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ABSTRACT

With the increasing number of new neural architecture designs and substantial ex-
isting neural architectures, it becomes difficult for the researchers to situate their
contributions compared with existing neural architectures or establish the connec-
tions between their designs and other relevant ones. To discover similar neural ar-
chitectures in an efficient and automatic manner, we define a new problem Neural
Architecture Retrieval which retrieves a set of existing neural architectures which
have similar designs to the query neural architecture. Existing graph pre-training
strategies cannot address the computational graph in neural architectures due to
the graph size and motifs. To fulfill this potential, we propose to divide the graph
into motifs which are used to rebuild the macro graph to tackle these issues, and
introduce multi-level contrastive learning to achieve accurate graph representation
learning. Extensive evaluations on both human-designed and synthesized neural
architectures demonstrate the superiority of our algorithm. Such a dataset which
contains 12k real-world network architectures, as well as their embedding, is built
for neural architecture retrieval. Our project is available at www.terrypei.com/nn-
retrieval.

1 INTRODUCTION

Deep Neural Networks (DNNs) have proven their dominance in the field of computer vision tasks,
including image classification (He et al., 2016; Zagoruyko & Komodakis, 2016; Liu et al., 2021;
Dong et al., 2021; Wang et al., 2018), object detection (Tian et al., 2019; Carion et al., 2020; Tan
et al., 2020), etc. Architecture designs play an important role in this success since each innovative
and advanced architecture design always lead to a boost of network performance in various tasks.
For example, the ResNet family is introduced to make it possible to train extremely deep networks
via residual connections (He et al., 2016), and the Vision Transformer (ViT) family proposes to split
the images into patches and utilize multi-head self-attentions for feature extraction, which shows
superiority over Convolutional Neural Networks (CNNs) in some tasks (Dosovitskiy et al., 2020).
With the increasing efforts in architecture designs, an enormous number of neural architectures have
been introduced and open-sourced, which are available on various platforms 1.

Information Retrieval (IR) plays an important role in knowledge management due to its ability to
store, retrieve, and maintain information. With access to such a large number of neural architec-
tures on various tasks, it is natural to look for a retrieval system which maintains and utilizes these
valuable neural architecture designs. Given a query, the users can find useful information, such as
relevant architecture designs, within massive data resources and rank the results by relevance in low
latency. To the best of our knowledge, this is the first work to setup the retrieval system for neural
architectures. We define this new problem as Neural Architecture Retrieval (NAR), which returns a
set of similar neural architectures given a query neural architecture. NAR aims at maintaining both

1https://huggingface.co/, https://pytorch.org/hub/
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existing and potential neural architecture designs, and achieving efficient and accurate retrieval, with
which the researchers can easily identify the uniqueness of a new architecture design or check the
existing modifications on a specific neural architecture.

Embedding-based models which jointly embed documents and queries in the same embedding space
for similarity measurement are widely adopted in retrieval algorithms (Huang et al., 2020; Chang
et al., 2020). With accurate embedding of all candidate documents, the results can be efficiently
computed via nearest neighbor search algorithms in the embedding space. At first glance of NAR, it
is easy to come up with the graph pre-training strategies via Graph Neural Networks (GNNs) since
the computational graphs of networks can be easily derived to represent the neural architectures.
However, existing graph pre-training strategies cannot achieve effective learning of graph embed-
ding directly due to the characteristic of neural architectures. One concern lies in the dramatically
varied graph sizes among different neural architectures, such as LeNet-5 versus ViT-L. Another
concern lies in the motifs in neural architectures. Besides the entire graph, the motifs in neural
architectures are another essential component to be considered in similarity measurement. For ex-
ample, ResNet-50 and ResNet-101 are different in graph-level, however, their block designs are
exactly the same. Thus, it is difficult for existing algorithms to learn graph embedding effectively.

In this work, we introduce a new framework to learn accurate graph embedding especially for neural
architectures to tackle NAR problem. To address the graph size and motifs issues, we propose to
split the graph into several motifs and rebuild the graph by treating motifs as nodes in a macro graph
to reduce the graph size as well as take motifs into consideration. Specifically, we introduce a new
motifs sampling strategy which encodes the neighbours of nodes to expand the receptive field of
motifs in the graph to convert the graph to an encoded sequence, and the motifs can be derived by
discovering the frequent subsequences. To achieve accurate graph embedding learning which can be
easily generalized to potential unknown neural architectures, we introduce motifs-level and graph-
level pre-train tasks. We include both human-designed neural architectures and those from NAS
search space as datasets to verify the effectiveness of proposed algorithm. For real-world neural
architectures, we build a dataset with 12k different architectures collected from Hugging Face and
PyTorch Hub, where each architecture is associated with an embedding for relevance computation.

