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ABSTRACT

With the increasing prevalence of machine learning, concerns about fairness have
emerged. Mitigating potential discrimination risks and preventing machine learning
algorithms from making unfair predictions are essential goals in fairness machine
learning. We tackle this challenge from a statistical perspective, utilizing distance
covariance—a powerful statistical method for measuring both linear and non-linear
correlations—as a measure to assess the independence between predictions and
sensitive attributes. To enhance fairness in classification, we integrate the sample
distance covariance as a manageable penalty term into the machine learning process
to promote independence. Additionally, we optimize this constrained problem
using the Lagrangian dual method, offering a better trade-off between accuracy and
fairness. Theoretically, we provide a proof for the convergence between sample
and population distance covariance, establishing necessary guarantees for batch
computations. Through experiments conducted on a range of real-world datasets,
we demonstrate that our approach can seamlessly extend to existing machine
learning models and deliver competitive results.

1 INTRODUCTION

Despite the success of modern deep neural networks (DNNs) applied to various tasks in recent years,
it may raise many ethical and legal concerns during model training. In real-world classification
and decision-making tasks, biased datasets can influence machine learning models, resulting in
unfair predictions (Bellamy et al., 2018). With some online models and algorithms, unfair prediction
results can lead users to make biased choices, and behavioral biases can create even more biased
data, creating a cycle of bias (Mehrabi et al., 2021). Therefore, ensuring fairness is crucial when
applying machine learning to tasks like computer vision, natural language processing, classification,
and regression, requiring careful consideration of ethical and legal risks.

Fairness in machine learning can be broadly categorized into two levels: (1) group-level fairness,
emphasizing equitable treatment among different groups, and (2) individual-level fairness, with the
goal of providing similar predictions for similar individuals. In this paper, our focus is on group-level
fairness. A fair machine learning model should avoid producing biased outputs based on sensitive
attributes such as ethnicity, gender, and age. While these sensitive attributes may not be explicitly
present in the training data features, deep learning models often work with high-dimensional and
complex data, which contains a wealth of information. Some of this information may inadvertently
correlate with sensitive attributes and result in biased outcomes (Kim et al., 2019; Park et al., 2021).

A natural and intuitive idea to enhance fairness is to reduce the reliance of prediction results on
sensitive attributes. We treat the model’s prediction outcomes and sensitive attributes as two random
variables. If these two random variables are independent, it satisfies Demographic Parity (DP), a well-
known fairness criterion. Measuring the independence of random variables is a fundamental objective
in statistical data analysis, and there are various methods available for this purpose. Among these
methods, Pearson correlation coefficients are commonly used to measure the correlation between
random variables. This method has been extensively researched in the context of fair machine
learning (Zafar et al., 2017; Zhao et al., 2020), yielding positive results and providing evidence for
the effectiveness of this idea. However, it is important to note that Pearson correlation coefficients
are primarily effective for capturing linear correlations and may struggle to capture non-linear
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relationships. Moreover, the relationships between variables in complex datasets are often non-linear
and can be further complicated by non-linear transformations performed by machine learning models.

Although Hirschfeld-Gebelein-Rényi (HGR) maximal correlation and mutual information (MI) are
commonly used to assess the independence between two random variables or vectors, their exact
computation is often infeasible. Instead, practitioners rely on estimations or upper/lower bounds to
approximate independence. Due to the impossibility to traverse all functions, we can not compute
the HGR maximal correlation accurately. As a result, classical methods have been developed to
approximate HGR by constraining the traversed functions to linear spaces or Reproducing Kernel
Hilbert Spaces Mary et al. (2019); Lee et al. (2022). Estimating and optimizing mutual information
can also be challenging. To address these challenges, some methods replace MI with lower or upper
bounds Song et al. (2019) or utilize variational methods Song & Ermon (2019) to approximate MI.

In this paper, we introduce a so-called distance covariance based method for fair classification.
Distance covariance (DC) is a robust method for quantifying both linear and non-linear correlations
between two random vectors (Székely et al., 2007). A smaller distance covariance value indicates a
weaker relationship between the random variables, and it equals zero if and only if the two random
variables are independent. However, directly computing distance covariance can be challenging as it
requires knowledge of the analytical form of the distribution function and involves integration. To
overcome this limitation, we employ empirical distance covariance, which can be computed directly
from samples, as a substitute loss for fairness criteria. The discrepancy between the empirical DC
and the population DC is attributed to stochastic error, which can be reduced by increasing the
sample size. It is crucial to note that the empirical DC almost surely converges to the population
DC when the sample size tends to infinity. For HGR and MI, they can use the estimations or
upper/lower bounds instead. Apart from stochastic error, there are also approximation errors
that arise due to the nature of the approximation itself. However, increasing the sample size does
not necessarily drop the approximation error. In addition, the empirical DC is a continuously
differentiable and biconvex function about the predicted target matrix and the sensitive attribute
matrix. In the fairness classification problem, the sensitive attribute matrix is known, so the empirical
DC is a continuously differentiable convex function of the predicted target matrix, which is an elegant
property for optimization. We incorporate it as a regularization term during the model training
process, utilizing the empirical DC between the predicted label (or feature map) and the sensitive
attribute(s).

Although the empirical distance covariance converges almost surely to the population distance
covariance, this property holds for large samples as the sample size approaches infinity. In deep
learning, various batch gradient descent methods are commonly employed due to limitations on GPU
memory. To address this, we provide a theoretical proof of the convergence in probability between
the population and empirical distance covariance with respect to the sample size. This result offers
crucial theoretical assurances for small-batch computations.

Moreover, considering the specific characteristics of fairness learning and distance covariance, we
employ the Lagrangian dual method to address the constrained optimization problem. Manually
determining the balance parameter for the fairness surrogate loss can be a challenging task. To tackle
this issue, we propose treating the balance parameter as a dual variable and iteratively optimizing
both the model parameters and the balance parameter. Numerical experimental results demonstrate
that this approach enables the model to achieve a more favorable trade-off between accuracy and
fairness.

Our method does not necessitate any prior knowledge about the model or existing bias, rendering it
widely applicable. Furthermore, it is not restricted to binary sensitive attributes, but can be extended
to encompass any number of sensitive attributes or subgroups. This adaptability stems from the fact
that distance covariance can be applied to random vectors of any dimension. Moreover, our method is
a plug-and-play approach, allowing for easy application across various domains, datasets, and neural
network models with minimal computational cost. This characteristic enhances its practicality for
real-world applications.

In summary, our contributions can be outlined as follows. (1) We introduce the utilization of
empirical distance covariance as a feasible penalty term in the machine learning process to promote
independence. Additionally, we employ the Lagrangian dual method to optimize this constrained
problem, resulting in improved trade-offs between accuracy and fairness. (2) Instead of relying
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on population distance covariance, we employ empirical distance covariance for calculations. The
theoretical difference between the two, in terms of probability, is quantified and presented in Theorem
3. (3) The numerical experiments conducted in this paper provide evidence of the versatility of our
proposed methods, showcasing their applicability across diverse datasets and tasks, while achieving
competitive performance.

Throughout the paper, we use bold capital letter, capital letter to represent random vectors, sample
matrices, respectively.

