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ABSTRACT

The construction of Vectorized High-Definition (HD) map typically requires cap-
turing both category and geometry information of map elements. Current state-of-
the-art methods often adopt solely either point-level or instance-level representa-
tion, overlooking the strong intrinsic relationships between points and instances.
In this work, we propose a simple yet efficient framework named MGMapNet
(Multi-Granularity Map Network) to model map element with a multi-granularity
representation, integrating both coarse-grained instance-level and fine-grained
point-level queries. Specifically, these two granularities of queries are gener-
ated from the multi-scale bird’s eye view (BEV) features using a proposed Multi-
Granularity Aggregator. In this module, instance-level query aggregates features
over the entire scope covered by an instance, and the point-level query aggregates
features locally. Furthermore, a Point Instance Interaction module is designed to
encourage information exchange between instance-level and point-level queries.
Experimental results demonstrate that the proposed MGMapNet achieves state-
of-the-art performance, surpassing MapTRv2 by 5.3 mAP on nuScenes and 4.4
mAP on Argoverse2 respectively.

1 INTRODUCTION

Perceiving and understanding road map elements are crucial for ensuring the safety in autonomous
driving applications (Xiao et al., 2020; Xu et al., 2023; Prakash et al., 2021). High-Definition (HD)
maps provide category and geometry information about road elements, enabling autonomous vehi-
cles to maintain lane position, anticipate intersections, and plan optimal routes to mitigate potential
risks. However, constructing HD map requires significant human effort for annotating and updating,
which limits scalability over large areas. Recent research, such as (Li et al., 2022a; Liao et al., 2022;
2023; Ding et al., 2023b; Yuan et al., 2024; Hu et al., 2021), focuses on learning-based methods as
alternatives to construct HD map from onboard sensors.

These methods can be mainly divided into two categories based on the representation in use: raster-
ized map based representation (Li et al., 2022a;b; Liu et al., 2023b; Xiong et al., 2023) and vectorized
map based representation (Ding et al., 2023b; Li et al., 2023; Liao et al., 2023).

Rasterized map based methods often require complex post-processing to meet the need of down-
stream modules, such as planning. Consequently, this process may result in suboptimal results that
are not entirely end-to-end optimized. Therefore, there has been increasing attention paid to end-
to-end map construction methods (Shin et al., 2023; Qiao et al., 2023b; Zhang et al., 2024) using
vectorized representations.

Vectorized map based methods commonly employ Bird’s Eye View (BEV) (Fadadu et al., 2022;
Chen et al., 2017; Liang et al., 2019; You et al., 2019; Liang et al., 2018) space for end-to-end per-
ception, effectively integrating various sensor information such as surround-view cameras and Lidar.
State-of-the-art (SOTA) methods typically adopt DETR-like architectures, comprising encoder and
decoder components. The encoder initially extracts multi-sensor information into BEV representa-
tion, while the decoder subsequently decodes the category and geometry information of each road
element through queries. These methods achieve an end-to-end vectorized representation of output
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Figure 1: Comparison of visualization results. Visual comparison among StreamMapNet, Map-
TRv2, and MGMapNet, with vehicle-centric views featuring red boundaries, orange dividers, and
blue pedestrian crossings. The green boxes denote the phenomenon of inaccurate point coordinates
in instance-level queries, while the purple ellipses indicate the phenomenon of missing instances in
point-level queries. StreamMapNet employs MPA for single-frame results. Best viewd in color.

map elements, eliminating the need for the complex post-processing steps involved in rasterized
maps representation.

SOTA methods use either point-level queries or instance-level queries to generate map elements.
Point-level queries are good at describing the geometric position of road elements. For instance,
in MapTR (Liao et al., 2022) and MapTRv2 (Liao et al., 2023), a permutation-equivalent point
expression accurately represents the location information of map elements, ensuring stable training
processes. However, these methods may lack an overall description of map elements, leading to
deficiencies in representing lane relationships. For example, MapTRv2 may miss lane lines in distant
and merging scenarios, as the region illustrated in the purple ellipses of Fig. 1.

While instance-level queries excel at capturing the overall category information of a road element,
they may struggle to accurately represent geometric details, especially for irregular or elongated
map elements. For example, in StreamMapNet (Yuan et al., 2024), the Multi-Point Attention is
proposed to capture the overall information of road elements, allowing for longer attention ranges
while maintaining computational efficiency. However, this method may encounter difficulties in
accurately perceiving the geometry of irregular or elongated elements, leading to local disturbances.
The green boxes in Fig. 1 highlight the issue of inaccurate point coordinates obtained from instance-
level queries, where the map elements are detected though, their positional accuracy is compromised.

The primary challenge lies in balancing detailed and comprehensive representations. The balance
between detail and overview remains a major challenge in current research, and existing methods
do not adequately address this issue. To integrate both fine-grained local positions and coarse-
grained global classification information, we propose MGMapNet (Multi-Granularity Map Net-
work), a framework that represents map elements using multi-granularity queries. Within each
decoder layer, point-level queries and instance-level queries are simultaneously computed by query-
ing the multi-scale BEV features using Multi-Granularity Aggregator. Subsequently, Point Instance
Interaction, including point-to-point attention and point-to-instance attention, is designed to enhance
the intrinsic relationships. Ultimately, point-granularity queries are utilized for localizing point co-
ordinates, while instance-granularity queries are employed for determining the categories of map
elements.

