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Abstract
While textual information significantly en-001
hances the performance of pre-trained language002
models (PLMs) in knowledge graph comple-003
tion (KGC), the static and noisy nature of exist-004
ing corpora collected from Wikipedia articles005
or synsets definitions often limits the poten-006
tial of PLM-based KGC models. To surmount007
these challenges, we introduce the Contextual-008
ization Distillation strategy, a versatile plug-in-009
and-play approach compatible with both dis-010
criminative and generative KGC frameworks.011
Our method begins by instructing large lan-012
guage models (LLMs) to transform compact,013
structural triplets into context-rich segments.014
Subsequently, we introduce two tailored aux-015
iliary tasks—reconstruction and contextualiza-016
tion—allowing smaller KGC models to assimi-017
late insights from these enriched triplets. Com-018
prehensive evaluations across diverse datasets019
and KGC techniques highlight the efficacy and020
adaptability of our approach, revealing consis-021
tent performance enhancements irrespective of022
underlying pipelines or architectures. More-023
over, our analysis makes our method more ex-024
plainable and provides insight into how to gen-025
erate high-quality corpora for KGC, as well as026
the selection of suitable distillation tasks.027

1 Introduction028

Knowledge graph completion (KGC) is a funda-029

mental task in natural language processing (NLP),030

aiming at unveiling hidden insights within diverse031

knowledge graphs to explore novel knowledge pat-032

terns. Traditional KGC methods (Nickel et al.,033

2011; Bordes et al., 2013) typically predict the034

missing part of the triplets by learning the repre-035

sentation of each entity and relation based on their036

structural information. However, such embedding-037

based methods tend to overlook the rich textual in-038

formation of the knowledge graph. Therefore, pre-039

trained language models (PLMs) have been intro-040

duced to KGC and achieved promising results (Ken-041

ton and Toutanova, 2019; Xie et al., 2022).042

J. G. Ballard Shanghaiplace_of_birth

Problem: succinct
Text: J.G. Ballard 
was a novelist

Problem: static
Text: Shanghai is a 2010 
American mystery/thriller 
neonoir film directed by 
Mikael Håfström, ...

Problem: noisy
Text: In 1984, J.G. Ballard
won broad,  ... British boy
during the Japanese occup
ation of Shanghai

Figure 1: An example to illustrate the limitations of the
current textual information for KGC.

Methods H@1 H@3 H@8/10
ChatGPT-1-shot 15.6 17.6 19.6
PaLM2-1-shot 15.7 20.8 25.4
KG-S2S (Chen et al., 2022a) 28.5 38.8 49.3

Table 1: ChatGPT and PaLM2’s unsatisfactory perfor-
mance on the test set of FB15k-237N compared to a
smaller KGC model, KG-S2S (Chen et al., 2022a).

While it has been well-discovered that textual 043

information can be beneficial for PLM-based KGC 044

models (Yao et al., 2019; Wang et al., 2021b; Chen 045

et al., 2022a, 2023a), prior attempts to augment 046

KGC models with textual data from Wikipedia arti- 047

cle (Zhong et al., 2015) or synsets definitions (Yao 048

et al., 2019) have encountered certain limitations: 049

(i) Entity descriptions, often succinct and static, 050

may inhibit the formation of a comprehensive un- 051

derstanding of entities within KGC models. (ii) 052

The incorporation of triplet descriptions, albeit po- 053

tentially enriching, can introduce substantial noise, 054

particularly when derived through automatic entity 055

alignment (Sun et al., 2020). Figure 1 demonstrates 056

an example to illustrate the aforementioned limita- 057

tions. The description for the head “J. G. Ballard” 058

is limited and for the tail “Shanghai”, it mistakenly 059

uses the definition of the movie also named “Shang- 060

hai”. Also, while the two entities show up in the 061

triplet description, it falls short in conveying the 062

semantic essence of the relation “place_of_birth”. 063

In light of these limitations, our attention shifts 064

to Large Language Models (LLMs) (Brown et al., 065

2020; Zhang et al., 2022; Anil et al., 2023; Touvron 066
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et al., 2023), renowned for their capability in gen-067

