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ABSTRACT

Tabular machine learning problems often require time-consuming and labor-
intensive feature engineering. Recent efforts have focused on using large language
models (LLMs) to capitalize on their potential domain knowledge. At the same
time, researchers have observed ethically concerning negative biases in other LLM-
related use cases, such as text generation. These developments motivated us to
investigate whether LLMs exhibit a bias that negatively impacts the performance
of feature engineering. While not ethically concerning, such a bias could hinder
practitioners from fully utilizing LLMs for automated data science. Therefore, we
propose a method to detect potential biases by detecting anomalies in the frequency
of operators (e.g., adding two features) suggested by LLMs when engineering new
features. Our experiments evaluate the bias of four LLMs, two big frontier and
two small open-source models, across 27 tabular datasets. Our results indicate
that LLMs are biased toward simple operators, such as addition, and can fail to
utilize more complex operators, such as grouping followed by aggregations. Fur-
thermore, the bias can negatively impact the predictive performance when using
LLM-generated features. Our results call for mitigating bias when using LLMs for
feature engineering.

1 INTRODUCTION

Machine learning problems for tabular data exist in many domains, such as medical diagnosis,
cybersecurity, and fraud detection (Borisov et al., 2022a; van Breugel & van der Schaar, 2024). The
original data for these problems (e.g., an Excel sheet) often requires manual feature engineering by a
domain expert to solve the machine learning problem accurately (Tschalzev et al., 2024). During
(automated) feature engineering, various operators (e.g., Add, Divide, GroupByThenMean)
are applied to existing features to create new features (Kanter & Veeramachaneni, 2015; Prado &
Digiampietri, 2020; Mumuni & Mumuni, 2024).
Large language models (LLMs) understand various domains (Kaddour et al., 2023; Kasneci et al.,
2023; Hadi et al., 2024), tabular data (Ruan et al., 2024; Fang et al., 2024), and feature engineering
(Hollmann et al., 2024; Jeong et al., 2024; Malberg et al., 2024). Thus, data scientists have started to
leverage LLMs for feature engineering, especially via the use of CAAFE (Hollmann et al., 2024),
a powerful method for automatic feature engineering with LLMs1; liberating practitioners from
extensive manual labor.

Despite their utility, LLMs are known to have negative biases as observed for chat applications (Kotek
et al., 2023; Navigli et al., 2023; Gallegos et al., 2024; Bang et al., 2024) or when "meticulously
delving" into text generation (Liang et al., 2024). Observing such biases motivated us to determine
whether LLMs also exhibit a bias that negatively impacts the quality of their engineered features. If a
bias is found and can be circumvented, LLMs would become a more potent tool for data scientists.

To determine whether a bias exists, we inspect the frequency of operators LLMs use when engineering
features. This parallels inspecting the frequency of words to detect LLM-generated text (Liang et al.,
2024). Assuming LLMs use their world knowledge and reasoning capabilities to employ the most
appropriate operator, we expect the operators’ frequencies to be similar to those of the optimal
operators. That is, if adding two features is often the optimal feature, then an LLM would frequently

1For example, see these recent Kaggle competition write-ups (Hatch, 2024; Türkmen, 2024).
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add two features. Moreover, if the LLM does not know the optimal operator, it should resort to a
random search over operators.

Therefore, we compare the frequencies of operators used by an LLM to those obtained by searching
for the optimal features with automatic black-box feature engineering using OpenFE (Zhang et al.,
2023). Using this approach, we evaluated the bias of 4 LLMs, namely GPT-4o-mini (OpenAI, 2024),
Gemini-1.5-flash (Gemini-Team, 2024), Llama3.1-8B (Touvron et al., 2023), and Mistral7B-v0.3
(Jiang et al., 2023). We obtained the distribution over operators for 27 tabular classification datasets
unknown to all LLMs.

Our results demonstrate that LLMs can have a negative bias when engineering features for tabular
data. LLMs favor simple operators during feature engineering (e.g., Add), while some LLMs rarely
use more complex operators (e.g., GroupByThenMean). In contrast, automatic black-box feature
engineering favors complex operators but also uses simple operators.
In particular, we observed a strong bias and negative impact for GPT-4o-mini and Gemini-1.5-flash,
two big frontier models (Chiang et al., 2024). Both select simple operators most often and their
generated features decrease the average predictive performance. In contrast, Llama3.1-8B and
Mistral7B-v0.3, the small open-source models, are less biased or negatively impacted. Nevertheless,
no LLM is close to the distribution over operators obtained by OpenFE. Likewise, the features
generated by OpenFE improve the predictive performance on average the most.

Our Contributions. Our long-term goal is to enhance LLMs for automated data science. This
work contributes toward our goal by: (1) developing a method to analyze LLMs for bias in feature
engineering, and (2) demonstrate the existence of a bias that negatively impacts feature engineering.

2 RELATED WORK

Feature Engineering Without Large Language Models. Previous work dedicated considerable
effort toward automating the process of feature engineering (Kanter & Veeramachaneni, 2015; Prado
& Digiampietri, 2020; Mumuni & Mumuni, 2024). Various black-box methods have been proposed,
such as ExploreKit (Katz et al., 2016), AutoFeat (Horn et al., 2020), BioAutoML (Bonidia et al.,
2022), FETCH (Li et al., 2023), and OpenFE (Zhang et al., 2023). These methods typically generate
new features in two steps: 1) create a large set of candidate features by applying mathematical (e.g.,
Add) or functional (e.g., GroupByThenMean) operators to features, and 2) return a small set of
promising features selected from all candidate features.

Feature Engineering with Large Language Models. LLMs allow us to exploit their (potential)
domain knowledge for feature engineering. LLMs can act as a proxy to a domain expert or data
scientist during the feature engineering process. To illustrate, LLMs can be prompted to suggest code
for generating new features (Hollmann et al., 2024; Hirose et al., 2024), to select predictive features
(Jeong et al., 2024), or to use rule-based reasoning for generation (Nam et al., 2024). Most notably,
CAAFE (Hollmann et al., 2024) presents a simple yet effective method to generate new features by
proposing Python code to transform existing features in the dataset into new valuable features. This
method lays the foundation to our proposed feature generation method, due to its wide application in
practice2 and also in research (Malberg et al., 2024; Guo et al., 2024; Zhang et al., 2024b).