2 RELATED WORK

Fair machine learning is a significant field that has witnessed the advancement of various methods.
In this section, we will primarily focus on the related work in fair classification. Existing fair
machine learning methods can be broadly classified into three stages of processing: pre-processing
(du Pin Calmon et al., 2017; Xu et al., 2018; Sattigeri et al., 2019; Ramaswamy et al., 2021), post-
processing (Hardt et al., 2016; Bolukbasi et al., 2016; Pleiss et al., 2017; Mehrabi et al., 2022;
Alghamdi et al., 2022), and in-processing (Zafar et al., 2017; Zhao et al., 2020; Mary et al., 2019;
Lee et al., 2022; Moyer et al., 2018; Song et al., 2019; Creager et al., 2019; Chuang & Mroueh,
2020; Park et al., 2022; Liu et al., 2022; Guo et al., 2022; Lowy et al., 2021). Our method belongs
to the in-processing category, where the concept of correlation is employed as a surrogate loss
for fairness criteria. (Zafar et al., 2017; Zhao et al., 2020) use covariance as a fairness constraint
to improve decision boundaries. Mary et al. (2019) and Lee et al. (2022) utilize the Hirschfeld-
Gebelein-Renyi (HGR) maximal correlation to measure the dependence between the model output
and sensitive attributes. They employ this measure as a penalty term within their frameworks to
enforce fairness. However, it’s worth noting that calculating the HGR maximal correlation can be
challenging in computation. To mitigate this issue, both papers utilize alternative approaches such as
kernel density estimate (KDE) or Soft-HGR as approximations to calculate the desired measure. From
the perspective of information theory, mutual information(MI) and its variants can serve as proxies
for fairness criteria, aiming to reduce mutual information to minimize the model’s dependence on
sensitive attributes (Moyer et al., 2018; Song et al., 2019; Creager et al., 2019). However, calculating
mutual information can be challenging due to the lack of probability density function. Consequently,
instead of directly estimating mutual information, the authors approximate it by their upper/lower
bounds or some variational methods. Chuang & Mroueh (2020) regularize the models on paths of the
mixup samples to ensure improved generalization in terms of both accuracy and fairness. Meanwhile,
Park et al. (2022) propose a fair supervised contrastive loss to ensure fairness by penalizing the
inclusion of sensitive attribute information for fair visual representation learning.

While distance covariance is not being introduced into deep learning for the first time, previous
efforts have explored its application in contexts such as few-shot learning, interpretability, robust
learning, and fairness. Xie et al. (2022) uses distance covariance to extract features after the backbone
networks for few-shot classification, aiming to capture the dependence of these features and enhance
the performance of few-shot classification models. Zhen et al. (2022) propose the utilization of
partial distance correlation as an alternative to Canonical Correlation Analysis (CCA) for evaluating
the correlation between feature spaces of different dimensions. Their approach involves employing
distance covariance to elucidate the model’s training process, disentangle representations, and
enhance robustness. Specifically, they calculate the distance correlation of the residuals obtained
from projecting the first two random variables onto the third variable. While this strategy shows
promise in disentangling learned representations and improving model robustness, it may not be
directly applicable to our fair classification tasks.

Both Liu et al. (2022) and Guo et al. (2022) have utilized distance covariance in fairness representation
tasks. In their work, Liu et al. (2022) introduced population distance covariance as an alternative to
mutual information (MI) and demonstrated its asymptotic equivalence to MI. However, computing
either population distance covariance or MI requires knowledge of the analytical form of the respective
distribution functions, which necessitates prior knowledge of the distribution function or density
function. To address this, Liu et al. (2022) assumed that the random variables follow a multivariate
normal distribution and employed the Variational Autoencoder technique proposed by Kingma &
Welling (2013) to fit the normal distribution. Nevertheless, the assumption of a normal distribution
can be overly restrictive and may not hold for real-world data, potentially leading to errors in the
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analysis. Guo et al. (2022) propose a method for learning fair representations by incorporating graph
Laplacian regularization. They explore the relationship between graph regularization and distance
correlation, highlighting its significance in the context of fairness representation tasks. Similarly to
the approach presented by Liu et al. (2022), Guo et al. (2022) employ a Variational Autoencoder
(VAE) to learn representations, which relies on assumptions regarding the underlying distribution of
the data.

3 METHOD

3.1 DISTANCE COVARIANCE

Let Y ∈ Rp and Z ∈ Rq be two continuous random vectors. Let gY,Z(y, z) be the joint probability
density function, and gY(y), gZ(z) be marginal probability density functions. Let fY,Z(t, s) =∫
ei(t

T y+sT z)gY,Z(y, z)dydz be the joint characteristic function, and fY(t) =
∫
eit

T ygY(y)dy,
fZ(s) =

∫
eis

T zgZ(z)dz be marginal characteristic functions corresponding to Y,Z. Distance
covariance V(Y,Z) is defined as V(Y,Z) =

∫∫
Rp+q |fY,Z(t, s)− fY(t)fZ(s)|2w(t, s) dtds, where

the weight w(t, s) = (cpcq|t|1+p|s|1+q)−1 with cd = π(1+d)/2

Γ((1+d)/2) and Γ being the gamma function.
In practical scenarios, obtaining the probability density functions (cumulative distribution functions)
can be challenging or even impossible. Consequently, directly acquiring the distance covariance
becomes unfeasible. To address this issue, we resort to utilizing the empirical DC instead, which is
guaranteed to be non-negative by Theorem 1 in (Székely et al., 2007).

Consider the observed samples (Yi, Zi), i = 1, . . . , n, which are drawn from the joint distribution of
random vectors (Y,Z) ∈ Rp × Rq . Let Y = [Y1, · · · , Yn] and Z = [Z1, · · · , Zn] represent the two
sample matrices. The empirical distance covariance (Székely et al., 2007) is then defined as follows:

Definition 3.1 The empirical distance covariance Vn(Y,Z) is the product of the corresponding
double centered distance matrices of the samples: Vn(Y,Z) = 1

n2

∑n
k,l=1AklBkl, where Akl =

akl − āk· − ā·l + ā··, Bkl = bkl − b̄k· − b̄·l + b̄··, with akl = ∥Yk − Yl∥2, āk· = 1
n

∑n
l=1 akl, ā·l =

1
n

∑n
k=1 akl, ā·· =

1
n2

∑n
l,k=1 akl and bkl = ∥Zk − Zl∥2, b̄k· = 1

n

∑n
l=1 bkl, b̄·l =

1
n

∑n
k=1 bkl,

b̄·· =
1
n2

∑n
l,k=1 bkl.

Proposition 1 (Biconvex) Let (Yi, Zi), i = 1, . . . , n be the observed samples drawn from a joint
distribution of (Y,Z). Denote Y = [Y1, · · · , Yn] and Z = [Z1, · · · , Zn]. Then the empirical
distance covariance Vn(Y, Z) is a biconvex function of (Y,Z).

Proof. We defer the proof to Proposition 5 in the appendix.

It is worth to noting that Vn(Y,Z) is convex with respect to Y when Z is fixed, which is an elegant
property for optimization.

3.2 THE FAIR CLASSIFICATION PROBLEM AND FAIR CLASSIFICATION MODEL

In the following we consider a standard fair supervised learning scenario. Let X ∈ X be the predictive
variables, Y ∈ Y ⊂ Rp be target variables or labels, Z ∈ Z = {Z1, · · · , ZS} ⊂ Rq be a sensitive
attribute. The datasets is a ternary pair of these variables D = {(xi, yi, zi), i = 1, 2, . . . , n}. Our
aim is to find a fair model ϕ : X → Ŷ with respect to the associated sensitive attribute. That is,
ŷi = ϕ(xi), ∀i ∈ [n]. Therefore, it is crucial to establish a criterion for evaluating the model’s
performance from a fairness perspective.