Our main contributions can be summarized as follows:

• We propose a robust multi-granularity representation, enabling the end-to-end construction
of vectorized HD map by employing coarse-grained instance-level and fine-grained point-
level queries in one framework.

• The Multi-Granularity Aggregator, combined with Point Instance Interaction, facilitates an
efficient interaction between point-level and instance-level queries, effectively exchanging
category and geometry information.

• We incorporated several strategy optimizations into the training, enabling our proposed
MGMapNet to achieve state-of-the-art (SOTA) single-frame performance on both the
nuScenes and Argoverse2 datasets.
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2 RELATED WORK

Online HD Map Construction. In recent years, researchers have increasingly utilized onboard
sensors in autonomous driving to construct HD map. Previous work (Huang et al., 2023)(Chen
et al., 2022) has focused on projecting and lifting map elements detected on the Perspective View
(PV) plane into 3D space for map reconstruction. With the aim of better integrating multiple sensors
such as panoramic cameras and LiDAR, construction methods for online HD map are gradually
transitioning to BEV representation. Currently, HD map construction can be broadly categorized
into two types: rasterized map-based and vectorized map-based methods. Rasterized methods, such
as HDMapNet (Li et al., 2022a), utilize BEV features for semantic segmentation, followed by a
post-processing step to obtain vectorized map instances. Similarly, BEV-LaneDet (Wang et al.,
2023) outputs confidence scores, embeddings for clustering, y-axis offsets, and average heights
for each grid. While rasterized maps can provide detailed road information, the requirement for
post-processing limits their applications. With the emergence of vectorized DETR-like (Carion
et al., 2020) end-to-end methods, the need for post-processing is eliminated. VectorMapNet (Liu
et al., 2023a) is the first end-to-end map reconstruction model that utilizes transformers. MapTR
and MapTRv2 (Liao et al., 2022; 2023) introduce a novel and unified modeling method for map
elements, addressing ambiguity and ensuring stable learning processes. PivotNet (Ding et al., 2023b)
employs unified, pivot-based representations for map elements and is formulated as a direct set
prediction paradigm.

However, these methods often exclusively use either point-level queries or instance-level queries,
missing out on the mutual advantages of both granularities. To address this limitation, this paper in-
troduces a multi-granularity mechanism for representing map elements. This mechanism adaptively
derives features at both fine-grained point granularity and coarse-grained instance granularity, thus
preserving local details as well as global map information.

Lane Detection. Lane detection can be regarded as a subtask of high-definition map construc-
tion, focusing on the detection of lane elements within road scenes. Current methods (Li et al.,
2019; Zheng et al., 2022; Tabelini et al., 2021b) predominantly engage in lane detection from a
single perspective view (PV) image, and the majority of lane detection datasets provide annotations
only from a single perspective. LaneATT (Tabelini et al., 2021a) proposes a novel anchor-based
attention mechanism that aggregates global information. Unlike lane detection, vectorized HD map
construction involves more complex map elements within the vehicle’s perception range, including
lane markings, curbs, and sidewalks.

3 METHOD

3.1 OVERALL ARCHITECTURE

The overall network architecture of MGMapNet is depicted in Fig. 2 (a). Similar to other DETR-like
end-to-end HD map construction models, MGMapNet comprises a BEV Feature Encoder, respon-
sible for extracting multi-scale BEV features from perspective view images, and a Transformer De-
coder, which stacks multiple layers of Multi-Granularity Attention to generate predictions for map
elements. The prediction from each layer encapsulates both category and geometry information
within the perception range.

BEV Feature Encoder The model takes surrounding-view RGB images as inputs, expressing them
as unified perceptual BEV feature representation for subsequent transformer decoder. The unified
BEV feature is denoted as Fbev ∈ RC×H×W , where C,H,W represent the feature channels,
height, and width of the BEV feature, respectively. Given the diverse lengths of map elements,
relying solely on a single-scale BEV feature fails to meet the requirements for detecting all elements
with different lengths. Therefore, we employ downsample modules to reduce the spatial resolution
of BEV features Fbev by half, generating F

′

bev ∈ RC×H
2 ×W

2 . More scales might be benificial,
but we found two scales are already good enough. Both Fbev and F

′

bev are utilized in the decoder
afterwards. Fms bev ∈ RC×(H

2 ×W
2 +H×W ) represents multi-scale BEV features, which are obtained

by concatenating the flattened tensors of Fbev and F
′

bev . As will be shown in the experiments in the
following section, the multi-scale BEV features greatly improve the overall performance.
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Figure 2: Overview of the MGMapNet. (a) The overall architecture of MGMapNet starts with multi-
view image inputs, which are processed through an encoder and decoder to output vectorized map
representations. (b) A schematic diagram of the l th MGA layer. The figure depicts the interactions
within the Multi-Granularity Attention, including Multi-Granularity Aggregator and Point Instance
Interaction. (c) Implementation details of Point Instance Interaction, consisting of P2P attention and
P2I attention.