Bias in Large Language Models. LLMs exhibit explicit and implicit biases. Explicit biases can
be, among others, gender or racial discrimination in generated text (Kotek et al., 2023; Navigli et al.,
2023; Gallegos et al., 2024; Bang et al., 2024). Moreover, LLMs can have implicit biases, such as
specific words and phrases frequently re-used in generated text. As a result, Liang et al. (2024) were
able to use recent trends in word frequency to detect and analyze LLM-generated text. Our method is
similar to the investigation by Liang et al. (2024) but focuses on operator instead of word frequency.

Other Applications of Large Language Models for Tabular Data. Many researchers recently
started using LLMs for applications related to tabular data. To avoid confusion in this plethora of
recent work, we highlight similar but not directly related work to our contribution. Our work is not
directly related to LLMs to tabular question answering (Ghosh et al., 2024; Grijalba et al., 2024; Wu
et al., 2024), tabular dataset generation (Borisov et al., 2022b; van Breugel et al., 2024; Panagiotou

2For example, see these recent Kaggle competition write-ups (Hatch, 2024; Türkmen, 2024).
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Figure 1: Our Method to Analyze Feature Engineering Bias of an LLM. Our method is split
into three stages. In the first stage A), we discard tabular datasets, which the LLM might have
memorized. In the second stage B), we instruct the LLM to select the best operators to engineer
new features. At the same stage, we use OpenFE (Zhang et al., 2023), black-box automated feature
engineering, to determine a proxy for the optimal operators. In the third stage C), we compare the
frequencies of operators for the LLM and OpenFE. That is, we look for anomalies when contrasting
the distributions, such as using simple operators much more than complex ones.

et al., 2024), tabular data manipulation (Zhang et al., 2024a; Qian et al., 2024; Lu et al., 2024), or
tabular few-shot predictions (Hegselmann et al., 2023; Han et al., 2024; Gardner et al., 2024)

3 METHOD: ANALYZING FEATURE ENGINEERING BIAS

We propose a three-stage method to assess the bias of an LLM when used to engineer new features
for tabular data problems. Our three-stage method A) tests the LLM for memorization of benchmark
datasets; B) engineers new features with an LLM as well as black-box automated feature engineering;
and C) analyzes the bias of the LLM. We visualize our method in Figure 1.

A) Memorization Test. Given that language models are trained on vast amounts of publicly available
data, we must account for the possibility that the LLM memorizes a dataset and optimal new features
prior to our evaluation. To mitigate the risk of dataset-specific bias influencing the LLM during
feature engineering, we test the LLM for memorization of datasets using the methods proposed by
Bordt et al. (2024). Specifically, we conducted the row completion test, feature completion test, and
the first token test. We consider a success rate of 50% or higher in any test an indicator that the
evaluation of the dataset is biased. In such cases, the dataset is excluded from further evaluation.

B) Feature Engineering. We propose a straightforward and interpretable feature engineering method
for LLMs. Given a dataset, the LLM is supplied with context information, including the name
and description. In addition, a comprehensive list of all features and critical statistical information
for each feature (e.g., datatype, number of values, minimum, maximum, etc.) are provided. The
instructions prompt also contains a pre-defined set of operators for engineering new features, each
with a description indicating whether an operator is unary (applicable to one feature) or binary
(requiring two features). We detail our full prompting specifications with examples in Appendix A.
The LLM is then instructed to generate precisely one new feature by selecting one or two existing
features and applying one of the available operators. We employ chain-of-thought (CoT) prompt-
ing (Wei et al., 2023) to boost the expressive power of the LLM (Li et al., 2024). In addition, the
LLM explains why a feature was generated with CoT. We also employ a feedback loop, similar to
CAAFE (Hollmann et al., 2024), which we detail in Appendix A.
Our approach to feature engineering with LLMs deviates from prior work (Hollmann et al., 2024;
Hirose et al., 2024; Jeong et al., 2024) because we do not rely on code generation. This might put
LLMs at a disadvantage because we reduce their potential expressiveness. However, we see this
disadvantage outweighed by three significant advantages: first, we (almost) nullify the failure rate
of generated code, which can be as much as 95.3% for small models (Hirose et al., 2024) ; second,
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we can control which operators the LLM uses; and third, we can extract applied operators from
structured output without a (failure prone) code parser – enabling our study.

Fundamentally, we aim to compare the distribution over operators suggested by the LLM to the
distribution over the optimal operators. That said, we do not know the optimal operators for a dataset.
Thus, as a proxy, we use the operators suggested by OpenFE (Zhang et al., 2023).
To the best of our knowledge, OpenFE is the most recent, well-performing, and highly adopted3

automated feature engineering tool. OpenFE suggests a set of new features after successively pruning
all possible new features generated by a set of operators. To do so, OpenFE uses multi-fidelity feature
boosting and computes feature importance.

C) Analysis. Finally, we analyze bias in feature engineering with LLMs using trends in the frequen-
cies of operators. Therefore, we save the operators used by LLMs and black-box automated feature
engineering from the previous stage. Subsequently, we compute the distribution over the frequencies
of operators. This database allows us to visualize, inspect, and contrast the functional behavior of
feature engineering with LLMs.

4 EXPERIMENTS

We extensively evaluate the bias of 4 LLMs for 21 operators across 27 classification datasets.

Large Language Models. We use four LLMs hosted by external providers via APIs. In detail,
we used GPT-4o-mini (OpenAI, 2024) and Gemini-1.5-flash (Gemini-Team, 2024) to represent big
frontier LLMs and Llama3.1 8B (Touvron et al., 2023) and Mistral 7B Instruct v0.3 (Jiang et al.,
2023), hosted by Together AI4, to represent small open-source models. The API usage cost ∼200$.