While the fight against bias and discrimination has a long history in philosophy, psychology, and
more recently in machine learning, there is still no universally accepted criterion for defining fairness
due to cultural differences and varying preferences. In this context, we will focus on two fairness
criteria: demographic parity (DP) (Dwork et al., 2012) and Equalized Odds (EO) (Hardt et al., 2016).
The DP criterion requires that predictions Ŷ and sensitive attributes Z are independent, represented
as Ŷ ⊥ Z. On the other hand, the EO criterion states that predictions Ŷ and sensitive attributes Z
should be conditionally independent given the labels Y, denoted as Ŷ ⊥ Z|Y.
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In this subsection, we focus on applying the demographic parity criterion to address the fair classifi-
cation problem. Our objective is to discover a model ϕθ : X 7→ Ŷ that attains high classification
accuracy while guaranteeing independence between the predicted outcomes Ŷ and the sensitive
attribute Z, denoted as Ŷ ⊥ Z. Here, θ represents the network parameter. The selection of the
network architecture is driven by the task at hand, with complex problems often requiring deep neural
networks. The specific details regarding different tasks are deferred to Section 4.

Distance covariance, as a statistic for covariance, can also be used to characterize the independence
between two random variables. For any random vectors Y and Z, the value of V(Y,Z) is zero if
and only if Y and Z are independent (see Lemma 4). However, calculating the distance covariance
requires knowledge of the probability density functions, which can be difficult or even impossible
to obtain in practical scenarios. As a result, directly computing the distance covariance may not be
feasible. To address this challenge, the empirical distance covariance is employed as a constraint
term to ensure that the model satisfies the demographic parity criterion. The optimization model is

min LCE(Ŷ , Y ) s.t. Vn(Ŷ , Z) = 0, (1)

where Vn(Ŷ , Z) is the empirical distance covariance. Then the corresponding Lagrangian function of
(1) is L(ϕθ, λ) = LCE(Ŷ , Y ) + λVn(Ŷ , Z) = LCE(ϕθ(X), Y ) + λLdc(ϕθ(X), Z), where λ > 0
is the Lagrangian multiplier serving as a hyperparameter for balancing the fitting term and the
distance covariance term. The hyperparameters play a crucial role in model optimization. However,
determining the optimal hyperparameters manually can be challenging, especially without the insights
gained from multiple experiments.

As discussed in proposition 1, empirical distance covariance is a biconvex function about two sample
matrices. In the setting of our fair classification model, we use empirical distance covariance to depict
the independence of the predicted label and sensitive attribute, where the sensitive attribute is from
the data. Therefore, the empirical distance covariance exhibits convexity with respect to the predicted
label. If we choose a model from the information autoencoding family (Zhao et al., 2018) or other
models that optimize the predicted label in the distribution space (Song et al., 2019), the empirical
distance covariance becomes a convex constraint, which is a desirable property for optimization.

Building on this inspiration, we consider λ as a dual variable in this paper. Let g(λ) = infθ L(ϕθ, λ),
the corresponding Lagrangian dual is

max
λ

g(λ) = max
λ

inf
θ
L(ϕθ, λ). (2)

In fact, the model (2) provides an alternative if it is not easy to choose a specific λ when we minimize
L w.r.t. θ. But model (2) becomes a max-min problem, which may be hard to solve directly. We
update iteratively and the scheme is as follows: we give the value λe and θe, and find the optimal
value of θe+1 and λe+1 by

θe+1 = argmin
θ

L(ϕθ, λe), λe+1 = λe + β · ∂L(ϕθe , λ)
∂λ

∣∣∣∣
λ=λe

= λe + β · Ldc(Ŷ , Z), (3)

where β is the learning rate. In the optimization algorithm, we utilize a batch-wise approach by
dividing the entire dataset into smaller batches. For each batch, we update the network parameters,
which enables incremental improvements in the model’s performance. Subsequently, after updating
the parameters for all batches, we update the dual variable based on the average of the results obtained
from each batch. Therefore, the whole algorithm can be summarized in Algorithm 1. Although the
balancing parameter λ is dynamically adjusted, the decision-maker also has some control over the
fairness-utility trade-off curve by choosing the initial guess of λ or other hyperparameters in the
Primal Dual method.

In addition, fairness can also be based on the feature map. In this case, our objective is to find a
feature map ψ and a classifier D such that the predicted outcome Ŷ = D(ψ(X)) approximates the
true label Y , while maximizing the independence between the feature representation ψ(X) and the
sensitive attribute Z. To achieve this, we consider the cross-entropy loss as the optimization objective.
The optimization model can be formulated as

min LCE(Ŷ , Y ) s.t. Vn(ψ(X), Z) = 0. (4)
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Algorithm 1 The Lagrangian dual method with Distance Covariance
Input: Epoch E, Dataset D = {(xi, yi, zi)}ni=1, inital guess λ0, θ, learning rates α, β.

1: for e = 0, 1 . . . , E − 1 do
2: ldc = 0,
3: for MiniBatch B ∈ D do
4: ŶB = [ŷ1, · · · , ŷ|B|]

T with ŷi = ϕθ(xi);
5: ldc ← ldc + |B| · Ldc(ŶB, ZB),
6: θ ← θ − α

(
1
|B|

∑
B∇θLCE(ŷi, yi, zi) + λe∇θLdc(ŶB, ZB)

)
;

7: λ← λ+ β
|D| · ldc.

Similarly, we can calculate the corresponding Lagrangian function and update the model parameter θ
and dual variable λ iteratively.

3.3 RETHINKING PROPOSED ALGORITHM

In general, demographic parity (DP) and equalized odds (EO) are considered to be distinct fairness
criteria because independence and conditional independence are not equivalent concepts. It is only
possible to achieve both DP and EO when the sensitive attributes Z are independent of the labels Y
(Barocas et al., 2017), which implies that the data distribution is the same across different sensitive
attribute groups. As a result, many fairness methods are designed to address either DP or EO criteria
specifically, or they require adjustments to accommodate different fairness criteria. It is important
to carefully consider the specific fairness requirements and trade-offs when selecting and applying
fairness methods in practice.

Note that in classification tasks, commonly used loss functions (such as cross-entropy and mean
squared error) can be utilized to measure the closeness between the ground truth labels and the
predicted labels. Therefore, (1) is equivalent to

max
θ

P (ϕθ(X) = Y ), s.t. ϕθ(X) ⊥ Z. (5)

The ideal case of (5) is P (ϕθ(X) = Y ) = 1 and ϕθ(X) ⊥ Z. However, achieving both conditions
simultaneously may not always be possible. Nevertheless, Model (5) suggests that the objective goes
beyond achieving independence between the predictions ϕθ(X) and the sensitive attribute Z. It also
includes constraints on the predictive performance of the function ϕθ : X 7→ Ŷ.

Intuitively, samples sharing the same sensitive attribute, regardless of their target classes, have a
tendency to cluster together due to shared characteristics or patterns within those groups. Conversely,
the fitting term related to the target attribute places greater emphasis on accurately classifying the
majority group. This is because capturing the patterns and characteristics of the majority group is
often more crucial for optimizing the model’s overall performance. Suppose Y = y is a majority
class in the sensitive class Z = Zi, but not a majority class in Z = Zj . The worst case is
P (Ŷ = y|Y = y, Z = Zi) = 1 and P (Ŷ = y|Y = y, Z = Zj) = 0 since Y = y is not a
majority class in Z = Aj , which implies strong dependence between Y and Z. The introduction of
independence seeks to break this dependence, leading to an increase in P (Ŷ = y|Y = y, Z = Zj),
and resulting in a smaller EO value.

Due to space constraints, we have included numerical illustrations on the connection between DP and
EO in the Appendix B.

3.4 CONVERGENCE ANALYSIS

In this section, we discuss some theoretical properties of distance covariance and provide an estimation
of the difference between the population distance covariance and empirical distance covariance in
Theorem 3. First of all, we present the almost sure convergence of distance distance covariance.