erating articulate and high-quality data (Dai et al.,068

2023; Shridhar et al., 2023; Zheng et al., 2023). Our069

exploration commences with a scrupulous evalu-070

ation of LLMs, such as ChatGPT and PaLM2, in071

KGC, benchmarking them across several esteemed072

KGC datasets (Dettmers et al., 2018; Garcia-Duran073

et al., 2018; Mahdisoltani et al., 2013). Utiliz-074

ing 1-shot In-Context Learning (ICL), we deduce075

missing heads or tails in triplets and report evalu-076

ation metrics. It reveals a significant performance077

discrepancy of two LLMs in comparison to KG-078

S2S (Chen et al., 2022a) despite its reliance on a079

smaller foundational model, T5-base (Raffel et al.,080

2020). This insight propels us toward the conclu-081

sion that direct utilization of LLMs for KGC tasks,082

while intuitive, is outperformed by the fine-tuning083

of more diminutive, specialized KGC models. This084

observation aligns with findings from (Liang et al.,085

2022; Sun et al., 2023; Zhao et al., 2023), which086

highlighted the limitations of LLMs in knowledge-087

centric tasks. Experiment results and analysis on088

more KGC datasets can be found in Appendix A.089

To optimally harness LLMs for KGC, we draw090

inspiration from recent works (Xiang et al., 2022;091

Kim et al., 2022a) and introduce a novel approach,092

Contextualization Distillation. Contextualization093

Distillation first extracts descriptive contexts from094

LLMs with well-designed prompts, thereby se-095

curing dynamic, high-quality context for each en-096

tity and triplet. Subsequent to this, two auxiliary097

tasks are proposed to train smaller KGC models098

with these informative, descriptive contexts. The099

plug-in-and-play characteristic of our contextual-100

ization distillation enables us to apply and evaluate101

it on various KGC datasets and baseline models.102

Through extensive experiments, we affirm that Con-103

textualization Distillation consistently enhances the104

performance of smaller KGC models, irrespective105

of architectural and pipeline disparities. Addition-106

ally, we provide an exhaustive analysis of each107

step of Contextualization Distillation, encouraging108

further insights and elucidations.109

The contributions of this work can be summa-110

rized into three main aspects:111

• We identify the constraints of the current cor-112

pus for PLMs-based KGC models and intro-113

duce a plug-in-and-play approach, Contextual-114

ization Distillation, to enhance smaller KGC115

models with extracted rationale from LLMs.116

• We conduct extensive experiments across sev-117

eral widely recognized KGC datasets and uti- 118

lize various baseline models. Through these 119

experiments, we validate the effectiveness of 120

Contextualization Distillation in consistently 121

improving smaller KGC models. 122

• We delve into a comprehensive analysis of 123

our proposed method and provide valuable 124

insights and guidance on how to generate high- 125

quality corpora for distillation, as well as the 126

selection of suitable distillation tasks. 127

2 Related Work 128

2.1 Knowledge Graph Completion 129

Traditional KGC methods (Nickel et al., 2011; Bor- 130

des et al., 2013) involve embedding entities and 131

relations into a representation space. In pursuit of a 132

more accurate depiction of entity-relation pairs, dif- 133

ferent representation spaces (Trouillon et al., 2016; 134

Xiao et al., 2016) have been proposed considering 135

various factors, e.g., differentiability and calcula- 136

tion possibility (Ji et al., 2021). During training, 137

two primary objectives emerge to assign higher 138

scores to true triplets than negative ones: 1) Trans- 139

lational distance methods gauge the plausibility of 140

a fact by measuring the distance between the two 141

entities under certain relations (Lin et al., 2015; 142

Wang et al., 2014); 2) Semantic matching meth- 143

ods compute the latent semantics of entities and 144

relations (Yang et al., 2015; Dettmers et al., 2018). 145

To better utilize the rich textual information of 146

knowledge graphs, PLMs have been introduced 147

in KGC. Yao et al. (2019) first propose to use 148

BERT (Kenton and Toutanova, 2019) to encode the 149

entity and relation’s name and adopt a binary classi- 150

fier to predict the validity of given triplets. Follow- 151

ing them, Wang et al. (2021a) leverage the Siamese 152

network to encode the head-relation pair and tail in 153

a triplet separately, aiming to reduce the time cost 154

and make the inference scalable. Lv et al. (2022) 155

convert each triple and its textual information into 156

natural prompt sentences to fully inspire PLMs’ po- 157

tential in the KGC task. Chen et al. (2023a) design 158

a conditional soft prompts framework to maintain a 159

balance between structural information and textual 160

knowledge in KGC. Recently, there are also some 161

works trying to leverage generative PLMs to per- 162

form KGC in a sequence-to-sequence manner and 163

achieve promising results (Xie et al., 2022; Saxena 164

et al., 2022; Chen et al., 2022a). 165
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Given a triplet (Portishead | music , genre ,

parent genre | Ambient music),please gener

ate a short paragraph to introduce "Portishe

ad " and "Ambient music" and reflect their r

elationship "music , genre , parent genre".

LLM

Contextualized Triplet
Distillation Prompt

Portishead <Sep> music , genre , parent ge

nre <Sep> ?

Discriminative 

PLM

Generative 

PLM

Portishead <Sep> music , genre , parent ge

nre <Sep> Ambient music

Ambient music

Reconstruction

KGC

Contextualization

... Ambient music is a genre of music that e

merged in the 1970s and is characterized by

its atmospheric and often relaxing sound ...

... <Mask> music is a <Mask> of music th

at <Mask> in the 1970s and is characterize

d by its <Mask> and often relaxing sound ...

... Ambient music is a genre of music that e

merged in the 1970s and is characterized by

its atmospheric and often relaxing sound ...

... Ambient music is a genre of music that e

merged in the 1970s and is characterized by

its atmospheric and often relaxing sound ...

Figure 2: An overview pipeline of our Contextualization Distillation. We first extract descriptive contexts from
LLMs (Section 3.1). Then, two auxiliary tasks, reconstruction (Section 3.2.1) and contextualization (Section 3.2.2)
are designed to train the smaller KGC models with the contextualized information.

2.2 Distillation from LLMs166

Knowledge distillation has proven to be an effec-167

tive approach for transferring expertise from larger,168

highly competent teacher models to smaller, afford-169

able student models (Buciluǎ et al., 2006; Hinton170

et al., 2015; Beyer et al., 2022). With the emer-171

gence of LLMs, a substantial body of research has172

concentrated on distilling valuable insights from173

these LLMs to enhance the capabilities of smaller174

PLMs. One of the most common methods is to175

prompt LLMs to explain their predictions and then176

use such rationales to distill their reasoning abil-177

ities into smaller models (Wang et al., 2022; Ho178

et al., 2023; Magister et al., 2022; Hsieh et al., 2023;179

Shridhar et al., 2023). Distilling conversations from180

LLMs is another cost-effective method to build181

new dialogue datasets (Kim et al., 2022b; Chen182

et al., 2023b; Kim et al., 2022a) or augment existing183

ones (Chen et al., 2022b; Zhou et al., 2022; Zheng184

et al., 2023). There are also some attempts (Mar-185

jieh et al., 2023; Zhang et al., 2023) that focus on186

distilling domain-specific knowledge from LLMs187

for various downstream applications.188

Several recent studies have validated the con-189

textualization capability of LLMs to convert struc-190

tural data into raw text. Among them, Xiang et al.191

(2022) convert triplets in the data-to-text genera-192

tion dataset into their corresponding descriptions 193

to facilitate disambiguation. Kim et al. (2022a) de- 194

sign a pipeline for synthesizing a dialogue dataset 195

by distilling conversations from LLMs, enhanced 196

with a social commonsense knowledge graph. By 197

contrast, we are the first to leverage descriptive con- 198

text generated by LLMs as an informative auxiliary 199

corpus to the KGC models. 200

3 Contextualization Distillation 201

In this section, we first illustrate how we curate 202

prompts to extract the descriptive context of each 203

triplet from the LLM. Subsequently, we design a 204

multi-task framework, together with two auxiliary 205

tasks—reconstruction and contextualization—to 206

train smaller KGC models with these high-quality 207

context corpus. The overview pipeline of our 208

method is illustrated in Figure 2. 209

3.1 Extract Descriptive Context from LLMs 210

Recent studies have highlighted the remarkable 211

ability of LLMs to contextualize structural data 212

and transform it into context-rich segments (Xiang 213

et al., 2022; Kim et al., 2022a). Here we borrow 214

their insights and extract descriptive context from 215

LLMs to address the limitations of the existing 216

KGC corpus we mentioned in Section 1. 217
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pu
t

O
ut
pu
t

Portishead is a British trip hop band formed in Bristol in 1991. They are co
nsidered one of the pioneers of the genre, along with Massive Attack and 
Tricky. Ambient music is a genre of music that emerged in the 1970s and i
s characterized by its atmospheric and often relaxing sound. Portishead's m
usic is often described as ambient, due to its use of loops, drones, and othe
r sound effects.

