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ABSTRACT

Graph neural networks (GNNs) learn the representation of nodes in a graph by
aggregating the neighborhood information in various ways. As these networks
grow in depth, their receptive field grows exponentially due to the increase in
neighborhood sizes, resulting in high memory costs. Graph sampling solves
memory issues in GNNs by sampling a small ratio of the nodes in the graph.
This way, GNNs can scale to much larger graphs. Most sampling methods focus
on fixed sampling heuristics which may not generalize to different structures or
tasks. We introduce GRAPES, an adaptive graph sampling method that learns to
identify sets of influential nodes for training a GNN classifier. GRAPES uses a
GFlowNet to learn node sampling probabilities given the classification objectives.
We evaluate GRAPES across several small- and large-scale graph benchmarks and
demonstrate its effectiveness in accuracy and scalability. In contrast to existing
sampling methods, GRAPES maintains high accuracy even with small sample sizes
and, therefore, can scale to very large graphs. Our code is publicly available at
https://github.com/dfdazac/grapes.

1 INTRODUCTION

We represent data with graph structures in many applications. Some examples are recommender
systems, social networks, and the chemical and medical domains (Nettleton, 2013; Wu et al., 2022; Li
et al., 2022). In these domains, graph neural networks (GNNs) are a powerful tool for representation
learning on graphs (Kipf & Welling, 2016; Velickovic et al., 2017; Yun et al., 2019).

Unlike traditional machine learning on i.i.d. data, scalability is a big challenge in machine learning on
graphs. One of the reasons is the connectivity of the nodes and their dependence on their neighbors,
which makes dividing the data into mini-batches a non-trivial task. Secondly, in each layer of the
GNN, the neighbors of the nodes in the previous layer are added to the network. Therefore, the neural
network’s receptive field increases with the network’s depth, resulting in an exponential growth in the
number of nodes it needs to process.

Graph sampling tackles the scalability problem in GNNs by considering only a sampled subset of
the nodes in the graph. Currently most popular sampling methods are non-adaptive, sampling nodes
independently of their features or the training task. Here, we argue for the benefits of adaptive
sampling, where we let the sampling method adapt to the task and directly sample the nodes that
lead to a highly accurate GNN. In particular, we develop a sampler that learns to sample effectively
by maximizing GNN accuracy given a fixed sampling budget, i.e., the number of nodes it samples.
Most current graph sampling methods instead focus on accurately approximating the behavior of the
full-batch GNN (Chen et al., 2018b; Zou et al., 2019; Zeng et al., 2019; Huang et al., 2018), opting
for an indirect approach to achieve high accuracy.
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Figure 1: A high-level schematic diagram of GRAPES for a mini-batch of a two-layer classification
GNN. GRAPES processes a target node (in green) by retrieving 1-hop neighbors and computing
node inclusion probabilities (shown by node color shade) via a GFlowNet. Given these probabilities,
GRAPES samples k nodes. This process is repeated over nodes in the 2-hop neighborhood, with each
step determining a state si. The sampled subgraph is passed to a GNN for target node classification.
Classification loss is used to update the GNN classifier and as a reward for the GFlowNet.

To this end, we develop GFlowNet Graph Neighbor Sampling (GRAPES), an adaptive graph
sampling method that uses GFlowNets (Bengio et al., 2021a). Figure 1 shows the general framework
of GRAPES. The GFlowNet sampler in GRAPES gets feedback from the GNN to learn scores over
the nodes to determine which should be more likely to be included. The GFlowNet framework allows
us to consider the sampling process and the GNN computation together and train them in concert.
This allows training a GFlowNet sampler that explicitly depends on factors like the features of the
nodes, the structure of the graph, sample size, and other contextual features.

We evaluate GRAPES on several node classification tasks and find that

1. GRAPES outperforms state-of-the-art sampling-based methods on most of the datasets.
2. GRAPES is competitive with a state-of-the-art non-sampling GNN scaling method, while

using up to an order of magnitude less GPU memory.
3. GRAPES maintains high accuracy at low sample sizes, while performance often drops

sharply for the baselines as the sample size is decreased. These results highlight GRAPES’
ability to correctly identify influential nodes in the graph and allow scaling to very large
graphs while keeping a high performance for the GNN.

4. GRAPES learns to distinguish between nodes and learns different preferences over nodes
based on their influence on the performance of the GNN.

2 RELATED WORK

Here, we summarize previous work on improving the scalability of GNN by sampling and give an
overview of the related studies using GFlowNets.

2.1 SCALABLE GRAPH LEARNING

Fixed Policy: Most graph sampling methods fall into this category. Here, the sampling policy is
independent of the training of the GNN and is based on a fixed heuristic that does not involve any
training. Given a set of target nodes, i.e., the nodes that are to be classified, node-wise sampling
methods sample a give amount of nodes for each target node. GraphSage (Hamilton et al., 2017) is a
node-wise sampling method that randomly samples nodes. However node-wise sampling results in
redundantly sampling one node multiple times because it can be the neighbor of several nodes (Zou
et al., 2019). A more efficient approach is layer-wise sampling, for example, FastGCN (Chen et al.,
2018b) and LADIES (Zou et al., 2019). They aim to minimize variance by sampling nodes in each
layer with probabilities proportional to their degree. Moreover, some techniques focus on sampling
subgraphs in each mini-batch, like GraphSAINT (Zeng et al., 2019) and ClusterGCN (Chiang et al.,
2019). While these techniques are successful in scaling GNNs to larger graphs, they do not adapt to
the GNN’s performance on the task as they fix the sampling policy.