Decoder The decoder has L layers. Each layer is composed by a Self-Attention, a Multi-Granularity
Attention and a Feed-Forward Network as shown in Fig. 2 (b). Multi-Granularity Attention consists
of two components: Multi-Granularity Aggregator and Point Instance Interaction. The instance-
level query is initialized by learnable parameters which are updated by querying on BEV features,
and the point query is generated dynamically by aggregating BEV features. After that, a Point
Instance Interaction is employed to carry out the mutual interaction between local geometry infor-
mation and the global category information. The details of Multi-Granularity Attention is described
in the following section.

3.2 MULTI-GRANULARITY ATTENTION

Instance-level queries effectively capture the overall categorical information of road elements but
may struggle to accurately represent geometric details, particularly for irregularly shaped or elon-
gated map features. Conversely, point-level queries provide rich, detailed information; however, they
can only represent instances by aggregating multiple queries, resulting in a lack of comprehensive
descriptions for map elements. To simultaneously capture both detailed and comprehensive instance
features, the Multi-Granularity Attention mechanism is designed to effectively maintain and update
queries at various granularities. As illustrated in Fig. 2, the Multi-Granularity Attention comprises
two primary components: the Multi-Granularity Aggregator and Point Instance Interaction.

3.2.1 MULTI-GRANULARITY AGGREGATOR

In Multi-Granularity Aggregator, instance-level queries interact with the multi-scale BEV features
and point-level queries are generated. Specifically, we improve Mutli-Head Deformable Atten-
tion (Zhu et al., 2020) with multiple reference points for each query to aggregate long-range features
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from multi-scale BEV features. To improve readability, we omit the subscript m for the index of
multiple heads M in the operator of Multi-Granularity Aggregator.

More specifically, the Multi-Granularity Aggregator takes as input the instance-level queries Qins ∈
RNq×C in the first layer, along with the point-level queries Qpts ∈ RNq×Np×C and the reference
points RF ∈ RNq×Np×2 in the subsequent layers. Nq is the total number of instance-level queries,
and Np is the total number of points belonging to an instance. Noted that the reference points in
the first layer are predicted by Qins and the reference points in subsequent layers are updated by
reference points from the previous layer in the form of Eq. 1.{

RFl = MLP(Ql
ins), l = 0

RFl = sigmoid(sigmoid−1(RFl−1) +MLP(Ql
pts)), l >= 1

(1)

where l represents the current l-th layer, sigmoid, sigmoid−1 refers to the sigmoid and inverse
sigmoid activation function and MLP stands for Multi-Layer Perceptron layer.

Since an instance is represented as a point sequence, the position encoding is added to the instance-
level query. Given the location of reference point RF, we employ RF to generate positional encoding
PEref :

PEl−1
ref = MLPl−1

ref (RFl−1), (2)

where MLPl−1
ref is a projection layer used to generate the positional embedding from reference

points.

We allocate Nrep sampling points to each reference point where the features are aggregated from
to enhance the feature for the reference point. The location offset ∆S of sampling points w.r.t the
reference point and the associated weights W are computed by combining the instance-level queries
Qins and PEref as follows:

∆Sl = Sampling Offset(Ql−1
ins + PEl−1

ref ) ∈ RNq×Np×Nrep×2,

Wl = Weight Embed(Ql−1
ins + PEl−1

ref ) ∈ RNq×Np×Nrep ,

Sl = (RFl−1 +∆Sl) ∈ RNq×Np×Nrep×2,

(3)

where RFl−1 is expanded accordingly to match the shape of ∆Sl. By utilizing the sampling offset
and the reference point, sampling locations Sl are updated by adding RFl−1 and ∆Sl.

Subsequently, Qins and Qpts are generated by the weighted sum of sampled features:

Wl
ins = softmax

(j,k)∈(Np,Nrep)

(
Wl

j,k

)
∈ RNq×(Np×Nrep),

Wl
pts = softmax

k∈Nrep

(
Wl

j,k

)
∈ RNq×Np×Nrep ,

Ql
ins =

Np∑
j=1

Nrep∑
k=1

[
Wl

ins sampling(Fms bev,S
l
j,k)

]
∈ RNq×C ,

Ql
pts =

Nrep∑
k=1

[
Wl

pts sampling(Fms bev,S
l
j,k)

]
∈ RNq×Np×C ,

(4)

where j is the index for the Np points on an instance, k is the index among the Nrep sampling
points assigned to the reference point, Wl

ins, Wl
pts denotes the softmax normalized weight across

Np ×Nrep, Nrep of Wl
j,k, respectively and sampling denotes the bi-linear sampling operator.

Through Multi-Granularity Aggregator, Qins and Qpts are generated from multi-scale BEV features,
capturing both global and local information for each map element. Compared with Multi-Point
Attention as proposed in StreamMapNet (Yuan et al., 2024), our method incorporates point-level
queries directly from the multi-scale BEV features by sampling points, which enhances the accu-
racy of predicted geometry points. In addition, compared with point-level alone representations
such as MapTR (Liao et al., 2022) and MapTRv2 (Liao et al., 2023), our model updates instance-
level queries with sampled point features, which effectively captures the overall category and shape
information of road elements.
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3.2.2 POINT INSTANCE INTERACTION

The Point Instance Interaction is designed with the intention of enhancing positional and categorical
information interaction between two different granularities of queries. As illustrated in Fig. 2(c),
Point Instance Interaction comprises two distinct attention operators: P2P (point-to-point) attention
and P2I (Point-to-Instance) attention.