Our contributions can be summarized as: 1. A new problem Neural Architecture Retrieval which
benefits the community of architecture designing. 2. A novel graph representation learning algo-
rithm to tackle the challenging NAR problem. 3. Sufficient experiments on the neural architectures
from both real-world ones collected from various platforms and synthesized ones from NAS search
space, and our proposed algorithm shows superiority over other baselines. 4. A new dataset of 12k
real-world neural architectures with their corresponding embedding.

2 RELATED WORK

Human-designed Architecture Researchers have proposed various architectures for improved
performance on various tasks (Li et al., 2022a; Dong et al., 2023). GoogLeNet uses inception mod-
ules for feature scaling (Szegedy et al., 2015). ResNet employs skip connections (He et al., 2016),
DenseNet connects all layers within blocks (Huang et al., 2017), and SENet uses squeeze-and-
excitation blocks for feature recalibration (Hu et al., 2018). ShuffleNet, GhostNet and MobileNet
aim for efficiency by shuffle operations (Zhang et al., 2018), cheap feature map generation (Han
et al., 2020; 2022) and depthwise separable convolutions (Howard et al., 2017). In addition to
CNNs, transformers have been explored in both CV and NLP. BERT pre-trains deep bidirectional
representations (Devlin et al., 2018), while (Dosovitskiy et al., 2020) and (Liu et al., 2021) apply
transformers to image patches and shifted windows, respectively.

Neural Architecture Search Neural Architecture Search (NAS) automates the search for optimal
CNN designs, as evidenced by works such as (Dong et al., 2020; Li et al., 2022b; Baker et al., 2016;
Vahdat et al., 2020; Guo et al., 2020; Chen et al., 2021; Niu et al., 2021; Guo et al., 2021). Recently, it
has been extended to ViTs (Su et al., 2022). AmoebaNet evolves network blocks (Real et al., 2019),
while (Zoph et al., 2018) use evolutionary algorithms to optimize cell structures. DARTS employs
differentiable searching (Liu et al., 2018), and PDARTS considers architecture depths (Chen et al.,
2019). (Dong & Yang, 2019) use the Gumbel-Max trick for differentiable sampling over graphs.
NAS benchmarks have also been developed (Ying et al., 2019; Dong & Yang, 2020). This work
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aims at the neural architecture retrieval of all existing and future neural architectures instead of
those within a pre-defined search space.

Graph Pre-training Strategy Graph neural networks become an effective method for graph repre-
sentation learning (Hamilton et al., 2017; Li et al., 2015; Kipf & Welling, 2016). To achieve gen-
eralizable and accurate representation learning on graph, self-supervised learning and pre-training
strategies have been widely studied (Hu et al., 2019; You et al., 2020; Velickovic et al., 2019).
Velickovic et al. (2019) used mutual information maximization for node learning. Hamilton et al.
(2017) focused on edge prediction. Hu et al. (2019) employed multiple pre-training tasks at both
node and graph levels. You et al. (2020) use data augmentations for contrastive learning. Different
from previous works which focused on graph or node pre-training, this work pay more attention to
the motifs and macro graph of neural architectures in pre-train tasks designing due to the character-
istic of neural architectures.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

Given a query of neural architecture Aq , our proposed neural architecture retrieval algorithm returns
a set of neural architectures {Ak}Kk=1 ∈ A, which have similar architecture as Aq . In order to
achieve efficient searching of similar neural architectures, we propose to utilize a network F to
map each neural architecture Aq ∈ A to an embedding Hq where the embedding of similar neural
architectures are clustered. We denote the set of embedding of existing neural architectures as H.
Through the derivation of embedding Hq of the query neural architecture Aq , a set of similar neural
architectures {Ak}Kk=1 = {A1, A2, ..., AK} can be found through similarity measurement:

Hq ← F(Aq); {Ik}Kk=1 ← argsort
Hi∈H

[
Hq ·Hi

∥Hq∥ · ∥Hi∥
,K

]
, (1)

where argsort[·,K] denotes the function to find the indices Ik of the maximum K val-
ues given a pre-defined similarity measurement, and we use cosine similarity in Eq. 1.
With the top-k similarity indices, we can acquire the {Ak}Kk=1 from the candidates A.

