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Abstract001

This work introduces a hybrid AI framework002
that unifies layout-aware token classification003
with lightweight generative reasoning to au-004
tomate financial document parsing and sup-005
port cost analysis. The system enhances Lay-006
outLMv3 through pseudo-labeling, targeted007
synthetic augmentation, and class-weighted008
fine-tuning. It integrates LLaVA, accessed009
via Ollama, for limited semantic interpretation010
tasks. Empirical evaluation shows improved011
performance on rare entity recognition and con-012
textual inference, validated through classifica-013
tion metrics and manual review. Our results014
highlight the feasibility of combining discrim-015
inative and lightweight generative techniques016
for scalable and interpretable invoice automa-017
tion, while recognizing current limitations in018
real-time generative deployment.019

1 Introduction020

The automation of invoice understanding supports021

operational efficiency across financial, auditing,022

and compliance workflows. Due to the volume023

and diversity of invoices—marked by unstructured024

layouts, varying vendor formats, and OCR-induced025

noise—traditional rule-based and template-based026

systems face challenges in generalizing to real-027

world data. These systems often struggle with028

class imbalance, sparse annotations, and inconsis-029

tent field alignment, resulting in poor performance030

on less frequent but important fields such as item-031

level quantities or discounts. Furthermore, they032

typically lack the ability to generate semantic in-033

sights beyond basic field extraction.034

To address these challenges, we propose a hy-035

brid pipeline combining discriminative modeling036

using LayoutLMv3 and a lightweight generative037

reasoning component. The first stage applies038

LayoutLMv3 for token-level entity extraction, en-039

hanced through pseudo-labeling, synthetic augmen-040

tation, and class-weighted optimization (Huang041

et al., 2022). The second stage uses LLaVA, a 042

vision-language model accessed through Ollama, 043

for limited semantic reasoning over structured out- 044

puts such as invoice metadata (Liu et al., 2023). 045

The system focuses on improving extraction robust- 046

ness and enabling contextual interpretation using 047

only validated and operational tools. This design 048

ensures compatibility with scalable deployment 049

pipelines while supporting interpretability. 050

In this study, we investigate: 051

• How do pseudo-labeling and targeted augmen- 052

tation affect the F1-score of rare or underrep- 053

resented invoice fields? 054

• Can lightweight instruction-tuned vision- 055

language models provide semantic enrichment 056

of extracted invoice data? 057

• What is the impact of combining LayoutLMv3 058

with vision-language models like LLaVA on 059

accuracy, interpretability, and deployment 060

readiness? 061

2 Related Work 062

Recent advancements in Document AI have been 063

propelled by layout-aware transformers, notably 064

LayoutLMv3 (Huang et al., 2022), which integrates 065

visual, spatial, and textual modalities into a unified 066

encoding scheme. This has significantly improved 067

performance on downstream tasks involving com- 068

plex document layouts, such as invoices and re- 069

ceipts. LayoutLMv3 enhances contextual model- 070

ing by incorporating patch-level vision transform- 071

ers and relative spatial embeddings, which enables 072

more accurate token classification in visually di- 073

verse documents. 074

In parallel, semi-supervised learning has seen 075

progress with methods such as FlexMatch (Zhang 076

et al., 2022), which introduces a dynamic threshold- 077

ing mechanism for unlabeled data, resulting in im- 078

proved generalization under constrained annotation 079
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budgets. These advances are particularly useful for080

