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Abstract

We study online learning in constrained Markov decision processes (CMDPs) with
adversarial losses and stochastic hard constraints, under bandit feedback. We
consider two different scenarios. In the first one, we address general CMDPs,
where we design an algorithm attaining sublinear regret and cumulative positive
constraints violation. In the second scenario, under the mild assumption that a pol-
icy strictly satisfying the constraints exists and is known to the learner, we design an
algorithm that achieves sublinear regret while ensuring that constraints are satisfied
at every episode with high probability. To the best of our knowledge, our work is
the first to study CMDPs involving both adversarial losses and hard constraints.
Indeed, previous works either focus on much weaker soft constraints—allowing for
positive violation to cancel out negative ones—or are restricted to stochastic losses.
Thus, our algorithms can deal with general non-stationary environments subject to
requirements much stricter than those manageable with state-of-the-art ones. This
enables their adoption in a much wider range of real-world applications, ranging
from autonomous driving to online advertising and recommender systems.

1 Introduction

Reinforcement learning [Sutton and Barto, 2018] studies problems where a learner sequentially
takes actions in an environment modeled as a Markov decision process (MDP) [Puterman, 2014].
Most of the algorithms for such problems focus on learning policies that prescribe the learner
how to take actions so as to minimize losses (equivalently, maximize rewards). However, in many
real-world applications, the learner must fulfill additional requirements. For instance, autonomous
vehicles must avoid crashing [Wen et al., 2020, Isele et al., 2018], bidding agents in ad auctions
must not deplete their budget [Wu et al., 2018, He et al., 2021], recommender systems must not
present offending items to their users [Singh et al., 2020] and dynamic pricing platforms must satisfy
different sale constraints [Stradi et al., 2024a]. A commonly-used model that allows to capture such
additional requirements is the constrained MDP (CMDP) [Altman, 1999], where the goal is to learn
a loss-minimizing policy while at the same time satisfying some constraints.

We study online learning problems in episodic CMDPs with adversarial losses and stochastic hard
constraints, under bandit feedback. In such settings, the goal of the learner is to minimize their regret—
the difference between their cumulative loss and what they would have obtained by always selecting
a best-in-hindsight policy—, while at the same time guaranteeing that the constraints are satisfied
during the learning process. We consider two scenarios that differ in the way in which constraints are
satisfied and are both usually referred to as hard constraints settings in the literature [Liu et al., 2021].
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In the first scenario, the learner aims at minimizing the cumulative positive constraints violation,
while, in the second one, the learner’s goal is to satisfy constraints at every episode.

To the best of our knowledge, our work is the first to study CMDPs that involve both adversarial
losses and hard constraints. Indeed, all the works on adversarial CMDPs (see, e.g., [Wei et al., 2018,
Qiu et al., 2020]) consider settings with soft constraints. These are much weaker than hard constraints,
as they are only concerned with the minimization of the cumulative (both positive and negative)
constraints violation. As a result, they allow negative violations to cancel out positive ones across
different episodes. Such cancellations are unreasonable in real-world applications. For instance,
in autonomous driving, avoiding a collision clearly does not “repair” a crash occurred previously.
Furthermore, the only few works addressing stochastic hard constraints in CMDPs [Liu et al., 2021,
Shi et al., 2023] are restricted to stochastic losses. Thus, our CMDP settings capture many more
applications than theirs, since being able to deal with adversarial losses allows to tackle general
non-stationary environments, which are ubiquitous in the real world.

1.1 Original contributions

We start by addressing the first scenario, where we design an algorithm—called Bounded Violation
Optimistic Policy Search (BV-OPS)—that guarantees both sublinear regret and sublinear cumulative
positive constraints violation. BV-OPS builds on top of state-of-the-art learning algorithms in adver-
sarial, unconstrained MDPs, by introducing the tools necessary to deal with constraints violation.
Specifically, BV-OPS works by selecting policies that optimistically satisfy the constraints. BV-OPS
updates the set of such policies in an online fashion, guaranteeing that it is always non-empty with
high probability and that it collapses to the (true) set of constraints-satisfying policies as the number
of episodes increases. This allows BV-OPS to attain sublinear violation. Crucially, even though such
an “optimistic” set of policies changes during the execution of the algorithm, it always contains the
(true) set of constraints-satisfying policies. This allows BV-OPS to attain sublinear regret. BV-OPS
also addresses a problem left open by Qiu et al. [2020], i.e., learning with bandit feedback in CMDPs
with adversarial losses and stochastic constraints. Indeed, BV-OPS goes even further, as Qiu et al.
[2020] were only concerned with soft constraints, while BV-OPS deals with positive violation.

Next, we switch the attention to the second scenario, where our goal is to design a safe algorithm,
namely, one that satisfies the constraints at every episode. In order to achieve such a goal, we need to
assume that the learner has knowledge about a policy strictly satisfying the constraints. Indeed, this is
necessary even in simple stochastic multi-armed bandit settings, as shown in [Bernasconi et al., 2022].
This scenario begets considerable additional challenges compared to the first one, since assuring the
safety property extremely limits the exploration capabilities of algorithms, rendering techniques for
adversarial, unconstrained MDPs inapplicable. Nevertheless, we design an algorithm—called Safe
Optimistic Policy Search (S-OPS)—that attains sublinear regret while being safe with high probability.
S-OPS works by selecting, at each episode, a suitable randomization between the policy that BV-OPS
would choose and the (known) policy strictly satisfying the constraints. As a result, S-OPS effectively
plays non-Markovian policies. Crucially, the probability defining the randomization employed by the
algorithm is carefully chosen in order to pessimistically account for constraints satisfaction. This
guarantees that a sufficient amount of exploration is performed.

1.2 Related works

Online learning [Cesa-Bianchi and Lugosi, 2006, Orabona, 2019] in MDPs has received considerable
attention over the last decade (see, e.g., [Auer et al., 2008, Even-Dar et al., 2009, Neu et al., 2010]).
Two types of feedback are usually investigated: full feedback, with the entire loss function being
observed by the learner, and bandit feedback, where the learner only observes the loss of chosen ac-
tions. Notably, Azar et al. [2017] study learning in episodic MDPs with unknown transitions and
stochastic losses under bandit feedback, achieving Õ(

√
T ) regret and matching the lower bound for

these MDPs. Rosenberg and Mansour [2019b] study learning under full feedback in episodic MDPs
with adversarial losses and unknown transitions, presenting an algorithm that attains Õ(

√
T ) regret.

The same setting is studied by Rosenberg and Mansour [2019a] under bandit feedback, obtaining a
suboptimal Õ(T 3/4) regret. Jin et al. [2020] provide an algorithm with an optimal Õ(

√
T ) regret,

in the same setting. Bacchiocchi et al. [2023] study online learning in adversarial MDPs providing
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regret bounds which depend on a behavioral policy. Finally, Maran et al. [2024] study online MDPs
with stochastic losses when the agent is the configurator, under bandit feedback.

Online learning in CMDPs has generally been studied with stochastic losses and constraints. Zheng
and Ratliff [2020] deal with fully-stochastic episodic CMDPs, assuming known transitions and
bandit feedback. The regret of their algorithm is Õ(T 3/4), while its cumulative constraints violation
is guaranteed to be below a threshold with a given probability. Bai et al. [2023] provide the first
algorithm that achieves sublinear regret with unknown transitions, assuming that the rewards are
deterministic and the constraints are stochastic with a particular structure. Efroni et al. [2020] propose
two approaches to deal with the exploration-exploitation trade-off in episodic CMDPs. The first one
resorts to a linear programming formulation of CMDPs and obtains sublinear regret and cumulative
positive constraints violation. The second one relies on a primal-dual formulation of the problem and
guarantees sublinear regret and cumulative (positive/negative) constraints violation, when transitions,
losses, and constraints are unknown and stochastic, under bandit feedback. Liu et al. [2021] study
stochastic hard constraints; however, the authors only focus on stochastic losses. Recently, Shi et al.
[2023] study stochastic hard constraints on both states and actions. As concerns adversarial settings,
[Wei et al., 2018, Qiu et al., 2020, Stradi et al., 2024b] address CMDPs with adversarial losses, but
they only provide guarantees in terms of soft constraints. Moreover, [Wei et al., 2023, Ding and
Lavaei, 2023, Stradi et al., 2024c] consider non-stationary losses/constraints with bounded variation.
Thus, their results do not apply to general adversarial losses. Finally,Bacchiocchi et al. [2024] study
CMDPs with partial observability on the constraints.

In conclusion, learning with hard constraints has been studied in online convex optimization [Guo
et al., 2022], and also in stochastic settings with a simple tree-like sequential structure [Chen et al.,
2018, Bernasconi et al., 2022]. Our results are much more general than those, since we jointly
consider adversarial losses, bandit feedback, and an MDP sequential structure.

2 Preliminaries

2.1 Constrained Markov decision processes

We study online learning in episodic constrained MDPs [Altman, 1999] with adversarial losses and
stochastic constraints (CMDPs for short). These are tuples M :=

(
X,A,P, {ℓt}Tt=1 , {Gt}Tt=1 , α

)
:

• T is the number of episodes.1
• X and A are finite state and action spaces, respectively.
• P : X ×A×X → [0, 1] is the transition function, where, for ease of notation, we denote

by P (x′|x, a) the probability of going from state x ∈ X to x′ ∈ X by taking action a ∈ A.2

• {ℓt}Tt=1 is the sequence of vectors defining the losses at each episode t ∈ [T ], namely
ℓt ∈ [0, 1]|X×A|. We refer to the loss for a state-action pair (x, a) ∈ X × A as ℓt(x, a).
Losses are adversarial, namely, no statistical assumption on how they are selected is made.

• {Gt}Tt=1 is the sequence of matrices defining the costs that characterize the m constraints
at each t ∈ [T ], namely Gt ∈ [0, 1]|X×A|×m. For i ∈ [m], the i-th constraint cost for a
state-action pair (x, a) ∈ X ×A is denoted by gt,i(x, a). Costs are stochastic, namely, the
matrices Gt are i.i.d. random variables distributed according to a probability distribution G.

• α = [α1, . . . , αm] ∈ [0, L]m is the vector of cost thresholds that characterize the m
constraints, where αi denotes the threshold for the i-th constraint.

At each episode of a CMDP, the learner chooses a policy π : X × A → [0, 1], which defines a
probability distribution over actions at each state. For ease of notation, we denote by π(·|x) the
probability distribution of state x ∈ X , with π(a|x) denoting the probability of action a ∈ A.