Learnable Policy: A few methods learn the probability of including a node based on feedback from
the GNN. AS-GCN (Huang et al., 2018) is a method that learns a linear function that estimates the
node probabilities in a layer-wise manner. Similarly, PASS (Yoon et al., 2021) learns a compositional
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policy of random and importance-based sampling, including a learnable transformation matrix to
learn the similarities between the target node and the candidate neighbors. Finally, GNN-BS (Liu
et al., 2020) formulate the node-wise sampling problem as a bandit problem and update the sampling
policy according to a reward function that reduces the sampling variance. All these methods focus
on variance reduction and fail to consider the classification loss, unlike GRAPES. We argue that
adaptivity to the classification loss, allows for sampling the influential nodes depending on the task,
and results in better performance.

Historical Embedding: Another group of papers tackling the scalability problem of GNNs use
historical embeddings of the nodes when updating the target nodes’ embeddings (Chen et al., 2018a;
Fey et al., 2021; Yu et al., 2022; Shi et al., 2023). VR-GCN (Chen et al., 2018a) uses historical
activations with the aim of variance reduction. GAS (Fey et al., 2021) approximates the embeddings
of the 1-hop neighbors using the historical embeddings of those nodes learned in the previous training
iterations. These methods reduce the GPU memory usage by training in mini-batches and learning
from the 1-hops neighbors with the historical embeddings saved in CPU memory. Unlike GRAPES,
they process the whole graph.

2.2 GENERATIVE FLOW NETWORKS

Generative Flow Networks (GFlowNets) (Bengio et al., 2021a;b) are generative models that sam-
ple from a very large structured space with probability proportional to a given reward function.
GFlowNets have been used in several applications like molecule design and material science (Bengio
et al., 2021a; Gao et al., 2022; Jain et al., 2022), Bayesian structure learning (Deleu et al., 2022),
scientific discovery (Jain et al., 2023), and GNN explainability (Li et al., 2023). Similar to our work,
the latter utilizes a GFlowNet to sample a subgraph. However, this method explains a trained GNN
and is not used to scale GNN training to large graphs.

3 BACKGROUND

3.1 GNN TRAINING AND SAMPLING

Let GC = (V, E) be an undirected graph with a set of N nodes V and edges E . The adjacency matrix
A ∈ {0, 1}N×N indicates a connection between a pair of nodes. Â = D̃−1Ã is the row-normalized
adjacency matrix with self-loops, where Ã = A+ I and where D̃ is the degree matrix of Ã. While
our method is independent of the choice of GNN architecture, we limit our discussion to the GCN
architecture for simplicity (Kipf & Welling, 2016). X ∈ RN×f indicates the given features on the
nodes1 and Y ∈ ZNt

is the labels for target nodes Vt ⊂ V , the nodes with the labels. The task of
node classification aims to learn the labels of these target nodes.

The output of the l-th layer of the GCN is H l = σ(ÃH l−1W l), where W l ∈ Rdl×dl+1

is the weight
matrix of layer l and σ is a non-linear activation function. dl is the hidden dimension of layer l, where
d0 is the input feature size and dL is the number of classes, and L is the number of layers. For a node
vi ∈ V , this corresponds to the update

hl
vi = σ

 ∑
vj∈N (vi)

Âvi,vjh
l−1
vj W l

 , (1)

where N (vi) is the set of vi’s neighbors, and Âvi,vj refers to element (vi, vj) of Â.

As the number of layers increases, the computation of the embedding of node vi involves neighbors
from further hops. As a result, the neighborhood size grows exponentially with the number of layers.
We study how to sample the graph to overcome this exponential growth. We focus on layer-wise
sampling, an effective graph sampling approach (Chen et al., 2018b; Zou et al., 2019; Huang et al.,
2018). First, the target nodes are divided into mini-batches of size b. Then, in each layer, k nodes get
sampled among the neighbors of the nodes in the previous layer. Therefore, the approximation of the

1If no features are available, the feature vectors are set to one-hot vectors as node identifiers.
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l-th update of node vi is:

h̃l
vi = σ

 ∑
vj∈Kl

Â′l
vi,vj

h̃l−1
vj W l

 ,Kl ∼ q(Kl|N (Kl−1)) (2)

where 1) Kl ⊆ N (Kl−1) is the set of sampled nodes in layer l, and N (Kl−1) indicates the set of
neighbors of the nodes in Kl−1, 2) K0 is the set of mini-batch target nodes, 3) Â′l(vi, vj) is the
row normalized value of the sampled adjacency matrix A′l in layer l 2, where A′l(vi, vj) is 1 if vj is
sampled, i.e., vj ∈ Kl and 0 otherwise, and 4) q(Kl|N (Kl−1)) is the probability of sampling the set
of nodes Kl given the nodes that were sampled in the previous layer and their neighbors. Our goal is
to learn the distribution q that maximizes the classification accuracy given a fixed sampling budget of
k nodes per layer.

