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Abstract

We study semi-supervised domain generalization (SSDG), a more realistic prob-
lem setting than existing domain generalization research. In particular, SSDG
assumes only a few data are labeled from each source domain, along with abundant
unlabeled data. Our proposed approach, called StyleMatch, extends FixMatch’s
two-view consistency learning paradigm in two crucial ways to address SSDG:
first, stochastic modeling is applied to the classifier’s weights to mitigate overfit-
ting in the scarce labeled data; and second, style augmentation is integrated as a
third view into the multi-view consistency learning framework to enhance robust-
ness to domain shift. Two SSDG benchmarks are established where StyleMatch
outperforms strong baseline methods developed in relevant areas including do-
main generalization and semi-supervised learning. The source code is released at
https://github.com/KaiyangZhou/ssdg-benchmark.

1 Introduction

Most existing domain generalization (DG) methods assume data obtained from different source
domains are fully annotated [4} [11} [12} [10} [1} 3, [14} 22 23] 20L 21]. In this work, we turn to a more
realistic and practical setting called semi-supervised domain generalization (SSDG), where only
a few source data are labeled while the majority of them are unlabeled. The goal is to design a
data-efficient DG algorithm that can utilize the unlabeled source data while coping with heterogeneity
caused by different sources that further increases the difficulty of the problem.

In this paper, we propose a simple yet effective approach called StyleMatch, which extends Fix-
Match [15] by i) introducing uncertainty to the classifier’s weights—to reduce overfitting—and ii)
integrating style augmentation into the multi-view consistency learning framework. For evaluation,
we establish two SSDG benchmarks based on two widely used DG datasets and include a wide
range of strong baseline methods developed for domain generalization and semi-supervised learn-
ing for comparison. The results demonstrate that StyleMatch achieves the best out-of-distribution
generalization performance.

2 Our Approach

Our approach, StyleMatch, consists of two key components: a multi-view consistency learning
paradigm and a stochastic classifier, which are sketched in Figure[Ia) and (b) respectively. Below
we talk about these two components in more detail.

Multi-view Consistency Learning StyleMatch is built on top of FixMatch [15], a SOTA semi-
supervised method based on pseudo-labeling: the predictions made on strongly augmented data
should match the pseudo labels predicted using the weakly augmented counterparts (see the top-
two streams in Figure [T(a)). To enhance domain-generalizable feature learning, we add a third
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Figure 1: Two core components in StyleMatch.

complementary view based on style transfer [7], which is shown in the bottom stream in Figure[I|(a).
This design is motivated by the observation that image style is closely related to visual domain [23];
and by generating structural patterns through style transfer, we can complement strong augmentation
that only covers geometrical and color intensity transformations. During training, we randomly
sample images from all source domains and apply AdalN [7] to map images from one domain to
another.

Stochastic Classifier To reduce overfitting on the scarce labeled source data, we build a stochastic
classifier that models the classifier’s weights using Gaussian distributions, shown in Figure [[{b). In
doing so, instead of optimizing a fixed set of weights, we optimize their probability distributions,
essentially learning an ensemble of classifiers. Formally, let W = [wy, ..., wc]? denote a set of
weight vectors for C' classes—each seen as a class prototype—and z the features for an image x, the
matrix-vector multiplication of W z essentially computes the (cross-correlation) similarity between
the image @ and each class prototype w,. with ¢ € {1, ..., C}. In the stochastic classifier, each w
is modeled using a Gaussian distribution parameterized by N (u., o2). At each training step, we
sample for each class the prototype from a probability distribution, w. ~ N (g, 0?). To allow
end-to-end optimization, we employ the widely used reparameterization trick [} 2] to bypass the
discrete sampling process,

w, = p + softplus(o.) © € where €~ N(0,1). (1)

Once all class prototypes are obtained, the similarity scores can be computed based on cosine
similarity (denoted by sim(-, -)), which are then passed to the softmax function for generating a
normalized probability distribution,

exp(sim(z, wy)/T)
S exp(sim(z, we) /7))’

where 7 is a temperature hyper-parameter, which is fixed to 0.05. At test time, we simply use the
mean parameters of the probability distributions (i.e. w. = p.) to classify images in a deterministic
manner.