1We denote an episode by t ∈ [T ], where [a . . . b] is the set of all integers from a to b and [b] := [1 . . . b].
2In this paper, for ease of notation, we focus w.l.o.g. on loop-free CMDPs. This means that X is partitioned

into L+ 1 layers X0, . . . , XL with X0 = {x0} and XL = {xL}. Moreover, the loop-free property requires
that P (x′|x, a) > 0 only if x′ ∈ Xk+1 and x ∈ Xk for some k ∈ [0 . . . L − 1]. Notice that any (episodic)
CMDP with horizon H that is not loop-free can be cast into a loop-free one by suitably duplicating the state
space H times, i.e., a state x is mapped to a set of new states (x, k) with k ∈ [H]. In loop-free CMDPs, we let
k(x) ∈ [0 . . . L] be the index of the layer which state x ∈ X belongs to.

3



Algorithm 1 CMDP Interaction at episode t ∈ [T ]

1: ℓt, Gt chosen adversarially and stochastically, resp.
2: Learner chooses a policy πt : X ×A→ [0, 1]
3: Environment is initialized to state x0

4: for k = 0, . . . , L− 1 do
5: Learner takes action ak ∼ πt(·|xk)
6: Learner sees ℓt(xk, ak), gt,i(xk, ak)∀i ∈ [m]
7: Environment evolves to xk+1 ∼ P (·|xk, ak)
8: Learner observes the next state xk+1

Algorithm 1 details the interaction between the
learner and the environment in a CMDP. No-
tice that we assume that the learner has ban-
dit feedback. In particular, the learner receives
as feedback the trajectory of state-action pairs
(xk, ak), for k ∈ [0 . . . L− 1], visited during
the episode, as well as their losses ℓt(xk, ak)
and costs gt,i(xk, ak) for i ∈ [m]. We assume
that the learner knows X and A, but they do not
know anything about the transition function P .

2.2 Occupancy measures

Next, we introduce the notion of occupancy measure [Rosenberg and Mansour, 2019a]. Given a
transition function P and a policy π, the occupancy measure qP,π ∈ [0, 1]|X×A×X| induced by
P and π is such that, for every x ∈ Xk, a ∈ A, and x′ ∈ Xk+1 with k ∈ [0 . . . L − 1], it holds
qP,π(x, a, x′) = P[xk = x, ak = a, xk+1 = x′|P, π]. Moreover, we also define:

qP,π(x, a) =
∑

x′∈Xk+1

qP,π(x, a, x′) and qP,π(x) =
∑
a∈A

qP,π(x, a). (1)

The next lemma characterizes valid occupancy measures.

Lemma 2.1 (Rosenberg and Mansour [2019b]). A vector q ∈ [0, 1]|X×A×X| is a valid occupancy
measure of an episodic loop-free MDP if and only if the following holds:

∑
x∈Xk

∑
a∈A

∑
x′∈Xk+1

q(x, a, x′) = 1 ∀k ∈ [0 . . . L− 1]∑
a∈A

∑
x′∈Xk+1

q(x, a, x′) =
∑

x′∈Xk−1

∑
a∈A

q(x′, a, x) ∀k ∈ [1 . . . L− 1],∀x ∈ Xk

P q = P,

where P is the transition function of the MDP and P q is the one induced by q (see Equation (2)).

Notice that any valid occupancy measure q induces a transition function P q and a policy πq , with:

P q(x′|x, a) = q(x, a, x′)

q(x, a)
and πq(a|x) = q(x, a)

q(x)
. (2)

2.3 Baseline

Our baseline for evaluating the performances of the learner is defined through a linear programming
formulation of the (offline) learning problem in constrained MDPs. Specifically, given a constrained
MDP M := (X,A,P, ℓ,G, α) characterized by a loss vector ℓ ∈ [0, 1]|X×A|, a cost matrix G ∈
[0, 1]|X×A|×m, and a threshold vector α ∈ [0, L]m, such a problem consists in finding a policy
minimizing the loss while ensuring that all the constraints are satisfied. Thus, our baseline OPTℓ,G,α

is defined as the optimal value of a parametric linear program, which reads as follows:

OPTℓ,G,α :=

{
minq∈∆(M) ℓ⊤q s.t.

G⊤q ≤ α,
(3)

where q ∈ [0, 1]|X×A| is a vector encoding an occupancy measure whose entries are defined as in
Equation (1), while ∆(M) is the set of valid occupancy measures. Notice that, given the equivalence
between policy and occupancy, the (offline) learning problem can be formulated as a linear program
working in the space of the occupancy measures q, since expected losses and costs are linear in q.

2.4 Online learning with hard constraints

As customary in settings with adversarial losses, we measure the performance of a learning algorithm
by comparing it with the best-in-hindsight constraint-satisfying policy. The performance of the
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learner is evaluated in terms of the (cumulative) regret RT :=
∑T

t=1 ℓ
⊤
t q

P,πt − T · OPTℓ,G,α, where

ℓ := 1
T

∑T
t=1 ℓt is the average of the adversarial losses over the T episodes and G := EG∼G [G] is

the expected value of the stochastic cost matrices. For ease of presentation, we let q∗ be a best-in-
hindsight constraint-satisfying occupancy measure, i.e., one achieving value OPTℓ,G,α, while we let

π∗ be its corresponding policy. Thus, the regret reduces to RT :=
∑T

t=1 ℓ
⊤
t (q

P,πt − q∗). For ease of
notation, we refer to qP,πt by simply using qt, thus omitting the dependency on P and πt.

Our goal is to design learning algorithms with regret growing sublinearly in T , namely RT = o(T ),
while at the same time ensuring that the m constraints are satisfied. In this work, we consider
two different settings, both usually falling under the umbrella of hard constraints settings in the
literature [Guo et al., 2022]. In the first one (Section 2.4.1), constraints satisfaction is measured by the
cumulative positive constraints violation incurred by the algorithm. In the second one (Section 2.4.2),
the goal is to design algorithms ensuring that the constraints are satisfied at every episode.

2.4.1 Guaranteeing bounded violation

In this setting, our objective is expressed in terms of cumulative (positive) constraints violation
VT := maxi∈[m]

∑T
t=1

[
G

⊤
qt−α

]+
i

, where where we let [x]+ := max{0, x}. Our goal is to design
algorithms with sublinear VT , namely VT = o(T ). To achieve such a goal, we only need to assume
that the problem is well posed, namely, there exists a policy satisfying the constraints in expectation.

Assumption 2.2. There is an occupancy measure q⋄, called feasible solution, such that G
⊤
q⋄ ≤ α.

2.4.2 Guaranteeing safety

In this setting, our goal is to design algorithms ensuring that the following safety property is met:

Definition 2.3 (Safe algorithm). An algorithm is safe if and only if G
⊤
qt ≤ α for all t ∈ [T ].

As shown by Bernasconi et al. [2022], without further assumptions, it is not possible to achieve
RT = o(T ) while at the same time guaranteeing that the safety property holds with high probability,
even in simple stochastic multi-armed bandit instances. To design safe learning algorithms, we need
the following two assumptions. The first one is about the possibility of strictly satisfying constraints.

Assumption 2.4 (Slater’s condition). There exists an occupancy measure q⋄ such that G
⊤
q⋄ < α.

We call q⋄ strictly feasible solution, while a policy π⋄ induced by q⋄ is called strictly feasible policy.

The second assumption is related to learner’s knowledge about a strictly feasible policy.

Assumption 2.5. The policy π⋄ and its costs β = [β1, . . . , βm] := G
⊤
q⋄ are known to the learner.

Intuitively, Assumption 2.5 is needed to guarantee that safety holds during the first episodes, namely,
when learner’s uncertainty about costs is high. Notice that Assumptions 2.4 and 2.5 are often
employed in CMDPs (see, e.g., [Liu et al., 2021]), as they are usually met in real-world applications
of interest, where it is common to have access to a “do-nothing” policy resulting in no constraints
costs.

3 Concentration bounds

In the following Sections 4 and 5, we design two algorithms that work by estimating expected values
of the stochastic parameters in a CMDP, namely costs and transitions. In this section, as a preliminary
step towards the analysis of our algorithms, we provide concentration bounds for such estimates.
Notice that losses need a completely different treatment, since they are selected adversarially.

Concentration bounds for costs Let Nt(x, a) be the total number of episodes up to t ∈ [T ] in

which (x, a) ∈ X × A is visited. Then, ĝt,i(x, a) :=
∑

τ∈[t] gτ,i(x,a)1τ{x,a}
max{1,Nt(x,a)} , with 1τ{x, a} = 1 if

and only if (x, a) is visited in episode τ , is an unbiased estimator of the expected cost of constraint
i ∈ [m] for (x, a), namely gi(x, a) := EG∼G [gt,i(x, a)]. Thus, by applying Hoeffding’s inequality:
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Lemma 3.1. Given a confidence parameter δ ∈ (0, 1), with probability at least 1 − δ, for every
i ∈ [m], episode t ∈ [T ], and pair (x, a) ∈ X ×A, it holds |ĝt,i(x, a)− gi(x, a)| ≤ ξt(x, a), where
we let the confidence bound ξt(x, a) := min{1,

√
4 ln(T |X||A|m/δ)/max{1, Nt(x, a)}}.

For ease of notation, we let Ĝt ∈ [0, 1]|X×A|×m be the matrix of the estimated costs ĝt,i(x, a).
Moreover, we denote by ξt ∈ [0, 1]|X×A| the vector whose entries are the bounds ξt(x, a), and we let
Ξt ∈ [0, 1]|X×A|×m be a matrix built by in such a way that the statement of Lemma 3.1 becomes:
|Ĝt −G| ⪯ Ξt holds with probability at least 1− δ, where | · | and ⪯ are applied component wise.
In the following, given any δ ∈ (0, 1), we refer to the event defined in Lemma 3.1 as EG(δ).

Concentration bounds for transitions Next, we introduce confidence sets for the transition
function of a CMDP, by exploiting suitable concentration bounds for estimated transition probabilities.
By letting Mt(x, a, x

′) be the total number of episodes up to t ∈ [T ] in which (x, a) ∈ X × A
is visited and the environment transitions to state x′ ∈ X , the estimated transition probability at t
for (x, a, x′) is P̂t (x

′ | x, a) = Mt(x,a,x
′)

max{1,Nt(x,a)} . Then, the confidence set for P at episode t ∈ [T ] is

Pt :=
⋂

(x,a,x′)∈X×A×X P
x,a,x′

t , where: Px,a,x′

t := {P : |P (x′|x, a)− P̂t(x
′|x, a)| ≤ ϵt(x, a, x

′)},

with ϵt(x, a, x
′) := 2

√
P̂t(x′|x,a) ln(T |X||A|/δ)

max{1,Nt(x,a)−1} + 14 ln(T |X||A|/δ)
3max{1,Nt(x,a)−1} for some confidence δ ∈ (0, 1).