3.2 GFLOWNET AND TRAJECTORY BALANCE LOSS

We next give a brief overview of GFlowNets (Bengio et al., 2021a;b) and the trajectory balance loss
(Malkin et al., 2022a). Let GF = (S,A,S0,Sf , R) denote a GFlowNet learning problem. Here, S is
a finite set of states that forms a directed graph with A, a set of directed edges representing actions
or transitions between states. S0 ⊂ S is the set of initial states, Sf ⊂ S is the set of terminating
states,3 and R : Sf → R+ is the reward function defined on terminating states. At time t, a particular
at ∈ A indicates the action taken to transition from state st to st+1. A trajectory τ is a path through
the graph from an initial state s0 to a terminating state sn ∈ Sf : τ = (s0 → ...→ sn). A GFlowNet
is a neural network that learns to transition from an initial state s0 to a terminating state where the
reward R(sn) is given. The goal of our GFlowNet is to ensure that the forward transition probabilities
PF (st+1|st) are in proportion to the reward (Bengio et al., 2021a). The Trajectory Balance (TB) loss
(Malkin et al., 2022a) is developed with this goal. For a trajectory τ = (s0 → ...→ sn), the TB loss
is:

LTB(τ) =

(
log

Z(s0)
∏n

t=1 PF (st|st−1)

R(sn)
∏n

t=1 PB(st−1|st)

)2

, (3)

where Z : S0 → R+ computes the total flow of the network from starting state s0 and PF and PB

are the forward and the backward transition probabilities between the states, where both can be
parameterised by a neural network (Malkin et al., 2022a).

4 GFLOWNET GRAPH NEIGHBOR SAMPLING (GRAPES)

In this section, we introduce GFlowNet Graph Neighbor Sampling (GRAPES). GRAPES is a layer-
wise and layer-dependent sampling method. In each layer l, it samples k ≪ |NKl−1 | = n neighbors
of the nodes that were sampled in the previous layer. In the remainder of this section, we describe
our GFlowNet design, training and reward function (Section 4.1), adjustments to the reward function
(Section 4.2, and our scalable sampling procedure (Section 4.3.

4.1 GFLOWNET DESIGN: STATES, ACTIONS, AND REWARD

Next, we explain our choice of GF , that is, the states, actions, terminating states, and reward function,
and the coupling of our GFlowNet with the GCNC . A state s ∈ S represent a sequence of adjacency
matrices s = (A0, ..., Al) sampled so far. An action from s represents choosing k nodes without
replacement among the neighbors of the nodes in Al. This forms the adjacency matrix Al+1 of the
next layer. Therefore, in an L layer GCN, we construct a sequence of L adjacency matrices to reach
a terminating state.

We define the optimal sampling policy as having the lowest classification loss in expectation. There-
fore, a set of k nodes with a lower classification loss than another set must have a higher probability.

2Unlike the full-batch GCN, when sampling, the adjacency matrix of each layer is different from the other
layers because the nodes involved in each layer are different.

3Technically, GFlowNets have unique source and terminal (or ‘sink’) states ss and sf . The source state has
an edge to all initial states, and all terminating states have an edge to the terminal state.
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Our goal is to design GF so that it learns the forward and backward transition probabilities proportional
to a given reward. We define the reward function as below:

R(sL) = R(A0, . . . , AL) := exp(−α · LGCNC
(A0, . . . , AL)), (4)

where LGCNC
is the classification loss and α is a scaling parameter, which we explain in Section

4.2. A0 is the adjacency matrix of the graph given as input at the starting state, and A1 to AL are the
adjacency matrices sampled in each transition. We explain the sampling procedure in section 4.3.

Forward Probability. The GFLowNet of GRAPES is a neural network that learns the forward
probabilities PF (sl|sl+1), the probability of sampling an adjacency matrix Al+1 for the layer l + 1
given the adjacency matrices of the previous layers. Precisely, the GFlowNet learns to predict the
probability pi, for i ∈ {1, ..., n}, that the node vi in the neighbourhood of Kl will be included in
V l+1, the nodes sampled for layer l+1. We use a Bernoulli distribution to define the nodes probability
inclusion in the sample. Therefore, the forward probability between layers l and l + 1 is

PF (sl+1|sl) =
∏

vi∈Vl+1

pi
∏

vi∈N (Kl)\Vl+1

(1− pi) (5)

The first product computes the probabilities of the nodes that are included in the new sampled set
V l+1, and the second the probabilities of the nodes that are not included.

Backward Probability. Trajectory balance (Equation 3) also requires defining the probability of
transitioning backwards through the states. This is however not required in our setup, as the state
representation s = (A0, ..., Al) exactly saves the trajectory that was taken through GF to get to s. We
pass this information to the GFlowNet by adding an identifier to the nodes’ embeddings indicating in
what layer the node was sampled. We also include an identifier for the mini-batch target nodes. This
means GF is a tree, and has a unique path backwards to the initial state s0, and so PB(sl|sl+1) = 1.

Combining our setup with the trajectory balance loss (Equation 3), the GRAPES loss is

LGRAPES(τ) =

(
log

Z
∏L

l=1 PF (sl|sl−1)

R(sL)

)2

(6)

=

(
logZ +

L∑
l=1

logPF (sl|sl−1) + αLGCNC
(A0, ..., AL)

)2

(7)

We model the normalizer Z(s0) in Equation 3 as a real-valued trainable parameter logZ that we
update using GRAPES’s loss, and so assume Z(s0) is constant to remove an additional estimation
step.

4.2 REWARD SCALING

In our experiments, we noticed that with the bigger datasets, the GFlowNet is more affected by
the log-probabilities than the reward from the classification GCNC . The reason that the term
logPF (sl+1|sl) is dominant in LGRAPES is that logPF (sl|sl−1) =

∑n
i=1 log p(vi), where n is the

size of neighborhood of the nodes sampled in the previous layer l. Given a batch size of 256, this
neighborhood can be as big as 52000 nodes, resulting in summing 52000 log-probabilities. The
majority of the probabilities p(vi) are values close to zero, therefore, the above sum would be a large
negative number. Since the loss LGCNC

is in our experiments quite close to zero, the log-probability
and its variance dominate the loss. Therefore, we add the hyper-parameter α to the reward and tune it
in our experiments.