plylz) = 2)

3 Experiments

SSDG Benchmarks We repurpose two widely used DG datasets, PACS [9]] and OfficeHome [[17],
for benchmarking SSDG methods. These two datasets focus on image classification. PACS consists
of four distinct domains—art painting, cartoon, photo, and sketch—and contains 9,991 images of 7
classes in total. The domain shift is mainly concerned with image style changes. OfficeHome also
has four domains: art, clipart, product, and real world. It contains more images than PACS: around
15,500 images of 65 classes, which are related to office and home objects, such as computer, chair,
and bed.

Evaluation Metrics The common leave-one-domain-out protocol is adopted: three domains are
used as the sources while the remaining one as the target. A model is first trained using only the source
data, and then directly deployed in the target domain. Top-1 accuracy is used as the performance



Table 1: Domain generalization results in the low-data regime on PACS (averaged over 5 random

splits). A: Art painting. C: Cartoon. P: Photo. S: Sketch. u: use unlabeled source data.

# labels: 210 (10 per class)

# labels: 105 (5 per class)

Model “I'A ¢ p S Ag| A C P S Avg
Full-Labels ‘ - ‘ 76.95 7590 9596 69.20 79.50 ‘ 76.95 7590 9596 69.20 79.50
Domain generalization methods
Vanilla X |63.09 5849 86.56 4556 63.42|56.71 53.87 71.87 3692 54.84
CrossGrad [14] X | 6256 58.92 85.81 44.11 62.85|56.39 55.11 72.61 38.08 55.55
DDAIG [22] X | 6195 58.74 8444 4748 63.15|55.09 5231 70.53 38.89 54.20
MixStyle [23]] X |71.11 64.04 88.99 54.62 69.69 | 62.00 58.40 80.43 43.58 61.10
EISNet [18] v |66.84 6133 89.16 51.38 67.18|62.08 54.75 80.66 42.68 60.04
Semi-supervised learning methods
MeanTeacher [16] | v | 62.41 57.94 8595 47.66 63.49 |56.00 52.64 73.54 3697 54.79
EntMin [5] v | 7277 70.55 89.39 5438 71.77|67.01 65.67 7999 4796 65.16
FixMatch [15] v | 78.01 6893 87.79 73.75 77.12|77.30 68.67 80.49 73.32 74.94
Semi-supervised domain generalization methods
StyleMatch (ours) ‘ v ‘ 79.43 73.75 90.04 78.40 80.41 ‘ 78.54 74.44 89.25 79.06 80.32

Table 2: Domain generalization results in the low-data regime on OfficeHome (averaged over 5
random splits). A: Art. C: Clipart. P: Product. R: Real world. u: use unlabeled source data.

# labels: 1950 (10 per class) # labels: 975 (5 per class)
Model “IA  C P R Ag| A C P R Ay
Full-Labels - ‘ 58.88 49.42 7430 7621 64.70 ‘ 58.88 49.42 7430 76.21 64.70
Domain generalization methods
Vanilla X [50.11 4350 65.11 69.65 57.09|45.76 39.97 60.04 63.77 52.38
CrossGrad [14] X 5032 4327 65.16 6949 57.06 |45.68 40.04 59.95 64.09 52.44
DDAIG [22] X |49.60 42.52 63.54 67.89 55.89|45.73 38.82 59.52 6337 51.86
MixStyle [23] X |49.79 47.12 64.18 68.42 57.38|46.51 43.59 59.66 6330 53.26
EISNet [18]] v |51.16 4333 64.72 68.36 56.89 |47.32 40.07 59.33 62.59 52.33
Semi-supervised learning methods
MeanTeacher [16] | v | 49.92 4342 64.61 68.79 56.69 | 44.65 39.15 59.18 62.98 51.49
EntMin [5] vV 5192 4492 6685 70.52 58.55|48.11 41.72 62.41 63.97 54.05
FixMatch [15] v | 5036 49.70 63.93 67.56 57.89|48.98 47.46 60.70 64.36 55.38
Semi-supervised domain generalization methods
StyleMatch (ours) | v/ | 52.82 51.60 6531 68.61 59.59 | 51.53 50.00 60.88 64.47 56.72

measure. Two SSDG settings are designed. In the first setting, we randomly sample 10 images
per class from each source domain and use the rest as unlabeled data. The second setting tests a
much more challenging scenario: only five labeled images are available for each class in each source
domain. Results are averaged over five random splits.