Figure 1: The definition of Neural Architecture
Retrieval (NAR). This paper explores pre-training
an encoder F to build a neural network embed-
ding databaseH based on the architecture designs.

A successful searching of similar neural archi-
tectures requires an accurate, effective, and ef-
ficient embedding network F . Specifically, the
network F is expected to capture the architec-
ture similarity and be generalized to Out-of-
Distribution (OOD) neural architectures. To
design network F , we first consider the data
structure of neural architectures. Given the
model definition, the computational graph can
be derived from an initialized model. With
the computational graph , the neural architec-
tures can be represented by a directed acyclic
graph where each node denotes the operation
and edge denotes the connectivity. It is natural
to apply GNNs to handle this graph-based data.
However, there exists some risks when it comes to neural architectures. First, the sizes of the neural
architecture graphs vary significantly from one to another, and the sizes of models with state-of-the-
art performance keep expanding. For example, a small number of operations are involved in AlexNet
whose computational graph is in small size Krizhevsky et al. (2012), while recent vision transformer
models contain massive operations and their computational graphs grow rapidly Dosovitskiy et al.
(2020). Thus, given extremely large computational graphs, there exists an increasing computational
burden of encoding neural architectures and it could be difficult for GNNs to capture valid architec-
ture representations. Second, different from traditional graph-based data, there exist motifs in neural
architectures. For example, ResNets contains the block design with residual connections and vision
transformers contain self-attention modules He et al. (2016); Dosovitskiy et al. (2020), which are
stacked for multiple times in their models. Since these motifs reflect the architecture designs, taking
motifs into consideration becomes an essential step in neural architecture embedding.
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Figure 2: An illustration of motifs sampling strategy. The graph nodes encode their neighbours in
adjacent matrix via an iterative manner to form the encoded node sequence where each node denotes
a subgraph and motifs denote the subsequence.

3.2 MOTIFS IN NEURAL ARCHITECTURE

To capture the repeated designs in the neural architectures, we propose to discover the motifs in
computational graphs G. The complexity of searching motifs grows exponentially since the size and
pattern of motifs in neural architectures are not fixed. For efficient motifs mining, we introduce a
new motifs sampling strategy which encodes the neighbours for each node to expand the receptive
field in the graph. An illustration is shown in Figure 2. Specifically, given the computational graph
G with m nodes, we first compute the adjacent matrixM∈ Rm×m and label the neighbour pattern
for each node via checking the columns of adjacent matrix. As shown in the left part of Figure
2, a new label is assigned to each new pattern of sequence in M1:m,i, where we denote the label
of node Ni as Ci. With C encoding the first order neighbours, each node can be represented by a
motif. Through performing this procedure by s steps in an iterative manner, the receptive field can
be further expanded. Formally, the node encoding can be formulated as

Mk
1:m,i = ENM(Mk−1

1:m,i), C
k
1:m = ENC(Mk), ENM(Mk

j,i) =

{
Ck−1

j , ifMk−1
j,i ̸= 0

Mk−1
j,i , otherwise

,

(2)
where k denotes the encoding step, and ENC denotes the label function which assigns new or ex-
isting labels to the corresponding sequence in Mk. With Eq. 2 after s steps, the computational
graph is converted to a sequence of encoded nodes Cs and each node encodes order-s neighbours
in the graph. The motifs can be easily found in Cs through discovering the repeated subsequences.
In Figure 2, we illustrate with a toy example which only considers the topology in adjacent matrix
without node labels and takes the parents as neighbours. However, we can easily generalize it to the
scenario where both parents and children are taken into consideration as well as node labels through
the modification of adjacent matrixM1 at the first step.