4.3 SAMPLING AND OFF-POLICY TRAINING

We next describe the sampling technique of GRAPES. We have a clear constraint on the number
of nodes we want to include in training: We want to sample exactly k nodes without replacement.
However, our forward distribution PF contains n independent Bernoulli distributions, and it is
unlikely that we sample exactly k nodes from this distribution. Instead, we use the Gumbel-max
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trick (Vieira; Huijben et al., 2022) which selects a set of nodes V l
k by perturbing the log probabilities

randomly and taking the top-k among those:

V l
k = top(k, log p1 +G1, ..., log pn +Gn), Gi ∼ Gumbel(0, 1) (8)

The sampling process shown above is different from faithfully sampling from the GFlowNet distri-
bution PF . This means we train the GFlowNet in an off-policy setting. Importantly, GFlowNets,
and in particular the trajectory balance loss, can learn from off-policy distributions without adjusting
the objective (Malkin et al., 2022b). If we were to use a direct gradient-estimation method, like
REINFORCE, we would have to compute the probability of sampling k nodes from PF for impor-
tance weighting, which is expensive (Ahmed et al., 2023). Therefore, the off-policy properties of
GFlowNets allow us to use the Gumbel-max trick without having to compute importance weights or
any other form of normalization.

4.4 GRAPES ALGORITHM

Algorithm 1 shows one epoch of GRAPES in pseudocode. Note that in layer l, to preserve the
self-loops of the nodes sampled in layer l− 1, we concatenate the nodes sampled in layer l− 1 to the
sampled nodes in layer l, i.e., Kl = Kl−1 ∪ V l

k. Therefore, we build the adjacency matrix for layer l
Al ∈ R|Kl−1|×|Kl| by adding all the edges between Kl−1 and Kl.

Algorithm 1 One GRAPES epoch

Require: Graph GC , node features X , node labels Y , target nodes Vt, batch size B, sample size k,
GCN for classification GCNC , and GCN for GFlowNet GCNF .

1: Divide target nodes Vt into batches Vb of size B
2: for each batch Vb do
3: K0 = Vb

4: Build adjacency matrix A0 from K0

5: for layer l = 1 to L do
6: V l

n ← N (Kl−1) ▷ Get all n neighbors of Kl−1

7: p1, ..., pn ← GCNF (A0, ..., Al−1) ▷ Compute probabilities of inclusion
8: G1, ..., Gn ∼ Gumbel(0, 1) ▷ Sample Gumbel noise
9: V l

k ← top(k, log p1 +G1, ..., log pn +Gn) ▷ Get k best nodes (Eq. 8)
10: Kl = Kl−1 ∪ V l

k ▷ Add new nodes
11: Build adjacency matrix Al from Kl

12: end for
13: Pass all Âl to GCNC and obtain classification loss LGCNC

given {(Xj , Yj)}Bj=1

14: R(A0, ..., AL)← exp(−α · LGCNC
) ▷ Calculate reward

15: Compute GRAPES loss LGRAPES from Eq. 6
16: Update parameters of GCNF by minimizing LGRAPES

17: Update parameters of GCNC by minimizing LGCNC

18: end for

5 EXPERIMENTS

In this section, we evaluate GRAPES on several graphs of varying scales, and compare it with the
existing sampling methods.

5.1 EXPERIMENTAL SETUP

For all our experiments, we use a two-layer GCN with ReLU activation function for both classification
and GFlowNet networks, GCNC and GCNF . We evaluate GRAPES on the following datasets for
node classification task: citation networks (Cora, Citeseer, Pubmed with the “full” split) (Sen et al.,
2008; Yang et al., 2016), Reddit (Hamilton et al., 2017), Flickr (Zeng et al., 2019), Yelp (Zeng et al.,
2019), and two open graph benchmarks ogbn-arxiv and ogbn-products (Hu et al., 2020). Statistics
about the datasets can be found in Appendix B. We conduct our experiments on a machine with an
Nvidia RTX A6000 48 GB GPU.
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Table 1: F1-scores (%) for different sampling methods for a batch size of 256, and 256 samples. We
report the mean and standard deviation over 10 runs. The best values are in bold, and the second
best are underlined. OOM stands for “out-of-memory”, which signifies that the sampling process
required more GPU memory than initially allocated.

Method Cora Citeseer Pubmed Reddit Flickr
FastGCN 74.93 ± 6.62 53.26 ± 12.39 53.73 ± 23.05 38.02 ± 6.26 41.06 ± 6.50
LADIES 69.90 ± 18.43 67.85 ± 8.43 56.36 ± 25.29 81.88 ± 3.87 43.23 ± 0.73
GraphSAINT 86.20 ± 0.85 77.63 ± 0.54 83.07 ± 0.89 80.50 ± 1.00 48.47 ± 1.05
AS-GCN 86.42 ± 0.31 78.80 ± 0.21 89.76 ± 0.53 92.44 ± 0.56 48.21 ± 1.70
GRAPES (ours) 87.29 ± 0.15 78.74 ± 0.18 90.11 ± 0.24 93.68 ± 0.06 47.33 ± 1.41