Concurrently, the sampling locations Sl and attention weights Wl
ins,W

l
pts obtained from Multi-

Granularity Aggregator in the l-th layer are flattened and concatenated to encode positional infor-
mation in P2P Attention and P2I Attention:

PEl
ins = MLPl

ins(S
l,Wl

ins),

PEl
pts = MLPl

pts(S
l,Wl

pts),
(5)

where MLPl
ins and MLPl

pts are MLPs for instance-level queries and point-level queries respec-
tively. PEins,PEpts are the corresponding generated position embedding.

P2P Attention As the coordinates of map elements are refined based on the point-level queries in
previous Multi-Granularity Attention layer, these point-level queries play a pivotal role in predicting
coordinates in the current layer. Hence, the P2P Attention module is devised to include point-level
queries from both the current l-th layer and previous (l− 1)-th layer as inputs of the attention layer.
Formally: {

Ql′

pts = SA(Ql
pts + PEl

pts), l = 0

Ql′

pts = CA(Ql
pts + PEl

pts,Q
l−1
pts + PEl−1

pts ), l >= 1
(6)

It is important to note that since the first Multi-Granularity Attention layer does not have previous
decoder layer, self-attention operation only conducts in the current point-level queries. And in the
P2P Attention of following Multi-Granularity Attention layer, previous point-level queries Ql−1

pts and
current generated point-level queries Ql

ptsare mixed before P2P Attention.

P2I Attention Following the P2P Attention, P2I Attention operation achieves information in-
teraction among different granularities. Point-level queries exchange geometry information with
instance-level queries using cross-attention:

Ql′′

pts = CA(Ql′

pts + PEl
pts,Q

l
ins + PEl

ins). (7)

Finally, point-level queries belonging to the same instance-level queries are aggregated to update
corresponding instance-level queries as follows:

Ql′

ins = MLPl
agg(

Np∑
j=1

Ql
′′

pts,j), (8)

where j represents the index of Np.

Output Ultimately, point-granularity queries are utilized for point location prediction using a MLP
as the regression head, while instance-granularity queries are employed for predicting the categories
of map elements using another MLP. In summary, by utilizing the Multi-Granularity Aggregator
and Point Instance Interaction, Multi-Granularity queries are generated and updated. Meanwhile,
the geometry and category of each map element can be effectively perceived.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

nuScenes Dataset. nuScenes (Caesar et al., 2020) is a widely recognized dataset in the field of
autonomous driving research, providing 1,000 scenes, each captured over a continuous 20-second
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Table 1: Comparison to the state-of-the-art on nuScenes val set.
Methods Epoch APped APdiv APbou mAP FPS Params.

HDMapNet (Li et al., 2022a) 30 14.4 21.7 33.0 23.0 - -
BeMapNet (Qiao et al., 2023a) 30 62.3 57.7 59.4 59.8 4.3 -
PivotNet (Ding et al., 2023a) 24 56.5 56.2 60.1 57.6 9.2 -
MapTRv2 (Liao et al., 2023) 24 59.8 62.4 62.4 61.5 14.1 40.3
MGMap (Liu et al., 2024a) 24 61.8 65.0 67.5 64.8 12 55.9
MapQR (Liu et al., 2024b) 24 68.0 63.4 67.7 66.4 11.9 125.3
MGMapNet 24 64.7 66.1 69.4 66.8 11.7 70.1

VectorMapNet (Liu et al., 2023a) 110 42.5 51.4 44.1 46.0 - -
MapTRv2 (Liao et al., 2023) 110 68.1 68.3 69.7 68.7 14.1 40.3
MGMap (Liu et al., 2024a) 110 64.4 67.6 67.7 66.5 12 55.9
MapQR (Liu et al., 2024b) 110 74.4 70.1 73.2 72.6 11.9 125.3
MGMapNet 110 74.3 71.8 74.8 73.6 11.7 70.1

Table 2: Performance comparison on NuScenes with IoU-based AP.
Methods AP raster

ped AP raster
div AP raster

bou mAP raster

MapVR (Zhang et al., 2024) [NeurIPS2023] 46.0 39.7 29.9 38.5
MGMap (Liu et al., 2024a) [CVPR2024] 54.5 42.1 37.4 44.7
MGMapNet(ours) 54.0 42.7 44.1 46.9

interval. Each dataset sample incorporates data from six synchronized RGB cameras and includes
detailed pose information. The perception ranges extend from −15.0m to 15.0m along the X-axis
and from −30.0m to 30.0m along the Y-axis. For experimental purposes, the dataset is partitioned
into 700 scenes comprising 28,130 samples for training purposes, and 150 scenes containing 6,019
samples designated for validation.