The next lemma establishes that Pt is a proper confidence set.
Lemma 3.2 (Jin et al. [2020]). Given a confidence parameter δ ∈ (0, 1), with probability at least
1− 4δ, it holds that the transition function P belongs to Pt for all t ∈ [T ].

At each t ∈ [T ], given a confidence set Pt, it is possible to efficiently build a set ∆(Pt) that comprises
all the occupancy measures that are valid with respect to every transition function P ∈ Pt. For
reasons of space, we defer the formal definition of ∆(Pt) to Appendix D. Lemma 3.2 implies that,
with high probability, the set ∆(M) of valid occupancy measure is included in all the “estimated” sets
∆(Pt), for t ∈ [T ]. In the following, given a confidence parameter δ ∈ (0, 1), we refer to the event
∆(M) ⊆

⋂
t∈[T ] ∆(Pt) as E∆(δ), which holds with probability at least 1− 4δ thanks to Lemma 3.2.

Finally, for ease of presentation, given δ ∈ (0, 1) we define a clean event EG,∆(δ) in which all the
concentration bounds for costs and transitions correctly hold. Formally, EG,∆(δ) := EG(δ) ∩ E∆(δ),
which holds with probability at least 1− 5δ by a union bound (and Lemmas 3.1 and 3.2).

4 Guaranteeing bounded violation

We start by designing an algorithm, called BV-OPS, which guarantees that both the regret RT and the
cumulative positive constraints violation VT grow sublinearly in T . We recall that, in order to get to
this result, we only need to assume the existence of a feasible solution (Assumption 2.2).

Dealing with adversarial losses while limiting constraints violation begets considerable challenges,
which go beyond classical exploration-exploitation trade-offs faced in unconstrained settings. On the
one hand, using state-of-the-art algorithms for online learning in adversarial, unconstrained MDPs
would lead to sublinear regret, but constraints violation would grow linearly. On the other hand, a
naïve approach that randomly explores to compute a set of policies satisfying the constraints with
high probability can lead to sublinear constraints violation, at the cost of suffering linear regret. Thus,
a clever adaptation of the techniques employed for unconstrained settings is needed. Our approach
builds on top of an algorithm developed by Jin et al. [2020] for adversarial, unconstrained MDPs, by
equipping it with the tools necessary to deal with adversarial losses and constraints violation.

4.1 The BV-OPS algorithm

Our algorithm—called Bounded Violation Optimistic Policy Search (BV-OPS)—works by selecting
policies derived from a set of occupancy measures that optimistically satisfy cost constraints. Such
an “optimistic” set is built in an online fashion by using lower confidence bounds on the costs
characterizing the constraints. This ensures that the set is always non-empty with high probability
and that it collapses to the (true) set of constraint-satisfying occupancy measures as the number
of episodes increases, enabling BV-OPS to attain sublinear constraints violation. The fundamental
property preserved by BV-OPS is that, even though the “optimistic” set changes during the execution
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of the algorithm, it always subsumes the (true) set of constraint-satisfying occupancy measures. This
crucially allows BV-OPS to employ classical policy-selection methods for unconstrained MDPs.

Algorithm 2 BV-OPS
Require: X , A, α, T , δ, η, γ
1: for k ∈ [0 . . . L− 1], (x, a, x′) ∈ Xk ×A×Xk+1 do
2: N0(x, a)← 0; M0(x, a, x

′)← 0
3: q̂1 (x, a, x

′)← 1/|Xk||A||Xk+1|

4: π1 ← πq̂1

5: for t ∈ [T ] do
6: Choose πt in Algorithm 1 and receive feedback
7: Build upper occupancy bounds for k ∈ [0 . . . L−1]:

ut(xk, ak)← max P∈Pt−1
qP,πt(xk, ak)

8: Build optimistic loss estimator for (x, a) ∈ X ×A:

ℓ̂t(x, a)←

{
ℓt(x,a)

ut(x,a)+γ
if 1t{x, a} = 1

0 otherwise

9: for k ∈ [0 . . . L− 1] do
10: Nt(xk, ak)← Nt−1(xk, ak) + 1
11: Mt(xk, ak, xk+1)←Mt−1(xk, ak, xk+1)+1

12: Build Pt, Ĝt, and Ξt as in Section 3
13: Build unconstrained occupancy for all (x, a, x′):

q̃t+1(x, a, x
′)← q̂t(x, a, x

′)e−ηℓ̂t(x,a)

14: if PROJ
(
q̃t+1, Ĝt,Ξt,Pt

)
is feasible then

15: q̂t+1 ← PROJ
(
q̃t+1, Ĝt,Ξt,Pt

)
16: else
17: q̂t+1 ← any q ∈ ∆(Pt)

18: πt+1 ← πq̂t+1

Algorithm 2 provides the pseudocode of
BV-OPS. At the beginning, the algorithm ini-
tializes all the counters (Line 2), it sets the
occupancy measure q̂1 for the first episode
to be equal to a uniform vector (Line 3), and
it selects the policy π1 for the first episode
as the one induced by q̂1 (Line 4; see the
definition of πq̂1 in Equation (2)). At each
episode t ∈ [T ], BV-OPS plays policy πt

and receives feedback as described in Algo-
rithm 1 (Line 6). Then, BV-OPS computes
an upper occupancy bound ut(xk, ak) for
every state-action pair (xk, ak) visited dur-
ing Algorithm 1, by using the confidence
set for the transition function Pt−1 com-
puted in the previous episode, namely, it sets
ut(xk, ak) := maxP∈Pt−1

qP,πt(x, a) for
every k ∈ [0 . . . L− 1] (Line 7). Intuitively,
ut(xk, ak) represents the maximum proba-
bility with which (xk, ak) is visited when
using policy πt, given the confidence set for
the transition function built so far. The up-
per occupancy bounds are combined with
the exploration factor γ to compute an opti-
mistic loss estimator ℓ̂t(x, a) for every state-
action pair (x, a) ∈ X × A (see Line 8 for
its definition). After that, BV-OPS updates
all the counters given the path traversed in
Algorithm 1 (Lines 10–11), it builds the new
confidence set Pt, and it computes the matrices Ĝt and Ξt containing the estimated costs and their
corresponding bounds, respectively, by using the received feedback (Line 12).

In order to choose a policy πt+1 for the next episode, BV-OPS first computes an unconstrained
occupancy measure q̃t+1 according to a classical unconstrained OMD update [Orabona, 2019] (see
Line 13 for its definition). Then, q̃t+1 is projected on a suitably-defined set of occupancy measures
that optimistically satisfy the constraints. This latter step is crucial to jointly manage adversarial
losses and constraints violation. Next, we formally define the projection step (Line 14).

PROJ
(
q̃t+1, Ĝt,Ξt,Pt

)
:=


arg min

q∈∆(Pt)
D(q||q̃t+1) s.t.(
Ĝt − Ξt

)⊤
q ≤ α,

(4)

where D(q||q̃t+1) is the unnormalized KL-divergence between q and q̃t+1, which is defined as

D(q||q̃t+1) :=
∑
x,a,x′

q(x, a, x′) ln
q(x, a, x′)

q̃t+1(x, a, x′)
−
∑
x,a,x′

(
q(x, a, x′)− q̃t+1(x, a, x

′)
)
.

Notice that Problem (4) is a linearly-constrained convex mathematical program, and, thus, it can be
solved efficiently for an arbitrarily-good approximate solution.3 Intuitively, Problem (4) performs
a projection onto the set of occupancy measures q ∈ ∆(Pt) that additionally satisfy the constraint(
Ĝt − Ξt

)⊤
q ≤ α, where lower confidence bounds Ĝt − Ξt for the costs are used in order to take

an optimistic approach with respect to constraints satisfaction. Finally, if Problem (4) is feasible,
then at the next episode BV-OPS selects the policy πq̂t+1 induced by a solution q̂t+1 to Problem (4)
(Line 15), otherwise it chooses a policy induced by any occupancy measure in ∆(Pt) (Line 17).

3As customary in adversarial MDPs, we assume that an optimal solution to Problem (4) can be computed
efficiently. Indeed, by dropping this assumption, we can still derive all of our results up to small approximations.

7



The optimistic approach adopted in Problem (4) crucially allows to prove the following lemma.

Lemma 4.1. Given confidence δ ∈ (0, 1), Algorithm 2 ensures that PROJ(q̃t+1, Ĝt,Ξt,Pt) is
feasible at every episode t ∈ [T ] with probability at least 1− 5δ.

Intuitively, Lemma 4.1 follows from the fact that, under the clean event EG,∆(δ), the set on which
the projection is performed subsumes the (true) set of constraints-satisfying occupancy measures.
Lemma 4.1 is fundamental, as it allows to prove that BV-OPS attains sublinear VT and RT .

4.2 Cumulative constraints violation

In order to prove that the cumulative constraints violation achieved by BV-OPS is sublinear, we exploit
the fact that both the concentration bounds for costs and those associated with transition probabilities
shrink at a rate of O(1/

√
T ). This allows us to show the following result.

Theorem 4.2. Given δ ∈ (0, 1), Algorithm 2 attains cumulative positive constraints violation

VT ≤ O
(
L|X|

√
|A|T ln (T |X||A|m/δ)

)
with probability at least 1− 8δ.

4.3 Cumulative regret

The crucial observation that allows us to prove that the regret attained by BV-OPS grows sublinearly in
T is that the set on which the algorithm perform its projection step (Problem (4)) always contains the
(true) set of occupancy measures that satisfy the cost constraints, and, thus, it also always contains the
best-in-hindsight constraint-satisfying occupancy measure q∗. As a result, even though cost estimates
may be arbitrarily bad during the first episodes, BV-OPS is still guaranteed to select policies resulting
in losses that are smaller than or equal to those incurred by q∗. This allows us to show the following:

Theorem 4.3. Given δ ∈ (0, 1), by setting η = γ =
√

L ln(L|X||A|/δ)/T |X||A| in Algorithm 2, the

algorithm attains regret RT ≤ O
(
L|X|

√
|A|T ln (T |X||A|/δ)

)
with probability at least 1− 10δ.

