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Abstract

In this paper, we present a novel model termed Network Evolution Chains for
simulating the temporal dynamics of networks. Our model’s design is tailored
to enable comprehensive analysis through information theory. We establish that
this model creates a stationary and ergodic stochastic process, thus facilitating
the application of the asymptotic equipartition property. This breakthrough paves
the way for a thorough information-theoretic investigation into network behavior,
encompassing the definition of typical sequences, future state prediction, and
beyond.

1 Introduction

Graphs are frequently employed to represent networks in various scientific domains. Over time,
several random graph models have been introduced to mimic diverse network types. Among these,
two pivotal models emerged in 1959 (Erdős and Rényi [1960], Gilbert [1959]), effectively capturing
properties of networks such as social (Robins et al. [2007]), electric (Holmgren [2006]), and biological
networks (Saul and Filkov [2007]). However, as networks are dynamic, a model encompassing their
evolving topology is essential for accurate analysis. Network evolution has been extensively studied,
yielding models like the Barabási–Albert model (Dorogovtsev and Mendes [2002]), while Network
Evolution Models simulate network changes (Banks and Carley [1996], Toivonen et al. [2009]).
Though these models answer key network science questions, our focus is quantifying network
evolution for efficient information transmission. Existing models often overlook network contraction,
seen in scenarios like online social network departures. Here, we introduce an information-theoretic
Network Evolution Model capable of simulating various networks’ dynamics.

Central to information theory, finding probable sequences of a random variable aids data compression.
Asymptotic Equipartition Property (AEP) defines typical sequences, highly probable occurrences.
This concept drives us to seek an analogous approach for graphs, essential for scenarios requiring
maximal topology compression. Often, we possess a network’s current state, aiming to compress
future states. Thus, we propose a network evolution model, both accurately simulating networks and
amenable to information theory analysis. While Zhao et al. [2011] explores entropy rate in growing
networks, differences exist in our model’s entropy interpretation (section 3).

We start by defining the proposed model, and then continue by studying the model using information-
theoretical tools such as the Shannon-McMillan-Breiman theorem and entropy rate. After extracting
information-theoretic parameters of the model, we move on to introduce two expansions to the
proposed model. The first expansion allows us to study the network in the continuous-time domain,
and the second one lets the user focus on functions of the network rather than the network topology.
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2 Model Definition

We will start by defining the proposed temporal graph evolution model, which we have named
Network Evolution Chain.
Definition 2.1 (Network Evolution Chain). A stochastic process {Gi} is called a Network Evolution
Chain (NEC) if

• G1 is a graph with exactly 1 node.

• Gi (i > 1) is a graph created from Gi−1. To this end, a transition scheme is first chosen
among the following options: deletion, addition, and same. The probability of choosing
deletion, addition, or same is r(Gi−1), a(Gi−1), and s(Gi−1), respectively. Therefore, we
have r(Gi−1) + a(Gi−1) + s(Gi−1) = 1. Based on the chosen transition scheme, one of
the following procedures will be done for creating Gi:

– Deletion: Gi is Gi−1 with one of its nodes deleted according to a probability distribu-
tion.

– Addition: Gi is generated by adding a node to Gi−1. The edges between the new node
and the existing ones are added according to a random graph generation model. In this
random graph generation model, all possible edge connections between the new node
and the old ones should have a non-zero probability.

– Same: Gi is the same as Gi−1.

• There exists an integer nmax ≥ 1 such that if Gi is a graph with nmax nodes then we have
a(Gi) = 0. For all other graphs a(Gi) ̸= 0.

• If Gi is a graph with only one node, then we have r(Gi) = 0. For all other graphs r(Gi) ̸= 0.

• For all graphs we have s(Gi) ̸= 0.

Fig 1 illustrates four possible consecutive steps of an instance of an NEC defined based on definition
2.1.

Figure 1: Example of four consecutive graphs in an NEC.

It can be seen that setting the parameters of an NEC according to the behaviour of real-life networks
will allow us to simulate their behaviours. For instance, the model used for adding a new node can be
a preferential attachment model to preserve the power law in the network that we want to simulate.
The reason for the limitations that we have imposed in the definition of NECs is for us to be able to
apply the Asymptotic Equipartition Property to it. We will introduce this property and perform the
information-theoretic analysis of the model in the next section.