Yelp ogbn-arxiv ogbn-products Average F1 Average Rank
FastGCN 26.42 ± 2.05 29.91 ± 3.57 33.01 ± 4.03 43.79 4.625*
LADIES 16.02 ± 2.28 44.58 ± 8.12 67.72 ± 1.95 55.94 3.875*
GraphSAINT 33.13 ± 0.94 53.71 ± 2.79 59.57 ± 0.65 65.29 2.750
AS-GCN 30.99 ± 1.21 65.95 ± 1.91 OOM 70.37 2.250
GRAPES (ours) 44.91 ± 0.08 64.54 ± 0.51 73.65 ± 0.21 72.53 1.500

5.2 BASELINES EVALUATION PROTOCOL

We compare GRAPES with the following baselines: FastGCN (Chen et al., 2018b), LADIES (Zou
et al., 2019), GraphSAINT (Zeng et al., 2019), GAS (Fey et al., 2021), and AS-GCN (Huang et al.,
2018). Our evaluation protocol consists of two steps: 1) training a GCN classifier via sampling and 2)
evaluating the classifier’s performance on the test set using the full graph. We implement GRAPES
and GraphSAINT using PyTorch Geometric (Fey & Lenssen, 2019) and refer to the source code of
the original paper for the remaining baselines. The original papers evaluated the baseline methods
under different configurations of GCN classifier architecture, data pre-processing, and regularization.
To provide a fair comparison and study the behaviour of the sampling methods in isolation, we modify
the GCN architecture of the baselines so that all the methods, including GRAPES, have the same
two-layer classification GCN architecture with a fixed hidden dimension.

For selecting the learning rate, we refer to the original papers for the baselines. GRAPES requires
selecting two additional hyperparameters: the learning rate for the GFlowNet and the scaling
parameter α. We tune these based on classification performance on the validation set. These
hyperparameters are specific to our sampling method and do not explicitly affect the learning capacity
of the GCN classifier. We refer the reader to Appendix A for details on hyperparameter settings.

5.3 RESULTS

Comparison with sampling methods We present the F1 scores of GCNs trained via sampling for
GRAPES and the sampling-based baselines in Table 1. We observe that GRAPES often outperforms
all these baselines. Unlike the other methods, GRAPES ranks consistently within the top 3 methods,
and its average rank is the highest, suggesting that its ability to adapt the sampling policy to particular
features of the data allows GRAPES to maintain consistent performance across datasets. We probe
into the observed differences in rank by performing two statistical tests, using the ranks obtained
for each sampling method over all datasets. First, a Friedman test reveals significant differences in
ranks between all methods. We subsequently apply an all-pairs comparison and find that GRAPES
ranks significantly higher than FastGCN and LADIES. AS-GCN, the next high-rank method, only
significantly differs from FastGCN. The Appendix C provides more detail on our methodology for
hypothesis testing.

An additional desirable property we observe is the low variance in the performance of GRAPES.
After executing each experiment 10 times, we note that GRAPES has the lowest standard deviation,
except for two datasets, unlike FastGCN and LADIES, which exhibit high variance. Our results
demonstrate that GRAPES offers robust performance, maintaining consistency over different datasets
and the randomness involved in multiple runs. FastGCN and LADIES, which use a fixed policy, fail
to compete with the other methods in our experimental setup. They assign a higher probability to
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Table 2: Comparison of F1-Scores (%) for GAS, and
GRAPES-32 and GRAPES-256 which correspond to the
different sampling sizes. We report the mean and standard
deviation for 10 repeats. The best values are in bold.

Cora Citeseer Pubmed Reddit
GAS 87.67 ± 0.21 79.37 ± 0.35 87.94 ± 0.31 94.83 ± 0.83
GRAPES-32 88.10 ±0.14 79.04 ± 0.17 89.58 ± 0.17 92.43 ±0.13
GRAPES-256 87.29 ± 0.15 78.74 ± 0.18 90.11 ± 0.24 93.68 ± 0.06

Flickr Yelp ogbn-arxiv ogbn-products
GAS 51.32 ± 0.30 33.79 ± 0.61 69.38 ± 0.21 75.12 ± 0.17
GRAPES-32 45.69 ±1.33 44.50 ±0.26 64.03 ±0.57 73.62 ±0.16
GRAPES-256 47.33 ± 1.41 44.91 ± 0.08 64.54 ± 0.51 73.65 ± 0.21
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Figure 2: GPU peak memory allocation
(MB) for GAS, and GRAPES-32 and
GRAPES-256.

nodes with higher degrees. This heuristic results in neglecting informative low-degree nodes. As the
results show, GraphSAINT fails to outperform the more competitive baselines.

AS-GCN is the only adaptive sampling method among the baselines and is the next best-performing
method in this category, indicating the importance of adaptive sampling. However, unlike GRAPES,
this method is only adaptive to the sampling variance. Furthermore, it uses a large amount of memory
because it utilizes an attention mechanism during sampling. Therefore, AS-GCN causes out-of-
memory errors when training on the largest dataset, ogbn-products, indicating AS-GCN’s failure to
scale up to large graphs.

Comparison with a non-sampling scalable method GAS (Fey et al., 2021) is a non-sampling
method that uses the historical embeddings of the 1-hop neighbors of the target nodes. For GRAPES,
we report the values for sampling sizes 32 and 256. We present classification results in Table 2,
and we visualize memory usage in Fig. 2. While GAS has higher classification F1-scores for some
datasets, GRAPES achieves comparable F1-scores and significantly outperforms GAS for Yelp. The
memory usage results show that even with a large sample size, GRAPES can use up to an order of
magnitude less GPU memory than GAS, especially for large datasets. In large, densely connected
graphs such as Reddit, the 1-hop neighborhood can be very big. Then, the difference in memory
use for GRAPES, which only sees a small set of neighbors, and GAS, which uses all the neighbors,
is noticeable. While GAS occasionally achieves higher F1-scores, it consistently demands more
memory, indicating a potential compromise between accuracy and computational efficiency. In
contrast, both variants of GRAPES variants strike a balance, delivering comparable F1 scores with
more modest memory footprints.