Argoverse2 Dataset. The Argoverse2 dataset (Wilson et al., 2023) contains multimodal data from
1000 sequences, including high-resolution images from seven ring cameras and two stereo cameras,
as well as LiDAR point clouds and map-aligned 6-DoF pose data. All annotations are densely
sampled to facilitate the training and evaluation of 3D perception models. Results are reported on
the validation set, with a focus on the same three map categories as identified in the nuScenes dataset.

Evaluation Metric. In alignment with MapTR (Liao et al., 2022), we have adopted the widely-
accepted metric of mean Average Precision (mAP), predicated on the Chamfer distance, a measure
frequently employed in HD map construction task. Evaluation thresholds are set at 0.5m, 1.0m, and
1.5m. Specifically, APped and APdiv , and APbou refer to the Average Precision for pedestrians,
dividers, and boundaries, respectively.

Auxiliary Loss. To ensure that each instance exhibits a more reasonable and accurate distribution
of map instances, we introduce new auxiliary losses Laux, comprising instance segmentation loss
Lins seg and reference point loss Lref to further improve performance. The implementation details
are provided in the appendix A.2. In addition, we incorporate point loss Lpts, classification loss
Lcls, edge direction loss Ldir and dense prediction losses Ldense same with MapTRv2 (Liao et al.,
2023).

To increase the precision of the sampling locations within Multi-Granularity Aggregator, we add
a reference loss Lref to supervise the sampling points. Besides, to improve the spatial details
of instance-level queries, we generate instance BEV segmentation gt mask Mbev to supervise
instance-level segmentation prediction. Hungarian matching results are utilized to eliminate neg-
ative instance-level queries’ segmentation prediction. The instance segmentation loss, denoted as
Lins seg , is formulated as an ensemble of the cross-entropy loss and the dice loss.

The final loss is defined as the weighted sum of the above losses:

L = β1Lpts + β2Lcls + β3Ldir + β4Ldense + β5Laux (9)
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Implementation Details. Our model is trained on 8 A100 GPUs with batchsize as 2, utilizing
an AdamW optimize (Loshchilov & Hutter, 2018) with a learning rate of 4 × 10−4. We adopt
the ResNet50 (He et al., 2016) as our backbone and employ a LSS transformation (Philion &
Fidler, 2020) with a single encoder layer for feature extraction. We also adopt the one-to-many
training strategy, consistent with MapTRv2 (Liao et al., 2023). The model trains for 24 epochs on
the nuScenes dataset and 6 epochs on Argoverse2 dataset. We conduct a long training schedule
(110 epochs) on the nuScenes dataset for a fair comparison with previous methods. We set Nq =
100,Nrep = 8, Np = 20, β1 = 5, β2 = 2, β3 = 0.005, β4 = 3, β5 = 3 as the hyperparameters for
all settings without further tuning.

4.2 COMPARISONS WITH STATE-OF-THE-ART METHODS

Results on nuScenes. The default evaluation metric for Vectorized HD Map construction is the
Chamfer Distance Average Precision (AP). Tab. 1 presents the results on the nuScenes validation
dataset, utilizing multi-view RGB images as input. In comparison to the SOTA method MapTRv2,
our MGMapNet has reached an mAP of 66.8, exceeding it by 5.3 mAP with a training duration 24
epochs. After a prolonged training period of 110 epochs, MGMapNet achieved 73.6 mAP, which is
still significantly higher than the 68.7 mAP of MapTRv2 by 4.9 mAP and 72.6 mAP of MapQR by
1.0 mAP respectively.

The latest models also use rasterization results and employ IoU-based Average Precision (AP) to
evaluate reconstruction performance. As shown in Tab. 2. We evaluate MGMapNet, which achieves
an mAP of 46.9, surpassing both MapVR and MGMap in terms of IoU-based AP.

Experimental results substantiate that the proposed multi-granularity representation, which mod-
els both local point information and global instance information, significantly enhances predictive
performance in both rasterization and vectorization evaluation metrics.

Qualitative results are depicted in Fig. 3. We select three complex scenarios: daytime vehicles
with occlusion, nighttime low-light conditions, and low-light situations with occlusion. In the first
case, MGMapNet exhibits more precise coordinate predictions compared to StreamMapNet and
preserves all road elements compared to MapTRv2. In the second case of nighttime low-light con-
ditions, MapTRv2 struggles to predict the divider on the right side of the vehicle due to its lack
of instance-level perception. While StreamMapNet utilizes instance-level queries and identifies the
divider, its overall instance positioning accuracy remains inadequate. In contrast, only MGMap-
Net accurately and completely detects the boundary in these challenging conditions. The third case
of nighttime dense vehicle traffic with occlusion highlights StreamMapNet’s poor detection perfor-
mance. MapTRv2 encounters two major issues: mislocating the pedestrian path on the right front
and misclassifying the rear divider as a boundary, indicating its limitations in instance-level percep-
tion. Conversely, MGMapNet exhibits remarkable robustness, accurately predicting both categories
and locations even in low-light conditions and substantial nighttime occlusion.

Qualitative results demonstrate that the proposed MGMapNet effectively mitigates the shortcomings
associated with both instance-level and point-level queries, achieving superior accuracy in HD map
construction under complex conditions.