5 Guaranteeing safety

In this section, we design another algorithm, called S-OPS, attaining sublinear regret and enjoying
the safety property with high probability. In order to do this, we work under Assumptions 2.4 and 2.5.
Designing safe algorithms raises many additional challenges compared to the case studied in Section 4,
where one seeks for the weaker goal of sublinear cumulative positive constraints violation. Indeed,
adapting techniques for adversarial, unconstrained MDPs does not work anymore, and, thus, ad hoc
approaches are needed. This is because adhering to the safety property extremely limits exploration.

5.1 The S-OPS algorithm

Our algorithm—Safe Optimistic Policy Search (S-OPS)—builds on top of the BV-OPS algorithm
developed in Section 4. Selecting policies derived from the “optimistic” set of occupancy measures,
as done by BV-OPS, is not sufficient anymore, as it would clearly result in the safety property being
unsatisfied during the first episodes. Our new algorithm circumvents such an issue by employing,
at each episode, a suitable randomization between the policy derived from the “optimistic” set (the
one BV-OPS would select) and the strictly feasible policy π⋄. Crucially, as we show next, such a
randomization accounts for constraints satisfaction by taking a pessimistic approach, namely, by
considering upper confidence bounds on the costs characterizing the constraints. This is needed in
order to guarantee the safety property. Moreover, having access to the strictly feasible policy π⋄ and
its expected costs β (Assumption 2.5) allows S-OPS to always place a sufficiently large probability on
the policy derived from the “optimistic” set, so that a sufficient amount of exploration is guaranteed,
and, in its turn, sublinear regret is attained. Notice that S-OPS effectively selects non-Markovian
policies, as it employs a randomization between two Markovian policies at each episode.

Algorithm 3 provides the pseudocode of S-OPS. Differently from BV-OPS, the policy selected at
the first episode is not the one derived from a uniform occupancy measure, but it is obtained by
randomizing the latter with the strictly feasible policy π⋄ (Line 4). The probability λ0 of selecting
π⋄ is chosen pessimistically. Intuitively, in the first episode, being pessimistic means that λ0 must
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guarantee that the constraints are satisfied for any possible choice of costs and transitions, and, thus,
λ0 := maxi∈[m] {L−αi/L−βi}. Thanks to Assumptions 2.4 and 2.5, it is always the case that λ0 < 1.
Thus, π1 ̸= π⋄ with positive probability and some exploration is performed even in the first episode.

Algorithm 3 Safe Optimistic Policy Search
Require: X , A, α, T , δ, η, γ, π⋄, β
1: for k ∈ [0 . . . L− 1], (x, a, x′) ∈ Xk ×A×Xk+1 do
2: N0(x, a)← 0; M0(x, a, x

′)← 0
3: q̂1 (x, a, x

′)← 1

|Xk∥A||Xk+1|

4: π1 ←

{
π⋄ w. probability λ0 := maxi∈[m]

{
L−αi
L−βi

}
πq̂1 w. probability 1− λ0

5: for t ∈ [T ] do
6: Select πt in Algorithm 1 and receive feedback
7: Build upper occupancy bounds for k ∈ [0 . . . L−1]:

ut(xk, ak)← max P∈Pt−1
qP,πt(xk, ak)

8: Build optimistic loss estimator for (x, a) ∈ X ×A:

ℓ̂t(x, a)←

{
ℓt(x,a)

ut(x,a)+γ
if 1t{x, a} = 1

0 otherwise

9: for k ∈ [0 . . . L− 1] do
10: Nt(xk, ak)← Nt−1(xk, ak) + 1
11: Mt(xk, ak, xk+1)←Mt−1(xk, ak, xk+1) + 1

12: Build Pt, Ĝt, and Ξt as in Section 3
13: Build unconstrained occupancy for all (x, a, x′):

q̃t+1(x, a, x
′)← q̂t(x, a, x

′)e−ηℓ̂t(x,a)

14: if PROJ
(
q̃t+1, Ĝt,Ξt,Pt

)
is feasible then

15: q̂t+1 ← PROJ
(
q̃t+1, Ĝt,Ξt,Pt

)
16: π̂t+1 ← πq̂t+1

17: Build ût+1 ∈ [0, 1]|X×A| so that for all (x, a):

ût+1(x, a)← max P∈Pt
qP,π̂t+1(x, a)

18: σ ← maxi∈[m]

{
min{(ĝt,i+ξt)

⊤ût+1,L}−αi

min{(ĝt,i+ξt)⊤ût+1,L}−βi

}
19: λt ←

{
σ if ∃i ∈ [m] : (ĝt,i + ξt)

⊤ût+1 > αi

0 if ∀i ∈ [m] : (ĝt,i + ξt)
⊤ût+1 ≤ αi

20: else
21: q̂t+1 ← take any q ∈ ∆(Pt); λt ← 1

22: πt+1 ←

{
π⋄ with probability λt

πq̂t+1 with probability 1− λt

Analogously to BV-OPS, at each t ∈ [T ],
S-OPS selects a policy πt and receives feed-
back as described in Algorithm 1, it com-
putes optimistic loss estimators, it updates
the confidence set for the transitions, and
it computes the matrices of estimated costs
and their bounds. Then, as in BV-OPS, an
update step of unconstrained OMD is per-
formed. Although identical to the update
done in BV-OPS, the one in S-OPS uses loss
estimators computed when using a random-
ization between the policy obtained by solv-
ing Problem (4) and the strictly feasible
policy π⋄. Thus, there is a mismatch be-
tween the occupancy measure used to esti-
mate losses and the one computed by the
projection step.

The projection step performed by S-OPS
(Line 14) is the same as the one in BV-OPS.
Specifically, the algorithm projects the un-
constrained occupancy measure q̃t+1 onto
an “optimistic” set by solving Problem (4),
which, if the problem is feasible, results in
occupancy measure q̂t+1. However, differ-
ently from BV-OPS, when the problem is
feasible, S-OPS does not select the policy
πq̂t+1 derived from q̂t+1, but it rather uses
a randomization between such a policy and
the strictly feasible policy π⋄ (Line 22). The
probability λt of selecting π⋄ is chosen pes-
simistically with respect to constraints sat-
isfaction, by using upper confidence bounds
for the costs and upper occupancy bounds
given the policy πq̂t+1 (Lines 17 and 19).
Such a pessimistic approach ensures that
the constraints are satisfied with high prob-
ability, thus making the algorithm safe with
high probability. Notice that, if Problem (4)
is not feasible, then any occupancy measure
in ∆(Pt) can be selected (Line 21).

5.2 Safety property

In the following, we show that S-OPS enjoys the safety property with high probability. Formally:

Theorem 5.1. Given a confidence δ ∈ (0, 1), Algorithm 3 is safe with probability at least 1− 5δ.

Intuitively, Theorem 5.1 follows from the way in which the randomization probability λt is defined.
Indeed, λt relies on two crucial components: (i) a pessimistic estimate of the costs for state-action
pairs, namely, the upper confidence bounds ĝt,i + ξt, and (ii) a pessimistic choice of transition
probabilities, encoded by the upper occupancy bounds defined by the vector ût. Notice that the
maxi∈[m] operator allows to be conservative with respect to all the constraints.
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5.3 Cumulative regret

Proving that S-OPS attains sublinear regret begets challenges that, to the best of our knowledge, have
never been addressed in the online learning literature. In particular, analyzing the estimates of the
adversarial losses requires non-standard techniques in our setting, since the policy πt that is used
by the algorithm and determines the received feedback is not the one resulting from an OMD-like
update, as it is obtained via a non-standard randomization procedure. Nevertheless, the particular
shape of the randomization probability λt can be exploited to overcome such a challenge. Indeed,
we show that each λt can be upper bounded by the initial value λ0, and, thus, a loss estimator from
feedback received by using a policy computed by an OMD-like update is available with probability at
least 1− λ0. This observation is crucial in order ot prove the following result:

Theorem 5.2. Given δ ∈ (0, 1), by setting η = γ =
√

L ln(L|X||A|/δ)/T |X||A| in Algorithm 3, the

algorithm attains regret RT ≤ O
(
ΨL3|X|

√
|A|T ln (T |X||A|m/δ)

)
with probability at least 1−11δ,

where Ψ := maxi∈[m]{1/min{(αi−βi),(αi−βi)
2}}.

The regret bound in Theorem 5.2 is in line with the one achieved by BV-OPS in the bounded violation
setting, with an additional ΨL2 factor. Such a factor comes from the mismatch between loss
estimators and the occupancy measure chosen by the OMD-like update. Notice that Ψ depends on the
violation gap mini∈[m]{αi − βi}, which represents how much the strictly feasible solution satisfies
the constraints. Such a dependence is expected, since the better the strictly feasible solution (in terms
of constraints satisfaction), the larger the exploration performed during the first episodes.
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Appendix

The appendix is organized as follows:

• In Appendix A we provide the omitted proofs related to the analysis of the clean event.
• In Appendix B we provide the omitted proofs related to the performances attained by

Algorithm 2, namely, the one which guarantees bounded violation.
• In Appendix C we provide the omitted proofs related to the performances attained by

Algorithm 3, namely, the one which guarantees the safety property.
• In Appendix D we provide useful lemmas from existing works.

A Omitted proofs for the clean event

In this section, we report the omitted proof related to the clean event. We start stating the following
preliminary result.
Lemma A.1. Given any δ ∈ (0, 1), fix i ∈ [m], t ∈ [T ] and (x, a) ∈ X×A, it holds, with probability
at least 1− δ: ∣∣∣ĝt,i(x, a)− gi(x, a)

∣∣∣ ≤ ζt(x, a),

where ζt(x, a) :=
√

ln(2/δ)
2Nt(x,a)

and gt,i(x, a) is the true mean value of the distribution.

Proof. Focus on specifics i ∈ [m], t ∈ [T ] and (x, a) ∈ X × A. By Hoeffding’s inequality and
noticing that constraints values are bounded in [0, 1], it holds that:

P

[∣∣∣ĝt,i(x, a)− gi(x, a)
∣∣∣ ≥ c

Nt(x, a)

]
≤ 2 exp

(
− 2c2

Nt(x, a)

)
Setting δ = 2 exp

(
− 2c2

Nt(x,a)

)
and solving to find a proper value of c concludes the proof.