Lemma 2 (Theorem 2 in (Székely et al., 2007)) Let Y ∈ Rp and Z ∈ Rq be two random vectors
and Y,Z be the corresponding sample matrices. If E∥Y∥2 < ∞ and E∥Z∥2 < ∞, then almost
surely limn→∞ Vn(Y,Z) = V(Y,Z).
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The almost sure convergence in Lemma 2 is a strong convergence property, which implies both
convergence in probability and convergence in distribution. This is a good enough property for a
statistic in mathematical statistics. It ensures that as the sample size increases, the empirical estimate
consistently approaches the true population value. It is worth noting that the almost sure convergence
property discussed in Lemma 2 is contingent on having a sufficiently large sample size. This implies
that a substantial number of samples is required to guarantee the convergence of the estimator.

In deep learning, working with a large number of samples is indeed crucial for effective model
training. However, practical limitations, such as graphics card memory constraints, often restrict the
amount of data that can be loaded at once. To overcome this challenge, mini-batch gradient descent
is commonly employed, where only a subset of the training dataset (referred to as a mini-batch) is
used to update the neural network parameters at each iteration.

When using empirical distance covariance as a substitute for distance covariance in such scenarios,
there is no direct guidance on almost sure convergence. The reason is that the convergence properties
of empirical estimators heavily rely on the sample size. In mini-batch training, the mini-batch size
(nb) represents the effective sample size used for parameter updates. As nb is small compared to the
total dataset, the convergence behavior may differ from the traditional almost sure convergence. In the
following, we will estimate the probability that the empirical distance covariance and the population
distance covariance are sufficiently close in terms of sample size. Thus, it will be easy to control
sample size while considering the error rate given.

The following theorem establishes the result of convergence in probability about the sample size.

Theorem 3 (Convergence in probability) Let Y ∈ Rp and Z ∈ Rq be two sub-Gaussian random
vectors and Y = [Y1, · · · , Yn], Z = [Z1, · · · , Zn] be the sample matrices. For any ϵ > 0, there exist
positive constants C and Cϵ such that

P (|Vn(Y, Z)− V(Y,Z)| > ϵ) ≤ C

n
+ 4nCϵ exp

(
−
√

n

log n

)
+ 2 exp(−Cn2 log n).

Proof. We defer the proof to Theorem 9 in the appendix.

In our fair classification model, we consider Y and Z to be the random vectors related to the predicted
label (or feature map) and the sensitive attribute, respectively. They are all bounded, otherwise
the neural network will be unstable or not convergent. Note that bounded random vectors are all
sub-Gaussian random vectors, so it is reasonable to assume Y, Z to be sub-Gaussian random vectors.

4 NUMERICAL EXPERIMENTS

In this section, we present the numerical experiments results of our proposed method on four real-
world datasets, including UCI Adult dataset, ACSIncome dataset and two image datasets. We compare
our proposed method with the following baselines: Vanilla, FairMixup (Chuang & Mroueh, 2020),
HGR (Mary et al., 2019), FairDisCo (Liu et al., 2022), Dist-Fair (Guo et al., 2022), FSCL (Park
et al., 2022), FERMI Lowy et al. (2021), FairProjection Alghamdi et al. (2022). Since FSCL is
primarily tailored for image datasets, when comparing FSCL to other methods applied to Tabular
datasets, the data augmentation technique is employed as described in Gharibshah & Zhu (2022).
The criteria used to assess the performance of fairness are ∆DP and ∆EO (Park et al., 2022):

∆DP =
1(
S
2

) ∑
i<j

|P (Ŷ|Z = Zi)− P (Ŷ|Z = Zj)|,

∆EO =
1

2
(
S
2

) ∑
y∈{0,1}

∑
i<j

|P (Ŷ = y|Z = Zi,Y = y)− P (Ŷ = y|Z = Zj ,Y = y)|,

where S represents the number of categories or groups within the sensitive attribute Z. In the
subsequent subsections, we present the results of our numerical experiments. For additional details
and supplementary information, please refer to Appendix C.
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4.1 TABULAR DATASET

In our study on tabular datasets, we utilized the widely recognized UCI Adult dataset (Dua & Graff,
2017) and ACSIncome dataset Ding et al. (2021).

For experiments, we use a four-layer Multilayer Perceptron (MLP) model with Rectified Linear Unit
(ReLU) activation function and Cross Entropy Loss, referred to as the Vanilla model. All baselines
use the same classifier network structure to ensure a fair comparison. The four subfigures in Figure 1
depict the trade-off curves between accuracy and either ∆DP or ∆EO for the UCI and ACSIncome
datasets with different initial guesses of λ. In our experiments, the initial guesses we choose are in
the interval [1, 15]. The results shown for accuracy and fairness criterion are averaged over 10 runs.
In the second subfigure, non-uniform tick marks have been applied on the horizontal axis at both
ends of the double slash. This adjustment aims to improve the visualization of the trade-off curve for
better clarity and understanding.

In the figure, the position of the curve closer to the right indicates higher accuracy, while the curve
positioned closer to the bottom signifies fairer outcomes according to the specified fairness metric.
The results highlight the competitive performance of our method on the UCI dataset, as well as its
ranking as the second best method on the ACSIncome dataset. This suggests that utilizing distance
covariance as a regularizer yields superior performance in capturing independence, as our model
achieves higher accuracy while maintaining the same level of ∆DP.

Figure 1: The results between accuracy and fairness for the UCI and ACSIncome datasets.

4.2 IMAGE DATA

In our experiments on image datasets, we conducted evaluations on both the CelebA and UTKFace
datasets. For each classification task, we utilize the ResNet-18 architecture (He et al., 2016) as
the encoder ψθ to process the input facial images. Vanilla refers to the model that utilizes the
encoded representations obtained from ψθ. These representations are then passed through a two-layer
Multilayer Perceptron to make the final predictions. The predictions are based on the Cross Entropy
loss function without any regularized term. All baselines share the same architecture as “Vanilla”.
The only exception is the Dist-fair model, which employs a VAE-ResNet18 architecture instead.

Due to the requirement of calculating the probability density function of the multivariate normal
distribution in FairDisCo (Liu et al., 2022), its utilization becomes impractical when dealing with
high-dimensional cases. Therefore, we are unable to offer comparison results for the image datasets
as they typically possess extremely large dimensions. Furthermore, there may be a mistake in
the implementation of the function dis within the provided code that computes the corresponding
probability density function.

4.2.1 CELEBA

The CelebA dataset (Liu et al., 2015) is a widely used image dataset for various computer vision tasks,
particularly those related to faces. In our experiments, we selected one or two sensitive attributes
from the CelebA dataset to evaluate the performance of our method on mitigating potential ethical
risks. For the classification tasks, we specifically focused on the attributes“attractiveness”, “smile”,
“gender”, and “wavy hair”. These attributes were chosen based on two main criteria. First, we
considered attributes that have a high Pearson correlation coefficient with the sensitive attributes.
Second, we considered attributes where the subgroups based on the sensitive attributes are imbalanced.
Imbalanced subgroups pose challenges for fairness evaluation, as the distribution of samples across
different groups can impact the fairness of the classifier’s predictions.