Given a triplet (Portishead | music , genre , parent genre | Ambient music),
please generate a short paragraph to introduce "Portishead " and "Ambient 
music" and reflect their relationship "music , genre , parent genre".

Figure 3: An example contains our instruction to LLMs
and the generated descriptive context. We use green to
highlight entity description prompt/ generation result
and blue to highlight triplet description prompt/ genera-
tion result.

In particular, we focus on two commonly em-218

ployed types of descriptions prevalent in prior219

methodologies: entity description (ED) (Yao et al.,220

2019; Chen et al., 2022a) and triplet description221

(TD) (Sun et al., 2020). Entity description refers to222

the definition and description of individual entities,223

while triplet description refers to a textual segment224

that reflects the specific relationship between two225

entities within a triplet. Given triplets of a knowl-226

edge graph ti ∈ T , we first curate prompt pi for227

the ith triplet by filling the pre-defined template:228

pi = Template(hi, ri, ti), (1)229

where hi, ri, ti are the head entity, relation, and230

tail entity of the ith triplet. Then, we use pi as the231

input to prompt the LLM to generate the descriptive232

context ci for each triplet:233

ci = LLM(pi), (2)234

As Figure 3 shows, in our Contextualization Dis-235

tillation, we design the template to generate both236

entity description and triplet description at one time.237

The generating path of each descriptive context can238

be expressed as T −→ (ED,TD). Without loss239

of generalization, we conduct an ablation study to240

adopt different generating paths of auxiliary con-241

text in Section 4.3.242

3.2 Multi-task Learning with Descriptive243

Context244

Different PLM-based KGC models adopt diverse245

loss functions and pipeline architectures (Yao et al.,246

2019; Chen et al., 2022a; Xie et al., 2022; Chen247

et al., 2023a). To ensure the compatibility of our248

Contextualization Distillation to be applied in249

various PLM-based KGC methods, we design a250

multi-task learning framework for these models to251

learn from both the KGC task and auxiliary descrip- 252

tive context-based tasks. For the auxiliary tasks, we 253

design reconstruction (Section 3.2.1) and contex- 254

tualizatioin (Section 3.2.2) for discriminative and 255

generative KGC models respectively. 256

3.2.1 Reconstruction 257

The reconstruction task aims to train the model to 258

restore the corrupted descriptive contexts. For the 259

discriminative KGC models, we follow the imple- 260

mentation of Kenton and Toutanova (2019) and 261

use masked language modeling (MLM). Previous 262

studies have validated that such auxiliary self- 263

supervised tasks in the domain-specific corpus 264

can benefit downstream applications (Han et al., 265

2021; Wang et al., 2021b). 266

To be specific, MLM randomly identifies 15% of 267

the tokens within the descriptive context. Among 268

these tokens, 80% are tactically concealed with the 269

special token “< Mask >”, 10% are seamlessly 270

substituted with random tokens, while the remain- 271

ing 10% keep unchanged. For each selected token, 272

the objective of MLM is to restore the original con- 273

tent at that particular position, achieved through 274

the cross-entropy loss. The aforementioned pro- 275

cess can be formally expressed as follows: 276

c
′
i = MLM(ci), (3) 277

278

Lrec =
1

N

N∑
i=1

ℓ(f(c
′
i), ci) (4) 279

The final loss of discriminative KGC models is 280

the combination of the KGC loss1 and the proposed 281

reconstruction loss: 282

Ldis = Lkgc + α · Lrec, (5) 283

where α is a hyper-parameter to control the ratios 284

between the two losses. 285

3.2.2 Contextualization 286

The objective of contextualization is to instruct 287

the model in generating the descriptive context ci 288

when provided with the original triplet ti = h, r, t. 289

Compared with reconstruction, contextualization 290

demands a more nuanced and intricate ability 291

from PLM. It necessitates the PLM to precisely 292

grasp the meaning of both entities involved and the 293

inherent relationship that binds them together, to 294

generate fluent and accurate descriptions. 295

1We give the illustration of the discriminative KGC models
we used in Appendix B.1
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Specifically, we concatenate head, relation and296