Operators. In this study, we use a fixed set of applicable operators. These operators represent a
subset of the operators provided by OpenFE. We categorize the available operators into simple and
complex operators. Simple operators apply straightforward arithmetic operations, such as adding
two features. Furthermore, these operators are characterized by their relatively low computational
complexity, typically O(n). In contrast, complex operators perform more advanced transformations,
such as grouping or combining the existing data into distinct subsets, followed by various aggregation
functions. Compared to simple operators, complex operators generally exhibit a higher computational
complexity of O(n log n) or greater. We present all operators and their categories in Appendix B.

Datasets. We used 27 out of 71 classification datasets from the standard AutoML benchmark (Gijsbers
et al., 2024), which consists of curated tabular datasets from OpenML (Vanschoren et al., 2014).
First, to avoid too large input prompts as well as extensive compute requirements, we selected all
datasets with up to 100 features, 100 000 samples, and 10 classes – resulting in 36 datasets. We had
to remove the yeast dataset due to insufficient samples per class for 10-fold cross-validation. Of
the remaining 35 available datasets, 8 (∼23%) failed our memorization tests (see Appendix E) with
at least one LLM, making them unsuitable for further evaluation – resulting in 27 datasets.

Evaluation Setup. For each dataset, we perform 10-fold cross-validation. For each fold, we run
OpenFE and prompt each LLM to generate 20 features. We assess the predictive performance of
feature engineering following Zhang et al. (2023) by evaluating LightGBM (Ke et al., 2017) on the
original features and the original features plus the newly generated features. Note, due to using a
feedback loop, we only add features to the dataset when they improve the predictive performance on
validation data (see Appendix A) We measured predictive performance using ROC AUC. Moreover,
we mitigate a positional bias of our prompt template by repeating feature generation five times with
an arbitrary order of operators. Finally, we compute the frequencies of operators across all new
features, in total 27 000.

5 RESULTS

We order our results as follows: first, we demonstrate that a bias exists; then, we show that the bias
negatively impacts the performance of feature engineering; and finally, we rule out confounding
factors of the prompt template with an additional experiment.

3At the time of writing, OpenFE’s GitHub repository has ∼760 stars and ∼100 forks.
4https://www.together.ai/
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Figure 2: Frequency of Feature Engineering Operators. We present the frequency of how often
an operator was used to create a new feature across all datasets, folds, and repetitions for OpenFE,
GPT-4o-mini, Gemini-1.5-flash, Llama3.1 8B, and Mistral 7B. The highest frequency observed for
OpenFE is ∼13.42% with the complex operator GroupByThenRank. In contrast, for GPT-4o-mini,
it is ∼32.27% with the simple operator Multiply.

Table 1: Names and Frequencies of the Most and Least Frequent Operator. We present the most
frequent (Max Freq.) and least frequent (Min Freq.) operator and their frequency per method/model.
Each LLM model has a higher maximal and lower minimal frequency than OpenFE.
Method/Model Operator (Max Freq.) Frequency (in %) Operator (Min Freq.) Frequency (in %)

OpenFE groupbythenrank 13.42 absolute 0.11
GPT-4o-mini multiply 32.27 min/groupbythenmean 0.00
Gemini-1.5-flash divide 26.87 min 0.02
Llama3.1-8B groupbythenmean 18.96 round 0.00
Mistral-7B-v0.3 groupbythenmean 21.13 round 0.09

HYPOTHESIS 1: FEATURE ENGINEERING WITH LARGE LANGUAGE MODELS IS BI-
ASED TOWARD SIMPLE OPERATORS.

Figure 2 illustrates the operators’ frequencies for OpenFE and the four LLMs. None of the
language models replicate the distribution found by OpenFE. Although, notably, the distribu-
tion of Llama3.1 8B and Mistral 7B appear most similar. This discrepancy is particularly no-
ticeable for the most frequently used complex operators by OpenFE, GroupByThenRank and
CombineThenFrequencyEnconding. Neither are among the 3 most frequent operators for
any LLM.

Table 1 presents names and frequencies of the most frequently generated operators by OpenFE and
each LLM. Surprisingly, the small open-source LLMs most often select a complex operator, while
both big LLMs favor simple operators. Nevertheless, the frequencies for the most used operators are
significantly higher for LLMs than those observed for OpenFE. We further this analysis with Table
2, which shows all operators required to accumulate 90% of the total distribution. Notable, GPT-
4o-mini features only five operators, with four of them - add, subtract, multiply, divide -
representing basic arithmetic operators. This highlights a lack of complexity in the applied operators
of one of the most complex LLMs.

In some cases, LLMs could not follow the instructions of our prompt template for generating a new
feature. In these cases, the LLM usually proposed an operator not on the list of allowed operators. We
show the frequency of occurrences for such invalid-operators in Figure 2, represented by the
right-most operator. Mistral-7B, exhibits the highest frequency of invalid-operator across all
LLMs, with the frequency even exceeding other allowed operators and being part of the ten most used
operators for this LLM, as shown in Table 2. While concerning, failures for code-generation-based
feature engineering methods of a similar model size are still much higher; see (Hirose et al., 2024).
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Table 2: Operators Making Up 90% of the Total Distribution. We show the set of operators that
make up 90% of the frequency distribution. OpenFE and both small open-source models require 10
operators to obtain 90% while GPT-4o-mini takes only 5.
Model Operators Count Cumulative Frequency (in %)

OpenFE groupbythenrank, subtract, divide, add 10 90.40
combinethenf.e., multiply, max,
combine, min, frequencyencoding

GPT-4o-mini multiply, add, combine, divide, subtract 5 93.63
Gemini-1.5-flash divide, subtract, combine, groupbythenmean, 7 91.68

combinethenf.e., groupbythenstd, absolute
Llama3.1-8B groupbythenmean, subtract, multiply, add, 10 91.62

divide, log,groupbythenmax, max,
combinethenf.e., absolute

Mistral-7B-v0.3 groupbythenmean, subtract, divide, 10 91.23
add, groupbythenrank, log, frequencyencoding,
combinethenf.e., multiply, invalid-operator

Figure 3: Frequency of Feature Engineering Operators for a Dataset With Strong Bias. We
visualize the frequencies of operators for the "Amazon_employee_access" dataset. OpenFE favors
operators to the left, while the LLMs focus on the operators to the right. For this dataset, LLMs favor
complex operators (e.g., GroupByThenMean) but also frequently suggest Add and Subtract.
OpenFE suggest simple operators most often but also GroupByThenRank. Mistral-7B can match
the suggestions of OpenFE better than other LLMs.