GRAPES is robust to low sample sizes. Figure 3 shows the effects of changing the sample size for
all the methods except for GAS, which does not use any sampling and learns from a fixed number
of nodes. To quantify the robustness to changes in the sample size, we measure deviations from the
mean F1-score and find that GRAPES has the smallest deviation from the horizontal line of best fit
(see Appendix D for details). This shows that the classification accuracy of GRAPES is robust to the
sample size. Therefore, GRAPES achieves strong performance with fewer sampled nodes needed
than the baselines, enabling training GCNs on larger graphs while using less GPU memory.

GRAPES learns strong preferences over nodes. The ability to selectively choose influential nodes
is a crucial property of GRAPES. Figure 4 shows the mean and standard deviation of base 2 entropy
for the node preference probabilities for the two layers of GCNC for ogbn-products. The probabilities
show preference towards particular nodes with a Bernoulli distribution. A well-trained model must
have a high preference (probability close to 1) for some nodes and a low preference (probability close
to 0) for the rest. Therefore, we would like a low average entropy with a high standard deviation. As
the figure shows, the mean entropy in both layers decreases from almost 1 and converges to a value
above 0 while the standard deviation increases. This indicates that for ogbn-products, the GFlowNet
initially assigned a probability near 0.5, indicating little preference. However, after several training
epochs, GRAPES starts preferring some nodes, resulting in lower mean entropy. We observe similar
behavior for the large graphs (Reddit, Yelp, ogbn-arxiv, and ogbn-products). However, we observe
that the GFlowNet exhibits no preferences among the nodes for the other datasets. For more details
about the rest of the datasets, see Appendix E.
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6 DISCUSSION AND CONCLUSION

We propose GRAPES, a GFlowNet-based graph sampling method that facilitates the scalability of
training GNNs on very large graphs. GRAPES learns the importance of the nodes by adapting to
the classification loss. We show how a GFlowNet can help build a subgraph of influential nodes
by learning the node preferences adaptive to the node features, GNN architecture, classification
task, and graph topology. Our experiments demonstrate that GRAPES effectively selects nodes
from large-scale graphs and achieves consistent performance over state-of-the-art sampling methods.
Moreover, we show GRAPES compared to the other sampling methods, can maintain a high level of
classification accuracy even with lower sampling rates, indicating GRAPES’ ability to scale to larger
graphs by sampling a small but influential set of nodes. GRAPES achieves comparable performance
to GAS, while using up to an order of magnitude less memory.

Lack of Uniform Evaluation Protocol. Existing methods in the literature report performance on
graph sampling under settings with different GCN architectures, regularization techniques, feature
normalization strategies, and data splits, among other differences. These differences made it challeng-
ing to determine the benefits of each sampling method. This motivated our decision to implement
a unified protocol across all methods where we keep the architecture fixed. We encourage future
work to consider a similar methodology for a fair evaluation of sampling methods, or an experimental
review study, as is common in other areas of machine learning research on graphs (Shchur et al.,
2018; Ruffinelli et al., 2019).

Known Limitations. In our experiments, we focused on the problem of node classification. However,
GRAPES is not tied to a particular downstream task. In general, GFlowNets assume access to a
tractable reward function (Bengio et al., 2021b). Therefore, GRAPES will be applicable for other
graph-related tasks with tractable rewards, like link prediction and unsupervised representation
learning. We leave these directions for future work. Furthermore, we assumed that the normalizing
function Z(s0) in Equation 3 is constant across different mini-batches to reduce estimation overhead,
and we leave the study on the effect of estimating Z(s0) on the sampling for future work.

Reproducibility Statement. Our code is publicly available at https://github.com/dfdazac/
grapes. The full set of hyperparameters used for GRAPES are available in the repository. As
described previously, we adapted the baselines (LADIES, GAS, AS-GCN, FastGCN, GraphSAINT)
for a fair comparison; the link to the code and the corresponding hyperparameters for the modified
baseline models can be found in our repository. The link to the code and data for the data analyses
we carried out are also available in our repository.
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Figure 3: Comparative analysis of classification accuracy across different sampling sizes for sampling
baseline and GRAPES. We repeated each experiment five times: The shaded regions show the 95%
confidence intervals. AS-GCN is missing for ogbn-products due to OOM errors.
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A EXPERIMENTAL DETAILS

Our experiments were carried out in a single-node cluster setup. We conducted our experiments on a
machine with an Nvidia RTX A6000 GPU (48GB GPU memory) and each machine had 48 CPUs.

A.1 HYPERPARAMETER TUNING

We tune the hyperparameters of GRAPES using a random search strategy with the goal of maximizing
the accuracy of the validation dataset. We used Weights and Biases for hyperparameter tuning 4.
The best-performing hyperparameters for every dataset can be found in our repository https:
//github.com/dfdazac/grapes. The following are the hyperparameters that we tuned: the
learning rate of the GFlowNet, the learning rate of the classification GCN, and the scaling parameter
α. We used the log uniform distribution to sample the aforementioned hyperparameters with the
values from the following ranges respectively, [1e− 6, 1e− 2], [1e− 6, 1e− 2], and [1e2, 1e6]. We
kept the other hyperparameters such as the batch size and hidden dimension of the GCN. We used the
Adam optimizer (Kingma & Ba, 2014) for GCNC and GCNF . The number of epochs was selected
between 50, 100, and 150 depending on the performance on the validation set.