3 Information-Theoretic Analysis of the Model

We begin this section by restating the general Asymptotic Equipartition Porperty.
Theorem 1 (AEP: Shannon-McMillan-Breiman Theorem). Cover and Thomas [2006, Thm. 16.8.1]
If H is the entropy rate of a finite-valued stationary ergodic process {Xi}, then

− 1

n
log p(X1, X2, ..., Xn) → H with probability 1.

Therefore, to be able to use general AEP, we need to prove that the stochastic process formed by an
NEC is a statioinary and ergodic process. The following lemmas, and theorems provide us with the
proof for this claim.
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Lemma 2. Cover and Thomas [2006, Ch. 4] “If the finite-state Markov chain {Xi} is irreducible
and aperiodic, the stationary distribution is unique, and from any starting distribution, the distribution
of Xn tends to the stationary distribution as n → ∞."
Corollary 2.1. Pakes [1969, Theorem 2] A finite-state, irreducible, and aperiodic Markov chain will
form an ergodic process.

Proof. Theorem 2 from Pakes [1969] provides a condition under which an irreducible and aperiodic
Markov chain is ergodic. It can be easily shown that if the Markov chain is finite-state, it fulfils the
specified condition in the mentioned theorem and the Markov chain will be ergodic.

Theorem 3. A Network Evolution Chain tends towards a stationary and ergodic stochastic process
as n → ∞.

Proof. Using lemma 2 and corollary 2.1, it suffices for us to show that an NEC is a finite-state,
irreducible and aperiodic Markov chain. We will talk about each of these in turn. Firstly, based on its
definition, an NEC is in fact a Markov chain, as Gi is a random graph that only depends on Gi−1.
Furthermore, this Markov chain is also finite-state. Notice that the definition of an NEC does not
allow us to have graphs with more than nmax nodes in the chain. Therefore, our state space consists
of all graphs whose number of nodes is less than or equal to nmax and greater than or equal to 1,
which is finite. An NEC is also irreducible. To prove this, we must present a manner in which we can
go from any state to another. Suppose we want to go from graph g1 to graph g2, and both of these
graphs are in the state space. If g1 = g2, we are done. Otherwise, we first remove nodes from g1
one by one until we reach a graph with only one node. Notice that this is possible because r(g) ̸= 0
for {g|g ∈ S, |V (g)| ̸= 1} where S shows the state space of possible graphs and |V (g)| shows the
number of nodes in graph g. Afterwards, we can add nodes to our one node graph one by one until
we build g2. This is also possible because a(g) ̸= 0 for {g|g ∈ S, |V (g)| ≠ nmax}, and the fact
that recreating the exact edge connections of g2 has a non-zero probability. To prove that an NEC
is aperiodic, notice that the shortest path we can take from a graph to itself is of length 1. This is
because for all g ∈ S we have s(g) ̸= 0. Since the largest common factor of any number and 1 is
1, we have proved that this chain is aperiodic. Now that we have proved that an NEC fulfils all the
conditions in lemma 2 and corollary 2.1, we can conclude that an NEC will tend towards a stationary
and ergodic process as n → ∞.

Now that we have proven that the AEP can be applied to NEC, we are equipped with the necessary
tools to perform an information-theoretic analysis of the model. Namely, we will start by calculating
the entropy rate of the model, and defining typical sequences. These sequences can help us both in
compression and the prediction of the future states of the network.

we can use theorem 1 and write

− 1

n
log p(G1, . . . , Gn) → H(G) with probability 1, (1)

where H(G) shows the entropy rate of the stochastic process {Gi}.

Based on equation 1, we can define the typical sets of an NEC.

Definition 3.1. Cover and Thomas [2006, Ch. 3] The typical set A(n)
ϵ with respect to a defined NEC

is the set of all sequences (G1, G2, ..., Gn) ∈ Sn with the property

2−n(H(G)+ϵ) ≤ p(G1, G2, ..., Gn) ≤ 2−n(H(G)−ϵ).