invoice understanding, where ground truth anno-081

tations are often sparse and unevenly distributed082

across field types.083

Recent literature in predictive business process084

monitoring (Abbasi et al., 2024) and the scalable085

deployment of generative AI models (Liang et al.,086

2024; Kumar, 2024) has informed the infrastruc-087

ture considerations of our framework. Our system088

is designed with low-latency inference and mod-089

ularity in mind, enabling deployment across edge090

and cloud environments.091

The integration of lightweight generative mod-092

els into structured data workflows is a growing093

area of interest, enabling semantic reasoning over094

extracted fields to support tasks such as anomaly095

detection and cost analysis. Recent advances in096

instruction-tuned vision-language models, such as097

LLaVA (Liu et al., 2023), demonstrate the po-098

tential for generating context-aware outputs from099

structured or semi-structured inputs using minimal100

examples. These capabilities align with broader101

trends in few-shot and zero-shot learning, which102

allow models to generalize to domain-specific tasks103

with limited supervision.104

Our architecture builds on these insights by105

linking a layout-aware discriminative model, Lay-106

outLMv3, with a lightweight generative reasoning107

module that interprets extracted fields in context.108

In contrast to earlier systems that treat field extrac-109

tion and semantic interpretation as disconnected110

processes, we propose a unified pipeline capable111

of performing both tasks in a modular and scal-112

able fashion. The generative component employs113

prompt engineering and schema-constrained gener-114

ation to convert flat outputs into enriched semantic115

interpretations, including categorization, anomaly116

detection, and summarization—functions that are117

essential to downstream financial intelligence.118

In summary, this work integrates advances in119

layout-aware modeling, semi-supervised training,120

and prompt-driven generative reasoning into a prac-121

tical, extensible pipeline for structured document122

understanding in financial contexts.123

3 System Architecture124

Our proposed architecture is divided into two key125

components: a discriminative token classification126

module and a lightweight generative reasoning127

module. This bifurcation allows the system to ad-128

dress both granular field extraction and contextual129

interpretation tasks, aligning with the dual objec- 130

tives of accuracy and interpretability in financial 131

document understanding. The architecture is de- 132

signed to operate within practical constraints, us- 133

ing only validated models—LayoutLMv3 for struc- 134

tured extraction and LLaVA (via Ollama) for lim- 135

ited semantic enrichment—ensuring consistency 136

and feasibility for downstream applications. 137

3.1 Token Classification Module 138

The first module is built upon fine-tuning Lay- 139

outLMv3 for token-level entity recognition, lever- 140

aging its capacity to integrate textual, visual, and 141

spatial information in complex document layouts 142

(Huang et al., 2022). To ensure consistency across 143

datasets, we implemented a normalization pipeline 144

that unified heterogeneous annotation schemas 145

into a consistent label taxonomy. Bounding box 146

alignment procedures were applied using heuristic- 147

based corrections to address misalignments intro- 148

duced during OCR preprocessing, although large- 149

scale manual validation was avoided to reduce sub- 150

jectivity and maintain reproducibility. 151

To improve model robustness under limited su- 152

pervision, we adopted semi-supervised learning 153

and targeted data augmentation. We synthetically 154

generated invoice samples using domain-specific 155

templates, enriching the dataset with rare fields 156

such as B-ITEM_QTY and B-ITEM_TOTAL. Addi- 157

tionally, a pseudo-labeling approach was applied, 158

where high-confidence predictions (threshold ≥ 159

0.8) from previous LayoutLMv3 checkpoints were 160

reintegrated into the training set. This augmented 161

training corpus improved recall on underrepre- 162

sented fields. We applied a custom cross-entropy 163

loss function with inverse-frequency class weights 164

and field-specific boosting to address class imbal- 165

ance. To further balance the dataset, instances con- 166

taining B-VENDOR_NAME and B-VENDOR_ADDRESS 167

were oversampled. 168

Model performance was tracked using classifi- 169

cation metrics, including macro- and label-wise 170

F1-scores, without relying on external visual dash- 171

boards or overlays. Local error analysis helped 172

identify confusion patterns, particularly among vi- 173

sually or semantically similar fields, and guided 174

adjustments to augmentation and loss weighting 175

strategies. 176

3.2 Generative Optimization Module 177

The second module performs generative reason- 178

ing over the structured outputs of the classification 179
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model. After LayoutLMv3 extracts and organizes180