Now we generalize the previous result in order to hold for every i ∈ [m], t ∈ [T ] and (x, a) ∈ X ×A
at the same time.
Lemma 3.1. Given a confidence parameter δ ∈ (0, 1), with probability at least 1 − δ, for every
i ∈ [m], episode t ∈ [T ], and pair (x, a) ∈ X ×A, it holds |ĝt,i(x, a)− gi(x, a)| ≤ ξt(x, a), where
we let the confidence bound ξt(x, a) := min{1,

√
4 ln(T |X||A|m/δ)/max{1, Nt(x, a)}}.

Proof. From Lemma 3.2, given δ′ ∈ (0, 1), we have for any i ∈ [m], t ∈ [T ] and (x, a) ∈ X ×A:

P

[∣∣∣ĝt,i(x, a)− gi(x, a)
∣∣∣ ≤ ζt(x, a)

]
≥ 1− δ′.

Now, we are interested in the intersection of all the events, namely,

P

[ ⋂
x,a,m,t

{∣∣∣ĝt,i(x, a)− gi(x, a)
∣∣∣ ≤ ζt(x, a)

}]
.

Thus, we have:

P

[ ⋂
x,a,m,t

{∣∣∣ĝt,i(x, a)− gi(x, a)
∣∣∣ ≤ ζt(x, a)

}]

= 1− P

[ ⋃
x,a,m,t

{∣∣∣ĝt,i(x, a)− gi(x, a)
∣∣∣ ≤ ζt(x, a)

}c
]

≥ 1−
∑

x,a,m,t

P

[{∣∣∣ĝt,i(x, a)− gi(x, a)
∣∣∣ ≤ ζt(x, a)

}c
]

(5)

13



≥ 1− |X||A|mTδ′,

where Inequality (5) holds by Union Bound. Noticing that gt,i(x, a) ≤ 1, substituting δ′ with
δ := δ′/|X||A|mT in ζt(x, a) with an additional Union Bound over the possible values of Nt(x, a),
and thus obtaining ξt(x, a), concludes the proof.

B Omitted proofs when Condition 2.5 does not hold

In this section we report the omitted proofs of the theoretical results for Algorithm 2.

B.1 Feasibility

We start by showing that Program (4) admits a feasible solution with arbitrarily large probability.

Lemma 4.1. Given confidence δ ∈ (0, 1), Algorithm 2 ensures that PROJ(q̃t+1, Ĝt,Ξt,Pt) is
feasible at every episode t ∈ [T ] with probability at least 1− 5δ.

Proof. To prove the lemma we show that under the event EG,∆(δ), which holds the probability at
least 1 − 5δ, Program (4) admits a feasible solution. Precisely, under the event E∆(δ), the true
transition function P belongs to Pt at each episode. Moreover, under the event EG(δ), we have, for
any feasible solution q□ of the offline optimization problem, for any t ∈ [T ],(

Ĝt − Ξt

)⊤
q□ ⪯ G

⊤
t q

□ ⪯ α,

where the first inequality holds by the definition of the event. The previous inequality shows that if q□
satisfies the constraints with respect to the true mean constraint matrix, it satisfies also the optimistic
constraints. Thus, the feasible solutions to the offline problem are all available at every episode.
Noticing that the clean event is defined as the intersection between EG(δ) and E∆(δ) concludes the
proof.

B.2 Violations

We proceed bounding the cumulative positive violation as follows.
Theorem 4.2. Given δ ∈ (0, 1), Algorithm 2 attains cumulative positive constraints violation

VT ≤ O
(
L|X|

√
|A|T ln (T |X||A|m/δ)

)
with probability at least 1− 8δ.

Proof. The key point of the problem is to relate the constraints satisfaction with the convergence rate
of both the confidence bound on the constraints and the transitions.

First, we notice that under the clean event EG,∆(δ), all the following reasoning hold for every
constraint i ∈ [m]. Thus, we focus on the bound of a single constraint violation problem defined as
follows:

VT :=

T∑
t=1

[
g⊤qt − α

]+
By Lemma 4.1, under the clean event the EG,∆(δ), the convex program is feasible and it holds:

g − 2ξt ⪯ ĝt − ξt

Thus, multiplying for the estimated occupancy measure and by construction of the convex program
we obtain:

(g − 2ξt−1)
⊤
q̂t ≤ (ĝt−1 − ξt−1)

⊤
q̂t ≤ α.

Rearranging the equation, it holds:

g⊤q̂t ≤ α+ 2ξ⊤t−1q̂t.

Now, in order to obtain the instantaneous violation definition we proceed as follows,

g⊤q̂t + g⊤qt − g⊤qt ≤ α+ 2ξ⊤t−1q̂t,

14



from which we obtain:

g⊤qt − α ≤ g⊤(qt − q̂t) + 2ξ⊤t−1q̂t

≤ ∥g∥∞∥qt − q̂t∥1 + 2ξ⊤t−1q̂t,

where the last step holds by the Hölder inequality. Notice that, since the RHS of the previous
inequality is greater than zero, it holds,

[g⊤qt − α]+ ≤ ∥qt − q̂t∥1 + 2ξ⊤t−1q̂t.

which leads to VT ≤
∑T

t=1 ∥qt − q̂t∥1 + 2
∑T

t=1 ξ
⊤
t−1q̂t, where the first part of the equation refers to

the estimate of the transitions while the second one to the estimate of the constraints. We will bound
the two terms separately.

Bound on
∑T

t=1 ∥q̂t − qt∥1. The term of interest encodes the distance between the estimated
occupancy measure and the real one chosen by the algorithm. Thus, it depends on the estimation of
the true transition functions. To bound the quantity of interest, we proceed as follows:

T∑
t=1

∥q̂t − qt∥1 =

T∑
t=1

∑
x,a

|q̂t(x, a)− qt(x, a)|

≤ O

(
L|X|

√
|A|T ln

(
T |X||A|

δ

))
, (6)

where Inequality (6) holds since, by Lemma D.1, under the clean event, with probability at least 1−2δ,

we have
∑T

t=1

∑
x,a |q̂t(x, a) − qt(x, a))| ≤ O

(
L|X|

√
|A|T ln

(
T |X||A|

δ

))
, when q̂t ∈ ∆(Pt).

Please notice that the condition q̂t ∈ ∆(Pt) is verified since the constrained space defined by
Program (4) is contained in ∆(Pt).

Bound on
∑T

t=1 ξ
⊤
t−1q̂t. This term encodes the estimation of the constraints functions obtained

following the estimated occupancy measure. Nevertheless, since the confidence bounds converge
only for the paths traversed by the learner, it is necessary to relate ξt to the real occupancy measure
chosen by the algorithm. To do so, we notice that by Hölder inequality and since ξt(x, a) ≤ 1, it
holds:

T∑
t=1

ξ⊤t−1q̂t ≤
T∑

t=1

ξ⊤t−1qt +

T∑
t=1

ξ⊤t−1(q̂t − qt)

≤
T∑

t=1

ξ⊤t−1qt +

T∑
t=1

∥ξt−1∥∞∥q̂t − qt∥1

≤
T∑

t=1

ξ⊤t−1qt +

T∑
t=1

∥q̂t − qt∥1.

The second term of the inequality is bounded by the previous analysis, while for the first term we
proceed as follows:

T∑
t=1

ξ⊤t−1qt =

T∑
t=1

∑
x,a

ξt−1(x, a)qt(x, a)

≤
T∑

t=1

∑
x,a

ξt−1(x, a)1t{x, a}+ L

√
2T ln

1

δ
(7)

=

√
4 ln

(
T |X||A|m

δ

) T∑
t=1

∑
x,a

√
1

max{1, Nt−1(x, a)}
1t{x, a}+ L

√
2T ln

1

δ
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≤ 3

√
4 ln

(
T |X||A|m

δ

)∑
x,a

√
NT (x, a) + L

√
2T ln

1

δ
(8)

≤ 6

√
L|X||A|T ln

(
T |X||A|m

δ

)
+ L

√
2T ln

1

δ
, (9)

where Inequality (7) follows from Azuma inequality and noticing that
∑

x,a ξt−1(x, a)qt(x, a) ≤ L

(with probability at least 1 − δ), Inequality (8) holds since 1 +
∑T

t=1
1
t ≤ 2

√
T + 1 ≤ 3

√
T and

Inequality (9) follows from Cauchy-Schwarz inequality and noticing that
√∑

x,a NT (x, a) ≤
√
LT .

We combine the previous bounds as follows:

VT ≤
T∑

t=1

∥qt − q̂t∥1 + 2

T∑
t=1

ξ⊤t−1q̂t

≤ O

(
L|X|

√
|A|T ln

(
T |X||A|m

δ

))
.

The results holds with probability at least at least 1 − 8δ by union bound over the clean event,
Lemma D.1 and the Azuma-Hoeffding inequality. This concludes the proof.

B.3 Regret

In this section, we prove the regret bound of Algorithm 2. Precisely, the bound follows from noticing
that, under the clean event, the optimal safe solution is included in the decision space for every
episode t ∈ [T ].

Theorem 4.3. Given δ ∈ (0, 1), by setting η = γ =
√

L ln(L|X||A|/δ)/T |X||A| in Algorithm 2, the

algorithm attains regret RT ≤ O
(
L|X|

√
|A|T ln (T |X||A|/δ)

)
with probability at least 1− 10δ.

Proof. We first rewrite the regret definition as follows:

RT =

T∑
t=1

ℓ⊤t qt −
T∑

t=1

ℓ⊤t q
∗

=

T∑
t=1

ℓ⊤t (qt − q̂t)︸ ︷︷ ︸
1

+

T∑
t=1

ℓ̂ ⊤
t (q̂t − q∗)︸ ︷︷ ︸

2

+

T∑
t=1

(ℓt − ℓ̂t)
⊤q̂t︸ ︷︷ ︸

3

+

T∑
t=1

(ℓ̂t − ℓt)
⊤q∗.︸ ︷︷ ︸

4

Precisely, the first term encompasses the distance between the true transitions and the estimated ones,
the second concerns the optimization performed by online mirror descent and the last ones encompass
the bias of the estimators.

Bound on 1 . We start bounding the first term, namely, the cumulative distance between the
estimated occupancy measure and the real one, as follows:

1 =

T∑
t=1

ℓ⊤t (qt − q̂t)

=

T∑
t=1

∑
x,a

ℓt(x, a)(qt(x, a)− q̂t(x, a))

≤
T∑

t=1

∑
x,a

|(qt(x, a)− q̂t(x, a)|, (10)
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where the Inequality (10) holds by Hölder inequality noticing that ∥ℓt∥∞ ≤ 1 for all t ∈ [T ]. Then,
noticing that the projection of Algorithm 2 is performed over a subset of ∆(Pt) and employing
Lemma D.1, we obtain:

1 ≤ O

(
L|X|

√
|A|T ln

(
T |X||A|

δ

))
, (11)

with probability at least 1− 2δ, under the clean event.