Results on Argoverse2. On the more complex Argoverse2 dataset, the performance of MGMap-
Net remains competitive. Tab.3 presents our results on the Argoverse2 validation dataset for 6
epochs. The Argoverse2 dataset provides two configurations for the representation of points: 2D
and 3D point coordinates. We conduct experiments on both configurations and achieve mAP scores
of 71.2 and 69.1 mAP in 6 epochs, respectively. This represents an improvement of 3.8 and 4.4
mAP respectively comparing with MapTRv2. Compared to the latest HIMap, which achieves 69.6
and 68.4 mAP in 2D and 3D configurations respectively, MGMapNet still surpasses it by 1.6 and
0.7 mAP. The results from other methods are sourced from the original paper, and the experimental
results demonstrate the competitiveness of MGMapNet.

Efficiency comparison. We conduct a comprehensive efficiency analysis of several open-source
models, focusing primarily on frames per second (FPS) and model parameters to substantiate the
efficacy of the models. As demonstrated in the last two columns of Tab. 1, our model achieves an
FPS of 11.7, which is comparable to the latest models, MapQR and MGMap. It is slightly lower
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Figure 3: Comparison with SOTAs on qualitative visualization on nuScenes val set.

Table 3: Comparison to the state-of-the-art on Argoverse2 val set.

Methods Map dim. APped APdiv APbou mAP

HDMapNet (Li et al., 2022a)

2

13.1 5.7 37.6 18.8
VectorMapNet (Liu et al., 2023a) 38.3 36.1 39.2 37.9
MapTRv2 (Liao et al., 2023) 62.9 72.1 67.1 67.4
MapQR (Liu et al., 2024b) 64.3 72.3 68.1 68.2
HIMap (Zhou et al., 2024) 69.0 69.5 70.3 69.6
MGMapNet 67.1 74.6 71.7 71.2

VectorMapNet (Liu et al., 2023a)

3

36.5 35.0 36.2 35.8
MapTRv2 (Liao et al., 2023) 60.7 68.9 64.5 64.7
MapQR (Liu et al., 2024b) 60.1 71.2 66.2 65.9
HIMap (Zhou et al., 2024) 66.7 68.3 70.3 68.4
MGMapNet 64.7 72.1 70.4 69.1

than MapTRv2 while outperforming methods like PivotNet. The model parameters are 70.1 MB,
which is lower than MapQR’s 120.3 MB but slightly higher than MGMap’s 55.9 MB.

4.3 ABLATION STUDY

We conduct ablation experiments on the nuScenes validation dataset under the 24 epoch training
setting, examining the effectiveness of the Multi-Granularity Attention, as well as the incremental
impact of the strategy optimization on the model’s performance. The influence of each component
in MGMapNet is demonstrated in Tab. 4.

Multi-Granularity Attention. Tab.4 illustrates the comparison between MPA and MGA, as well
as Point Instance Interaction. We initially employed MPA as the fundamental module with strat-

9
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Table 4: Effectiveness of key designs in Multi-Granularity Attention.

Method Point Instance Interaction mAPP2P attention P2I attention

Multi-Point Attention - - 59.6

Multi-Granularity Attention

- - 62.7
✓ - 64.8
- ✓ 65.0
✓ ✓ 66.8

Table 5: Ablation study of each optimization strategy.
Exp. Method mAP

Multi-Point Attention 55.9

(a) Multi-Granularity Attention 63.6 (+7.7)
(b) + Aux. Loss 64.4 (+0.8)
(c) + Multi-Scale 65.0 (+0.6)
(d) + Reference Point PE 66.2 (+1.2)
(e) + Add Query Number 66.8 (+0.6)

egy optimizations, achieving an mAP of 59.6. By replacing MPA with MGA and introducing more
appropriate queries, it captures fine-grained point and coarse-grained instance features. This en-
hancement facilitates a more nuanced and precise perception, ultimately achieving 66.8 mAP and
leading to 7.2 improvement in mAP. Additionally, only using the Multi-Granularity Aggregator, the
mAP is 62.7, indicating that the multi-granularity representation has led to an mAP increase of 3.1
compared to 59.6 for MPA. Further, when the P2P and P2I attention are introduced in the Point
Instance Interaction, the mAP increased by 2.1 and 2.3 respectively, reaching 64.8 and 65.0. The
simultaneous application of these improvements has boosted the model’s performance to 66.8 mAP,
an increase of 4.1 mAP. This highlights the significance of both attention modules in enhancing the
intrinsic relationships between the two granularities and improving model performance.

Strategy Optimization. As shown in Tab. 5, we also investigate the effectiveness of other strate-
gies used in MGMapNet. Experiment (a) demonstrates that Multi-Granularity Attention, as a re-
placement for Multi-Point Attention, achieves a mAP of 63.6, resulting in a 7.7 mAP increase
compared to the 55.9 mAP of Multi-Point Attention. Meanwhile, Experiment (b) reveals that the
inclusion of the auxiliary loss results in an improvement of the mAP by 0.8. Experiments (c), (d),
and (e) illustrate the effectiveness of using multi-scale approaches, adding the reference point posi-
tional encoding, and increasing the number of queries, which yield gains of 0.6, 1.2, and 0.6 mAP,
respectively. By optimizing with these strategies, our MGMapNet achieves 66.8 mAP, representing
state-of-the-art performance.