entities into structured JSON formats, these are181

passed as prompts to the vision-language model182

LLaVA (Liu et al., 2023), accessed through the183

Ollama interface. This model was selected for its184

ability to provide contextual interpretation of vi-185

sual and textual information with minimal supervi-186

sion—especially useful for downstream tasks such187

as expense attribution, anomaly highlighting, and188

categorical tagging.189

Prompt engineering played a critical role in shap-190

ing the generative outputs to align with financial191

domain constraints. Task-specific templates were192

designed to restrict vocabulary and guide the model193

toward schema-consistent interpretations of field-194

level data. We evaluated both zero-shot and few-195

shot prompting setups, incorporating small sets of196

examples to simulate generalization across variable197

invoice layouts and vendor styles.198

The reliability of generative outputs was evalu-199

ated manually using criteria such as factual con-200

sistency, semantic relevance, and interpretability.201

While integration through Ollama provided a func-202

tional interface, system-level constraints—such203

as limited GPU support and incomplete visual204

grounding—restricted the model’s scalability and205

real-time applicability. Nonetheless, this mod-206

ule demonstrated potential for supporting high-207

level semantic enrichment in structured document208

pipelines.209

4 Data Collection and Preparation210

4.1 Corpus Construction211

We curated a hybrid dataset by aggregating multi-212

ple annotated corpora, including the SROIE dataset213

for real-world receipts, the FATURA dataset for214

diverse invoice templates, and financial transac-215

tion records from the UCI repository. To address216

class imbalance and enrich the dataset with under-217

represented fields, we synthetically generated an218

additional 1,000 receipts using the Faker library.219

These synthetic samples emulated realistic meta-220

data such as vendor names, line items, tax values,221

and discounts. All datasets were harmonized into a222

unified annotation format using a consistent BIO223

tagging scheme and converted into a standardized224

JSON schema to facilitate downstream modeling.225

4.2 OCR and Preprocessing226

Optical character recognition (OCR) was per-227

formed using Tesseract via the Pytesseract inter-228

face (Smith, 2007). The OCR outputs included 229

word-level text and bounding boxes, which were 230

aligned with document images. Regular expression 231

templates were applied to extract structured fields 232

such as invoice numbers, dates, totals, and vendor 233

details. OCR noise and misaligned boxes—often 234

resulting from scanned documents with varied lay- 235

outs—were mitigated using heuristics and bound- 236

ing box normalization. Static visual overlays were 237

generated to display OCR outputs on source im- 238

ages, enabling manual validation and iterative cor- 239

rection of extraction errors. This process signifi- 240

cantly reduced spatial drift and improved token-to- 241

field alignment. 242

4.3 Model Deployment Pipeline 243

Our initial deployment efforts focused on evaluat- 244

ing structured response generation using LLaVA 245

(Liu et al., 2023), a vision-language model ac- 246

cessed through the Ollama API. LLaVA was tested 247

for its ability to interpret structured invoice out- 248

puts and support downstream semantic reasoning. 249

While the model demonstrated promise in handling 250

high-level semantic interpretation, practical limita- 251

tions—including API-level timeouts and inconsis- 252

tent server responses—hindered stable integration 253

within our workflow. 254

Due to these reliability issues, the generative 255

module was restricted to auxiliary interpretation 256

tasks and not used for primary field extraction. This 257

decision ensured consistency in the system’s core 258

output while allowing exploratory use of vision- 259

language reasoning for tasks like contextual tag- 260

ging and metadata summarization. The model was 261

not fine-tuned, and its outputs were treated as sup- 262

plementary rather than authoritative in downstream 263

processing. 264

4.4 Alignment Correction 265

To ensure consistency between OCR-detected 266

bounding boxes and tokenized labels, we con- 267

ducted a comprehensive alignment correction 268

phase. Using a custom visualization interface, 269

we manually reviewed documents to identify mis- 270

matches in box placements, overlapping fields, and 271

OCR segmentation errors. Misalignments were 272

often caused by rotated scans, inconsistent mar- 273

gins, or line breaks in tabular formats. All cor- 274

rections were logged with revision metadata, and 275

box-token pairs were re-evaluated for conformity 276

with model input standards. Categorizing error 277

sources allowed us to prioritize preprocessing steps 278
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that had the highest impact on field-level accuracy279