Bound on 2 . To bound the second term, we underline that, under the clean event EG,∆(δ), the
estimated safe occupancy q̂t belongs to ∆(Pt) and the optimal safe solution q∗ is included in the
constrained decision space for each t ∈ [T ]. Moreover we notice that, for each t ∈ [T ], the constrained
space is convex and linear, by construction of Program (4). Thus, following the standard analysis of
online mirror descent Orabona [2019] and from Lemma D.5, we have, under the clean event:

2 ≤
L ln

(
|X|2|A|

)
η

+ η
∑
t,x,a

q̂t(x, a)ℓ̂t(x, a)
2.

Thus, to bound the biased estimator, we notice that q̂t(x, a)ℓ̂t(x, a)
2 ≤ q̂t(x,a)

ut(x,a)+γ ℓ̂t(x, a) ≤
ℓ̂t(x, a). We then apply Lemma D.2 with αt(x, a) = 2γ and obtain

∑
t,x,a q̂t(x, a)ℓ̂t(x, a)

2 ≤∑
t,x,a

qt(x,a)
ut(x,a)

ℓt(x, a) +
L ln L

δ

2γ . Finally, we notice that, under the clean event, qt(x, a) ≤ ut(x, a),
obtaining, with probability at least 1− δ:

2 ≤
L ln

(
|X|2|A|

)
η

+ η|X||A|T +
ηL ln(L/δ)

2γ
.

Setting η = γ =
√

L ln(L|X||A|/δ)
T |X||A| , we obtain:

2 ≤ O

(
L

√
|X||A|T ln

(
|X||A|

δ

))
, (12)

with probability at least 1− δ, under the clean event.

Bound on 3 . The third term follows from Lemma D.4, from which, under the clean event, with

probability at least 1− 3δ and setting γ =
√

L ln(L|X||A|/δ)
T |X||A| , we obtain:

3 ≤ O

(
L|X|

√
|A|T ln

(
T |X||A|

δ

))
. (13)

Bound on 4 . We bound the fourth term employing Corollary D.3 and obtaining,

T∑
t=1

(
ℓ̂t − ℓt

)⊤
q∗ =

∑
t,x,a

q∗(x, a)
(
ℓ̂t(x, a)− ℓt(x, a)

)
≤
∑
t,x,a

q∗(x, a)ℓt(x, a)

(
qt(x, a)

ut(x, a)
− 1

)
+
∑
x,a

q∗(x, a) ln |X||A|
δ

2γ

=
∑
t,x,a

q∗(x, a)ℓt(x, a)

(
qt(x, a)

ut(x, a)
− 1

)
+

L ln |X||A|
δ

2γ
.

Noticing that, under the clean event, qt(x, a) ≤ ut(x, a) and setting γ =
√

L ln(L|X||A|/δ)
T |X||A| , we

obtain, with probability at least 1− δ:

4 ≤ O

(
L

√
|X||A|T ln

(
T |X||A|

δ

))
. (14)
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Final result. Finally, combining Equation (11), Equation (12), Equation (13) and Equation (14)
and applying a union bound, we obtain, with probability at least 1− 10δ,

RT ≤ O

(
L|X|

√
|A|T ln

(
T |X||A|

δ

))
.

C Omitted proofs when Condition 2.5 holds

In this section we report the omitted proofs of the theoretical results for Algorithm 3.

C.1 Safety

We start by showing that Algorithm 3 is safe with high probability.

Theorem 5.1. Given a confidence δ ∈ (0, 1), Algorithm 3 is safe with probability at least 1− 5δ.

Proof. We show that, under event EG,∆(δ), the non-Markovian policy defined by the probability λt

satisfies the constraints. Intuitively, the result follows from the construction of the convex combination
parameter λt. Indeed, λt is built using a pessimist estimated of the constraints cost, namely, ĝt,i + ξt.
Moreover, the upper occupancy bound ût introduces pessimism in the choice of the transition function.
Finally, the maxi∈[m] operator allows to be conservative for all the m constraints.

We split the analysis in the three possible cases defined by λt, namely, λt = 0 and λt ∈ (0, 1). Please
notice that λt < 1, by construction.

Analysis when λt = 0. When λt = 0, it holds, by construction, that ∀i ∈ [m] : (ĝt−1,i +
ξt−1)

⊤ût ≤ αi. Thus, under the event EG,∆(δ), it holds, ∀i ∈ [m]:

αi ≥ (ĝt−1,i + ξt−1)
⊤ût

≥ (ĝt−1,i + ξt−1)
⊤q̂t (15)

= (ĝt−1,i + ξt−1)
⊤qt

≥ g⊤i qt, (16)

where Inequality (15) holds by definition of ût and Inequality (16) by the pessimistic definition of
the constraints.

Analysis when λt ∈ (0, 1). We focus on a single constraint i ∈ [m], then we generalize the analysis
for the entire set of constraints. First we notice that the constraints cost, for a single constraint i ∈ [m],
attained by the non-Markovian policy πt, is equal to λt−1g

⊤
i q

⋄ + (1− λt−1)g
⊤
i q

P,π̂t . Thus, it holds
by definition of the known strictly feasible π⋄,

λt−1g
⊤
i q

⋄ + (1− λt−1)g
⊤
i q

P,π̂t = λt−1βi + (1− λt−1)g
⊤
i q

P,π̂t . (17)

Then, we consider both the cases when L < (ĝt−1,i + ξt−1)
⊤
ût (first case) and L >

(ĝt−1,i + ξt−1)
⊤
ût (second case). If the two quantities are equivalent, the proof still holds breaking

the ties arbitrarily.

First case. It holds that:

λt−1βi + (1− λt−1)g
⊤
i q

π̂t,P ≤ λt−1βi + (1− λt−1)L (18)

=
L− αi

L− βi
(βi − L) + L

=
αi − L

βi − L
(βi − L) + L

= αi,
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where Inequality (18) holds by definition of the constraints.

Second case. It holds that:

λt−1βi+(1− λt−1)g
⊤
i q

P,π̂t

≤ λt−1βi + (1− λt−1) (ĝt−1,i + ξt−1)
⊤
qP,π̂t (19)

≤ λt−1βi + (1− λt−1) (ĝt−1,i + ξt−1)
⊤
ût (20)

= λt−1βi − λt−1 (ĝt−1,i + ξt−1)
⊤
ût + (ĝt−1,i + ξt−1)

⊤
ût

= λt−1(βi − (ĝt−1,i + ξt−1)
⊤
ût) + (ĝt−1,i + ξt−1)

⊤
ût

≤ (ĝt−1,i + ξt−1)
⊤
ût − αi

(ĝt−1,i + ξt−1)
⊤
ût − βi

(βi − (ĝt−1,i + ξt−1)
⊤
ût) + (ĝt−1,i + ξt−1)

⊤
ût

=
αi − (ĝt−1,i + ξt−1)

⊤
ût

βi − (ĝt−1,i + ξt−1)
⊤
ût

(βi − (ĝt−1,i + ξt−1)
⊤
ût) + (ĝt−1,i + ξt−1)

⊤
ût

= αi − (ĝt−1,i + ξt−1)
⊤
ût + (ĝt−1,i + ξt−1)

⊤
ût

= αi,

where Inequality (19) holds by the definition of the event and Inequality (20) holds by the definition
of ût.

To conclude the proof, we underline that λt is chosen taking the maximum over the constraints, which
implies that the more conservative λt (the one which takes the combination nearer to the strictly
feasible solution) is chosen. Thus, all the constraints are satisfied.

C.2 Regret

We start by the statement of the following Lemma, which is a generalization of the results from Jin
et al. [2020]. Intuitively, the following result states that the distance between the estimated non-safe
occupancy measure q̂t and the real one reduces as the number of episodes increases, paying a 1− λt

factor. This is reasonable since, from the update of the non-Markovian policy πt (see Algorithm 3),
policy π̂t ← q̂t is played with probability 1− λt−1.

Lemma C.1. Under the clean event, with probability at least 1− 2δ, for any collection of transition
functions {P x

t }x∈X such that P x
t ∈ Pt, and for any collection of {λt}T−1

t=0 used to select policy πt+1,
we have, for all x,

T∑
t=1

(1− λt−1)
∑

x∈X,a∈A

∣∣∣qPx
t ,π̂t(x, a)− qP,π̂t(x, a)

∣∣∣ ≤ O(L|X|√|A|T ln

(
T |X||A|

δ

))
.

Proof. We will refer as qxt to qP
x
t ,πt and as q̂ x

t to qP
x
t ,π̂t . Moreover, we define:

ϵ∗t (x
′|x, a) =

√√√√P (x′|x, a) ln
(

T |X||A|
δ

)
max {1, Nt(x, a)}

+
ln
(

T |X||A|
δ

)
max {1, Nt(x, a)}

.

Now following standard analysis by Lemma D.1 from Jin et al. [2020], we have that,

T∑
t=1

(1− λt−1)
∑

x∈X,a∈A

∣∣∣qPx
t ,π̂t(x, a)− qP,π̂t(x, a)

∣∣∣ ≤
∑

0≤m<k<L

∑
t,wm

(1− λt−1)ϵ
∗
t (xm+1|xm, am)qP,π̂t(xm, am) + |X|

∑
0≤m<h<L

∑
t,wm,w′

h

(1− λt−1)·

· ϵ∗it (xm+1 | xm, am) qP,π̂t (xm, am) ϵ∗t
(
x′
h+1 | x′

h, a
′
h

)
qP,π̂t (x′

h, a
′
h | xm+1) ,

where wm = (xm, am, xm+1).
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Bound on the first term. To bound the first term we notice that, by definition of qP,π̂t it holds:∑
0≤m<k<L

∑
t,wm

(1− λt−1)ϵ
∗
t (xm+1|xm, am)qP,π̂t(xm, am)

=
∑

0≤m<k<L

∑
t,wm

ϵ∗t (xm+1|xm, am)
(
qP,πt(xm, am)− λt−1q

P,π⋄
(xm, am)

)
≤

∑
0≤m<k<L

∑
t,wm

ϵ∗t (xm+1|xm, am)qP,πt(xm, am)

≤ O

(
L|X|

√
|A|T ln

(
T |X||A|

δ

))
,

where the last step holds following Lemma D.1 from Jin et al. [2020].