Training Details The ImageNet-pretrained ResNet18 [6] is used as the CNN backbone. We
randomly sample 16 images from each source domain to construct a minibatch, for labeled and
unlabeled data, respectively. Following FixMatch, the labeled minibatch is used for computing the
labeled loss, while both labeled and unlabeled minibatches are used to compute the two unlabeled
losses. The initial learning rate is set to 0.003 for the pretrained backbone and 0.01 for the randomly
initialized stochastic classifier, both decayed by the cosine annealing rule. The number of training
epochs is 40 for PACS and 20 for OfficeHome. We use a single Tesla V100 GPU for model training.
Our implementation is based on the public Dassl.pytorch toolbox

"https://github.com/KaiyangZhou/Dassl.pytorch,
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Figure 2: Ablation study on two key components in StyleMatch: the stochastic neural network (SNN)
classifier and the style augmentation Ty ;..

Results on PACS  The results are presented in Table [I| where we include SOTA domain gener-
alization (DG) and semi-supervised learning (SSL) methods for comparison. Full-Labels follows
Vanilla’s training strategy but uses all labels in each source domain. It can be seen that most DG
methods do not work well given the limited labeled data. MixStyle performs exceptionally well
compared to its fellows, suggesting that feature-level augmentation has a good potential in tackling
label shortage. Nonetheless, the gap between MixStyle and Full-Labels is still huge. Among all
DG methods, only EISNet can use the unlabeled source data due to its self-supervised loss based
on Jigsaw puzzles [13]], and has apparently benefited from this design. The SSL methods generally
outperform the DG methods. Among them, FixMatch achieves outstanding performance. Finally, our
StyleMatch demonstrates clear advantages over all baselines. It is also worth noting that only our
approach suffers the smallest performance drops in the 5-shots setting.

Results on OfficcHome  The results are shown in Table[2] The gaps between different methods are
generally smaller than those on PACS—this is because OfficeHome has more classes and thus poses
more challenges. Therefore, a small increase in the accuracy on OfficeHome would be appreciated.
The observations are similar to those on PACS: most DG methods fail to beat Vanilla and the
SSL methods are generally better. StyleMatch again achieves the best overall out-of-distribution
generalization performance. Nonetheless, the gaps with Full-Labels are noticeable, suggesting that
there is still room for improvements for future work.

Ablation Study We conduct a comprehensive ablation study to examine the effectiveness of the
two proposed components: the SNN classifier and the style augmentation T’s;,;.. We repeat the
experiments on PACS and OfficeHome by sequentially adding these two components to FixMatch.
Figure [2] shows the results of this ablation study with a focus on the average accuracy over all target
domains. We observe that SNN contributes around 2% and 1% increase to the performance on PACS
and OfficeHome, respectively, and Ty, further boosts the performance. In particular, by adding
Tsty1e to FixMatch+SNN, the improvements obtained are higher in the lower-data setting on both
datasets, suggesting that Ty;,;. (multi-view consistency learning) is essential when dealing with
extremely scarce labels.

We leave more analytical studies in Appendix including the effect of SNN, complementarity in
augmentation methods and the impact of number of sources.