We analyzed the bias of LLMs across a collection of datasets to obtain a meaningful conclusion.
However, practitioners likely want to know if an LLM exhibits a bias for their data. Therefore,
we highlight two of the 27 datasets as an example for practitioners. Figure 3 shows the operator
frequencies for the "Amazon_employee_access" dataset. We observe that the LLMs exhibit a very
different distribution from OpenFE, indicating a strong bias of LLMs. While the features engineered
by the LLMs match each other, only Mistral-7B engineers features similar to OpenFE. We highlighted
this dataset because it was the only one where LLMs seem to favor complex features more than
simple ones. This indicates that the dataset, and its information presented in the prompt, contribute
to the bias exhibited by LLMs. For the second example, we show the operator frequencies for the
"phoneme" dataset in Figure 4. The features engineered by the LLMs were also found to be optimal
operators by OpenFE. However, GPT-4o-mini strongly prefers Add, similar to the bias observed
across all datasets. Yet, the LLMs rarely use the one complex operator frequently found by OpenFE
(Resiudal). This shows that an analysis across datasets is required to avoid dataset-specific noise.

6
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Figure 4: Frequency of Feature Engineering Operators for a Dataset Without Strong Bias.
We visualize the frequencies of operators for the "phoneme" dataset. The distribution of the LLMs
and OpenFE is reasonably well aligned, except for GPT-4o-mini for Add. OpenFE and all LLMs
frequently create new features with Divide and Subtract. Nevertheless, the LLMs still fail to
use the complex operator Residual, as done by OpenFE.

HYPOTHESIS 2: THE BIAS OF LARGE LANGUAGE MODELS NEGATIVELY IMPACTS
FEATURE ENGINEERING.

Figure 5 and Table 3 present the relative improvements in predictive accuracy of the features
engineered with each LLM and OpenFE in comparison to a system without feature engineering. We
present raw results per dataset in Appendix F. The results demonstrate the negative impact of the bias
on the quality of the generated features. The two big frontier models, which are more biased toward
simple operators, perform worse on average. While the two small open-source models improve
performance, but still perform worse than OpenFE. Additionally, the effectiveness of OpenFE is
highlighted, improving predictive accuracy on 21 of 27 benchmark datasets.

Table 3: Predictive Performance Improvement With Feature Engineering. We show the number
of datasets with improvements and the average relative improvement for OpenFE and each LLM.

Method/Model Improvements Average Relative Improvement (in %)

OpenFE 21/27 +0.638
GPT-4o-mini 10/27 −0.507
Gemini-1.5-flash 6/27 −1.161
Llama3.1-8b 16/27 +0.165
Mistral-7b-v0.3 14/27 +0.164

As observed in Figure 5, adding the features engineered by Gemini-1.5-flash and GPT-4o-mini to
the data performs much worse than no feature engineering for several outliers. This is particularly
interesting because of the feedback loop we implemented. Our feedback loop only adds features to
the data when it improves predictive performance on validation data. Therefore, these results suggest
that both big frontier models sometimes engineer features that do not generalize to test data, even
when their expressiveness is limited to a set of pre-defined operators. We manually investigated
all datasets with a relative improvement above or below 2% for a pattern in the generated features.
Compared to the overall distribution, these cases were not dominated by individual operators or

7
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Figure 5: Relative Improvements of Feature Engineering. We visualize the distribution of relative
improvements using boxplots for OpenFE and each LLM. We compute improvement relative to
a LightGBM classifier trained only on the original dataset (red horizontal line). A higher relative
improvement indicates that the performance of LightGBM improved when training on the original
data plus the new features generated by OpenFE or an LLM. OpenFE improves the performance on
most datasets and has the highest median relative improvement, as shown by the black horizontal line
in the box. In contrast, Gemini-1.5-flash rarely improves the performance.

Figure 6: Frequency of Feature Engineering Operators for Random Search with LLMs. Distribu-
tion over the frequency of feature engineering operators when simulating random search by masking
the operators’ names in the prompt. The frequency denotes how often an operator was used to create
a new feature across all datasets, folds, and repetitions for GPT-4o-mini, Gemini-1.5-flash, Llama3.1
8B, and Mistral 7B. Compared to Figure 2, the distribution for all models exhibits a significantly
higher degree of uniformity, and the previously observed bias toward simple operators does not
manifest. Notably, Mistral 7B has again the highest frequency of generating invalid operators.

specific operator types. We leave it to future work to investigate how well the feature engineering of
LLMs generalizes to unseen data.
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ADDITIONAL EXPERIMENT. ENGINEERING RANDOM FEATURES WITH LLMS.

We additionally investigate whether the observed bias primarily arises from positional preferences
related to the positioning of operator names in our prompt. We additionally investigate whether
our prompt template influenced our results. Therefore, we adapt our prompt template to mirror
a random search. That is, we force an LLM to generate new features by randomly selecting the
most appropriate operator. To this end, we employed the same experimental setup as our primary
experiments. However, we masked the actual names of the operators in the instructions prompt. Each
operator is assigned a numeric label, which the LLM selects. Subsequently, these numeric labels are
mapped back to the names of the corresponding operators. Notably, we again shuffle the order of
operators five times.