tail with a special token “< Sep >” as input:297

Ii = Con(hi, < Sep >, ri, < Sep >, ti) (6)298

Then, we input them into the generative PLM and299

train the model to generate descriptive context ci300

using the cross-entropy loss:301

Lcon =
1

N

N∑
i=1

ℓ(f(Ii), ci) (7)302

The final loss of generative KGC models is the303

combination of the KGC loss2 and the proposed304

contextualization loss:305

Lgen = Lkgc + α · Lcon (8)306

For generative KGC models, it is also applicable307

to apply reconstruction as the auxiliary task. We308

have done an ablation study in Section 4.4 to ex-309

amine the effectiveness of each auxiliary task on310

generative KGC models.311

4 Experiment312

In this section, we apply our Contextualization Dis-313

tillation across a range of PLM-based KGC base-314

lines. We compare our enhanced model with our315

approach against the vanilla models using several316

KGC datasets. Additionally, we do further analysis317

of each component in our contextualized distilla-318

tion and make our method more explainable by319

conducting case studies.320

4.1 Experimental Settings321

Datasets We use WN18RR (Dettmers et al.,322

2018) and FB15k-237N (Lv et al., 2022) in our323

experiment. WN18RR serves as an enhanced ver-324

sion of its respective counterparts, WN18 (Bordes325

et al., 2013). The improvements involve the re-326

moval of all inverse relations to prevent potential327

data leakage. For FB15K-237N, it’s a refine ver-328

sion of FB15k (Bordes et al., 2013), by eliminat-329

ing concatenated relations stemming from Free-330

base mediator nodes (Akrami et al., 2020) to avoid331

Cartesian production relation issues.332

Baselines we adopt several PLM-based KGC333

models as baselines and apply the proposed Contex-334

tualization Distillation to them. KG-BERT (Yao335

et al., 2019) is the first to suggest utilizing PLMs336

2We give the illustration of the generative KGC models we
used in Appendix B.2

for the KGC task. we also consider CSProm- 337

KG (Chen et al., 2023a), which combines PLMs 338

with traditional Knowledge Graph Embedding 339

(KGE) models, achieving a balance between ef- 340

ficiency and performance in KGC. In addition to 341

these discriminative models, we also harness gen- 342

erative KGC models. GenKGC (Xie et al., 2022) 343

is the first to accomplish KGC in a sequence-to- 344

sequence manner, with a fine-tuned BART (Lewis 345

et al., 2020) as its backbone. Following them, KG- 346

S2S (Chen et al., 2022a) adopt soft prompt tuning 347

and lead to a new SOTA performance among the 348

generative KGC models. 349

Implementation details All our experiments are 350

conducted on a single GPU (RTX A6000), with 351

CUDA version 11.1. We use PaLM2-540B(Anil 352

et al., 2023) as the large language model to distill 353

descriptive context. We tune the Contextualization 354

Distillation hyper-parameter α ∈ {0.1, 0.5, 1.0}. 355

We follow the hyper-parameter settings in the orig- 356

inal papers to reproduce each baseline’s result. For 357

all datasets, we follow the previous works (Chen 358

et al., 2022a, 2023a) and report Mean Reciprocal 359

Rank (MRR), Hits@1, Hits@3 and Hits@10. More 360

details about our experiment implementation and 361

dataset statistics are shown in Appendix C. 362

4.2 Main Result 363

Table 2 displays the results of our experiments 364

on WN18RR and FB15k-237N. We observe that 365

our Contextualization Distillation consistently en- 366

hances the performance of all baseline methods, 367

regardless of whether they are based on genera- 368

tive or discriminative models. This unwavering 369

improvement demonstrates the robust generaliza- 370

tion and compatibility of our approach across 371

various PLMs-based KGC methods. 372

Additionally, some baselines we choose to im- 373

plement our Contextualization Distillation also uti- 374

lize context information. For example, both KG- 375

BERT and CSProm-KG adopt entity descriptions 376

to enhance entity embedding representation. Nev- 377

ertheless, our approach manages to deliver addi- 378

tional improvements to these context-based base- 379

lines. Among them, it is worth noting that the 380

application of our approach to KG-BERT achieves 381

an overall 31.7% enhancement in MRR. All these 382

findings lead us to the conclusion that Contextual- 383

ization Distillation is not only compatible with 384

context-based KGC models but also capable of 385

further enhancing their performance. 386
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WN18RR FB15k-237N
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

Traditional Methods
TransE* (Bordes et al., 2013) 24.3 4.3 44.1 53.2 25.5 15.2 30.1 45.9
DisMult* (Yang et al., 2015) 44.4 41.2 47.0 50.4 20.9 14.3 23.4 33.0
ComplEx* (Trouillon et al., 2016) 44.9 40.9 46.9 53.0 24.9 18.0 27.6 38.0
ConvE* (Dettmers et al., 2018) 45.6 41.9 47.0 53.1 27.3 19.2 30.5 42.9
RotatE* (Sun et al., 2018) 47.6 42.8 49.2 57.1 27.9 17.7 32.0 48.1
CompGCN* (Vashishth et al., 2019) 47.9 44.3 49.4 54.6 31.6 23.1 34.9 48.0
PLMs-based Methods
MTL-KGC* (Kim et al., 2020) 33.1 20.3 38.3 59.7 24.1 16.0 28.4 43.0
StAR* (Wang et al., 2021a) 40.1 24.3 49.1 70.9 - - - -
PKGC* (Lv et al., 2022) - - - - 30.7 23.2 32.8 47.1
KGT5* (Saxena et al., 2022) 50.8 48.7 - 54.4 - - - -
Our Implementation
KG-BERT (Yao et al., 2019) 21.6 4.1 30.2 52.4 20.3 13.9 20.1 40.3
KG-BERT-CD 30.3 16.5 35.4 60.2 25.0 17.2 26.6 45.5
GenKGC (Xie et al., 2022) - 28.6 44.4 52.4 - 18.7 27.3 33.7
GenKGC-CD - 29.3 45.6 53.3 - 20.4 29.3 34.9
KG-S2S (Chen et al., 2022a) 57.0 52.5 59.7 65.4 35.4 28.5 38.8 49.3
KG-S2S-CD 57.6 52.6 60.7 67.2 35.9 28.9 39.4 50.2
CSProm-KG (Chen et al., 2023a) 55.2 50.0 57.2 65.7 36.0 28.1 39.5 51.1
CSProm-KG-CD 55.9 50.8 57.8 66.0 37.2 28.8 41.0 53.0

Table 2: Experiment results on WN18RR and FB15k-237. * denotes results we take from Chen et al. (2022a).
Methods suffixed with "-CD" indicate the baseline models with our Contextualization Distillation applied. The best
results of each metric are in bold.

Paths
FN15k-237N

H@1 H@3 H@10
- 18.7 27.3 33.7
T −→ ED 20.0 28.9 34.5
T −→ TD 20.1 29.0 34.6
T −→ RA 19.4 28.2 34.2
T −→ ED −→ TD 19.8 28.6 34.5
T −→ (ED,TD) 20.4 29.3 34.9

Table 3: Ablation study results GenKGC with differ-
ent generating paths to distill corpus from LLMs. We
conduct the experiment using FB15k-237N. We add the
vallina GenKGC in the first row for comparison.