A.2 BASELINES

For a fair comparison, we adjusted the implementations of the baselines so that the only difference is
the sampling methods and the rest of the training conditions are kept the same. In the following, we
explain the details of the modifications to each of the baselines.

For LADIES we used the official implementation, which also contains an implementation of FastGCN.
We changed the nonlinear activation function from ELU to ReLU, and we removed any linear layers
after the two layers of the GCN, set dropout to zero, and disabled early stopping. We also noticed
that the original LADIES implementation divided the target nodes into mini-batches, not from the
entire graphs as we do, but into random fragments. This means that LADIES and FastGCN do not
see all of the target nodes in the training data. We kept this setting unchanged, because otherwise it
significantly slowed down the training of these two methods.

For GraphSAINT we noticed that the GNN consists of two layers of higher order aggregator, which is
a combination of GraphSage-mean (Hamilton et al., 2017) and MixHop (Abu-El-Haija et al., 2019),
and a linear classification layer in the end. Moreover, the original implementation of GraphSAINT
is only applicable to inductive learning on the graphs, where the train graph only contains the train
nodes and is entirely different from the validation and test graphs where only the nodes from the
validation set and test are available respectively. We argue that in transductive learning unlike
inductive learning, the motivation to scale to larger graphs is higher since the validation and test
nodes are also available during training, and therefore, the processed graph is larger. Finally we
used Pytorch Geometric’s function for GraphSAINT node sampling to keep all the configurations the
same as GRAPES. Therefore, we use the same GCN and data loader (transductive) as ours and use
GraphSAINT to sample a subgraph of nodes for training. We use the node sampler setting since it is
the only setting that allows specifying different sampling budgets, and therefore, can be compared
to layer-wise methods with the same sampling budget. We also removed the early stopping and use
the same number of epochs as GRAPES. Please refer to our repository for more details about the
implementation of GraphSAINT.

For GAS, we used the original implementation. However, we changed the configuration of the GCN
to have a two-layer GCN with 256 hidden units. We turned off dropout, batch normalisation and
residual connections in the GCN. We also removed early stopping for the training.

For AS-GCN we removed the attention mechanism used in the GCN classifier. Their method also
uses attention in the sampler, which is separate from the classifier, so we keep it.

4https://wandb.ai
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Table 3: Statistics of the datasets used in our experiments. The label rate indicates the percentage of
nodes used for training.

Dataset Task Nodes Edges Features Classes Label Rate (%)
Cora multi-class 2,708 5,278 1,433 7 44.61
CiteSeer multi-class 3,327 4,552 3,703 6 54.91
PubMed multi-class 19,717 44,324 500 3 92.39
Reddit multi-class 232,965 11,606,919 602 41 65.86
Flickr multi-class 89,250 449,878 500 7 50.00
Yelp multi-label 716,847 6,977,409 300 100 75.00
ogbn-arxiv multi-class 169,343 1,157,799 128 40 53.70
ogbn-products multi-class 2,449,029 61,859,076 100 47 8.03

B DATASET STATISTICS

We present the statistics of the datasets used in our experiments in Table 3. The splits that we used
for Cora, Citeseer, and Pubmed correspond to the “full” splits, in which the label rate is higher than
in the “public” splits.

C METHODOLOGY FOR HYPOTHESIS TESTING

In section 5.2 we present the classification performance of a GCN classifier, after training it with the
sampling baselines and GRAPES. We then perform statistical tests aimed at answering two questions.

Are the differences between ranks statistically significant? Our null hypothesis is that the ranks
of all methods have the same distribution. We present the ranks in Table 4, together with the resulting
average rank. We apply a Friedman test (Friedman, 1937) to compare the ranks of each method,
obtaining a p-value of 0.0005. We thus reject the null hypothesis and conclude that the observed
difference in rank across methods is statistically significant.

Is the difference in ranks between specific pairs of methods statistically significant? In this
case, we are interested in multiple null hypotheses involving pairs of methods. For example, do the
ranks obtained from GRAPES and FastGCN come from the same distribution? As we are interested in
similar hypotheses involving different methods, this requires comparing multiple pairs and adjusting
the p-value to account for multiple comparisons (Demšar, 2006). We carry out a post-hoc Nemenyi’s
test using the scikit-posthocs library (Terpilowski, 2019) and obtain the p-values shown in
Table 5. The results show that the difference in rank between GRAPES is significant with respect to
FastGCN and LADIES with p < 0.05.

D PEARSON’S CHI-SQUARED (χ2) TEST AS A ROBUSTNESS MEASURE

Figure 3 shows the effect of changing sample size on the node classification performance. In an ideal
case, it would be desirable to have a constant accuracy as the number of the sample size changes.
To quantify the robustness of the different sampling methods, we compute the goodness-of-fit of

Table 4: Ranks according to the F1 scores obtained by each sampling method on the node classification
task. Asterisks (*) indicate that the difference in average rank to GRAPES is statistically significant
at p < 0.05.