5 CONCLUSION AND DISCUSSION

In this paper, multi-granularity representation is proposed, enabling the end-to-end vectorized HD
Map construction using coarse-grained instance-level and fine-grained point-level queries. Through
the designed Multi-Granularity Attention, category and geometry information is exchanged. Our
proposed MGMapNet has achieved state-of-the-art (SOTA) single-frame performance on both the
nuScenes and Argoverse2 datasets.

However, our primary focus is on improving the quality of HD Map Construction. Addressing
real-time performance is a promising direction for future optimization. In addition, exploring some
temporal approaches as priors is also a direction worth considering. The mechanism of Multi-
Granularity Attention is generic, and it is worth trying to determine its effectiveness in topological
prediction or other autonomous driving tasks.

10
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A APPENDIX

In this appendix material, we provide additional analysis of the proposed MGMapNet, including:

• Visualization.

• Description of the auxiliary loss function.

• Efficiency comparisons.

• Supplementary experiments.

• Broader Impact Statement.

A.1 VISUALIZATION

We have visualized some comparative results in the supplementary material, as shown in Fig. 4 for
the nuScenes dataset and Fig. 5 for the Argoverse2 dataset.

In the visualization for the nuScenes dataset, from left to right, each column corresponds to the sur-
round view images, StreamMapNet, MapTRv2, and the proposed MGMapNet, respectively. From
top to bottom, each row represents a sample. It can be observed that in the initial three samples, Map-
TRv2 was unable to detect all the pedestrian crossings completely. In the fourth sample, the structure
of the pedestrian crossing is inaccurate. Meanwhile, the results from StreamMapNet indicate that
despite the detection of the majority of map instances, the instability of the shapes compromises
their ability to accurately detect map elements.

Similar phenomena can also be observed in the visualization for the Argoverse2 dataset. We can
see that in the first and second examples, MapTRv2 missed the middle boundary of the road and
the pedestrian crossing in front of the vehicle respectively, while MGMapNet successfully detected
both. In the third and fourth samples, MapTRv2 did not correctly detect the exit on the left side and
instead interpreted it as a continuous boundary. In the fifth example, in poor lighting conditions,
MGMapNet successfully detects the boundary on the left.

In summary, our MGMapNet demonstrates superior performance compared to MapTRv2 on the
quality of HD Map Construction.

A.2 DESCRIPTION OF THE AUXILIARY LOSS FUNCTION.

We introduce auxiliary losses, which comprise two components: the instance segmentation loss
Lins seg and the reference point loss Lref . The other Lpts, Lcls, Ldir and Ldense loss align with
MapTRv2.

The instance segmentation loss, denoted as Linsseg , not only segments BEV features but also re-
trieves more precise instance localization information for each individual query. First, we com-
pute the instance segmentation masks Mpred ∈ RH×W×Nq (Nq is the total number of instance-
level queries) by performing dot product operations between the updated instance-level queries
Qins ∈ RNq×C and the BEV features F ∈ RH×W×C . Subsequently, we utilize the indices of
positive samples obtained through the Hungarian algorithm to retrieve their corresponding masks
Mpred

pos and ground truths Mgt
pos. For each positive sample instance mask Mpred

pos ∈ RH×W×Npos

(Npos is the total number of positive query), we separately compute the segmentation loss by em-
ploying both Binary Cross-Entropy loss Lbce and Dice loss LDice.

The process of generating the Mpos is formulated as:

Mpred = F ·QT
ins,

where · denote dot product operations and the Lins seg is formulated as:

Lins seg =
1

Npos

Npos∑
i=1

(Ldice(M
pred
pos,i,M

gt
pos,i) + Lbce(M

pred
pos,i,M

gt
pos,i)),

where Mi denote the i-th positive instance mask.
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Additionally, the reference point loss Lref provides auxiliary supervision for reference points during
each iteration of the decoder. Similar to the Lpts loss, The Lref is computed by applying the Lpts

loss to the reference points RF and ground truth points Pgt at each layer. This ensures that each
sampling point achieves a more reasonable and accurate distribution.

A.3 EFFICIENCY COMPARISONS.

Table 6: Efficiency comparison with recent methods.
MapTR[ICLR2023] MapTRv2[IJCV2024] MGMap[CVPR2024] MapQR[ECCV2024] MGMapNet

FPS 16.9 14.1 12.0 11.9 11.7
GPU mem. (MB) 2314 2656 2402 2648 2790
Params (MB) 35.9 40.3 55.9 125.3 70.1
NuScenes mAP 50.3 61.5 64.8 66.4 66.8
Argoverse2 mAP 58 67.4 - 68.2 71.2

In Table 6, we present a comprehensive comparison of the latest models alongside the primary
baseline, detailing GPU memory usage, FPS, parameter counts, and performance. Time and space
complexity can be derived from FPS and GPU memory comparisons.

GPU mem. comparison. The memory usage (MB) of MapTR, MapTRv2, MGMap, MapQR,
and MGMapNet are 2314, 2656, 2402, 2648, and 2790 respectively. Our MGMapNet has a slight
increase in memory usage compared to other methods, which is understandable given we retained
two types of queries for different output regressions and classifications.