3.3 MOTIFS TO MACRO GRAPH

With the motifs in neural architectures, the aforementioned risks including the huge computational
graph size and the involvement of motifs in neural architectures can be well tackled. Specifically, we
propose to represent each motif Gs as a node with an embedding Hsg and recover the computational
graph G to form a macro graph Gm through replacing the motifs in G by the motifs embedding
according to the connectivity among these motifs. An illustration of macro graph setup is shown
in Figure 3 (a). All the motifs are mapped from Gs to the embedding Hsg respectively through a
multi-layer graph convolutional network as

H(l+1)
sg = σ(D̂− 1

2M̂sgD̂
− 1

2H(l)
sg W

(l)), (3)

where l denotes the layer, σ denotes the activation function, W denotes the weight parameters, D̂
denotes diagonal node degree matrix of M̂sg , and M̂sg = Msg + I where Msg is the adjacent
matrix of motif Gs and I is the identity matrix. Since we propose to repeat s steps in Eq. 2 to cover
the neighbours in the graph, the motifs have overlapped edges, such as edge 0→ 1 and edge 3→ 4
in Figure 3 (a), which can be utilized to determine the connectivity of the nodes Hsg in the macro
graph. Based on the rule that the motifs with overlapped edges are connected, we build the macro
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Figure 3: An illustration of macro graph setup and pre-training in motifs-level and graph-level.

graph where each node denotes the motif embedding. With macro graph, the computational burden
of GCNs due to the huge graph size can be significantly reduced. Furthermore, some block and
module designs in neural architectures can be well captured via motifs sampling and embedding.
For a better representation learning of neural architectures, we introduce a two-stage embedding
learning which involves pre-train tasks in motifs-level and graph-level respective.

3.4 MOTIFS-LEVEL CONTRASTIVE LEARNING

In motifs embedding, we use GCNs to obtain the motif representations. For accurate representation
learning of motifs which can be better generalized to OOD motifs, we introduce the motifs-level
contrastive learning through the involvement of context graph Gc. We define the context graph of a
motifs Gs as the combined graph of Gs and the k-hop neighbours of Gs in graph G. A toy example
of context graph with 1-hop neighbours is shown in Figure 3 (b). For example, we sample the motif
with nodes 0 and 1 from the graph, the context graph of this motif includes node 2 and 3 in its 1-hop
neighbours. With the motifs and their context graphs, we introduce a motifs-level pre-train task in
a contrastive manner. Formally, given a motif Gs ∈ Gs, we denote the corresponding context graph
of Gs as the positive sample G+

c and the rest context graph of motifs Gs as the negative samples
G−

c . We denote the two GCN network as Fs and Fc defined in Eq. 3, the contrastive loss can be
formulated as

Ls = −log
ed(Hsg,Hc)

ed(Hsg,Hc) +
∑|Gs−1|

k=1 ed(Hsg,H′
k)
, (4)

where Hsg = Fs(Gs), Hc = Fc(G
+
c ), H ′ = Fc(G

−
c ), and d denotes the similarity measurement

which we use cosine distance. With Eq. 4 as the motifs-level pre-training objective, an accurate
representation of motifs Hsg can be derived in the first stage. Note that Hc and H ′ only exist in the
training phase and are discarded during inference phase.

3.5 GRAPH-LEVEL PRE-TRAINING STRATEGY

With the optimized motifs embedding H∗
sg from Eq. 4, we can build the macro graph Gm with

a significantly reduced size. Similarly, we use a GCN network Fm defined in Eq. 3 to embed
Gm as Hm = Fm(Gm). For the clustering of similar graphs, we propose to include contrastive
learning and classification as the graph-level pre-train tasks via a low level of granularity, such as
model family. An illustration is shown in Figure 3 (c). For example, ResNet-18, ResNet-50, and
WideResNet-34-10 He et al. (2016); Zagoruyko & Komodakis (2016) belong to the ResNet family,
while ViT-S, Swin-L, Deit-B Dosovitskiy et al. (2020); Liu et al. (2021); Touvron et al. (2021)
belong to the ViT family. Formally, given a macro graph Gm, we denote a set of macro graphs
which belong to the same model family of Gm as the positive samples G+m with size K+ and those
not as negative samples G−m with size K−. The graph-level contrastive loss can be formulated as

Lm = −log
∑K+

k=1 e
d(Hm,H+

m(k))∑K+

k=1 e
d(Hm,H+

m(k)) +
∑K−

k=1 e
d(Hm,H−

m(k))
, (5)

where H+
m(k) = Fm(G+m(k)), H−

m(k) = Fm(G−m(k)). Besides the contrastive learning in Eq. 5,
we also include the macro graph classification as another pre-train task which utilizes model family
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as the label. The graph-level pre-training objective can be formulated as
LG = Lm(Fm;Hsg) + Lce(f ;Hm, c), (6)

where Lce denotes the cross-entropy loss, f denotes the classifier head, and c denote the ground-
truth label. With the involvement of contrastive learning and classification in Eq. 6, a robust graph
representation learning can be achieved where the embedding Hm with similar neural architecture
designs are clustered while those different designs are dispersed. The two-stage learning can be
formulated as

min
Fm,f

LG(Fm, f ;H∗
sg, c), s.t. argmin

Fs,Fc

Ls(Fs,Fc;G). (7)