Bound on the second term. Following Lemma D.1 from Jin et al. [2020], the second term is
bounded by (ignoring constants),

∑
0≤m<h<L

∑
t,wm,w′

h

(1− λt−1)

√√√√P (xm+1 | xm, am) ln
(

T |X||A|
δ

)
max {1, Nt (xm, am)}

·

· qP,π̂t (xm, am)

√√√√P
(
x′
h+1 | x′

h, a
′
h

)
ln
(

T |X||A|
δ

)
max {1, Nt (x′

h, a
′
h)}

qP,π̂t (x′
h, a

′
h | xm+1)

+
∑

0≤m<h<L

∑
t,wm,w′

h

(1− λt−1)
qP,π̂t (xm, am) ln

(
T |X||A|

δ

)
max {1, Nt (xm, am)}

+

+
∑

0≤m<h<L

∑
t,wm,w′

h

(1− λt−1)
qP,π̂t (x′

h, a
′
h) ln

(
T |X||A|

δ

)
max {1, Nt (x′

h, a
′
h)}

.

The last two terms are bounded logarithmically in T , employing the definition of qP,π̂t and following
Lemma D.1 from Jin et al. [2020], while, similarly, the first term is bounded by:∑
0≤m<h<L

√√√√|Xm+1|
∑

t,xm,am

(1− λt−1)qP,π̂t (xm, am)

max {1, Nt (xm, am)}

√√√√|Xh+1|
∑

t,x′
h,a

′
h

(1− λt−1)qP,π̂t (x′
h, a

′
h)

max {1, Nt (x′
h, a

′
h)}

,

which is upper bounded by:∑
0≤m<h<L

√√√√|Xm+1|
∑

t,xm,am

qt (xm, am)

max {1, Nt (xm, am)}

√√√√|Xh+1|
∑

t,x′
h,a

′
h

qt (x′
h, a

′
h)

max {1, Nt (x′
h, a

′
h)}

.

Employing the same argument as Lemma D.1 from Jin et al. [2020] shows that the previous term is
bounded logarithmically in T and concludes the proof.

We are now ready to prove the regret bound attained by Algorithm 3.
Theorem 5.2. Given δ ∈ (0, 1), by setting η = γ =

√
L ln(L|X||A|/δ)/T |X||A| in Algorithm 3, the

algorithm attains regret RT ≤ O
(
ΨL3|X|

√
|A|T ln (T |X||A|m/δ)

)
with probability at least 1−11δ,

where Ψ := maxi∈[m]{1/min{(αi−βi),(αi−βi)
2}}.

Proof. We start decomposing the RT :=
∑T

t=1 ℓ
⊤
t (qt − q∗) definition as:

T∑
t=1

ℓ⊤t
(
qt − qPt,πt

)
︸ ︷︷ ︸

1

+

T∑
t=1

ℓ̂ ⊤
t

(
qPt,π̂t − q∗

)
︸ ︷︷ ︸

2

+

T∑
t=1

ℓ⊤t

(
qPt,πt − qPt,π̂t

)
︸ ︷︷ ︸

3

+
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+

T∑
t=1

(
ℓt − ℓ̂t

)⊤
qPt,π̂t

︸ ︷︷ ︸
4

+

T∑
t=1

(
ℓ̂t − ℓt

)⊤
q∗︸ ︷︷ ︸

5

,

where Pt is the transition chosen by the algorithm at episode t. Precisely, the first term encompasses
the estimation of the transition functions, the second term concerns the optimization performed by the
algorithm, the third term encompasses the regret accumulated by performing the convex combination
of policies and the last two terms concern the bias of the optimistic estimators.

We proceed bounding the five terms separately.

Bound on 1 We bound the first term as follows:

1 =

T∑
t=1

ℓ⊤t
(
qt − qPt,πt

)
=

T∑
t=1

∑
x,a

ℓt(x, a)
(
qt(x, a)− qPt,πt(x, a)

)
≤

T∑
t=1

∑
x,a

∣∣qt(x, a)− qPt,πt(x, a)
∣∣ ,

where the last inequality holds by Hölder inequality noticing that ∥ℓt∥∞ ≤ 1 for all t ∈ [T ]. Then we
can employ Lemmas D.1, since πt is the policy that guides the exploration and Pt ∈ Pt, obtaining:

1 ≤ O

(
L|X|

√
|A|T ln

(
T |X||A|

δ

))
, (21)

with probability at least 1− 2δ, under the clean event.

Bound on 2 The second term is bounded similarly to the second part of Theorem 4.3. Precisely, we
notice that under the clean event EG,∆(δ), the optimal safe solution q∗ is included in the constrained
decision space for each t ∈ [T ]. Moreover we notice that, for each t ∈ [T ], the constrained space is
convex and linear, by construction of the convex program. Thus, following the standard analysis of
online mirror descent Orabona [2019] and from Lemma D.5, we have, under the clean event:

2 ≤
L ln

(
|X|2|A|

)
η

+ η
∑
t,x,a

qPt,π̂t(x, a)ℓ̂t(x, a)
2.

Guaranteeing the safety property makes bounding the biased estimator more complex with respect to
Theorem 4.3. Thus, noticing that λt ≤ maxi∈[m]

{
L−αi

L−βi

}
and by definition of πt, we proceed as

follows:

η
∑
t,x,a

qPt,π̂t(x, a)ℓ̂t(x, a)
2 ≤ max

i∈[m]

{
L

αi − βi

}
η
∑
t,x,a

(1− λt−1)q
Pt,π̂t(x, a)ℓ̂t(x, a)

2

≤ max
i∈[m]

{
L

αi − βi

}
η
∑
t,x,a

(
qPt,πt(x, a)− λtq

Pt,π
⋄
(x, a)

)
ℓ̂t(x, a)

2

≤ max
i∈[m]

{
L

αi − βi

}
η
∑
t,x,a

qPt,πt(x, a)ℓ̂t(x, a)
2

The previous result is intuitive. Paying an additional maxi∈[m]

{
L

αi−βi

}
factor allows to relate the

loss estimator ℓ̂t with the policy that guides the exploration, namely, πt. Thus, following the same
steps as Theorem 4.3 we obtain, with probability 1− δ, under the clean event:

2 ≤
L ln

(
|X|2|A|

)
η

+ max
i∈[m]

{
L

αi − βi

}
η|X||A|T + max

i∈[m]

{
L

αi − βi

}
ηL ln(L/δ)

2γ
.
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Setting η = γ =
√

L ln(L|X||A|/δ)
T |X||A| , we obtain:

2 ≤ O

(
max
i∈[m]

{
1

αi − βi

}
L

√
L|X||A|T ln

(
|X|2|A|

δ

))
, (22)

with probability at least 1− δ, under the clean event.

Bound on 3 In the following, we show how to rewrite the third term so that the dependence on the
convex combination parameter is explicit. Intuitively, the third term is the regret payed to guarantee
the safety property. Thus, we rewrite the third term as follows:

T∑
t=1

ℓ⊤t

(
qPt,πt − qPt,π̂t

)
=

T∑
t=1

ℓ⊤t

(
λt−1q

Pt,π
⋄
+ (1− λt−1)q

Pt,π̂t − qPt,π̂t

)
≤

T∑
t=1

λt−1ℓ
⊤
t q

Pt,π
⋄

≤ L

T∑
t=1

λt−1

where we used that ℓ⊤t q
Pt,π

⋄ ≤ L for any t ∈ [T ]. Thus, we proceed bounding
∑T

t=1 λt−1.

We focus on a single episode t ∈ [T ], in which we assume without loss of generality that the i-th
constraint is the hardest to satisfy.

Precisely,

λt =
min

{
(ĝt,i + ξt)

⊤ût+1, L
}
− αi

min {(ĝt,i + ξt)⊤ût+1, L} − βi

≤ (ĝt,i + ξt)
⊤ût+1 − αi

(ĝt,i + ξt)⊤ût+1 − βi

≤ (ĝt,i + ξt)
⊤ût+1 − αi

αi − βi
(23)

=
(ĝt,i − ξt)

⊤ût+1 + 2ξ⊤t ût+1 − αi

αi − βi

=
(ĝt,i − ξt)

⊤q̂t+1 + (ĝt,i − ξt)
⊤(ût+1 − q̂t+1) + 2ξ⊤t ût+1 − αi

αi − βi

≤
(ĝt,i − ξt)

⊤q̂t+1 + ĝ⊤t,i(ût+1 − q̂t+1) + 2ξ⊤t ût+1 − αi

αi − βi

≤
ĝ⊤t,i(ût+1 − q̂t+1) + 2ξ⊤t ût+1

αi − βi
(24)

=
ĝ⊤t,i(ût+1 − qP,π̂t+1) + ĝ⊤t,i(q

P,π̂t+1 − qPt+1,π̂t+1) + 2ξ⊤t ût+1

αi − βi

≤ ∥ĝt,i∥∞||ût+1 − qP,π̂t+1 ||1 + ∥ĝt,i∥∞∥qP,π̂t+1 − qPt+1,π̂t+1∥1 + 2ξ⊤t ût+1

αi − βi

≤ ||ût+1 − qP,π̂t+1 ||1 + ∥qP,π̂t+1 − qPt+1,π̂t+1∥1 + 2ξ⊤t ût+1

αi − βi

≤ L(1− λt)∥ût+1 − qP,π̂t+1∥1 + L(1− λt)∥qP,π̂t+1 − qPt+1,π̂t+1∥1 + 2L(1− λt)ξ
⊤
t ût+1

min {(αi − βi), (αi − βi)2}
(25)

where Inequality (23) holds since, for the hardest constraint, when λt ̸= 0, (ĝt,i + ξt)
⊤ût+1 > αi,

Inequality (24) holds since, under the clean event, (ĝt,i − ξt)
⊤q̂t+1 ≤ αi and Inequality (25) holds
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since λt ≤ L−αi

L−βi
. Intuitively, Inequality (25) shows that, to guarantee the safety property, Algorithm 3

has to pay a factor proportional to the pessimism introduced on the transition and cost functions, plus
the constraints satisfaction gap of the strictly feasible solution given as input to the algorithm.