4.3 Ablation Study on Generating Path387

We investigate the efficacy of different context388

types in the distillation process by employing var-389

ious generative paths. As illustrated in Table 3,390

we initially explore the impact of entity descrip-391

tion and triplet description when utilized separately392

as auxiliary corpora (denoted as T −→ ED and393

T −→ TD). The experimental findings under-394

score the critical roles played by both entity de-395

scription and triplet description as distillation cor-396

pora, leading to noticeable enhancements in the397

performance of smaller KGC models. Further-398

more, we ascertain that our method’s generating399

path T −→ (ED,TD), which utilizes these two400

corpora, achieves more improvements by endowing401

the models with a more comprehensive and richer 402

source of information. 403

To gain a comprehensive understanding of the 404

effectiveness of our Contextualization Distillation, 405

we also explored other alternative generative paths. 406

While rationale distillation has demonstrated its 407

potential in various NLP tasks (Hsieh et al., 2023; 408

Shridhar et al., 2023), our investigation delves into 409

the T −→ RA path, wherein we instruct the LLM 410

to generate rationales for each training sample3. 411

Although the model utilizing rationale distillation 412

exhibits improved performance compared to the 413

vanilla one, it falls short when compared with our 414

Contextualization Distillation incorporating entity 415

descriptions and triplet descriptions. One plausible 416

explanation for this disparity lies in the intrinsic 417

nature of rationales, which tend to be intricate and 418

structurally complex. This complexity can pose a 419

greater challenge for smaller models to fully com- 420

prehend, in contrast to the more straightforward 421

descriptive text utilized in our approach. 422

Also, we borrow the insight from Chain-of-CoT 423

(CoT) (Wei et al., 2022) that generates the content 424

step by step, and conducts the experiment of the 425

generation process T −→ ED −→ TD. Specifi- 426

cally, we initially prompt the LLM to generate de- 427

scriptions for two entities and subsequently append 428

these entity descriptions to the prompt, instructing 429

3We give further details and examples of our prompt in
Appendix E
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FN15k-237N
MRR H@1 H@3 H@10

GenKGC - 18.7 27.3 33.7
w/ Reconstruction - 19.4 28.2 34.2
w/ Contextualization - 20.4 29.3 34.9
KG-S2S 35.4 28.5 38.8 49.3
w/ Reconstruction 35.8 29.3 38.9 48.9
w/ Contextualization 35.9 28.9 39.4 50.2

Table 4: Ablation study results on GenKGC and KG-
S2S with reconstruction and contextualization as the
auxiliary task respectively. We conduct the experiment
using FB15k-237N.

the LLM to generate the triplet description. During430

training, we concatenate the entity description and431

triplet description to form the auxiliary corpus for432

smaller KGC models. Interestingly, our findings433

indicate that this multi-step generative path also434

yields suboptimal performance when compared to435

the single-step generative path. This discrepancy436

can be attributed to the text incoherence resulting437

from the concatenation of three segments of de-438

scriptions. In light of the insights gained from439

these observations, we summarize our distillation440

guidance for KGC as follows: smaller models can441

benefit more from comprehensive, descriptive442

and coherent content generated by LLMs.443

4.4 Ablation Study on Generative KGC444

Models445

In this section, we compare the effectiveness of446

reconstruction and contextualization in generative447

KGC models. For GenKGC and KG-S2S, we em-448

ploy the pre-trained tasks of their respective back-449

bone models (BART for GenKGC and T5 for KG-450

S2S) as the reconstruction objective. More details451

of our reconstruction implementation for genera-452

tive KGC models can be found in Appendix D.453

Table 4 presents the ablation study results on454

FB15k-237N. We find reconstruction is also ef-455

fective in improving the performance of genera-456

tive KGC models, showing that KGC models can457

consistently benefit from the descriptive context458

with different auxiliary tasks. Comparing the two459

auxiliary tasks, models with contextualization out-460

perform those with reconstruction on almost ev-461

ery metric, except for Hits@1 in KG-S2S. This462

implies that contextualization is a critical capa-463

bility for generative KGC models to master for464

better KGC performance. Generative models465

have benefited more from the training of convert-466

ing structural triplets into descriptive context than467

simply restoring the corrupted corpus.468

Figure 4: MRR scores on the validation set during the
CSProm-KG training on FB15k-237N. We use thin bars
to mark the epochs in which the models achieve the best
performance in the validation set.

4.5 Efficiency Analysis 469

The additional training cost brought by the aux- 470

iliary distillation tasks may pose a potential con- 471

straint on our approach. However, we also notice 472

baseline models with our method coverage faster 473

on the validation set. Figure 4 presents the valida- 474

tion MRR vs epoch numbers during the CSProm- 475

KG training on FB15k-237N. It is obvious that 476

CSProm-KG with Contextualization Distillation 477

achieves a faster convergence and attains the best 478

checkpoint earlier (at around 125 epochs) com- 479

pared to the variant without our method (at around 480

220 epochs). This implies auxiliary distillation 481

loss can also expedite model learning in KGC. 482

This trade-off between batch processing time and 483

training steps ultimately results in a training effi- 484

ciency comparable to that of the vanilla models. 485

4.6 Case Study 486

To demonstrate the advantage of our Contextualiza- 487

tion Distillation more directable, we conduct a com- 488

parative analysis between the description corpus 489

collected by Zhong et al. (2015) and those gener- 490

ated using our method. As presented in Table 5, en- 491

tity descriptions generated by the LLM effectively 492

address the limitations issue and static shortcom- 493

ings, resulting in more informative and accurate 494

content. Regarding the triplet description, although 495

the “semi-autobiographical” used in Zhong et al. 496

(2015) somewhat implies J.G. Ballard’s connection 497

to Shanghai during his childhood, it still fails to 498

express the semantics of “place_of_birth” clearly. 499

In contrast, the descriptive context generated by 500

our method provides a more elaborate and coherent 501

7



Wikipedia (Zhong et al., 2015) Ours
Head Ballard was a novelist. J.G. Ballard (1930-2009) was an English

writer. He was born in Shanghai, China,
and his early experiences there shaped his
writing. His novels often explored themes
of alienation, technology, and the future...

Tail Shanghai is a 2010 American mys-
tery/thriller neo-noir film directed by
Mikael Håfström, starring John Cusack
and Gong Li...

Shanghai is a city in China. It is one of the
most populous cities in the world, and it
is a major center of commerce and culture.
Shanghai has a long history, and it has
been home to many different cultures over
the centuries...