Figure 6 shows the distribution over the frequency of operators with LLM-based random search for
feature engineering. We observe that all models exhibit a significantly higher degree of uniformity
compared to Figure 2. Yet, we do not observe total uniformity as expected for a random search, which
aligns with observations for LLMs by Hopkins et al. (2023). Moreover, the previously observed bias
toward simple operators does not manifest anymore. This is particularly visible for GPT-4o-mini.
Mistral 7B has again the highest selection frequency of invalid operator labels, i.e., fails to follow the
prompt’s instructions. We conclude that the positioning the operator names in our prompt template
did not cause the bias toward simple operators. Instead, the content of the prompt, in combination
with the LLM, causes the bias.

6 CONCLUSION

In this work, we propose a method to evaluate whether large language models (LLMs) are biased
when used for feature engineering for tabular data. Our method detects a bias based on anomalies
in the frequency of operators used to engineer new features (e.g., Add). In our experiments, we
evaluated the bias of four LLMs. Our results reveal a bias towards simpler operators when engineering
new features with LLMs. Moreover, this bias seems to negatively impact the predictive performance
when using features generated by an LLM.

In conclusion, the contributions of our work are a method to detect bias in LLMs and evidence that a
bias toward simple operators exists. The findings of this method underscore the necessity to further
strengthen LLMs to truly unlock their potential for tabular data problems. Our work underscores the
importance of developing methods to mitigate bias in downstream applications. Promising methods
for future work to explore are in-context learning (e.g., prompt tuning) or fine-tuning the LLM to
favor optimal operators. In the long term, after identifying and addressing biases in LLMs, we can
fully liberate ourselves from manual feature engineering. This will allow us to leverage LLMs as
reliable and efficient automated data science agents for tabular data.

Limitations and Broader Impact. Our study on the bias of LLMs still has limitations because it
is the first of its kind for automated data science. We detect a bias but do not support practitioners
to determine why an LLM might be biased. Similarly, given how frontier LLMs are trained and
deployed, we focused on assessing bias in the models’ outputs rather than internal mechanisms.
Lastly, our study is limited to four LLMs, while practitioners can also choose from many other
potentially biased LLMs. Our findings and proposed method do not create any negative societal
impacts. Instead, both can have positive societal impacts because they increase our understanding
and (mis)trust when using large language models for feature engineering.

Reproducibility Statement We made the code used in our experiments publicly available at [LINK
REDACTED DUE TO ANONYMITY] to ensure our work’s reproducibility and enable others to
analyze their LLM for bias. Furthermore, we used public datasets from OpenML (Vanschoren et al.,
2014). The appendix details how we interact with the LLMs, which model versions we use, and the
results of our memorization tests. Furthermore, we present non-aggregated results in the appendix.
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A FULL PROMPTING SPECIFICATIONS

A.1 PROMPT TEMPLATES

Figure 7 contains the system prompt we used to interact with the LLM during feature engineering.
Figure 8 contains an example instruction prompt for the blood-transfusion-service-center dataset.
First, we include a list of statistical values that describe each feature. Secondly, a list of all allowed
operators as defined in B is passed with a description for whether the operator is a binary operator
and thus applicable to two features at a time or unary, only applicable to one feature. Finally, we will
give strict formatting instructions for the expected output of the LLM. We demand that each newly
proposed feature contain four elements. First, we require reasoning as to why the given feature was
selected. Second, we require a combination of exactly one operator and one or two existing features
(depending on whether the chosen operator is a unary or a binary operator). Finally, we request a
name for the new feature and a short description of its contents in the context of the dataset.

You are an expert data scientist performing effective feature engineering on a dataset. You will get
a short description of every feature in the dataset. This description will contain some statistical
information about each feature.
Example of the information you will get about a feature: Feature 1: Type: int64, Feature size: 100,
Number of values: 100, Number of distinct values: 100, Number of missing values: 0, Max: 100,
Min: 0, Mean: 50, Variance: 100, Name: name. Sample: First couple of rows of the dataset.
If some value carries the value EMPTY, it means that this value is not applicable for this feature.
You are also provided a list of operators. There are unary and binary operators. Unary operators take
one feature as input and binary operators take two features as input.
Example of the information you will get about an operator: Operator: SomeOperator, Type: Binary
You are now asked to generate a new feature using the information from the features and the
information from the operators as well as your own understanding of the dataset and the given domain.
There will be an example of how your response should look like. You will only answer following this
example. Your response will containing nothing else. You are only allowed to select operators from
the list of operators and features from the list of features. Your are only allowed to generate one new
feature. Your newly generated feature will then be added to the dataset.

Figure 7: Our System Prompt. The contents of the full system prompt, which is sent to the LLM
before the instructions to generate new features for a given dataset.

A.2 FEEDBACK LOOP

We additionally employ a feedback loop to supply the LLM with additional knowledge about its
generated features, similar to CAAFE (Hollmann et al., 2023). After the LLM proposes a feature,
the new feature is manually computed by applying the requested operator to the respective features.
Before a feature is added to the dataset, we test whether it yields improvements in ROC AUC on the
given dataset to prevent the addition of noisy features. Each proposed feature is added to the dataset,
and 10-fold cross-validation is conducted using LightGBM (Ke et al., 2017). When compare the
average ROC AUC score to the average ROC AUC scores over the dataset without the new feature.
The new feature is subsequently only added to the dataset if it improves the average ROC AUC score.
In the next feature generation request, the user prompt additionally contains information about the
previous feature, including its name, description, reasoning, and the actual transformation request
from the prior round. We also pass the change in ROC AUC score that the last feature yielded in
comparison to the dataset without the new feature.

B LIST OF OPERATOR AND THEIR CATEGORIES

See Tables 4 and 5 for an overview of operators used in our study.