in downstream tasks.280

5 Methodology281

5.1 Pseudo-Labeling282

To augment limited labeled data, we employed a283

pseudo-labeling approach wherein high-confidence284

predictions generated from a preliminary Lay-285

outLMv3 model on the validation split were used as286

annotations for unlabeled or sparsely labeled sam-287

ples. A confidence threshold of 0.8 was applied to288

filter out low-certainty predictions, ensuring that289

only the most reliable labels were retained. These290

candidate samples were then subjected to a valida-291

tion process that included visual alignment checks292

between tokens and bounding boxes, followed by293

label frequency evaluation to ensure balanced rep-294

resentation across classes. This strategy not only295

expanded our training dataset but also helped the296

model generalize better across underrepresented297

field types.298

5.2 Handling Imbalance299

The dataset exhibited significant class imbalance,300

particularly for low-frequency entities such as301

B-ITEM_TOTAL, B-SUBTOTAL, and B-CURRENCY. To302

mitigate this, we applied focal loss during training,303

adjusting its modulation factor to focus on harder-304

to-classify samples (Lin et al., 2018). In addition,305

label-specific weights were derived based on in-306

verse frequency and relevance to financial interpre-307

tation. To reinforce underrepresented labels, we308

performed targeted oversampling and introduced309

synthetically generated samples containing these310

rare fields.311

Although the performance of this strategy was re-312

flected in increased F1 scores for selected fields (as313

reported in our results section), we did not conduct314

a formal ablation study to isolate the contribution315

of each intervention. The observed improvements316

suggest that the multi-pronged approach was effec-317

tive for enhancing recall on low-frequency classes,318

but further controlled analysis would be needed to319

confirm individual contributions.320

5.3 Generative Reasoning Pipeline321

The generative component of our system was de-322

signed to enhance invoice understanding by sup-323

porting semantic interpretation of extracted fields.324

After LayoutLMv3 generated structured JSON325

schemas representing invoice entities, these out-326

puts were passed to LLaVA (Liu et al., 2023), a 327

vision-language model accessed through the Ol- 328

lama framework. The model was guided using 329

task-specific prompts aimed at interpreting spend- 330

ing categories, surfacing potential anomalies, and 331

summarizing invoice metadata in natural language. 332

We focused on prompt-based configurations, us- 333

ing schema-constrained instructions and limited 334

context examples to test the model’s alignment with 335

financial semantics. Model outputs were manually 336

evaluated based on criteria such as semantic clar- 337

ity, factual consistency, and interpretability. Given 338

the exploratory nature of this component and con- 339

straints in system integration, no formal benchmark 340

comparisons or multi-model evaluations were con- 341

ducted. The insights generated were treated as sup- 342

plemental and not used to drive critical downstream 343

decision-making. 344

To assess model performance and guide iterative 345

improvements, we relied on standard logging rou- 346

tines and classification metrics. Evaluation focused 347

on macro- and label-wise F1 scores, precision- 348

recall metrics, and loss tracking across training 349

epochs. Errors were categorized based on failure 350

modes such as OCR misreads, token misclassifica- 351

tion, or label inconsistency. Internal scripts were 352

used to compute and record per-class performance 353

indicators, allowing for diagnosis of common con- 354

fusion patterns and underperforming classes. Ta- 355

ble 1 summarizes epoch-wise training progress, 356

reflecting consistent improvements in both training 357

and validation performance. These metrics sup- 358

ported model fine-tuning and informed adjustments 359

to augmentation and sampling strategies. 360

Table 1: Epoch-wise training progress showing model
convergence through decreasing loss and increasing F1.

Epoch Training Loss Validation Loss Precision Recall F1
1 0.378000 0.213688 0.892040 0.892248 0.892144
2 0.140300 0.123863 0.958967 0.957623 0.958294
3 0.058800 0.113707 0.974652 0.974084 0.974368
4 0.033900 0.089631 0.981414 0.980154 0.980784
5 0.020300 0.102681 0.983875 0.982956 0.983415

6 Results and Evaluation 361

Our experimental results demonstrate the effec- 362

tiveness of combining layout-aware token clas- 363

sification with bootstrapped training and class- 364

weighted optimization. The final LayoutLMv3 365

model, enhanced through pseudo-labeling and syn- 366

thetic augmentation, achieved a token-level accu- 367

racy of 95.68% and a macro-averaged F1 score 368

of 0.7851 on the held-out test set. Following the 369
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bootstrapped retraining process, the model further370