Triplet In 1984, J.G. Ballard won broad, critical
recognition for the war novel Empire of
the Sun, a semi-autobiographical story of
the experiences of a British boy during the
Japanese occupation of Shanghai.

Ballard was born in Shanghai in 1930. He
lived there until he was eight years old,
when his family moved to England. Bal-
lard’s early experiences in Shanghai had a
profound impact on his writing...

Table 5: Descriptive context of the triplet (J.G. Ballard, place_of_birth, Shanghai). The text in green represents
positive content and the text in red represents negative content.

Query (The Devil’s Double, genre, ?)
Ground Truth Biographical film
Baseline War film
Ours Biographical film
Our Context The Devil’s Double is a bio-

graphical film that tells the
story of Latif Yahia, a young
Iraqi man who was forced
to impersonate Saddam Hus-
sein’s son Uday Hussein...

Table 6: Case study on FB15K-237N with KG-S2S. we
also let the model generate a descriptive context for each
test sample. The text in bold represents informative
content in the generated descriptive context.

contextualization of the “place_of_birth” between502

“J.G. Ballard” and “Shanghai”. These comparisons503

highlight the effectiveness of our method in ad-504

dressing the previous corpus’ limitation.505

Furthermore, We showcase how the auxiliary506

training with descriptive context enhances the base-507

line models. Table 6 presents the results of KG-508

S2S performance in a test sample of FB15k-237N,509

both with and without our contextualization distil-510

lation. In this case, the vanilla KG-S2S wrongly511

predicts the genre of the film “The Devil’s Double”512

as “’War film’, whereas the KG-S2S trained with513

our auxiliary task correctly labels it as “Biographi-514

cal film”. Also, by making the model contextualize515

each triplet, we find the model with our method 516

applied successfully captures many details about 517

the movie, such as the genre and plot, and presents 518

this information as fluent text. In summary, the 519

model not only acquires valuable insights about 520

the triplets but also gains the ability to adeptly 521

contextualize this information through our Con- 522

textualization Distillation. 523

5 Conclusion 524

In this work, we propose Contextualization Dis- 525

tillation, addressing the limitation of the existing 526

KGC textual data by prompting LLMs to generate 527

descriptive context. To ensure the versatility of our 528

approach across various PLM-based KGC models, 529

we have designed a multi-task learning framework. 530

Within this framework, we incorporate two aux- 531

iliary tasks, reconstruction and contextualization, 532

which aid in training smaller KGC models in the 533

informative descriptive context. We conduct exper- 534

iments on several mainstream KGC benchmarks 535

and the results show that our Contextualization Dis- 536

tillation consistently enhances the baseline model’s 537

performance. Furthermore, we conduct in-depth 538

analyses to make the effect of our method more 539

explainable, providing guidance on how to effec- 540

tively leverage LLMs to improve KGC as well. In 541

the future, we plan to adapt our method to other 542

knowledge-driven tasks, such as entity linking and 543

knowledge graph question answering. 544
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6 Limitation545

One limitation of our approach is that the descrip-546

tive context extraction stage is only tested with547

the PaLM2 model due to its unlimited API. The548

behavior of other LLMs of varying sizes in gen-549

erating auxiliary corpora for KGC remains unex-550

plored. Due to limitations in computing resources,551

we evaluate our method on two RE datasets, while552

disregarding scenarios such as temporal knowledge553

graph completion (Garcia-Duran et al., 2018), few-554

shot knowledge graph completion (Xiong et al.,555

2018) and commonsense knowledge graph comple-556

tion (Li et al., 2022). In future research, we plan557

to investigate the effectiveness of our method in558

border scenarios.559
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A Large Language Model Performance on KGC 884

We follow Zhu et al. (2023) to assess the performance of directly instructing LLMs to perform KGC and 885

Table 7 gives an example of our input to LLMs. For PaLM, we utilize the API parameter “candidate_count”, 886

while for ChatGPT, we use “n” to obtain multiple candidates, enabling the calculation of Hit@1, Hit@3, 887

and Hit@10 metrics. After obtaining the model’s outputs, we use the Sentence-BERT (Reimers and 888

Gurevych, 2019) to guarantee each output result matches a corresponding entity in the dataset’s entity set. 889

Table 8 displays the additional experimental results for ChatGPT and PaLM2 across several KGC 890

datasets. It is evident that the performance of ICL of LLM falls short of KG-S2S’s in every dataset. One 891

potential explanation for this subpar performance can be attributed to the phenomenon of hallucination 892

in LLMs (Ji et al., 2023; Yang et al., 2023), leading to incorrect responses when the LLM encounters 893

unfamiliar content. 894

We also conducted an analysis of the influence of the number of demonstration samples. As Table 9 895

shows, we find while the number of demonstrations increases, the performance of LLMs shows a 896

corresponding improvement. It appears that augmenting the number of demonstrations in the prompt 897

could be a potential strategy for enhancing the capabilities of LLMs in KGC. Nonetheless, it’s essential 898

to note that incorporating an excessive number of relevant samples as demonstrations faces practical 899

challenges, primarily due to constraints related to input length and efficiency considerations. 900

Triplet (Stan Collymore, play_for, England national football team)
Tail Prompt Predict the tail entity [MASK] from the given (Keko (footballer, born 1973),

plays for, [MASK]) by completing the sentence "what is the plays for of
Keko (footballer, born 1973)? The answer is ". The answer is UE Figueres,
so the [MASK] is UE Figueres. Predict the tail entity [MASK] from the
given (Stan Collymore, plays for, [MASK]) by completing the sentence
"what is the plays for of Stan Collymore? The answer is ". The answer is

Head Prompt Predict the head entity [MASK] from the given ([MASK], plays for, UE
Figueres) by completing the sentence "UE Figueres is the plays for of what?
The answer is ". The answer is Keko (footballer, born 1973), so the [MASK]
is Keko (footballer, born 1973). Predict the head entity [MASK] from the
given ([MASK], plays for, England national football team) by completing
the sentence "England national football team is the plays for of what? The
answer is ". The answer is

Table 7: The prompt we use to directly leverage LLMs to perform KGC. Tail Prompt and Head Prompt mean the
input to predict the missing tail and head entity respectively.