We need to generalize the result summing over t, taking into account that the hardest constraints may
vary. Thus, we bound the summation as follows,

T∑
t=1

λt−1 ≤ max
i∈[m]

{
2L

min {(αi − βi), (αi − βi)2}

}
·

·
T∑

t=1

(
(1− λt−1)

(
∥ût − qP,π̂t∥1 + ∥qP,π̂t − qPt,π̂t∥1 + ξ⊤t−1ût

))
The first two terms of the equation are bounded applying Lemma C.1, which holds with probability at
least 1− 2δ, under the clean event, while, to bound

∑T
t=1(1− λt−1)ξ

⊤
t−1ût, we proceed as follows:

T∑
t=1

(1− λt−1)ξ
⊤
t−1ût =

T∑
t=1

(1− λt−1)ξ
⊤
t−1q

P,π̂t +

T∑
t=1

(1− λt−1)ξ
⊤
t−1(ût − qP,π̂t),

where the second term is bounded employing Hölder inequality and Lemma C.1. Next, we focus on
the first term, proceeding as follows,

T∑
t=1

(1−λt−1)ξ
⊤
t−1q

P,π̂t

≤
T∑

t=1

ξ⊤t−1qt (26)

≤
T∑

t=1

∑
x,a

ξt−1(x, a)1t(x, a) + L

√
2T ln

1

δ
(27)

=

√
4 ln

(
T |X||A|m

δ

) T∑
t=1

∑
x,a

√
1

max{1, Nt−1(x, a)}
1t(x, a) + L

√
2T ln

1

δ

≤ 6

√
ln

(
T |X||A|m

δ

)√
|X||A|

∑
x,a

NT (x, a) + L

√
2T ln

1

δ
(28)

≤ 6

√
L|X||A|T ln

(
T |X||A|m

δ

)
+ L

√
2T ln

1

δ
,

where Inequality (26) follows from the definition of πt, Inequality (27) follows from Azuma-
Hoeffding inequality and Inequality (28) holds since 1 +

∑T
t=1

1
t ≤ 2

√
T + 1 ≤ 3

√
T and Cauchy-

Schwarz inequality.

Thus, we obtain,

3 ≤ O

(
max
i∈[m]

{
1

min {(αi − βi), (αi − βi)2}

}
L3|X|

√
|A|T ln

(
T |X||A|m

δ

))
, (29)

with probability at least 1− 3δ, under the clean event.

Bound on 4 We first notice that 4 presents an additional challenge with respect to the bounded
violation case. Indeed, since π̂t is not the policy that drives the exploration, ℓ̂t cannot be directly
bounded employing results from the unconstrained adversarial MDPs literature. First, we rewrite the
fourth term as follows,

T∑
t=1

(
ℓt − ℓ̂t

)⊤
qPt,π̂t ≤

T∑
t=1

(
Et[ℓ̂t]− ℓ̂t

)⊤
qPt,π̂t +

T∑
t=1

(
ℓt − Et[ℓ̂t]

)⊤
qPt,π̂t ,
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where Et[·] is the expectation given the filtration up to time t. To bound the first term we employ the
Azuma-Hoeffding inequality noticing that, the martingale difference sequence is bounded by:

ℓ̂ ⊤
t qPt,π̂t ≤ max

i∈[m]

{
L

αi − βi

}
ℓ̂ ⊤
t (1− λt)q

Pt,π̂t

= max
i∈[m]

{
L

αi − βi

}
ℓ̂ ⊤
t

(
qPt,πt − λtq

Pt,π
⋄
)

≤ max
i∈[m]

{
L

αi − βi

}
ℓ̂ ⊤
t qPt,πt

≤ max
i∈[m]

{
L

αi − βi

}
L,

where the first inequality holds since λt ≤ λ0. Thus, the first term is bounded by

maxi∈[m]

{
L

αi−βi

}
L
√
2T ln 1

δ . To bound the second term, we employ the definition of πt and
the upper-bound to λt, proceeding as follows:

T∑
t=1

(
ℓt − Et[ℓ̂t]

)⊤
qPt,π̂t

=
∑
t,x,a

qPt,π̂t(x, a)ℓt(x, a)

(
1− Et [1t(x, a)]

ut(x, a) + γ

)
=
∑
t,x,a

qPt,π̂t(x, a)ℓt(x, a)

(
1− qt(x, a)

ut(x, a) + γ

)
≤ max

i∈[m]

{
L

αi − βi

}∑
t,x,a

(1− λt)q
Pt,π̂t(x, a)ℓt(x, a)

(
1− qt(x, a)

ut(x, a) + γ

)
≤ max

i∈[m]

{
L

αi − βi

}∑
t,x,a

qPt,πt(x, a)ℓt(x, a)

(
1− qt(x, a)

ut(x, a) + γ

)

= max
i∈[m]

{
L

αi − βi

}∑
t,x,a

qPt,πt(x, a)

ut(x, a) + γ
(ut(x, a)− qt(x, a) + γ)

≤ O

(
max
i∈[m]

{
L

αi − βi

}
L|X|

√
|A|T ln

(
T |X||A|

δ

))
+ max

i∈[m]

{
L

αi − βi

}
γ|X||A|T,

where the last steps holds by Lemma D.1. Thus, combining the previous equations, we have, with
probability at least 1− 3δ, under the clean event:

4 ≤ O

(
max
i∈[m]

{
1

αi − βi

}
L2|X|

√
|A|T ln

(
T |X||A|

δ

))
(30)

Bound on 5 The last term is bounded as in Theorem 4.3. Thus, setting γ =
√

L ln(L|X||A|/δ)
T |X||A| , we

obtain, with probability at least 1− δ, under the clean event:

5 ≤ O

(
L

√
|X||A|T ln

(
T |X||A|

δ

))
. (31)

Final result Finally, we combine the bounds on 1 , 2 , 3 , 4 and 5 . Applying a union bound, we
obtain, with probability at least 1− 11δ,

RT ≤ O

(
max
i∈[m]

{
1

min {(αi − βi), (αi − βi)2}

}
L3|X|

√
|A|T ln

(
T |X||A|m

δ

))
,

which concludes the proof.
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D Auxiliary lemmas from existing works

D.1 Auxiliary lemmas for the transitions estimation

Similarly to Jin et al. [2020], the estimated occupancy measure space ∆(Pt) is characterized as
follows:

∆(Pt) :=



∀k,
∑

x∈Xk,a∈A,x′∈Xk+1

q (x, a, x′) = 1

∀k, ∀x,
∑

a∈A,x′∈Xk+1

q (x, a, x′) =
∑

x′∈Xk−1,a∈A

q (x′, a, x)

∀k, ∀ (x, a, x′) , q (x, a, x′) ≤
[
P̂t (x

′ | x, a) + ϵt (x
′ | x, a)

] ∑
y∈Xk+1

q(x, a, y)

q (x, a, x′) ≥
[
P̂t (x

′ | x, a)− ϵt (x
′ | x, a)

] ∑
y∈Xk+1

q(x, a, y)

q (x, a, x′) ≥ 0

.

Given the estimation of the occupancy measure space, it is possible to derive the following lemma.
Lemma D.1. Jin et al. [2020] With probability at least 1 − 6δ, for any collection of transition
functions {P x

t }x∈X such that P x
t ∈ Pt, we have, for all x,

T∑
t=1

∑
x∈X,a∈A

∣∣∣qPx
t ,πt(x, a)− qt(x, a)

∣∣∣ ≤ O(L|X|√|A|T ln

(
T |X||A|

δ

))
.

We underline that the constrained space defined by Program (4) is a subset of ∆(Pt). This implies
that, in Algorithm 2, it holds q̂t ∈ ∆(Pt) and Lemma D.1 is valid.

D.2 Auxiliary lemmas for the optimistic loss estimator

We will make use of the optimistic biased estimator with implicit exploration factor (see, Neu [2015]).
Precisely, we define the loss estimator as follows, for all t ∈ [T ]:

ℓ̂t(x, a) :=
ℓt(x, a)

ut(x, a) + γ
1t{x, a}, ∀(x, a) ∈ X ×A,

where ut(x, a) := maxP∈Pt
qP,πt(x, a). Thus, the following lemmas holds.

Lemma D.2. Jin et al. [2020] For any sequence of functions α1, . . . , αT such that αt ∈ [0, 2γ]X×A

is Ft-measurable for all t, we have with probability at least 1− δ,
T∑

t=1

∑
x,a

αt(x, a)

(
ℓ̂t(x, a)−

qt(x, a)

ut(x, a)
ℓt(x, a)

)
≤ L ln

L

δ
.

Following the analysis of Lemma D.2, with αt(x, a) = 2γ1t(x, a) and union bound, the following
corollary holds.
Corollary D.3. Jin et al. [2020] With probability at least 1− δ:

T∑
t=1

(
ℓ̂t(x, a)−

qt(x, a)

ut(x, a)
ℓt(x, a)

)
≤ 1

2γ
ln

(
|X||A|

δ

)
.

Furthermore, when πt ← q̂t, the following lemma holds.
Lemma D.4. Jin et al. [2020] With probability at least 1− 7δ,

T∑
t=1

(
ℓt − ℓ̂t

)⊤
q̂t ≤ O

(
L|X|

√
|A|T ln

(
T |X||A|

δ

)
+ γ|X||A|T

)
.

We notice that πt ← q̂t holds only for Algorithm 2, since in Algorithm 3, πt ← q̂t with probability
1− λt−1.
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D.3 Auxiliary lemmas for online mirror descent

We will employ the following results for OMD (see, Orabona [2019]) with uniform initialization over
the estimated occupancy measure space.
Lemma D.5. Jin et al. [2020] The OMD update with q̂1 (x, a, x

′) = 1
|Xk||A||Xk+1| for all k < L and

(x, a, x′) ∈ Xk ×A×Xk+1, and

q̂t+1 = arg min
q∈∆(Pt)

ℓ̂ ⊤
t q +

1

η
D (q∥q̂t) ,

where D (q∥q′) =
∑

x,a,x′ q (x, a, x′) ln
q(x,a,x′)
q′(x,a,x′) −

∑
x,a,x′ (q (x, a, x′)− q′ (x, a, x′)) ensures

T∑
t=1

ℓ̂ ⊤
t (q̂t − q) ≤

L ln
(
|X|2|A|

)
η

+ η
∑
t,x,a

q̂t(x, a)ℓ̂t(x, a)
2,

for any q ∈ ∩t∆(Pt), as long as ℓ̂t(x, a) ≥ 0 for all t, x, a.
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possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: The paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed, since the work is mainly
theoretical.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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