4 Conclusion

Semi-supervised domain generalization, a more realistic and practical setting, greatly challenges the
design of existing DG methods. We show that with limited labels the previous top-performing DG
methods fail to learn generalizable representations, while our specifically designed StyleMatch gains
huge improvements in reducing the gap with full-labels training. Nonetheless, we observe that pseudo
labels’ accuracy is much lower in our setting compared to that in a traditional semi-supervised setting
where data are sampled from a single distribution. Therefore, future work can be focused on designing
new formulations to incorporate source domain shift for building more robust semi-supervised domain
generalization algorithms.
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Figure 3: Pseudo-labeling accuracy (solid+circle) vs. over-confidence rate (dashed+triangle). With-
out the SNN-based classifier, the model suffers from severe overfitting, which is reflected in the

over-confidence rate overshooting the pseudo-labeling accuracy.

Table 3: Strong vs. style augmentation. Table 4: Impact on number of sources (K).

PACS PACS
StyleMatch’s variants 10 lab/cls 5 lab/cls 10 lab/cls 5 lab/cls
T'strong-only 79.61 76.05 K=1K=2K=3K=1K=2K=3
Tstyle'only 72.61 69.72 .
80.41 80.32 FixMatch  53.55 71.42 77.12 4991 68.52 74.94

Tstrong +Tstyte StyleMatch 57.29 74.50 80.41 52.24 71.95 80.32

A Appendix

A.1 Further Analysis

Stochastic Classifier Reduces Overfitting To understand how the stochastic classifier improves
learning, we compare FixMatch+SNN with FixMatch using two metrics: pseudo-labeling accuracy
and over-confidence rate, which are measured for each minibatch data received at each training
step. The first metric measures the accuracy of pseudo labels, while the over-confidence rate counts
how many pseudo labels in a minibatch pass the confidence threshold. Ideally, we do not want the
over-confidence rate to climb above the pseudo-labeling accuracy as this would mean the network
predicts excessive incorrect pseudo labels with high confidence, which hurt generalization [19]].
Figure [3|shows the comparisons. In (a), the over-confidence rate of FixMatch+SNN steadily increases
and eventually converges to a similar level as the pseudo-labeling accuracy. In contrast, without SNN,
the over-confidence rate overshoots the pseudo-labeling accuracy in the middle of training. In (b),
the overfitting issue for FixMatch intensifies—the over-confidence rate outpaces the pseudo-labeling
accuracy at the early training stage and the pseudo-labeling accuracy stops improving since then. In
contrast, the curves for FixMatch+SNN look much healthier.

Complementarity in Augmentation Methods To provide an in-depth analysis of the role of
augmentation methods, we evaluate three variants of StyleMatch: Ty.pg-0nly, Tty-only, and
Tstrong + Tstyte- Tstrong-only and Tiiy.-only are based on the two-view consistency learning
paradigm and T's;yng +Tstyie refers to the final model. Table E] shows the results of this ablation
study on PACS. We observe that 1) T's¢;opg is more suitable than Ty, to be used in the two-view
consistency learning framework, and 2) combining these two augmentation methods leads to a much

better performance, which justifies their complementarity.
Impact on Number of Sources The previous experiments use three sources. To investigate the
impact on the number of sources, we further conduct experiments by reducing the number of sources

from three to two/one. For each target domain, the experiments cover all possible scenarios with
different combinations of sources, each following the five random splits. For example, when sketch is



used as the target and the number of sources is set to two, there are three different scenarios: 1) art
painting and cartoon as the sources, 2) art painting and photo as the sources, and 3) cartoon and photo
as the sources. The average accuracy is shown in Table d] Note that when K = 1, we mix image
style between random instances from the same domain for StyleMatch. The results demonstrate that
StyleMatch outperforms FixMatch in all scenarios, even in the single-source case—this means mixing
instance-level style also helps, which is consistent with the observation in a recent work that mixes
instance-level feature statistics [23]]. By increasing K from 2 to 3, StyleMatch gains 5.91% (from
74.50% to 80.41%) and 8.37% (from 71.95% to 80.32%) respectively in the 10- and 5-labels-per-class
settings, while FixMatch’s gains are 5.7% (from 71.42% to 77.12%) and 6.42% (from 68.52% to
74.94%) respectively, which are smaller than those of StyleMatch. Therefore, StyleMatch benefits
more from having more sources, which makes sense: T, can generate more diverse images given
more sources.
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