 0.42 1.00 0.81 0.69 0.69 0.69 0.47 0.59 0.80 0.56
C#8 -0.07 -0.05 -0.01 0.15 0.08 0.12 0.81 1.00 0.91 0.91 0.91 0.13 0.20 0.35 0.21
F#1 -0.18 -0.18 -0.16 0.05 -0.16 -0.13 0.69 0.91 1.00 1.00 1.00 0.22 0.03 0.25 -0.03
F#2 -0.18 -0.18 -0.16 0.05 -0.16 -0.13 0.69 0.91 1.00 1.00 1.00 0.22 0.03 0.25 -0.03
F#3 -0.18 -0.18 -0.16 0.05 -0.16 -0.13 0.69 0.91 1.00 1.00 1.00 0.22 0.03 0.25 -0.03
N#1 0.22 0.28 0.41 0.89 0.51 0.55 0.47 0.13 0.22 0.22 0.22 1.00 0.78 0.77 0.59
N#2 0.34 0.40 0.57 0.95 0.80 0.89 0.59 0.20 0.03 0.03 0.03 0.78 1.00 0.91 0.92
N#3 0.13 0.19 0.36 0.84 0.59 0.70 0.80 0.35 0.25 0.25 0.25 0.77 0.91 1.00 0.81
N#4 0.61 0.66 0.78 0.87 0.94 0.98 0.56 0.21 -0.03 -0.03 -0.03 0.59 0.92 0.81 1.00

Different from graphs, the inductive bias of molecular videos focuses on learning local patterns. Fig-
ure S12 shows the GradCAM attention of ResNet18-V-R on MBANetatom. We find that video-based
ResNet18-V-R can obtain accurate atomic distribution information based on the local information.
In particular, ResNet18-V-R accurately locates the positions of atoms with attention area in the video
frame. Based on the located atoms, we can count the correct atomic distribution.
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Figure S11: The probability distribution of 6 atoms (C, N, O, F, S, Cl) with video modality-based
IEM-V. GroundTruth and Prediction represent the true results and the predicted results of ResNet-
V-R. The title of x-axis represents the name of atom.

In general, the advantage of molecular videos is that they can learn local information of
molecules with high degrees of freedom, while graphs are limited by the message passing of
neighbors, which weakens the extraction of local atomic-level information.

K.8 SIGNIFICANCE TEST FOR MODAL PREFERENCE IN STRUCTNET

In Table 6, we obtain the preferences of different modalities for molecular types. Since the means in
the table are obtained from 100 results (10 runs on 10 data sets), the conclusions have good validity.
Our conclusions on simplifying preferences are as follows:

• Preference#1. The geometry graph modality prefers acyclic (AC and A) molecules.
• Preference#2. The fingerprint and graph modalities prefer cyclic (CC and M) molecules.
• Preference#3. The visual-based modalities (image, geometry image, and video) prefer macro-

cyclic peptide (MP) and reticular (R) molecules.

In order to further test the robustness of the conclusions, we conduct significance tests on compar-
isons between different modalities. Specifically, we use a two-sided Mann-Whitney U test (Mann &
Whitney, 1947) to evaluate whether the results between modalities are significantly different.

Table S55, Table S56 and Table S57 show the results of the significance test of Preference#1, Pref-
erence#2 and Preference#3 respectively. In Preference#1, we find that geometric graph prefer AC
with significant differences compared with geometric images and video modalities. In Preference#2,
We find that fingerprint and graph preferences are significantly different in M compared to all other
modalities. In Preference#3, modalities of image, geometry image and video prefer MP and R
showing significant differences in most cases.

Overall, the average results reported in Table 6 are statistically significant and in most cases the
results are significantly different.
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Table S55: Results of two-sided Mann-Whitney U test between the graph modality and other modal-
ities (fingerprint, sequence, graph, image, geometry image, video) with a significance level p < 0.05
on acyclic chain molecules (AC) and acyclic molecules (A) of StructNet. Green background indi-
cates significant differences in results.

Modality Molecular type Fingerprint Sequence Graph Image Geometry Image Video

Geometry Graph
AC 0.709404 0.072866 0.314039 0.176196 0.036353 0.000247
A 0.086259 0.464252 0.089914 0.760945 0.906625 0.720347

Table S56: Results of two-sided Mann-Whitney U test between the fingerprint, graph modalities
and other modalities (sequence, geometry graph, image, geometry image, video) with a significance
level p < 0.05 on acyclic cyclic chain molecules (CC) and macro molecules (M) of StructNet. Green
background indicates significant differences in results.

Molecular type Modality Sequence Geometry Graph Image Geometry Image Video

CC
Fingerprint 0.020995 0.036789 0.009321 0.460525 0.444346

Graph 0.269363 0.030572 0.757225 0.242288 0.283926

M
Fingerprint 0 0 0 0 0

Graph 0 0.00003 0 0 0

Table S57: Results of two-sided Mann-Whitney U test between the image, geometry image, video
modalities and other modalities (fingerprint, sequence, graph, geometry graph) with a significance
level p < 0.05 on macrocyclic peptide molecules (MP) and acyclic reticular molecules (R) of Struct-
Net. Green background indicates significant differences in results.

Molecular type Modality Fingerprint Sequence Graph Geometry Graph

MP

Image 0.000044 0.322914 0 0.000122
Geometry Image 0.001465 0.255839 0 0.00024

Video 0.000897 0.202102 0 0.000185

R

Image 0.000001 0.724008 0.005462 0.295615
Geometry Image 0.000187 0.493057 0.007428 0.17973

Video 0.000007 0.672471 0.001746 0.342439
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Figure S12: Grad-CAM visualization of ResNet18-V-R on frames of molecular videos. The first
to fourth rows show the corresponding GradCAM visualizations of molecules when ResNet18-V-
R predicts the distribution of C, N, O, and F atoms, respectively. We use 0.2 as the threshold for
visualization, that is, set the importance lower than 0.2 to 0. nC, nN, nO, nF represent the number of
C, N, O, F atoms, respectively.
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