In inference phase, the optimized GCNs of embedding macro graph Fm and motifs Fs are involved,
the network F in Eq. 1 can be reformulated as

F(A) = Fm

(
Agg[Fs(Mss(A))]

)
, (8)

where Agg denotes the aggregation function which aggregates the motifs embedding to form macro
graph, and Mss denotes the motifs sampling strategy.

4 EXPERIMENTS

In this section, we conduct experiments with both real-world neural architectures and NAS archi-
tectures to evaluate our proposed subgraph splitting method and two-phase graph representation
learning method. We also transfers models pre-trained with NAS architectures to real-world neural
architectures.

4.1 DATASETS

Data Collection: We crawl 12, 517 real-world neural architecture designs from public reposi-
tories which have been formulated and configured. These real-world neural architectures cover
most deep learning tasks, including image classification, image segmentation, object detection,
fill-mask modeling, question-answering, sentence classification, sentence similarity, text summary,
text classification, token classification, language translation, and automatic speech recognition.

Figure 4: Coarse-grained and fine-grained classes.

We extract the computational graph generated
by the forward propagation of each model.
Each node in the graph denotes an atomic op-
eration in the network architecture. The data
structure of each model includes: the model
name, the repository name, the task name, a list
of graph edges, the number of FLOPs, and the
number of parameters. Besides, we also build
a dataset with 30, 000 NAS architectures gen-
erated by algorithms. The architectures follow
the search space of DARTS Liu et al. (2018)
and are split into 10 classes based on the graph
editing distance.

Data Pre-Processing: We scan the key phrases
and operations from the raw graph edges of the
model architecture. We identify the nodes in the graph based on the operator name and label each
edge as index. Each node is encoded with a one-hot embedding representation. The key hints
such as ‘former’, ‘conv’ and ‘roberta’ extracted by regular expressions tools represent a fine-grained
classification, which are treated as the ground truth label of the neural network architecture in Eq. 6.
We then map the extracted fine-grained hints to the cnn-block, attention-block and other block as the
coarse-grained labels. Due to the involvement of motifs in neural architectures, we extract the main
repeated block cell of each model by the method presented in the 3.3. Also, we scan these real-world
neural architectures and extracted 89 meaningful operators like “Addmm”, “NativeLayerNorm”,
“AvgPool2D” and removed useless operators “Tbackward” and “AccumulateBackward”. The data
structure of each pre-processed record consists of model name, repository name, task name, unique
operators, edge index, one-hot embeddings representation, coarse-grained label. We divided the
pre-processed data records to train/test splits (0.9/0.1) stratified based on the fine-grained classes for
testing the retrieval performance on the real-world neural architectures.
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Dataset Method MRR MAP NDCG
Top-20 Top-50 Top-100 Top-20 Top-50 Top-100 Top-20 Top-50 Top-100

Real
GCN 0.737 0.745 0.774 0.598 0.560 0.510 0.686 0.672 0.628
GAT 0.756 0.776 0.787 0.542 0.541 0.538 0.610 0.598 0.511
Ours 0.825 0.826 0.826 0.593 0.577 0.545 0.705 0.692 0.678

NAS
GCN 1.000 1.000 1.000 0.927 0.854 0.858 0.953 0.902 0.906
GAT 1.000 1.000 1.000 0.941 0.899 0.901 0.961 0.933 0.935
Ours 1.000 1.000 1.000 0.952 0.932 0.935 0.969 0.960 0.958

Table 1: Comparison with baselines on real-world neural architectures and NAS data.