It can be proved that “the typical set has probability nearly 1, all elements of the set are nearly
equiprobable, and the number of elements in the set is nearly 2nH ." (Cover and Thomas [2006,
Ch. 3]). To calculate the entropy rate of an NEC, we use the following lemma.
Lemma 4. Cover and Thomas [2006, Theorem 4.2.1] For a stationary stochastic process {Xi}, the
following limit exists and is equal to the entropy rate of the process:

H(X) = lim
n→∞

H(Xn|Xn−1, Xn−2, ..., X1)
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We can now use lemma 4 and calculate the entropy rate of an NEC as below.

H(G) = lim
n→∞

H(Gn|Gn−1, Gn−2, ..., G1) (2a)

= lim
n→∞

H(Gn|Gn−1) (2b)

= lim
n→∞

H(Gn|Gn−1, T )

+H(T |Gn−1)−H(T |Gn−1, Gn)
(2c)

= lim
n→∞

H(Gn|Gn−1, T ) +H(T |Gn−1) (2d)

Equality 2a is the definition of entropy rate based on lemma 4. Equality 2b holds because of the fact
that Gn is only dependent on Gn−1. Equality 2c comes from taking into account the three states of
addition, deletion, and remaining the same. T is defined as a random variable that indicates which
of the progression methods we have chosen for going from Gn−1 to Gn. In other words, we have
T ∈ {addition, deletion, same}. Finally, equality 2d holds because having both Gn−1 and Gn,
there will be no uncertainty about which transition scheme has been chosen for going from Gn−1 to
Gn and therefore we will have H(T |Gn−1, Gn) = 0. For calculating H(T |Gn−1), we can write

H(T |Gn−1) = −
∑
g∈S

p(g)(a(g) log a(g) + r(g) log r(g) + s(g) log s(g)). (3)

In equation 3, p(g) shows the stationary distribution of graph g. Now that H(T |Gn−1) has been
calculated, we move on to calculate H(Gn|Gn−1, T ).

H(Gn|Gn−1, T ) =
∑
g∈S

p(g)a(g)H(Gn|Gn−1 = g, T = addition)

+
∑
g∈S

p(g)r(g)H(Gn|Gn−1 = g, T = deletion)

+
∑
g∈S

p(g)s(g)H(Gn|Gn−1 = g, T = same)

(4a)

=
∑
g∈S

p(g)a(g)H(Gn|Gn−1 = g, T = addition)

+
∑
g∈S

p(g)r(g)H(Gn|Gn−1 = g, T = deletion)
(4b)

Equality 4a comes from conditional entropy and equality 4b comes from the fact that we have
H(Gn|Gn−1 = g, T = same) = 0 because there remains no uncertainty when a graph stays the
same as it was before. Notice that equation 4b can not be more simplified because the node addition
and deletion models are not known.

We can now provide the following equation for calculating the entropy rate of a Network Evolution
Chain.

H(G) = −
∑
g∈S

p(g)(a(g) log a(g) + r(g) log r(g) + s(g) log s(g))

+
∑
g∈S

p(g)a(g)H(Gn|Gn−1 = g, T = addition)

+
∑
g∈S

p(g)r(g)H(Gn|Gn−1 = g, T = deletion) (5)

Calculating the entropy rate of a Network Evolution Chain opens the door to further analysis using
information theory. Having the entropy rate of the network quanitifies the amount of change we
expect to see in the network from one time step to another. Having typical sequences of length n
defined will help us in determining the most probable outcomes of the future time steps, in addition
to knowing when the network is diverging from its trajectory and exhibiting abnormal behaviour.
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4 Expansions to NEC

An NEC can be used to model the dynamics of graph topologies through time, where this dynamic
is fully analyzable using information theory. However, this analysis might have its own limitations.
Firstly, an NEC takes discrete steps in time, whereas we might be interested in analysing the temporal
evolution of the network in a more continuous manner. Secondly, we might sometimes be interested
in studying the evolution of certain properties of the graph rather than the entire graph. Because of
these reasons, we introduce two expansions to NEC: Continuous-Time NEC, and Network Property
Chains (NPC). In this section, we will introduce and demonstrate these two processes.

4.1 Continuous-Time NEC

We have observed that Network Evolution Chains have the ability to simulate the topology dynamics
of networks. However, they fail to provide us with a simulation for the network in continuous time.
In this section, we provide two methods to overcome this limitation.