In Table 1, columns 2-5 present the classification accuracy and fairness (measured by ∆DP or ∆EO)
for various combinations using one sensitive attribute. Due to the imbalanced nature of the CelebA
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Methods
Attractive/gender Smile/gender Wavy hair/gender Attractive/young Attractive/genderyoung

Acc ∆EO ∆DP Acc ∆EO ∆DP Acc ∆EO ∆DP Acc ∆EO ∆DP Acc ∆EO ∆DP

Vanilla 82.188±0.4 20.514±0.7 39.722±3 92.379±0.2 3.160±0.7 14.384±1.3 83.147±0.4 19.229±1.6 30.96±1.7 82.129±0.2 22.912±0.4 46.072±0.5 82.149±0.2 24.418±0.6 34.649±0.3

Ours 80.568±0.3 0.563±0.3 24.121±1 92.751±0.4 1.606±0.3 10.336±1 81.785±0.2 1.122±0.6 17.665±1.2 78.845±0.5 7.511±0.9 34.371±0.6 77.532±1.0 8.107±1.0 23.314±1

HGR 80.423±0.2 1.175±0.2 24.720±1.5 92.620±0.2 2.055±0.2 15.213±0.5 80.139±0.7 2.052±0.4 17.156±1.2 78.796±0.7 8.74±0.8 31.91±0.9 78.320±0.2 9.571±0.4 26.149±0.2

FSCL 80.2±0.3 6.5±0.6 27.277±0.7 92.811±0.2 2.166±0.9 13.884±0.6 82.727±0.4 1.221±0.5 13.365±0.9 81.425±0.2 16.125±1.2 40.632±1.5 78.945±0.5 17.636±1.6 30.341±1

Dist-Fair 70.738±1.2 13.108±3 26.169±3.8 74.227±0.6 2.707±0.3 10.084±0.5 67.471±1 13.764±5.3 14.655±5.5 71.553±0.4 8.926±0.7 26.215±0.7 71.0717±1.1 18.92±3.3 24.111±2.3

Fair Mixup 79.146±0.2 1.303±0.4 25.243±1 92.027±0.1 2.325±0.2 17.319±1.2 81.118±0.1 1.643±0.5 24.063±3.2 79.321±0.7 11.715±1.5 47.313±1.2 — — —

Table 1: Classification Results on CelebA.
dataset, it can be challenging to achieve both high accuracy and satisfy differential privacy (DP)
simultaneously. Our method demonstrates strong competitiveness in achieving both high accuracy
and fairness across these attribute combinations. The results indicate that our approach performs
favorably compared to other methods in terms of balancing accuracy and fairness in classification
tasks.

The last column of Table 1 demonstrates that our method maintains fairness in classification even in
scenarios involving multiple sensitive attributes (Attractive/male & young). This ability is facilitated
by the application of distance covariance, which allows for handling fair classification with arbitrary
dimensional random vectors.

It is worth noting that FairMixup, another method employed in the evaluation, cannot be extended to
fair classification with multiple sensitive attributes. Therefore, we have omitted their results in the
last column of Table 1. This highlights the advantage of our method in addressing fairness concerns
in classification tasks with multiple sensitive attributes.

4.2.2 UTKFACE

The UTKFace dataset (Zhang et al., 2017) is a dataset consisting of around 20,000 facial images.
Each image is associated with attribute labels such as gender, age, and ethnicity. Following from Park
et al. (2022), we consider “race” as the sensitive attribute and “gender” as the target attribute. During
our evaluation, we divided the UTKFace dataset into training (80%) and testing (20%) sets.

To assess the impact of bias caused by the imbalance in the sensitive attribute (race), we introduced
an imbalance factor denoted as α. This factor determines the gender ratio within each sensitive group.
Specifically, one sensitive group (e.g., Caucasian) has male data α times as much as female data,
while the other sensitive group has the opposite gender ratio. More details about the data splittings
with different imbalance factors can be found in Appendix C.4.

Table 2 presents the classification accuracy, ∆EO, and ∆DP results obtained from our evaluation.
These results offer valuable insights into the impact of bias arising from the imbalance in the sensitive
attribute, as well as highlight the effectiveness of our proposed method in mitigating such bias while
simultaneously ensuring accuracy and fairness.

Imbalance α = 2 α = 3 α = 4
Acc ∆EO ∆DP Acc ∆EO ∆DP Acc ∆EO ∆DP

Vanilla 88.743±0.4 6.275±0.3 6.745±0.3 87.81±0.4 10.454±0.4 10.676±0.3 85.246±1.0 12.940±0.6 13.319±0.1

Ours 89.198±0.4 0.859±0.4 0.918±0.4 87.407±1.1 1.382±0.7 1.349±0.7 86.362±1.6 0.665±0.4 0.726±0.3

HGR 89.041±0.1 2.643±0.5 2.567±0.4 86.072±0.2 5.12±0.3 5.10±0.3 87.046±1.0 8.077±1.3 8.113±1.4

FSCL 88.479±0.8 3.213±0.7 3.134±0.7 87.445±1.2 1.726±0.9 1.454±0.5 87.08±1.0 2.505±0.8 2.295±0.7

Dist-Fair 73.778±1 2.459±1.1 1.355±0.8 71.61567±2.0 3.538±1.1 2.424±2.1 73.159±0.4 5.218±0.5 4.967±0.5

Fair Mixup 87.613±0.3 2.643±0.5 2.123±1.2 85.565±0.5 2.105±0.1 1.849±0.3 86.55±1.0 1.329±0.6 1.015±0.3

Table 2: Classification Results On Imbalanced UTKFace.
Moreover, our method not only significantly enhances fairness but also improves classification
accuracy compared to the vanilla model, particularly when the data imbalance is severe (e.g. α = 4).
This indicates that our approach not only rectifies fairness concerns but also leads to better overall
performance in gender prediction tasks on imbalanced datasets.

5 CONCLUSION

In this paper, we introduces distance covariance as a powerful tool to depict fairness in machine
learning, building on the independence between predictor and sensitive attribute. We analyze the
properties of distance covariance and provide a convergence analysis of the empirical distance
covariance in probability. To address the challenge of setting a balanced balance parameter, we

9



Under review as a conference paper at ICLR 2024

treat it as a dual variable and update it along with model parameters. Finally, we demonstrate the
effectiveness and wide applicability of our proposed method through numerical experiments.

Future work in the field of fair machine learning encompasses several directions. While our method
primarily focuses on classification tasks, it is essential to explore its applicability to regression
problems with discrete/continuous sensitive attribute(s) as well. Furthermore, it is crucial to delve
into the integration of statistical and optimization techniques with fairness in machine learning.
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APPENDIX

A PROOFS

Lemma 4 (Theorem 3 in (Székely et al., 2007)) For any random variables Y ∈ Rp and Z ∈ Rq
with E(∥Y∥2 + ∥Z∥2) < +∞, we have V(Y,Z) = 0 if and only if Y and Z are independent.

Proposition 5 (Proof of Proposition 1) Let (Yi, Zi), i = 1, . . . , n be the observed samples drawn
from a joint distribution of (Y,Z). Denote Y = [Y1, · · · , Yn] and Z = [Z1, · · · , Zn]. Then the
empirical distance covariance Vn(Y,Z) is a biconvex function of (Y,Z).

Proof. noted that Yk − Yl = [Y1, Y2, . . . , Yn][0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0]
T = Y Ukl is a linear

transformation of X . By Definition 3.1, we have

Akl = akl − āk· − ā·l + ā·· = ∥Y Ukl∥2 −
1

n

n∑
l=1

∥Y Ukl∥2 −
1

n

n∑
k=1

∥Y Ukl∥2 +
1

n2

n∑
l,k=1

∥Y Ukl∥2.

Since the L2 norm is a convex function, Akl is also a convex function with respect to Y . Similarly,
Bkl is also a convex function with respect to Z. Thus, Vn(Y,Z) = 1

n2

∑n
k,l=1AklBkl is a convex

function with respect to Y when Z is fixed and a convex function w.r.t. Z when Y is fixed. Therefore,
the empirical distance covariance is a biconvex function of (Y,Z).

Before the proof of Theorem 3, we first introduce a lemma on the probability inequality of the
U -statistic, from Theorem 5.6.1.A of Serfling (2009).