C DATASETS

See Table 6 for an overview of all dataset used in our study.
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Feature 1: Type: int64, Feature size: 673, Number of values: 673, Number of distinct values: 30,
Number of missing values: 0, Max: 74, Min: 0, Mean: 9.543, Variance: 67.016, Name: V1
Feature 2: Type: int64, Feature size: 673, Number of values: 673, Number of distinct values: 33,
Number of missing values: 0, Max: 50, Min: 1, Mean: 5.558, Variance: 35.916, Name: V2
Feature 3: Type: int64, Feature size: 673, Number of values: 673, Number of distinct values: 33,
Number of missing values: 0, Max: 12500, Min: 250, Mean: 1389.673, Variance: 2244785.309,
Name: V3
Feature 4: Type: int64, Feature size: 673, Number of values: 673, Number of distinct values: 77,
Number of missing values: 0, Max: 98, Min: 2, Mean: 34.358, Variance: 599.813, Name: V4
Operator: FrequencyEncoding, Type: Unary
Operator: Absolute, Type: Unary
Operator: Log, Type: Unary
Operator: SquareRoot, Type: Unary
Operator: Sigmoid, Type: Unary
Operator: Round, Type: Unary
Operator: Residual, Type: Unary
Operator: Min, Type: Binary
Operator: Max, Type: Binary
Operator: Add, Type: Binary
Operator: Subtract, Type: Binary
Operator: Multiply, Type: Binary
Operator: Divide, Type: Binary
Operator: Combine, Type: Binary
Operator: CombineThenFrequencyEncoding, Type: Binary
Operator: GroupByThenMin, Type: Binary
Operator: GroupByThenMax, Type: Binary
Operator: GroupByThenMean, Type: Binary
Operator: GroupByThenMedian, Type: Binary
Operator: GroupByThenStd, Type: Binary
Operator: GroupByThenRank, Type: Binary
Here is an example of how your return will look like. Suppose you want to apply operator A to
Feature X and Feature Y. Even if you know the names of features X and Y you will only call them
by their indices provided to you. You will not call them by their actual names. You will return
the following and nothing else: REASONING: Your reasoning why you generated that feature.;
FEATURE: A(X, Y); NAME: name; DESCRIPTION: This is the feature called name. This feature
represents ... information.

Figure 8: Our Instruction Prompt. The contents of the instruction prompt on the example of the
blood-transfusion-service-center dataset. This prompt is send every time the LLM is instructed to
generate a feature for a given dataset. The order of operators is shuffled according to the explanations
in Section 4.

D LARGE LANGUAGE MODELS

See Table 7 for an overview of the specific model versions used in this study.

E MEMORIZATION TEST RESULTS

To mitigate the risk of dataset-specific bias, we conduct memorization tests (Bordt et al., 2024) before
our experiment. From the forms proposed Bordt et al. (2024) for dataset understanding by a large
language model (LLM), we consider actual memorization of the dataset to be most influential to our
evaluation. Therefore, we employ the tests that evaluate the level to which extend a LLM memorizes
a given datasets. These tests include a (1) row completion test, (2) feature completion test, and (3)
first token test. Each test prompts a given LLM with 25 different samples from the dataset. We
consider a success rate of 50% on at least one test as an indicator of memorization. If one of the four
different used language models implied signs of memorization, the tests where not further conducted
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Table 4: Simple Operators.
Operators

abs
log
sqrt
round
min
max
add

subtract
multiply
divide

Table 5: Complex Operators.
Operators

residual
sigmoid

frequencyencoding
groupbythenmin
groupbythenmax
groupbythenmean

groupbythenmedian
groupbythenstd
groupbythenrank

combine
combinethenfrequencyencoding

for the other remaining models. Table 8 and Table 9 present the results for the memorization tests for
all initial datasets on all four models.

F PREDICTIVE ACCURACY RESULTS

See Table 10 to see the average ROC AUC scores for all folds for all datasets for each method.

G ADDITIONAL EXPERIMENTS

To further solidify the results of our study we conducted some additional experiments.

G.1 STATISTICAL SIGNIFICANCE

We test the statistical significance of our results on predictive accuracy across all benchmark datasets
and methods. The results of these tests are presented in the critical difference diagram in Figure
9. As visible in this diagram, OpenFE has the highest rank across all methods, outperforming all
LLM-based methods. GPT-4o-mini and Gemini-1.5-flash exhibit no statistical difference
and are last in ranks, matching our findings from Table 3 and Figure 5. Further, the similarity in
performance between Llama3.1-8b and Mistral-7b-v0.3 is further solidified.

G.2 BIAS IN GPT-4O

To evaluate whether the apparent bias can be fixed by selecting more powerful models as foundation,
we conducted the same experiments on a subset of the benchmark datasets in OpenAI’s GPT-4o
model. We compared the distribution of selected operators by GPT-4o to the distribution of
GPT-4o-mini, presented in Figure 10. When considering the churn and phoneme dataset, a
strong similarity between the distributions of GPT-4o and GPT-4o-mini is apparent. For the
ada and shuttle dataset the distribution of GPT-4o is visibly smoother in comparison to the
distribution of GPT-4o-mini. However when considering the types of selected features, the bias
towards simple operators is still very strongly represented by GPT-4o, indicating that the usage
more powerful models does not fix the bias towards simpler operators.

G.3 FEATURE SELECTION FREQUENCIES

We evaluate the frequencies of selected features per dataset. For each dataset we calculate the
frequencies with which each feature is selected over all feature generation steps. As presented in
Figure 11 the LLM is relatively certain which features to select, indicated by high frequencies for few
features on most datasets.
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Figure 9: Critical Difference Plots for Test Scores. Mean rank of the methods (lower is better).
Methods connected by a bar are not significantly different.
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Figure 10: Comparison of Operator Distributions for GPT-4o and GPT-4o-mini. We present the
distributions of selected operators on 4 different benchmark datasets. Generally the distribution for
GPT-4o is smoother in comparison to GPT-4o-mini. However, the problem of relying heavily
on only few (simple) operators, is similar to GPT-4o-mini, as visible from the set of selected
operators as well as the frequencies with which the simple operators are selected accross all 4 datases.
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Table 6: Benchmark Datasets The table contains all datasets from the AutoML benchmark (Gijsbers
et al., 2024) that we used in our experiments. We selected dataset based on our constraints defined in
Section 4. All datasets listed in this Table were tested for memorization of the LLMs.