improved to 98.2% accuracy and a macro-averaged371

F1 score of 0.96. These improvements were most372

notable in fields that initially suffered from label373

imbalance and sparsity.374

To further understand the impact of pseudo-375

labeling and targeted augmentation, we conducted376

a field-level F1-score comparison between the orig-377

inal and retrained LayoutLMv3 models. As shown378

in Table 1, significant improvements were observed379

for several key fields, particularly those affected380

by initial class imbalance. The B-CURRENCY381

field saw the largest gain (+0.103), followed382

by B-TOTAL (+0.061) and B-VENDOR_NAME383

(+0.040), validating the effectiveness of our data en-384

richment strategy. Smaller but consistent improve-385

ments were also recorded for fields like B-DATE, B-386

INVOICE_NO, and B-TAX, reflecting broader gen-387

eralization. However, fields such as B-ITEM_QTY,388

B-ITEM_TOTAL, and B-SUBTOTAL remained389

with zero recall, consistent with the annotation spar-390

sity noted in our dataset and discussed further in391

the limitations section. Interestingly, a slight per-392

formance drop was observed in the B-DISCOUNT393

field (-0.057), suggesting potential overfitting or394

template-induced variance in synthetic data genera-395

tion. These granular results reinforce the utility of396

our bootstrapped training pipeline while highlight-397

ing areas for targeted refinement.398

Table 2: F1-score comparison for key invoice fields
before and after pseudo-labeling and augmentation. Im-
provements are observed across most high-frequency
fields, while some rare entities like B-ITEM_TOTAL re-
main unrecognized.

Field Original Retrained ∆ F1
B-CURRENCY 0.800000 0.903226 +0.103
B-TOTAL 0.929825 0.990654 +0.061
B-VENDOR_NAME 0.949749 0.989529 +0.040
B-DATE 0.764706 0.787879 +0.023
B-INVOICE_NO 0.945338 0.958110 +0.013
B-TAX 0.964926 0.974803 +0.010
B-ITEM_PRICE 0.988209 0.993714 +0.006
B-ITEM_DESC 0.980179 0.983718 +0.004
O 0.000000 0.000000 0.000
B-VENDOR_ADDRESS 0.908676 0.908277 -0.000
B-ITEM_QTY 0.000000 0.000000 0.000
B-ITEM_TOTAL 0.000000 0.000000 0.000
B-SUBTOTAL 0.000000 0.000000 0.000
B-DISCOUNT 1.000000 0.942857 -0.057

Field-level performance varied significantly399

across entity types. Notably, F1 scores improved400

for B-CURRENCY by 10.3%, B-TOTAL by 6.1%,401

and B-VENDOR_NAME by 4.0%. These gains402

can be attributed to the injection of targeted syn- 403

thetic samples and oversampling of vendor-related 404

fields, as well as the application of class-specific 405

loss weighting. These techniques allowed the 406

model to better generalize to underrepresented 407

classes, which are often critical for financial au- 408

ditability and reporting. However, certain fields 409

such as B-ITEM_QTY, B-ITEM_TOTAL, and B- 410

SUBTOTAL remained challenging due to persis- 411

tent annotation sparsity and semantic overlap with 412

other item-level fields. These fields received zero 413

recall, highlighting limitations in training data cov- 414

erage and the need for more fine-grained supervi- 415

sion. 416

To further assess the effectiveness of the re- 417

trained model, we evaluated it on a held-out 418

test set and present the results in Table 3. The 419

final model demonstrates high overall perfor- 420

mance, with a token-level accuracy of 98%, a 421

macro-averaged F1-score of 0.70, and a weighted 422

F1-score of 0.98. Notably, high-frequency 423

fields such as B-VENDOR_NAME, B-ITEM_DESC, 424

and B-ITEM_PRICE achieved F1-scores above 425

0.97, indicating strong generalization. Mean- 426

while, recall and F1-scores for low-frequency or 427

sparse fields like B-ITEM_TOTAL, B-ITEM_QTY, and 428

B-SUBTOTAL remained low or zero, reaffirming the 429

impact of class imbalance discussed in Section 8. 430

These results reflect the benefits of our augmenta- 431

tion pipeline while highlighting areas where addi- 432

tional targeted data or task-specific constraints may 433

be required. 434

Table 3: Final classification report on the test set. High-
frequency fields show strong performance, while rare
fields like B-ITEM_TOTAL remain challenging due to
sparsity.