Dataset Splitting MRR MAP NDCG
Top-20 Top-50 Top-100 Top-20 Top-50 Top-100 Top-20 Top-50 Top-100

Real

Node Num 0.807 0.809 0.809 0.551 0.539 0.537 0.694 0.682 0.667
Motif Num 0.817 0.820 0.823 0.591 0.522 0.518 0.692 0.669 0.661
Random 0.801 0.802 0.804 0.589 0.543 0.536 0.699 0.675 0.668
Ours 0.825 0.826 0.826 0.593 0.577 0.545 0.705 0.692 0.678

NAS

Node Num 0.999 0.999 0.999 0.941 0.885 0.883 0.962 0.926 0.924
Motif Num 0.998 0.998 0.998 0.931 0.872 0.874 0.956 0.917 0.919
Random 1.000 1.000 1.000 0.919 0.826 0.824 0.949 0.881 0.883
Ours 1.000 1.000 1.000 0.952 0.936 0.935 0.969 0.957 0.958

Table 2: Evaluation of different graph split methods on real-world and NAS architectures.

4.2 EXPERIMENTAL SETUP

In order to ensure the fairness of the implementation, we set the same hyperparameter training
recipe for the baselines, and configure the same input channel, output channel, and number layers
for the pre-training models. This encapsulation and modularity ensures that all differences in their
retrieval performance come from a few lines of change. In the test stage, each query will get the
corresponding similarity rank index and is compared with the ground truth set. We utilize the three
most popular rank-aware evaluation metrics: mean reciprocal rank (MRR), mean average precision
(MAP), and Normalized Discounted Cumulative Gain (NDCG) to evaluate whether the pre-trained
embeddings can retrieve the correct answer in the top k returning results. We now demonstrate the
use of our pre-training method as a benchmark for neural network search. We first evaluate the
ranking performance of the most popular graph embedding pre-training baselines. Afterwards we
investigate the performance based on the splitting subgraph methods and graph-level pre-training
loss function design. Then we conduct the ablation studies on the loss functions to investigate the
influence of each sub-objective and show the cluster figures based on the pre-training class.

4.3 BASELINES

We evaluate the ranking performance of our method by comparing with two mainstream graph
embedding baselines, including Graph Convolutions Networks (GCNs) which exploit the spectral
structure of graph in a convolutional manner Kipf & Welling (2016) and Graph attention networks
(GAT) which utilizes masked self-attention layers Veličković et al. (2017). For each baseline model,
we feed the computational graph edges as inputs. The model self-supervised learning by contrastive
learning and classification on the mapped coarse-grained label. Each query on the test set gets a re-
turned similar models list and the performance is evaluated by comparing the top-k candidate models
and ground truth of similarity architectures. Table 1 lists the rank-aware retrieval scores on the test
set. We observed that our pre-training method outperforms baselines by achieving different degrees
of improvement. On the dataset, the upper group of Table 1 demonstrates the our pre-training method
outperforms the mainstream popular graph embedding methods. The average score of MRR, MAP
and NDCG respectively increased by +5.4%, +2.9%, +13% on the real-world neural architectures
search. On the larger nas datasets, our model also achieved considerable enhancement of the ranking
predicted score with +1.1%, +3.4% on map@20, map@100 and with +8%, +2.9% on NDGC@20
and NDCG@100.
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Dataset Objective MRR MAP NDCG
Top-20 Top-50 Top-100 Top-20 Top-50 Top-100 Top-20 Top-50 Top-100

Real
CE 0.824 0.828 0.829 0.583 0.573 0.539 0.703 0.693 0.692
CL 0.565 0.572 0.573 0.334 0.348 0.373 0.502 0.455 0.451
CE+CL 0.825 0.826 0.826 0.593 0.577 0.545 0.705 0.692 0.678

NAS
CE 1.000 1.000 1.000 0.953 0.921 0.923 0.969 0.952 0.950
CL 0.925 0.925 0.925 0.750 0.658 0.656 0.829 0.762 0.764
CE+CL 1.000 1.000 1.000 0.952 0.932 0.935 0.969 0.955 0.958

Table 3: Ablation study of different loss terms (CE: Cross Entropy; CL: Contrastive Learning).