Lemma 6 Let h(Y1, . . . , Ym) be a kernel function of theU -statisticUn, and θ = E{h(Y1, . . . , Ym)}.
Let a and b be the upper and lower bounds of h(Y1, . . . , Ym). That is, a ≤ h(Y1, . . . , Ym) ≤ b. For
any t > 0 and n > m, we have

P (Un − θ ≥ t) ≤ exp{−2[n/m]t2/(b− a)2},

where [n/m] denotes the greatest integer function, i.e. the integer part of n/m.

From Lemma 6 and the symmetry of U -statistic, we can get the following result:

P (|Un − θ| ≥ t) ≤ 2 exp{−2[n/m]t2/(b− a)2}, (6)

which is the key point of our proof.

Lemma 7 For any ϵ > 0, let Ŝ1 = 1
n2

∑n
i,j=1 ∥Yi − Yj∥2∥Zi − Zj∥2 and S̃1 = Ŝ1I(Ŝ1 ≤ M1),

where I(·) is an indicator function and M1 =
√

n
logn

ϵ
8 is a constant. Then there exists a constant

C > 0 we have

P ({|S̃1 − E(S̃1)| >
ϵ

4
}) ≤ C

n
.

Proof. Let h1(Yi, Yj , Zi, Zj) = ∥Yi − Yj∥2∥Zi − Zj∥2I (∥Yi − Yj∥2∥Zi − Zj∥2 ≤M1) be the
kernel function. Then the corresponding U -statistic of the samples Y1, . . . , Yn with size n is

U1 =
1

n(n− 1)

∑
i ̸=j

h1(Yi, Yj , Zi, Zj)

=
1

n(n− 1)

∑
i ̸=j

∥Yi − Yj∥2∥Zi − Zj∥2I
(
∥Yi − Yj∥2∥Zi − Zj∥2 ≤

√
n

log n

ϵ

8

)
.

(7)

Note that the kernel size m = 2, by Lemma 6, there exists a constant C > 0 we obtain

P (|U1 − E(S̃1)| ≥ ϵ) ≤ 2 exp

{
−2[n/m]ϵ2/

(
nϵ2

64 log n

)}
=
C

n
. (8)
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Since

0 < U1 − S̃1 =
1

n(n− 1)

∑
i ̸=j

h1(Yi, Yj , Zi, Zj)−
1

n2

n∑
i,j

h1(Yi, Yj , Zi, Zj)

=

(
1

n(n− 1)
− 1

n2

)∑
i ̸=j

h1(Yi, Yj , Zi, Zj)−
1

n2
h1(Yi, Yi, Zi, Zi)

=

(
1

n(n− 1)
− 1

n2

)∑
i ̸=j

h1(Yi, Yj , Zi, Zj)

≤
(

1

n(n− 1)
− 1

n2

)
(n(n− 1))M =

M

n
=

ϵ

8
√
n log n

<
ϵ

8
,

when n ≥ 2, so P ({|S̃1 − U1| > ϵ
8} = 0. Thus, from (8), get

P ({|S̃1 − E(S̃1)| >
ϵ

4
}) = P ({|S̃1 − U1 + U1 − E(S̃1)| >

ϵ

4
})

≤ P ({|S̃1 − U1| >
ϵ

8
}) + P ({|U1 − E(S̃1)| >

ϵ

8
})

≤ C

n
.

(9)

Definition A.1 (Sub-Gaussian random variables, definition 5.7 in Vershynin (2010)) A random
variable v is called a sub-Gaussian random variable if one of the following 4 conditions holds:

• Tails: the probability P (|v| > t) ≤ exp(1− t2/K2
1 ) for all t ≥ 0;

• Moments: (E|v|p)1/p ≤ K2
√
p for all p ≥ 1;

• Super-exponential moment: E
(
exp v2

K2
3

)
≤ e;

• Moment generating function: E exp (tv) ≤ exp
(
K4t

2

2

)
, ∀ t ∈ R.

where Ki > 0, i = 1, 2, 3, 4 are constants differing from each other by at most an absolute constant
factor. The sub-Gaussian norm of v, denoted ∥v∥ψ2

, is defined to be

∥v∥ψ2 = sup
p≥1

p−1/2(E|v − Ev|p)1/p.

In fact, the above 4 conditions are equivalent, see Lemma 5.5 of Vershynin (2010).

Definition A.2 (Sub-Gaussian random vectors, definition 5.22 of Vershynin (2010)) We say
that a random vector v ∈ Fd is sub-Gaussian if the one-dimensional marginals ⟨v,u⟩ are
sub-Gaussian random variables for all u ∈ Fd. The sub-Gaussian norm of v is defined as

∥v∥ψ2
= sup

∥u∥=1

∥⟨v,u⟩∥ψ2
.

Lemma 8 Let Y,Z be two sub-Gaussian random vectors. For any t > 0, there exists a constant
K1 > 0 such that

P (∥Y∥2 > t) ≤ 2 exp(−t2/K1), P (∥Z∥2 > t) ≤ 2 exp(−t2/K1).

Proof. By the definition of sub-Gaussian random vector, we have ∥Y∥1 is a sub-Gaussian random
variable if Y is a sub-Gaussian random vector. Therefore, there exits a positive constant K1 s.t.

P (∥Y∥1 > t) ≤ 2 exp(−t2/K1).

Note that ∥Y∥2 ≤ ∥Y∥1, so P (∥Y∥2 > t) ≤ P (∥Y∥1 > t) ≤ 2 exp(−t2/K1). Similarly, we have
P (∥Z∥2 > t) ≤ P (∥Z∥1 > t) ≤ 2 exp(−t2/K1) since Z is a sub-Gaussian random vector.
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Theorem 9 (Proof of Theorem 3) Let Y ∈ Rp and Z ∈ Rq be two sub-Gaussian random vectors
and Y = [Y1, · · · , Yn], Z = [Z1, · · · , Zn] be the sample matrices. For ∀ϵ > 0, there exist positive
constants C and Cϵ such that

P (|Vn(Y,Z)− V(Y,Z)| > ϵ) ≤ C

n
+ 4nCϵ exp

(
−
√

n

log n

)
+ 2 exp(−Cn2 log n).

Proof. Let (Ỹ, Z̃) be an i.i.d copy of (Y,Z). By a simple calculation, we have
V(Y,Z) = S1 + S2 − 2S3,

where Si, i = 1, 2, 3 are defined as follows:
S1 = E∥Y − Ỹ∥2∥Z− Z̃∥2,
S2 = E∥Y − Ỹ∥2E∥Z− Z̃∥2,

S3 = E
[
E∥Y − Ỹ∥2

∣∣Y]
E
[
E∥2∥Z− Z̃∥2

∣∣Z] .
The corresponding sample estimates are:

Vn(Y,Z) = Ŝ1 + Ŝ2 − 2Ŝ3,

Ŝ1 =
1

n2

n∑
i,j=1

∥Yi − Yj∥2∥Zi − Zj∥2,

Ŝ2 =
1

n2

n∑
i,j=1

∥Yi − Yj∥2
1

n2

n∑
i,j=1

∥Zi − Zj∥2,

Ŝ3 =
1

n3

n∑
i,j,l=1

∥Yi − Yj∥2∥Zi − Zl∥2.

Therefore,
P (|Vn(Y,Z)− V(Y,Z)| > ϵ) = P ({|(Ŝ1 + Ŝ2 − 2Ŝ3)− (S1 + S2 − 2S3)| > ϵ})
≤P ({|Ŝ1 − S1| > ϵ/4}) + P ({|Ŝ2 − S2| > ϵ/4}) + P ({|Ŝ3 − S3| > ϵ/4})
:=E1 + E2 + E3,

(10)

where E1 = P ({|Ŝ1 − S1| > ϵ/4}), E2 = P ({|Ŝ2 − S2| > ϵ/4}), E3 = P ({|Ŝ3 − S3| > ϵ/4}).
In the following we will estimate the upper bounds of E1, E2 and E3, respectively.