Datastet ID Dataset Features Samples Classes

190411 ada 49 4147 2
359983 adult 15 48842 2
359979 amazon_employee_access 10 32769 2
146818 australian 15 690 2
359982 bank-marketing 17 45211 2
359955 blood-transfusion-service-center 5 748 2
359960 car 7 1728 4
359968 churn 21 5000 2
359992 click_prediction_small 12 39948 2
359959 cmc 10 1473 3
359977 connect-4 43 67557 2
168757 credit-g 21 1000 2
359954 eucalyptus 20 736 5
359969 first-order-theorem-proving 52 6118 6
359970 gesturephasesegmentationprocessed 33 9873 5
211979 jannis 55 83733 4
359981 jungle_chess_2pcs_raw_endgame_complete 7 44819 3
359962 kc1 22 2109 2
359991 kick 33 72983 2
359965 kr-vs-kp 37 3196 2
167120 numerai28.6 22 96320 2
359993 okcupid-stem 20 50789 3
190137 ozone-level.8hr 73 2534 2
359958 pc4 38 1458 2
359971 phishingwebsites 31 11055 2
168350 phoneme 6 5404 2
359956 qsar-biodeg 42 1055 2
359975 satellite 37 5100 2
359963 segment 20 2310 7
359987 shuttle 10 58000 7
168784 steel-plates-fault 28 1941 7
359972 sylvine 21 5124 2
190146 vehicle 19 846 4
146820 wilt 6 4839 2
359974 wine-quality-white 12 4898 7

Table 7: Model API Versions. The full model versions as specified by the respective API provider.
Model Model Version

gpt-4o-mini gpt-4o-mini-2024-07-18
gemini-1.5-flash gemini-1.5-flash-001
llama3.1-8b Meta-Llama-3.1-8B-Instruct-Turbo (FP8 Quantization)
mistral7b-v0.3 Mistral-7B-Instruct-v0.3 (FP16 Quantization)
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Table 8: Memorization Tests Results GPT and Llama. We present the results of all three memo-
rization tests (Bordt et al., 2024), (1) row completion test (r.c.), (2) feature completion test (f.c.) and
first token test (f.t.) for gpt-4o-mini and llama3.1-8b. For each dataset and each test, the number of
runs which imply signs of memorization are listed. Each test ran 25 tries per dataset. Sometimes, the
LLM failed to match the expected outcome sequences required by the tests (noted as -). If a prior
language model exhibited signs of memorization for a dataset, the tests were not further conducted
for subsequent models (noted as X)
Dataset gpt4-r.c. gpt4-f.c. gpt4-f.t. llama3.1-r.c. llama3.1-f.c. llama3.1-f.t.

ada 0/25 0/25 - 0/25 0/25 -
adult 0/25 0/25 8/25 0/25 0/25 3/25
amazon_employee_access 0/25 0/25 6/25 0/25 0/25 5/25
australian 0/25 0/25 4/25 0/25 0/25 4/25
bank-marketing 0/25 0/25 11/25 0/25 2/25 5/25
blood-transfusion... 2/25 1/25 15/25 X X X
car 23/25 6/25 25/25 X X X
churn 0/25 0/25 4/25 0/25 0/25 3/25
click_prediction_small 0/25 0/25 - 0/25 1/25 -
cmc 0/25 0/25 13/25 X X X
connect-4 0/25 5/25 - 0/25 5/25 -
credit-g 0/25 0/25 8/25 0/25 0/25 5/25
eucalyptus 0/25 0/25 - 0/25 0/25 -
first-order-theorem-proving 0/25 0/25 - 0/25 0/25 6/25
gesturephase... 0/25 0/25 - 0/25 0/25 -
jannis 0/25 0/25 10/25 0/25 0/25 8/25
jungle_chess... 20/25 1/25 - X X X
kc1 7/25 1/25 7/25 1/25 3/25 10/25
kick 0/25 0/25 - 0/25 0/25 -
kr-vs-kp 0/25 0/25 - 0/25 0/25 -
numerai28.6 0/25 0/25 1/25 0/25 0/25 1/25
okcupid-stem 0/25 - 10/25 0/25 - 12/25
ozone-level.8hr 0/25 0/25 - 0/25 0/25 12/25
pc4 0/25 3/25 7/25 0/25 0/25 5/25
phishingwebsites 0/25 1/25 - 0/25 1/25 -
phoneme 0/25 0/25 5/25 0/25 0/25 5/25
qsar-biodeg 0/25 0/25 1/25 0/25 0/25 3/25
satellite 0/25 1/25 - 0/25 2/25 -
segment 0/25 0/25 - 0/25 1/25 -
shuttle 0/25 0/25 9/25 0/25 4/25 8/25
steel-plates-fault 0/25 2/25 14/25 X X X
sylvine 0/25 0/25 7/25 0/25 0/25 -
vehicle 0/25 0/25 8/25 0/25 0/25 7/25
wilt 0/25 0/25 9/25 0/25 0/25 8/25
wine-quality-white 0/25 0/25 14/25 X X X
yeast 0/25 1/25 5/25 0/25 2/25 4/25
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Table 9: Memorization Tests Results Mistrial and Gemini. We present the results of all three
memorization tests (Bordt et al., 2024), (1) row completion test (r.c.), (2) feature completion test
(f.c.) and first token test (f.t.) for mistral7b-v0.3 and gemini-1.5-flash. For each dataset and each test
the number of runs which imply signs of memorization are listed. Each test ran 25 tries per dataset.
Sometimes, the LLM failed to match the expected outcome sequences required by the tests (noted as
-). If a prior language model exhibited signs of memorization for a dataset, the tests were not further
conducted for subsequent models (noted as X)
Dataset mistral7b-r.c. mistral7b-f.c. mistral7b-f.t. gemini1.5-r.c. gemini1.5-f.c. gemini1.5-f.t.