FPS comparison. MGMapNet, MapQR, and MGMap show similar performance with FPS scores of
11.7, 11.9, and 12, respectively. Although slightly slower than MapTRv2, MGMapNet’s inference
time complexity is similar to that of the latest methods.

Params comparison. The parameters (MB) of MGMapNet, MapQR, and MGMap are 70.1, 125.3,
and 55.9, respectively. Even though MGMapNet has a slightly higher parameter count due to its
Multi-Granularity query design and Point Instance Interaction, it still outperforms and has fewer pa-
rameters than MapQR’s 125MB. We believe there’s substantial room for optimization in MGMap-
Net.

Performance comparison. After training for 24 epochs on the NuScenes dataset, MGMapNet
achieved a mean average precision (mAP) of 66.8. On the Argoverse2 dataset, it reached an mAP of
71.2 after just 6 epochs. This demonstrates that MGMapNet maintains similar speed while achieving
better accuracy across different datasets.

In an overall efficiency analysis, our MGMapNet, thanks to its multi-granularity representation,
achieves better performance while maintaining similar parameters, speed, and memory usage com-
pared to the latest methods. The limitations of our method in terms of speed have been mentioned,
but we believe there is a significant room for optimization. Therefore, MGMapNet remains a com-
petitive model.

A.4 SUPPLEMENTARY EXPERIMENTS.

Table 7: Influnence of repeat number Nrep, the Nrep is set as 8.

Number APped APdiv APbou mAP

4 61.5 62.3 67.3 63.7
8 64.7 66.1 69.4 66.8
12 62.8 63.6 67.9 64.8

Hyperparameter Experimentation. We conducted experiments on the hyperparameters within
the model, including those for Nq and Nrep, as shown in Tab. 7 and Tab. 8. The parameter Nq = 100
and Nrep = 8 that we selected represents the optimal configuration. We believe that too few points
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are insufficient to describe local detail, while too many points can increase learning difficulty and
reduce performance.

Table 8: Influnence of query number Nq , the Nq is set as 100.

Number APped APdiv APbou mAP

50 64.9 66.1 67.3 66.2
75 64.6 65.9 69.1 66.5
100 64.7 66.1 69.4 66.8
125 66.8 63.0 69.6 66.4

Table 9: Influnence of Multi-Scale BEV feature.
Shape APped APdiv APbou mAP

(200,100) 64.1 64.9 68.7 65.9
(100,50) 64.6 65.3 69.3 66.3
Multi-Scale 64.7 66.1 69.4 66.8

Table 10: Long-term training results of Argoverse2.
Methods APped APdiv APbou mAP

MapTRv2 (Liao et al., 2023) 68.3 74.1 69.2 70.5
HIMap (Zhou et al., 2024) 72.4 72.4 73.2 72.7

MGMapNet 71.3 76.0 73.1 73.6

Multi-Scale BEV feature Performance. In Tab. 9, we conducted ablation experiments on the
scale of BEV features in MGMapNet, including two different BEV sizes and multi-scale. The
results showed that when the BEV size is 200×100 and 100×50, the mAP values are 65.9 and 66.3,
respectively. By using multi-scale BEV features, we can capture diverse lengths of map elements,
and the mAP reached 66.8.

Ablation study on the hyperparameters Loss Function Laux. The configuration of other losses
follows the original Maptrv2 scheme. As shown in Tab. 11, when the loss weight is 0, the mAP
is 65.8; however, when the weight increases to 3, the mAP increases to 66.8, which is the optimal
result, proving the effectiveness of the auxiliary loss. Additionally, the experiments demonstrate that
a configuration with a weight of 3 is optimal.

Long-term training results of Argoverse2. Most models only report experimental results for 6
epochs, while we present the long-term training results for 24 epochs 2D point coordinates here. As
shown in the Tab. 10, MGMapNet still performs exceptionally well.

A.5 BROADER IMPACT STATEMENT

The deployment of autonomous driving technology brings both opportunities and challenges. It can
greatly enhance road safety and improve mobility for those unable to drive. However, it may also
lead to job displacement and raises ethical and legal issues. Our research aims to develop safe and
efficient autonomous driving technology, while considering its societal implications. We advocate
for transparent discussions with all stakeholders to ensure responsible application of this technology.
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Figure 4: Visualization on nuScenes val set.

Table 11: Ablation Experiments on Loss Function Laux.
loss weight APped APdiv APbou mAP

0 63.7 65.0 68.7 65.8
1 64.0 64.8 69.5 66.1
2 64.0 66.3 68.9 66.4
3 64.7 66.1 69.4 66.8
4 64.5 65.9 69.1 66.5
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Figure 5: Visualization on Argoverse2 val set.

18


	Introduction
	Related Work
	Method
	Overall Architecture
	Multi-Granularity Attention
	Multi-Granularity Aggregator
	Point Instance Interaction


	Experiments
	Experimental Settings
	Comparisons with State-of-the-art Methods
	Ablation Study

	Conclusion and Discussion
	Appendix
	Visualization
	Description of the auxiliary loss function.
	Efficiency comparisons.
	Supplementary experiments.
	Broader Impact Statement