STEP 1.

We show the following statement. For any ϵ > 0, there exist constants C,Cϵ > 0 such that:
P ({|Ŝ1 − S1)| > ϵ/4}) ≤ C

n + 4nCϵ exp
(
−
√

n
logn

)
.

Denote S̃1 = Ŝ1I(Ŝ1 ≤M1), where I(·) is an indicator function and M1 =
√

n
logn

ϵ
8 is a constant.

Define sets
G1 = {|S̃1 − E(Ŝ1)| ≤ ϵ/4},
G2 = {S̃1 = Ŝ1},
G3 = {∥Yi − Yj∥2∥Zi − Zj∥2 ≤M1, ∀i, j},
G4 = {∥Yi∥22 + ∥Zi∥22 ≤M1/2, ∀i},
G = {|Ŝ1 − E(Ŝ1)| ≤ ϵ/4},

we have
G1 ∩G2 ⊂ G, G3 ⊂ G2, G4 ⊆ G3,

where G4 ⊆ G3 can obtain since

∥Yi − Yj∥2∥Zi − Zj∥2 ≤
∥Yi − Yj∥22 + ∥Zi − Zj∥22

2

=
1

2

(
∥Yi∥22 + ∥Yj∥22 − 2Y Ti Yj + ∥Zi∥22 + ∥Zj∥22 − 2ZTi Zj

)
≤
(
∥Yi∥22 + ∥Yj∥22 + ∥Zi∥22 + ∥Zj∥22

)
≤ 2 max

i
(∥Yi∥22 + ∥Zi∥22).
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Thus, Gc3 ⊆ Gc4 (Sc denote the complementary set of the set S).

By the inclusion relation of the sets, we establish the following probability inequalities:

P (Gc) ≤ P (Gc1 ∪Gc2) = P (Gc1 ∩ (G2 ∪Gc2) ∪Gc2)
= P ((Gc1 ∩G2) ∪ (Gc1 ∩Gc2) ∪Gc2)
≤ P ((Gc1 ∩G2) ∪Gc2)
≤ P (Gc1 ∩G2) + P (Gc2)

≤ P (Gc1 ∩G2) + P (Gc3)

≤ P (Gc1 ∩G2) + P (Gc4).

(11)

By Lemma 7, there exists a constant C > 0, we have

P (Gc1 ∩G2) = P ({|S̃1 − E(S̃1)| > ϵ/4}) ≤ C

n
. (12)

Next, we estimate P (Gc4). There exists a constant Cϵ > 0, we have
P (Gc4) = P ({∥Yi∥22 + ∥Zi∥22 > M1/2, ∀i})

≤P ({∥Yi∥22 >
M1

4
, ∀i}) + P ({∥Zi∥22 >

M1

4
, ∀i})

=P ({∥Yi∥2 >
√
M1

2
, ∀i}) + P ({∥Zi∥2 >

√
M1

2
, ∀i})

≤4n exp
(
− M1

4K1

)
≤ 4nCϵ exp

(
−
√

n

log n

)
,

(13)

where the last inequality is based on Lemma 8, since Yi, Zi are the Sub-Gaussian vectors.

Thus, combining (11), (12), (13), we have

P ({|Ŝ1 − S1)| > ϵ}) = P (Gc) ≤ P (Gc1 ∩G2) + P (Gc4) ≤
C

n
+ 4nCϵ exp

(
−
√

n

log n

)
.

STEP 2.

For any ϵ > 0, there exist constants C,Cϵ > 0 such that: P ({|Ŝ2 − S2)| > ϵ}) ≤ C
n +

2nCϵ exp
(
− n

logn

)
.

Next, we consider Ŝ2. We write Ŝ2 as Ŝ2 = Ŝ2,1Ŝ2,2, where

Ŝ2,1 =
1

n2

n∑
i,j=1

∥Yi − Yj∥2, Ŝ2,2 =
1

n2

n∑
i,j=1

∥Zi − Zj∥2

Accordingly, S2 = S2,1S2,2, where S2,1 = E∥Y − Ỹ∥2, S2,2 = E∥Z− Z̃∥2.

Let M2 =
√
nϵ

4
√
logn

. Choose the kernel functions h2,1(Yi, Yj) = ∥Yi − Yj∥2I(∥Yi − Yj∥2 ≤
M2), h2,2(Zi, Zj) = ∥Zi − Zj∥2I(∥Zi − Zj∥2 ≤ M2), let S̃21 = Ŝ21I(Ŝ21 ≤ M2) and
S̃22 = Ŝ22I(Ŝ22 ≤M2), and construct corresponding U -statistics:

U2,1 =
1

n(n− 1)

∑
i̸=j

h2,1(Yi, Yj) =
1

n(n− 1)

∑
i ̸=j

∥Yi − Yj∥2I(∥Yi − Yj∥2 ≤M2),

U2,2 =
1

n(n− 1)

∑
i̸=j

h2,2(Zi, Zj) =
1

n(n− 1)

∑
i ̸=j

∥Zi − Zj∥2I(∥Zi − Zj∥2 ≤M2).

Define sets
G1 = {|S̃2,1 − E(Ŝ2,1)| ≤

√
ϵ/2},

G2 = {S̃2,1 = Ŝ2,1},
G3 = {∥Yi − Yj∥2 ≤M2, ∀i, j},
G4 = {∥Yi∥2 ≤M2/2, ∀i},
G = {|Ŝ2,1 − E(Ŝ2,1)| ≤

√
ϵ/2},
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P (Gc1 ∩G2) =P (|S̃2,1 − E(S̃2,1)| >
√
ϵ/2)

≤P (|S̃2,1 − U2,1| >
√
ϵ/4) + P (|U2,1 − E(S̃2,1)| >

√
ϵ/4)

≤P (|U2,1 − E(S̃2,1)| >
√
ϵ/4) ≤ C

n
,

where the second inequality is from |S̃2,1 − U2,1| ≤ M2

n2(n−1) ≤
√
ϵ/4 and the last inequality is by

Lemma 6. Then we have

P (|Ŝ2,1 − S2,1| >
√
ϵ/2) = P (Gc) ≤ P (Gc1 ∩G2) + P (Gc4) ≤

C

n
+ 2nCϵ exp

(
− n

log n

)
.

where P (Gc4) ≤ P (∥Yi∥1 > M2

2 , ∀i) ≤ 2nCϵ exp
(
− n

logn

)
by Lemma 8. Similarly,

P (|Ŝ2,2 − S2,2| >
√
ϵ/2) = P (Gc) ≤ P (Gc1 ∩G2) + P (Gc4) ≤

C

n
+ 2nCϵ exp

(
− n

log n

)
.

Since Y and Z are Sub-Gaussian random vectors, from the equivalent definition of Sub-Gaussian,
we have with K1 > 0

S2,1 = E∥Y − Ỹ∥2 ≤ 2E∥Y∥2 ≤ 2E∥Y∥1 ≤ 4K1,

S2,2 = E∥Z− Z̃∥2 ≤ 2E∥Z∥2 ≤ 4K1,

where we use the fact that the 1-norm of the sub-Gaussian random vector is a sub-Gaussian variable.
Then, we can prove that:

P (|S2,1(Ŝ2,2 − S2,2)| > ϵ/12) ≤ P (|S2,1||Ŝ2,2 − S2,2| > ϵ/12)

≤P (|Ŝ2,2 − S2,2| > ϵ/(48K1)) ≤
C

n
+ 2nCϵ exp

(
− n

log n

)
,

P (|(Ŝ2,1 − S2,1)S2,2| > ϵ/12) ≤ P (|(Ŝ2,1 − S2,1||S2,2| > ϵ/12)

≤P (|Ŝ2,1 − S2,1| > ϵ/(48K1)) ≤
C

n
+ 2nCϵ exp

(
− n

log n

)
.