4.1.1 The s(g) Method

The first method uses the value of s(g)(g ∈ S) to simulate the continuous time domain. The idea is
that we first quantize time and consider the time between each step of the chain to be a constant τ .
Now, for each g ∈ S, we can set s(g) according to how much time we expect g to remain unchanged.
Consider L(g) to be the random variable that shows the time that graph g stays unchanged and Q(g)
to be the random variable that shows the number of consecutive steps that staying the same is chosen
for graph g. We can write

E[L(g)] = τ(E[Q(g)] + 1)

= τ(1 +

∞∑
i=0

i(s(g))i(1− s(g)))

=
τ

1− s(g)
.

(6)

After choosing our desired value for the time quantization variable τ , we can use equation 6 to set the
values for s(g) for all g ∈ S. This way, the expected time that each network stays unchanged will
match our desired value.

4.1.2 The Continuous Time Markov Chain Method

Continuous Time Markov Chains (CTMC) (Ross et al. [1996, Ch. 5]) are an extension to Markov
chains with the goal to simulate Markov chains in the continuous time domain. Therefore, we can
use Continuous Time Markov Chains to simulate an NEC in continuous time.

Definition 4.1. A Continuous Time Network Evolution Chain is a Continuous Time Markov Chain
G(t) in which the states and the transition probabilities are the same as a Network Evolution Chain
and additionally, λ(g) is chosen for all g ∈ S as the parameter for the exponential distribution used
for determining the time we stay at state g.

We can see that the states are generated in the same manner as explained for the discrete time NEC.
Furthermore, we remain in Gi for τi seconds. τi is generated using an exponential distribution
with parameter λ(Gi). We therefore have to choose a value λ(g) for all g ∈ S. This value is what
determines how much time we wait in each state according to an exponential distribution with its
expected value equal to 1/λ(g).

Suppose that we label the graphs in S from 1 to |S| according to any ordering. Let pij denote the
probability of going from state i to j in the respective NEC. We use the following notation from
chapter 5 of Ross et al. [1996] to provide a result about the stationary distribution of Continuous
Time Network Evolution Chains.

pij(t) = p(G(t+ s) = j|G(s) = i)

5



rij =

{
λ(i)pij , if i ̸= j

−λ(i), if i = j

pij represents the probability that the process goes to state j when it leaves state i. Based on the
definition, pij(t) represents the probability of the process with current state of i moves to state j after
time t has passed, and rij represents the rate of going from state i to state j. To assist us with the
calculations, the matrices R, P(t), and P′(t) are defined. The element in row i and column j of these
matrices are, respectively, rij , pij(t), and p′ij(t) (Ross et al. [1996, Ch. 5]). It is stated in Ross et al.
[1996] that the following equation is the solution for finding the stationary distribution of a CTMC.

P(t) = eRt =

∞∑
t=0

(Rt)i/i! (7)

where R0 is the identity matrix.

Equation 7 provides us with the solution to find the stationary continuous time distributions. However,
it may be computationally infeasible to calculate the distribution using this equation. To overcome
this challenge, Ross et al. [1996] presents a method to estimate the answer to equation 7 (Ross et al.
[1996, pg. 250]).

4.2 Network Property Chains (NPC)

We have introduced Network Evolution Chains in order to simulate the way networks evolve over
time. When a certain network is simulated using an NEC, we have the whole graph of the network
at each step as our random variable and there will be no information loss. However, if we want to
only look at certain properties of the network, it may not be efficient to store the whole graphs in our
chain. In this section, we introduce functions of Network Evolution Chains as a method for extracting
specific information from the networks in the chain. To this end, we define Network Property Chains.
Definition 4.2 (Network Property Chain (NPC)). Consider the Network Evolution Chain G =
{G1, G2, ..., Gk}. We define Y = {Y1, Y2, ..., Yk} as a Network Property Chain of G if there exists
a function f so that we have

∀i ∈ {1, 2, ..., k} Yi = f(Gi).

It can be seen that an NPC is defined using an NEC and a function f . We can use Network Property
Chains to look for certain properties and behaviors of a network. Specifically, we choose f so that it
returns the property of its input that we are interested in.

Notice that a function of a Markov chain is not necessarily a Markov chain. However, the following
theorem will aid us in analysing Network Property Chains without needing them to be Markov chains.
Theorem 5. A Network Property Chain is a stationary and ergodic stochastic process.