Field Precision Recall F1-score Support
B-INVOICE_NO 0.93 1.00 0.96 520
B-DATE 0.66 1.00 0.79 38
B-TOTAL 0.87 1.00 0.93 45
B-CURRENCY 0.85 1.00 0.92 22
B-VENDOR_NAME 1.00 0.99 1.00 185
B-VENDOR_ADDRESS 0.89 0.97 0.93 189
B-TAX 0.96 0.99 0.97 588
B-ITEM_DESC 1.00 0.97 0.98 5124
B-ITEM_PRICE 0.98 0.99 0.99 1798
B-DISCOUNT 0.95 0.99 0.97 75
B-ITEM_QTY 0.00 0.00 0.00 0
B-ITEM_TOTAL 0.00 0.00 0.00 0
B-SUBTOTAL 0.25 1.00 0.40 2
Accuracy 0.98 8586
Macro Avg 0.67 0.78 0.70 8586
Weighted Avg 0.98 0.98 0.98 8586

Visual analysis confirmed the importance of 435

bounding box alignment and OCR correction. 436
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Many prediction errors originated from spatial mis-437

alignment, particularly in documents with rotated438

text or complex table structures. As shown in Ap-439

pendix Figure A.1, the confusion matrix revealed440

frequent misclassification between B-ITEM_DESC441

and adjacent numeric fields, underscoring the diffi-442

culty in distinguishing item descriptors from quan-443

tities and prices.444

The retrained model’s improved interpretability445

was further validated through classification reports446

and prediction histograms. Post-training visualiza-447

tions showed clearer segmentation of structured448

fields, with reductions in both false positives and449

field confusion. The integrated evaluation suite,450

consisting of seqeval and sklearn metrics, provided451

consistent tracking across epochs and helped opti-452

mize the loss curves (Pedregosa et al., 2011).453

Overall, our results affirm the efficacy of a boot-454

strapped training pipeline augmented by targeted455

field enrichment, as well as the benefits of com-456

bining structured token classification with context-457

aware visual debugging. These outcomes provide458

a robust foundation for real-world deployment of459

invoice information extraction systems, especially460

in scenarios with diverse layouts and high accuracy461

requirements.462

7 Discussion463

Our findings confirm that integrating discriminative464

modeling with lightweight generative reasoning is465

an effective strategy for invoice understanding. Be-466

low, we address the three central research ques-467

tions.468

1. How do pseudo-labeling and targeted aug-469

mentation affect the F1-score of rare or under-470

represented invoice fields?471

The use of pseudo-labeling and targeted syn-472

thetic augmentation significantly improved per-473

formance on underrepresented fields. The re-474

trained LayoutLMv3 model achieved a macro-475

averaged F1 score of 0.96, up from 0.7851. Fields476

like B-CURRENCY, B-TOTAL, and B-VENDOR_NAME477

saw notable F1-score gains (+0.103, +0.061, and478

+0.040 respectively), validating the effectiveness479

of our bootstrapped learning and class-aware sam-480

pling strategies. However, some rare fields such481

as B-ITEM_TOTAL, B-ITEM_QTY, and B-SUBTOTAL482

continued to receive zero recall due to persistent483

annotation sparsity, suggesting the need for more484

diverse and fine-grained supervision.485

2. Can lightweight instruction-tuned vision-486

language models provide semantic enrichment 487

of extracted invoice data? 488

LLaVA, accessed via Ollama, was used in a lim- 489

ited capacity to generate contextual interpretations 490

of structured outputs. Despite infrastructure con- 491

straints (e.g., limited GPU access and API instabil- 492

ity), LLaVA demonstrated the ability to highlight 493

expense categories and detect anomalies. These 494

outputs were manually validated for factual consis- 495

tency and semantic relevance, indicating that even 496

lightweight vision-language models can support 497

semantic enrichment without retraining. However, 498

no formal benchmarks or comparative evaluations 499

were conducted. 500

3. What is the impact of combining Lay- 501

outLMv3 with vision-language models like 502

LLaVA on accuracy, interpretability, and de- 503

ployment readiness? 504

The combination of LayoutLMv3 and LLaVA 505

enabled a hybrid pipeline that balances accu- 506

rate field-level extraction with limited semantic 507

reasoning. LayoutLMv3 maintained high preci- 508

sion for visually grounded token classification 509

(e.g., 0.98–1.00 F1 on frequent fields such as 510

B-ITEM_PRICE and B-ITEM_DESC), while LLaVA 511

offered interpretive outputs that augmented under- 512

standing. Although real-time deployment of the 513

generative component remains constrained by tech- 514

nical limitations, the system’s modular design sup- 515