ChatGPT PaLM2 KG-S2S
H@1 H@3 H@10 H@1 H@3 H@8 H@1 H@3 H@10

WN18RR 11.4 13.5 15.4 11.5 16.6 21.3 52.5 59.7 65.4
FB15k-237 9.7 11.2 12.4 11.5 16.6 21.7 25.7 39.3 49.8
FB15k-237N 15.6 17.6 19.6 15.7 20.8 25.4 28.5 38.8 49.3
YAGO-3-10 4.5 5.0 5.4 6.4 8.8 11.4 - - -

Table 8: ChatGPT and PaLM2’s results on other KGC datasets.

B Details of Various KGC Pipelines 901

B.1 Discriminative KGC Pipelines 902

KG-BERT (Yao et al., 2019) is the first to propose utilizing PLMs for triplet modeling. It employs a special 903

“[CLS]” token as the first token in input sequences. The head entity, relation, and tail entity are represented 904

as separate sentences, with segments separated by [SEP] tokens. The input token representations are 905
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FB15k-237N
H@1 H@3 H@8

PaLM2-1-shot 15.7 20.8 25.4
PaLM2-2-shot 16.9 22.1 26.8
PaLM2-4-shot 17.7 23.1 27.9

Table 9: Experiment results of the demonstration number’s effect on LLMs when performing KGC.

constructed by combining token, segment, and position embeddings. Tokens in the head and tail entity906

sentences share the same segment embedding, while the relation sentence has a different one. The input907

is fed into a BERT model, and the final hidden vector of the “[CLS]” token is used to compute triple908

scores. The scoring function for a triple (h, r, t) is calculated as s = f(h, r, t) = sigmoid(CWT ), where909

s is a 2-dimensional real vector and CWT is the embedding of the “[CLS]” token. Cross-entropy loss is910

computed using the triple labels and scores for positive and negative triple sets.911

CSProm-KG (Chen et al., 2023a) combines PLM and traditional KGC models together to utilize both912

textual and structural information. It first concatenates the entity description and relation description913

behind a sequence of conditional soft prompts as the input. The input is then fed into a PLM, denoted as914

P , where the model parameters are held constant. Subsequently, CSProm-KG extracts embeddings from915

the soft prompts, which serve as the representations for entities and relations. These representations are916

then supplied as input to another graph-based KGC model, labeled as G, to perform the final predictions.917

It also introduces a local adversarial regularization (LAR) method to enable the PLM P to distinguish918

tCSProm-KGextually similar entities. Finally, CSProm-KG utilizes the standard cross entropy loss with919

label smoothing and LAR to optimize the whole pipeline.920

B.2 Generative KGC Pipelines921

In GenKGC (Xie et al., 2022), entities and relations are represented as sequences of tokens, rather than922

unique embeddings, to connect with pre-trained language models. For missing tail entities in triples923

(ei, rj , ?), descriptions of ei and rj are concatenated to form the input sequence, which is then used924

to generate the output sequence. BART is employed for model training and inference, and a relation-925

guided demonstration approach is proposed for encoder training. This method leverages the fact that926

knowledge graphs often exhibit long-tailed distributions and constructs demonstration examples guided927

by the relation rj . The final input sequence format is defined as: x =< BOS > demonstration(rj) <928

SEP > dei , drj < SEP >, where dei and drj are description of the head entity and relation respectively.929

And demonstration(rj) means the demonstration examples with the relation rj . Given the input, the930

target of GenKGC in the decoding stage is to correctly generate the missing entity. Additionally, an931

entity-aware hierarchical decoding strategy has been proposed to improve the time efficiency.932

Following them, KG-S2S (Chen et al., 2022a) adds the entity description in the decoder end, training933

the model to generate both the missing entity and its corresponding description. It also maintains a soft934

prompt embedding for each relation to facilitate the model to distinguish the relations with similar surface935

meanings. Additionally, it adopts a sequence-to-sequence dropout strategy by randomly masking some936

content in the entity description to avoid model overfitting in the training stage.937

C Additional Implementation Details938

We show the detailed statistics of the KGC datasets we use in Table 10. Table 11 displays the hyper-939

parameters we adopt for each baseline model and dataset.940

Dataset # Entity # Relation # Train # Valid # Test
WN18RR 40,943 11 86,835 3,034 3,134

FB15k-237N 14,541 93 87,282 7,041 8,226

Table 10: Statistics of the Datasets.
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model dataset batch size learning rate epoch α

KG-BERT
WN18RR 32 5e-5 5 0.1
FB15k-237N 32 5e-5 5 0.1

CSProm-KG
WN18RR 128 5e-4 500 1.0
FB15k-237N 128 5e-4 500 1.0

GenKGC
WN18RR 64 1e-4 10 1.0
FB15k-237N 64 1e-4 10 1.0

KG-S2S
WN18RR 64 1e-3 100 0.5
FB15k-237N 32 1e-3 50 0.5

Table 11: Details of hyper-parameter settings for each baseline and dataset.

D Implementation Details of Reconstruction for Generative KGC Models 941

In the case of GenKGC, we adhere to the denoising pre-training methodology used in BART (Lewis 942

et al., 2020). This approach commences by implementing a range of text corruption techniques, such as 943

token masking, sentence permutation, document rotation, token deletion, and text infilling, to shuffle the 944

integrity of the initial text. The primary objective of BART’s reconstruction task is to restore the original 945

corpus from the corrupted text. 946

For KG-S2S, we follow the pre-training approach proposed by T5 (Raffel et al., 2020). This approach 947

employs a BERT-style training objective and extends the concept of single token masking to encompass 948

the replacement of text spans. In this process, we apply a 15% corruption ratio for each segment, randomly 949

substituting a span of text with a designated special token “<extra_id>”. Here we employ a span length of 950

3. The ultimate goal of T5’s reconstruction task is to accurately predict the content associated with these 951

special tokens. 952

E Additional Case Study 953

In this section, we provide detailed examples to illustrate the input and output of each generating path we 954

adopt in the descriptive context/ rationale extraction stage. We present examples in Table 12, 13, 14, 15, 16. 955

Triplet (J.G. Ballard, place_of_birth, Shanghai)
Prompt Given a triplet (J.G. Ballard| people, person, place_of_birth | Shang-

hai),please generate a paragraph to introduce "J.G. Ballard" and "Shanghai"
and reflect their relationship "people, person, place_of_birth".