ada 0/25 0/25 - 0/25 0/25 -
adult 0/25 0/25 0/25 0/25 0/25 4/25
amazon_employee_access 0/25 0/25 0/25 0/25 0/25 5/25
australian 0/25 0/25 0/25 0/25 0/25 8/25
bank-marketing 0/25 0/25 0/25 0/25 0/25 10/25
blood-transfusion... X X X X X X
car X X X X X X
churn 0/25 0/25 0/25 0/25 - 7/25
click_prediction_small 0/25 0/25 - 0/25 0/25 -
cmc X X X X X X
connect-4 0/25 2/25 - 0/25 2/25 -
credit-g 0/25 0/25 0/25 0/25 0/25 8/25
eucalyptus 0/25 0/25 - - 0/25 -
first-order-theorem-proving - 0/25 - 0/25 0/25 -
gesturephase... 0/25 - - 0/25 0/25 -
jannis - - - 0/25 0/25 12/25
jungle_chess... X X X X X X
kc1 0/25 - 0/25 1/25 9/25 11/25
kick 0/25 - - 0/25 0/25 -
kr-vs-kp 0/25 - - 1/25 0/25 -
numerai28.6 - - - 0/25 0/25 0/25
okcupid-stem 0/25 - 0/25 - - 7/25
ozone-level.8hr - - - 0/25 0/25 13/25
pc4 0/25 - 0/25 0/25 4/25 14/25
phishingwebsites 0/25 - - 0/25 0/25 -
phoneme 0/25 - 0/25 0/25 0/25 2/25
qsar-biodeg 0/25 - 0/25 0/25 0/25 3/25
satellite 0/25 - - 0/25 6/25 -
segment 0/25 - - 0/25 1/25 -
shuttle 0/25 - 0/25 0/25 1/25 8/25
steel-plates-fault X X X X X X
sylvine 0/25 - - 0/25 0/25 11/25
vehicle 0/25 - 0/25 0/25 0/25 10/25
wilt 0/25 - 0/25 0/25 0/25 6/25
wine-quality-white X X X X X X
yeast 0/25 - 0/25 0/25 0/25 6/25
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Figure 11: Feature Selection Frequency per Dataset. We present the frequencies with which each
feature in a dataset is selected by the LLM over all feature generation steps. In most cases the LLM
selects few features with a high frequency repeatedly.

Table 10: Predictive Performance of Feature Engineering. We show the average and standard
deviation of the ROC AUC scores for all folds for all datasets. Base represents the baseline score
without feature engineering. The scores for the four large language models additionally contain the
average over all 5 shuffles of operator order in the instructions prompt. For each fold the respective
method generated 20 new features. Features were only added to the method if it improved the
feedback scores described in A.
Dataset Base OpenFE GPT-4o-mini Gemini-1.5-flash Llama3.1-8B Mistral7B-v0.3

ada 0.912± .016 0.910± .019 0.910± .019 0.904± .019 0.911± .017 0.911± .017
adult 0.929± .004 0.931± .004 0.929± .004 0.921± .013 0.929± .004 0.929± .004
amazon_employee_access 0.822± .018 0.825± .017 0.776± .038 0.820± .024 0.823± .019 0.825± .017
australian 0.933± .025 0.932± .021 0.929± .027 0.927± .019 0.930± .023 0.931± .028
bank_marketing 0.935± .007 0.939± .006 0.935± .007 0.934± .007 0.935± .007 0.935± .007
churn 0.923± .028 0.924± .018 0.926± .023 0.920± .026 0.924± .025 0.924± .026
click_prediction_small 0.607± .014 0.607± .022 0.602± .019 0.594± .016 0.603± .017 0.600± .018
connect-4 0.876± .004 0.886± .004 0.876± .004 0.876± .004 0.876± .004 0.876± .004
credit-g 0.767± .042 0.762± .043 0.770± .034 0.775± .040 0.769± .044 0.773± .039
eucalyptus 0.780± .035 0.780± .032 0.778± .034 0.833± .000 0.779± .037 0.780± .036
first-order-theorem-proving 0.824± .012 0.824± .009 0.825± .012 0.820± .017 0.824± .013 0.825± .011
gesturephasesegmentationprocessed 0.888± .009 0.892± .011 0.863± .027 0.781± .055 0.874± .044 0.887± .017
jannis 0.851± .004 0.856± .004 0.843± .014 0.790± .068 0.851± .004 0.846± .017
kc1 0.789± .039 0.798± .041 0.791± .038 0.792± .039 0.790± .040 0.791± .034
kick 0.770± .009 0.771± .008 0.770± .009 0.770± .010 0.771± .008 0.771± .009
kr-vs-kp 1.000± .000 1.000± .000 1.000± .000 1.000± .000 1.000± .000 1.000± .000
numerai28.6 0.523± .003 0.523± .003 0.519± .006 0.509± .010 0.520± .006 0.522± .003
okcupid-stem 0.839± .003 0.845± .004 0.844± .005 0.844± .005 0.841± .007 0.845± .005
phishingwebsites 0.996± .001 0.997± .001 0.996± .001 0.996± .001 0.996± .001 0.996± .001
phnome 0.956± .009 0.959± .011 0.944± .017 0.890± .039 0.954± .016 0.954± .015
qsar-biodeg 0.925± .044 0.929± .040 0.925± .042 0.923± .041 0.926± .042 0.926± .044
satellite 0.987± .014 0.992± .008 0.990± .010 0.988± .014 0.985± .024 0.988± .014
segment 0.996± .002 0.996± .002 0.996± .002 0.991± .003 0.996± .002 0.996± .002
shuttle 0.589± .054 0.646± .060 0.602± .061 0.605± .054 0.629± .057 0.614± .063
sylvine 0.986± .004 0.993± .003 0.984± .006 0.968± .01 0.986± .004 0.986± .004
vehicle 0.933± .013 0.942± .018 0.932± .016 0.925± .022 0.932± .018 0.932± .014
wilt 0.990± .013 0.994± .005 0.990± .012 0.990± .011 0.992± .008 0.992± .010
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