4.4 SUBGRAPH SPLITTING

We compare our method for splitting subgraphs with three baselines. Firstly, we use two methods
to uniformly split subgraphs, where the number of nodes in each subgraph (by node number) or the
number of subgraphs (by motif number) are specified. If the number of nodes in each subgraph
is specified, architectures are split into motifs of the same size. Consequently, large networks are
split into more motifs, while small ones are split into fewer motifs. If the number of subgraphs is
specified, different architectures are split into various sizes of motifs to ensure the total number of
motifs is the same. Then, we also use a method to randomly split subgraphs, where the sizes of
motifs are limited to a given range. We report the results in Table 2. As can be seen, our method can
consistently outperform the baseline methods on both real-network and NAS architectures. When
comparing the baseline methods, we find that for NAS architectures, splitting by node number and
by motif number reaches similar performances. It might be because NAS architectures have similar
sizes. For real-network architectures, whose sizes vary, random splitting reaches the best NDCG
among all baselines, and splitting by motif number reaches the best MRR. Considering MAP, split-
ting by motif number achieves the best Top-20 performance, but splitting by node number achieves
the best Top-100 performance. On the other hand, our method can consistently outperform the base-
lines. This phenomenon implies that the baselines are not stable under different metrics when the
difference in the size of architectures is non-negligible.

4.5 OBJECTIVE FUNCTION

Since our graph-level pre-training is a multi-objectives task, it is necessary to explore the effective-
ness of each loss term by removing one of the components. All hyperparameters of the models are
tuned using the same training receipt as in Table 5. Table 3 provides the experimental records of
different loss terms. In terms of the Real dataset, the model trained with both CE and CL (CE+CL)
outperforms the models trained with either CE or CL alone across almost all metrics. Specifically,
the MRR scores for CE+CL are 0.825, 0.826, and 0.826 for Top-20, Top-50, and Top-100, respec-
tively. These scores are marginally better than the CE-only model, which has MRR scores of 0.824,
0.828, and 0.829, and significantly better than the CL-only model, which lags with scores of 0.565,
0.572, and 0.573. Similar trends are observed in MAP and NDCG scores, reinforcing the notion that
the combined loss term is more effective. For the NAS dataset, the CE+CL model again demon-
strates superior performance, achieving perfect MRR scores of 1.000 across all rankings. While the
CE-only model also achieves perfect MRR scores, it falls short in MAP and NDCG metrics, espe-
cially when compared to the combined loss term. The ablation study reveals that a multi-objective
approach involving both graph-level contrastive learning and coarse label classification is most ef-
fective in enhancing neural architecture retrieval performance. Furthermore, the contrastive loss
term, while less effective on its own, plays a crucial role in boosting performance when combined
with cross-entropy loss.

4.6 TRANSFER LEARNING

We also monitor whether NAS pre-training benefits the structure similarity prediction of the real-
world network. For this, we design the experiment of transferring the pre-trained model from the
NAS datasets to initialize the model for pre-training on the real-world neural architectures. The
results demonstrated in Table 4 shows the model pre-trained on the real-world neural architectures
achieves an improvement on most evaluation metrics, which reveals the embeddings pre-trained by
initialized model obtains the prior knowledge and get benefits from the NAS network architecture
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Training Method MRR MAP NDCG
Top-20 Top-50 Top-100 Top-20 Top-50 Top-100 Top-20 Top-50 Top-100

Training from Scratch 0.825 0.826 0.826 0.593 0.577 0.545 0.705 0.692 0.678
Pre-training with NAS 0.821 0.838 0.839 0.596 0.584 0.573 0.712 0.703 0.706

Table 4: Transfer model pre-trained with NAS architectures to real-world neural architectures.

(a) GCN on real (b) GAT on real (c) Ours on real (d) GCN on NAS (e) GAT on NAS (f) Ours on NAS

Figure 5: Visualization of learnt embeddings. The number of dimensions is reduced by t-SNE. (a,
b and c are embeddings of real-world neural architectures, and d, e and f are embeddings of NAS
architectures)

searching. And with the increment of top-k of rank lists, the model unitized with NAS pre-training
yields a higher score compared with the base case, which means enlarging the search space could
boost the similarity model structures by using the model that transferred from NAS.

4.7 VISUALIZATION

Besides the quantitative results provided in Table 1, we further provide qualitative results through
the visualization of cluttering performance in Figure 5. To illustrate the superiority of our method
over other baselines, we include both GCN and GAT for comparison. For visualization, we ap-
ply t-SNE Van der Maaten & Hinton (2008) to visualize the high-dimensional graph embedding
through dimensionality reduction techniques. As shown in Figure 5 (a), (b), and (c), we visualize
the clustering performance of real-world neural architectures on three different categories, including
attention-based blocks (green), CNN-based blocks (red), ang other blocks (blue). Comparing the
visualization results on real-world neural architectures, it is obvious that both GCN and GAT cannot
perform effective clustering of the neural architectures with the blocks from same category. On the
contrary, our proposed method can achieve better clustering performance than other baselines. Sim-
ilarly, we conduct visualization on the NAS data. We first sample ten diverse neural architectures
from the entire NAS space as the center points of ten clusters respectively. Then we evaluate the
clustering performance of neural architectures sampled around center points that have similar graph
editing distance from these sampled center points. The results are shown in Fig. 5 (d), (e), and (f).
Consistent with the results on real-world data, we can see that our method can achieve better clus-
tering performance on NAS data with clear clusters and margins, which provides strong evidence
that our method can achieve accurate graph embedding for neural architectures.