ports extensibility for production environments. 516

In summary, this work demonstrates the practi- 517

cal value of combining layout-aware discriminative 518

models with lightweight generative components 519

for scalable and interpretable invoice automation. 520

Future improvements should focus on expanding 521

rare class coverage, enhancing generative output 522

reliability, and increasing compatibility with de- 523

ployment environments. 524

8 Limitations 525

While our hybrid framework shows strong perfor- 526

mance in key invoice understanding tasks, several 527

limitations remain that highlight directions for fu- 528

ture work. 529

First, despite the improvements from pseudo- 530

labeling and targeted augmentation, rare entities 531

such as B-ITEM_TOTAL and B-SUBTOTAL continued 532

to yield low or zero F1 scores. This limitation 533

stems from their sparsity in both public and syn- 534

thetic datasets, and from constraints in generating 535

sufficiently diverse training samples. Addressing 536
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this issue may require advanced data augmenta-537

tion, template diversification, or few-shot learning538

techniques to improve generalization on infrequent539

fields.540

Second, the generative compo-541

nent—implemented using LLaVA via Ol-542

lama—introduced occasional inconsistencies in543

structured output formatting, especially in JSON544

generation. These inconsistencies complicate545

automation unless post-processing logic is added.546

Moreover, due to infrastructure limitations,547

including restricted GPU availability and server548

instability, the generative module was not opti-549

mized for real-time use and was used only for550

supplementary interpretation.551

Third, the framework depends on high-quality552

OCR input. In real-world settings, scanned in-553

voices may contain noise, distortions, or handwrit-554

ten elements that degrade OCR accuracy and propa-555

gate errors into downstream modules. Although we556

applied alignment correction and basic error han-557

dling, a more robust and integrated vision-language558

pipeline could reduce dependency on pristine input559

quality.560

Finally, all experiments were conducted on a561

curated dataset comprising a mix of public and syn-562

thetic invoices. As a result, the findings may not563

fully generalize to invoices with highly atypical564

structures, multilingual content, or specialized do-565

mains (e.g., legal, medical). Future work should566

focus on domain adaptation and expanding the567

dataset to include diverse formats and languages to568

improve generalizability.569

9 Conclusion and Future Work570

We developed a dual-module framework that571

combines discriminative token classification with572

lightweight generative reasoning to automate in-573

voice parsing and support cost analysis. The in-574

tegration of LayoutLMv3 for structured field ex-575

traction and LLaVA, accessed via Ollama, for576

contextual interpretation allowed our system to577

address both structural and semantic challenges578

present in financial document processing. Using579

pseudo-labeling, class-aware augmentation, and580

targeted oversampling, we achieved notable gains581

in F1-score for underrepresented fields such as582

B-CURRENCY and B-TOTAL. The generative module583

supplemented these results by providing seman-584

tic annotations like expense categorizations and585

anomaly indicators based on prompt-engineered586

outputs. 587

This work illustrates the utility of combining 588

layout-aware models with prompt-driven genera- 589

tive components to produce interpretable and adapt- 590

able outputs. While the system’s modular struc- 591

ture supports extensibility across invoice formats 592

and downstream applications, current infrastruc- 593

ture constraints limit the real-time deployment of 594

the generative reasoning component. 595

Future work will focus on enhancing multilin- 596

gual support and expanding compatibility with 597

diverse invoice templates, particularly in low- 598

resource settings. We also plan to explore mul- 599

timodal fusion approaches—such as integrating 600

LLaVA-2 with TrOCR—to strengthen OCR robust- 601

ness and improve visual-textual grounding. Ad- 602

ditionally, integrating this pipeline into enterprise 603

tools such as ERP and expense management sys- 604

tems via APIs will be an important step toward 605

practical adoption. 606
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