Proof. We first prove that an NPC is a stationary process. Consider Pi as the set of all g ∈ S for
which we have f(g) = Yi. We can calculate the probability p(Yi, ..., Yi+k) using the following
equation.

p(Yi, Yi+1, ..., Yi+k) = p(Yi)

i+k∏
j=i+1

p(Yj |Yj−1, ..., Yi)

= p(Pi)

i+k∏
j=i+1

∑
g1∈Pj−1

∑
g2∈Pj

p(g2|g1)

(8)

As we know that an NEC is a stationary process, there are no terms in equation 8 which are time-
variant and therefore an NPC is also stationary.

To prove that an NPC is ergodic, we use Birkhoff’s ergodic theorem (Birkhoff [1931]). For using
Birkhoff’s theorem to prove ergodicity, we need to show that all functions of an NPC satisfy Birkhoff’s
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condition. Firstly, all functions of an NPC are also a function of its respective NEC. To see this,
notice that if the function f which is used for building the NPC is injective, then this statement is
easily concluded and if f is surjective, then any function of the NPC can be seen as a function of
its respective NEC where the function takes on equal values for all gi and gj for which we have
f(gi) = f(gj). Additionally, we know that an NEC is in fact ergodic and all functions of it satisfy
the condition of Birkhoff’s theorem. Therefore, an NPC is also an ergodic process.

Theorem 5 shows that Network Property Chains are stationary and ergodic processeses. Therefore,
we can apply the Asymptotic Equipartition Property to these chains as well. We will end up with the
following equation after applying the AEP to NPC.

−1

k
log p(Y1, Y2, ..., Yk) → H(Y ) as k → ∞ (9)

Applying the AEP to an NPC gives us the opportunity to define typical sequences for Network
Property Chains. This means that we will be able to obtain the typical ways that properties of the
network will evolve over time. For example, assume that we are interested in the number of triangles
in the network. We will define f(g), g ∈ S so that it returns the number of triangles in g. The typical
set of {Yi} will then contain the most probable evolution chains of the number of triangles in the
network.

Notice that as an NPC is not necessarily a Markov chain, calculating its entropy rate can not be done
in the same way as NECs. However, we will be able to estimate its entropy rate using the AEP. To
this end, we first need p(Y1, Y2, ..., Yk), which can be calculated using equation 8. However, equation
8 may be very difficult to compute, particularly for NECs with a large nmax. To assist us with the
computation, we use the concept of a Hidden Markov Model (HMM) (Rabiner and Juang [1986]).
HMMs are very useful for simulating Network Property Chains. As mentioned earlier, one of the
goals for introducing NPCs was to remove the need for storing the whole graphs. In an HMM, the
assumption is that the original Markov chain is not available (it is hidden), and we can only observe
another chain that is based on our original Markov chain. The transition probabilities for the Hidden
Markov Model (Gk, Yk) are the same as the transition probabilities for the NEC {Gi}. Assume the
set P to be the image of S under f . For the emission probabilities of the HMM for all g ∈ S and
y ∈ P we have

p(y|g) =
{
1, if f(g) = y

0, otherwise
.

Now that we have defined our Hidden Markov Model, we can make use of its properties to efficiently
calculate the probability of the observed sequence. HMMs provide us with the forward algorithm
(Rabiner [1989]) which is used to efficiently calculate the probability of an observed sequence.
Therefore, our solution for calculating p(Y1, Y2, ..., Yk) is to first define the Hidden Markov Model
(Gk, Yk) and then use the forward algorithm. This will provide us with the sufficient tool to calculate
the probability of observed sequences, estimate the entropy rate of the Network Property Chain, and
also recognize typical sequences.

5 Conclusion

In conclusion, this paper has introduced the Network Evolution Chain (NEC) model, a novel frame-
work for simulating the temporal dynamics of evolving networks. Beyond its capability to effectively
replicate a wide array of real-life networks, we have demonstrated its compatibility with the Asymp-
totic Equipartition Property, thereby enabling the extraction of valuable information-theoretic features.
These features can be harnessed in diverse applications, including data compression and future state
prediction. Furthermore, the two expansions of the Network Evolution Chains extend its utility,
allowing it to simulate continuous-time changes and functions of networks. Looking ahead, we are
eager to explore the potential of integrating the proposed model into dynamic graph neural networks,
further enhancing its applicability in dynamic network analysis.
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