Method Cora Citeseer Pubmed Reddit Flickr Yelp ogbn-arxiv ogbn-products Average
FastGCN 4 5 5 5 5 4 5 4 4.625*
LADIES 5 4 4 3 4 5 4 2 3.875*
GraphSAINT 3 3 3 4 1 2 3 3 2.750
AS-GCN 2 1 2 2 2 3 1 5 2.250
GRAPES (ours) 1 2 1 1 3 1 2 1 1.500
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Table 5: p values obtained with the Nemenyi post-hoc test for comparing the ranks for all pairs of
methods.

Method FastGCN LADIES GraphSAINT AS-GCN GRAPES

FastGCN 1.0000 0.8669 0.1233 0.0223 0.0010
LADIES 0.8669 1.0000 0.5977 0.2396 0.0223
GraphSAINT 0.1233 0.5977 1.0000 0.9000 0.5080
AS-GCN 0.0223 0.2396 0.9000 1.0000 0.8669
GRAPES (ours) 0.0010 0.0223 0.5080 0.8669 1.0000

Table 6: Chi-square values. Each experiment was repeated five times. The χ2 were computed with
the mean accuracies. The best values are in bold, and the second best are underlined. OOM indicates
an out-of-memory error. Asterisks (*) indicate that the difference in average rank to GRAPES is
statistically significant at p < 0.05.

Method Cora Citeseer Pubmed Reddit Flickr
FastGCN 14.4540 17.3168 14.7477 38.3733 4.9597
LADIES 0.7089 4.0147 18.6169 0.1393 0.3329
GraphSAINT 0.0016 0.0130 0.0013 0.1304 0.1004
AS-GCN 0.0602 0.0137 0.0033 0.2550 0.6420
GRAPES 0.0047 0.0616 0.0018 0.0209 0.0911

Yelp ogbn-arxiv ogbn-products Average χ2 Average Rank
FastGCN 0.3335 3.6756 23.4954 14.6695 4.6250*
LADIES 0.9420 0.7474 0.1607 3.2079 3.7500*
GraphSAINT 0.0232 0.3967 0.2358 0.1128 2.0000
AS-GCN 9.2825 0.0599 OOM 1.4738 3.0000
GRAPES 0.0084 0.0085 0.0002 0.0246 1.6250

observed accuracy values to a horizontal line of best fit (i.e. a constant accuracy value). To this end,
we use Pearson’s chi-squared test (Pearson, 1900). Let’s assume we have a set of observed accuracies,
denoted as Oi, and a horizontal line of best fit which represents the expected accuracy, Ei. The
chi-square statistic, χ2, is computed using the formula:

χ2 =

n∑
i=1

(Oi − Ei)
2

Ei
, (9)

where n is the number of observed values. A high χ2 value would indicate that the observed
accuracies significantly deviate from the expected accuracy, while a low value would suggest that they
are close. The expected accuracy Ei is the average accuracy across all observations for a particular
combination of method and dataset. We did not include GAS (Fey et al., 2021) as the approach does
not sample any nodes.

Table 6 shows the χ2 values for the different sampling methods we study. GRAPES has the lowest
average χ2 across all the different datasets, which implies that is very robust to changes in the
sampling sizes compared to the baseline sampling methods.

Rank Significance Test. Our null hypothesis is that the ranks of all methods have the same
distribution. We also performed a Friedman test to compare the ranks of each method, obtaining
p-value of 0.000627. Therefore, we reject null hypothesis, and conclude that the ranks presented in
Table 6 are statistically significant.
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E ENTROPY AS NODE PREFERENCE MEASURE

Figures 5 and 6 show the mean and standard deviation of entropy in base two of all the datasets. We
calculate the mean entropy for as the following:

E =
1

n

n∑
i=1

pi · log2(pi) + (1− pi) · log2(1− pi) (10)

where n is the number of neighbors of the nodes sampled in the previous layer and pi is the probability
of inclusion for each node, which is the output of the GFlowNet. As the figures show, for the small
datasets (Cora, Citeseer, Pubmed, Flickr) the mean entropy is: 1) very close to 1, indicating that
GRAPES prefers every nodes with the probability close to 0.5, or 2) close to 0 but also with a low
standard deviation, meaning that it equally prefers the majority of the nodes with the probability 1
or 0. On the contrary, for the large datasets (Reddit, Yelp, ogbn-arxiv, ogbn-products) by the end of
training, the average entropy is lower than 1, with a standard deviation around 0.3 indicating that
GRAPES learns different preferences over different nodes, some with a probability close to 1, and
some close to 0.

F GPU MEMORY USAGE COMPARISON BETWEEN GRAPES AND GAS

We compared different variants of GRAPES, with different sample sizes (32, 256), with GAS (Fey
et al., 2021), which is a non-sampling method. Figure 2 shows the GPU memory allocation (MB),
in a logarithmic scale, and the F1-scores for GRAPES-32, GRAPES-256 and GAS. The three
graph methods exhibit distinct performance characteristics across various datasets. We used the
max memory allocated function in PyTorch to measure the GPU memory allocation.5 Since this
function measures the maximum memory allocation since the beginning of the program, where the
memory measurement is done does not matter.

5https://pytorch.org/docs/stable/generated/torch.cuda.max_memory_allocated.html
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Figure 5: Combined entropy plots for Citeseer, Cora, Flickr and ogbn-arxiv, showcasing the mean
entropy and entropy standard deviation across epochs. The plots compare 1-hop node sampling
against 2-hop node sampling.
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Figure 6: Combined entropy plots for ogbn-products, Pubmed, Reddit and Yelp, showcasing the
mean entropy and entropy standard deviation across epochs. The plots compare 1-hop node sampling
against 2-hop node sampling.
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