Output J.G. Ballard (1930-2009) was an English writer. He was born in Shanghai,
China, and his early experiences there shaped his writing. His novels often
explored themes of alienation, technology, and the future. Ballard’s work
has been praised for its originality and its insights into modern society.
He is considered one of the most important writers of the 20th century.
Shanghai is a city in China. It is one of the most populous cities in the
world, and it is a major center of commerce and culture. Shanghai has
a long history, and it has been home to many different cultures over the
centuries. The city is known for its skyscrapers, its nightlife, and its vibrant
atmosphere. J.G. Ballard was born in Shanghai in 1930. He lived there until
he was eight years old, when his family moved to England. Ballard’s early
experiences in Shanghai had a profound impact on his writing. His novels
often explore themes of alienation, technology, and the future. Ballard’s
work has been praised for its originality and its insights into modern society.
He is considered one of the most important writers of the 20th century.

Table 12: Descriptive context obtained from the generating path T −→ (ED,TD).
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Triplet (J.G. Ballard, place_of_birth, Shanghai)
Prompt Given a triplet (J.G. Ballard | people, person, place_of_birth | Shanghai),

please generate a short paragraph to introduce "J.G. Ballard" and "people,
person, place_of_birth". "J.G. Ballard" and "people, person, place_of_birth"
must be concluded in the generated text.

Output J.G. Ballard (1930-2009) was a British novelist, short story writer, and
essayist. Born in Shanghai, China, he was raised there until the age of eight,
when his family returned to England. Ballard’s early experiences in China
had a profound impact on his writing, and many of his novels and stories
explore themes of alienation, isolation, and dystopia. He is considered one
of the most important science fiction writers of the 20th century.

Table 13: Descriptive context obtained from the generating path T −→ ED.

Triplet (J.G. Ballard, place_of_birth, Shanghai)
Prompt Given a triplet (J.G. Ballard | people, person, place_of_birth | J.G. Ballard),

please generate a paragraph to reflect their relationship people, person,
place_of_birth. "J.G. Ballard" and "Shanghai" must concluded in the gener-
ated text.

Output J.G. Ballard was born in Shanghai, China on November 15, 1930. He was a
British writer, best known for his science fiction novels and short stories.
His work often explored themes of alienation, technology, and the human
condition. Ballard’s books have been translated into more than 30 languages
and have sold over 15 million copies worldwide. He died in London on
April 19, 2009.

Table 14: Descriptive context obtained from the generating path T −→ TD.
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Triplet (J.G. Ballard, place_of_birth, Shanghai)
Prompt-Head Given a triplet (J.G. Ballard | people, person, place_of_birth | Shanghai),

please generate a short paragraph to introduce "J.G. Ballard"
Prompt-Tail Given a triplet (J.G. Ballard | people, person, place_of_birth | Shanghai),

please generate a short paragraph to introduce "Shanghai"
Prompt-Triplet Given a triplet (J.G. Ballard | people, person, place_of_birth | Shanghai) and

the description of the two entities J.G. Ballard: <Output-Head>Shanghai:
<Output-Tail>please generate a short paragraph to reflect their relationship
people, person, place_of_birth. "J.G. Ballard" and "Shanghai" must be
concluded in the generated text.

Output-Head J. G. Ballard was born in Shanghai and is a British writer. He is best known
for his novels about science fiction and post-apocalyptic fiction. Some of his
most famous works include "The Drowned World", "The Crystal World",
and "Empire of the Sun".

Output-Tail Shanghai is a metropolis on the east coast of China. It is the largest city in
China and one of the most populous cities in the world. Shanghai is a major
economic and cultural center, and is home to many skyscrapers and other
landmarks. The city is also known for its nightlife and its vibrant street life.
J.G. Ballard, the author of "Empire of the Sun", was born in Shanghai in
1930.

Output-Triplet J. G. Ballard was born in Shanghai, China in 1930. He is a British writer
best known for his novels about science fiction and post-apocalyptic fiction.
Some of his most famous works include "The Drowned World", "The
Crystal World", and "Empire of the Sun".

Table 15: Descriptive context obtained from the generating path T −→ ED −→ TD. <Output-Tail> and <Output-
head> refer to the tail description and head description generated by the LLM in previous steps.
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Triplet (J.G. Ballard, place_of_birth, Shanghai)
Prompt-Tail Given a triplet (J.G. Ballard | people, person, place_of_birth | [MASK]),

please generate rationale to explain why [MASK] should be Shanghai
Prompt-Head Given a triplet ([MASK] | people, person, place_of_birth | J.G. Ballard),

please generate rationale at least 100 words to explain why [MASK] should
be J.G. Ballard

Output-Tail The rationale for [MASK] should be Shanghai is that:1. J.G. Ballard was
born in Shanghai, China.2. Ballard’s father was a British engineer who
worked in China.3. Ballard spent his early childhood in Shanghai.4. Bal-
lard’s experiences in Shanghai influenced his writing.5. Ballard’s novels
and short stories often feature themes of alienation, isolation, and dystopia.6.
Ballard’s work has been praised for its originality, its insights into human na-
ture, and its depiction of the future.In conclusion, the rationale for [MASK]
should be Shanghai is that Ballard was born and raised there, and his expe-
riences in Shanghai shaped his writing.

Output-Head J.G. Ballard was born in Shanghai on 15 November 1930. His father was a
British businessman and his mother was a Chinese woman. Ballard lived
in Shanghai until the Japanese invasion in 1937, when he and his family
were evacuated to England. Ballard’s experiences in Shanghai during the
war had a profound impact on his writing, and many of his novels are set in
dystopian cities that are reminiscent of Shanghai. Ballard’s work is often
characterized by its bleak vision of the future, but it also contains a strong
element of hope. Ballard believed that the future could be a place of beauty
and wonder, but only if we are willing to confront the challenges that we
face.

Table 16: Rationale obtained from the generating path T −→ RA
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