5 CONCLUSION

In this paper, we define a new and challenging problem Neural Architecture Retrieval which aims at
recording valuable neural architecture designs as well as achieving efficient and accurate retrieval.
Given the limitations of existing GNN-based embedding techniques on learning neural architecture
representations, we introduce a novel graph representation learning framework that takes into con-
sideration the motifs of neural architectures with designed pre-training tasks. Through sufficient
evaluation with both real-world neural architectures and NAS architectures, we show the superiority
of our method over other baselines. Given this success, we build a new dataset with 12k differ-
ent collected architectures with their embedding for neural architecture retrieval, which benefits the
community of neural architecture designs.
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A APPENDIX

A.1 APPLICATION DEMOS

Figure 6: A depiction of the potential downstream applications for NAR.

(a) Architectures Retrieval for the specific task. (b) Architectures Retrieval for various applications.

Figure 7: Cases of potential downstream tasks based on the NAR.

A.2 ALGORITHM

Algorithm 1 NAR Pre-training

Require: A set G of computational graph
Ensure: F∗

s and F∗
m

1: for G ∈ G do ▷ motifs-level CL, Fig. 3
2: Get Gs from G ▷ motifs sampling, Fig. 2
3: for Gs ∈ Gs do
4: Get G+

c , G
−
c based on Gs

5: Calculate Ls with Eq. 4 and update Fs,Fc

6: end for
7: end for
8: for G ∈ G do ▷ graph-level CL, Fig. 3 (c)
9: Get Gs from G ▷ motifs sampling, Fig. 2

10: Build Gm with F∗
s ▷ build macro graph, Fig. 3 (a)

11: Calculate LG with Eq. 6 and update Fm

12: end for

A.3 DETAILS

A.4 NEURAL ARCHITECTURE GENERATION

To generate diverse neural architectures, we follow the search space design for neural architecture
search (NAS) in DARTS Liu et al. (2018), which considers neural architectures as directed acyclic
graphs (DAGs). A difference is that DARTS treats operations as edge attributes, while we insert an
additional node representing an operation to each edge with an operation for consistency. Our space
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EPs BS Layers LR Emb Drop
Motifs CL 5 256 3 1e-2 512 -
Graph CL 15 512 3 1e-3 512 0.1
Baselines 15 512 3 1e-3 512 0.1

Table 5: Pre-training Recipes. EPs: Epochs; BS: Batch size; LR: Learning rate.
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Figure 8: The neural architecture generation space and two examples.

for architecture generation is as shown in Fig. 8 (a). We also provide two examples in Fig. 8 (b) and
(c).

A neural architecture is used to build a cell, and cells are repeated to form a neural network. Each
cell ck with k = 0, . . . ,K takes inputs from two previous cells ck−2 and ck−1. The beginning of a
network is a stem layer with an convolutional layer. The first cell c0 is connected to the stem layer,
and the second cell c1 connected to both c0 and the stem layer. In the other word, c−2 and c−1 both
refer to the stem layer. Finally, the last cell cK is connected to a global average pooling and a fully
connected layer to generate the network output.

In each cell, there are 4 ”ADD” nodes ADD(i) with i = 0, 1, 2, 3. The node ADD(i) can be
connected to ck−2, ck−1, or ADD(j) with 0 ≤ j < i. In practice, the number of connections is
limited to 2. For each connection, we insert a node to represent an operation. Operations are chosen
from 7 candidates, including skip connection (skip connect), 3× 3 max pooling (max pool 3x3),
3× 3 average pooling (avg pool 3x3), 3× 3 or 5× 5 separable convolution (sep conv 3x3 or
sep conv 5x5), and 3× 3 or 5× 5 dilated convolution (dil conv 3x3 or dil conv 5x5). Finally,
a ”Concat” node is used to concatenate the 4 ”ADD” nodes as the cell output ck.
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