(14)

P (|(Ŝ2,1 − S2,1)(Ŝ2,2 − S2,2)| > ϵ/12)

≤P (|Ŝ2,1 − S2,1| >
√
ϵ/12) + P (|Ŝ2,2 − S2,2| >

√
ϵ/12)

≤C
n

+ 2nCϵ exp

(
− n

log n

)
.

(15)

Combining (14) and (15),

P (|Ŝ2 − S2| > ϵ/4) = P (|Ŝ2,1Ŝ2,2 − S2,1S2,2| ≥ ϵ/4)
≤P (|S2,1(Ŝ2,2 − S2,2)| > ϵ/12) + P (|(Ŝ2,1 − S2,1)S2,2| > ϵ/12)

+ P (|(Ŝ2,1 − S2,1)(Ŝ2,2 − S2,2)| > ϵ/12)

≤3
(
C

n
+ 2nCϵ exp

(
− n

log n

))
.

(16)

STEP 3.

For any ϵ > 0, there exist constants C,Cϵ > 0 such that: P ({|Ŝ3 − S3)| > ϵ}) ≤ C
n +

2 exp(−Cn2 log n) + 4nCϵ exp
(
−
√

n
logn

)
.

Denote S̃3 = Ŝ3I(Ŝ3 < M3), where I(·) is an indicator function and M3 =
√

n
logn

ϵ
48 is a constant.

Next, we construct the U -statistics related to E(S̃3) with the kernel function h3,

ĥ3(Yi, Zi, Yj , Zj , Yl, Zl) = ∥Yi − Yj∥2∥Zi − Zl∥2 + ∥Yl − Yj∥2∥Zi − Zl∥2
+ ∥Yi − Yj∥2∥Zj − Zl∥2 + ∥Yi − Yl∥2∥Zj − Zl∥2
+ ∥Yl − Yj∥2∥Zi − Zj∥2 + ∥Yl − Yi∥2∥Zi − Zj∥2,

h3(Yi, Zi, Yj , Zj , Yl, Zl) = ĥ3(Yi, Zi, Yj , Zj , Yl, Zl)I(ĥ3(Yi, Zi, Yj , Zj , Yl, Zl) < M),
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U3 =
1(
n
3

) ∑
i<j<l

h3(Yi, Zi, Yj , Zj , Yl, Zl).

Then we know by simple calculations

S̃3 =
(n− 1)(n− 2)

6n2
U3 +

n− 1

n2
U1,

where U1 is defined in (7). By Boole’s inequality, we have

P
(∣∣∣S̃3 − E(S̃3)

∣∣∣ > ϵ/4
)
= P

(∣∣∣∣ (n− 1)(n− 2)

6n2
U3 +

n− 1

n2
U1 − E(S̃3)

∣∣∣∣ > ϵ/4

)
=P

(∣∣∣∣ (n− 1)(n− 2)

n2

(
U3

6
− E(S̃3)

)
+
n− 1

n2

(
U1 − E(S̃1)

)
− 3n− 2

n2
E(S̃3) +

n− 1

n2
E(S̃1)

∣∣∣∣ > ϵ/4

)
≤P

(∣∣∣∣ (n− 1)(n− 2)

n2

(
U3

6
− E(S̃3)

)∣∣∣∣ > ϵ/16

)
+ P

(∣∣∣∣n− 1

n2

(
U1 − E(S̃1)

)∣∣∣∣ > ϵ/16

)
+ P

(
3n− 2

n2
|E(S̃3)| > ϵ/16

)
+ P

(
n− 1

n2
|E(S̃1)| > ϵ/16

)
.

(17)

For E(S̃3) and E(S̃1), since

n− 1

n2
E(S̃1) ≤

n− 1

n2
M1 =

ϵ

16
√
n log n

<
ϵ

16
, (18)

and
3n− 2

n2
E(S̃3) <

3n− 2

n2
M3 =

(3n− 2)ϵ

48n
√
n log n

<
ϵ

16
, (19)

when n > 2, then P ({∥ 3n−2
n2 E(S̃3)∥2 > ϵ/16}) = 0 and P ({∥n−1

n2 (U1 − E(S̃1))∥2 > ϵ/16}) = 0.

Note that

P

(∣∣∣∣ (n− 1)(n− 2)

n2

(
U3

6
− E(S̃3)

)∣∣∣∣ > ϵ/16

)
=P

(∣∣∣∣(U3

6
− E(S̃3)

)∣∣∣∣ > ϵ/16
n2

(n− 1)(n− 2)

)
≤P

(∣∣∣∣(U3

6
− E(S̃3)

)∣∣∣∣ > ϵ/16

)
≤ C

n
,

(20)

where the last inequality is by Lemma 6. Similarly,

P

(∣∣∣∣n− 1

n2

(
U1 − E(S̃1)

)∣∣∣∣ > ϵ/16

)
≤ 2 exp(−Cn2 log n). (21)

Combining (18), (19), (21) and (20), (17) can be rewritten as

P
(∣∣∣S̃3 − E(S̃3)

∣∣∣ > ϵ/4
)
≤ C

n
+ 2 exp(−Cn2 log n).

Define sets:
H1 = {|S̃3 − E(Ŝ3)| ≤ ϵ/4},
H2 = {S̃3 = Ŝ3},
H3 = {ĥ3(Yi, Zi, Yj , Zj , Yl, Zl) < M, ∀i, j, l},
H4 = {∥Yi∥22 + ∥Zi∥22 ≤M/6, ∀i},
H = {|Ŝ3 − E(Ŝ3)| ≤ ϵ/4}.
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Similar with (11), we have P (Hc) ≤ P (Hc
1 ∩H2) + P (Hc

4). Thus,

P ({|Ŝ3 − S3)| > ϵ/4}) = P ({|Ŝ3 − E(Ŝ3)| > ϵ/4}) ≤ P (Hc
1 ∩H2) + P (Hc

4)

≤P ({|S̃3 − E(S̃3)| > ϵ/4}) + P ({∥Yi∥22 + ∥Zi∥22 > M3/6, ∀i})

≤P ({|S̃3 − E(S̃3)| > ϵ/4}) + P

(
{∥Yi∥2 >

√
M3√
12

, ∀i}
)
+ P

(
{∥Zi∥2 >

√
M3√
12

, ∀i}
)

≤C
n

+ 2 exp(−Cn2 log n) + 4nCϵ exp

(
−
√

n

log n

)
.

In summary, we conclude the result.

B EXPLORING THE POTENTIAL RELATIONSHIP BETWEEN DP, EO AND
ACCURACY

In Subsection 3.3, we try to think about the connections between DP and EO and find:

Model max
θ

P (ϕθ(X) = Y ), s.t. ϕθ(X) ⊥ Z suggests that the objective goes beyond achieving

independence between the predictions ϕθ(X) and the sensitive attribute Z.

Intuitively, samples sharing the same sensitive attribute, regardless of their target classes, have a
tendency to cluster together due to shared characteristics or patterns within those groups. Conversely,
the fitting term related to the target attribute places greater emphasis on accurately classifying the
majority group. This is because capturing the patterns and characteristics of the majority group is
often more crucial for optimizing the model’s overall performance.

Suppose Y = y is a majority class in the sensitive class Z = Zi, but not a majority class in Z = Zj .
The worst case is P (Ŷ = y|Y = y, Z = Zi) = 1 and P (Ŷ = y|Y = y, Z = Zj) = 0 since Y = y is
not a majority class in Z = Aj , which implies strong dependence between Y and Z. The introduction
of independence seeks to break this dependence, leading to an increase in P (Ŷ = y|Y = y, Z = Zj),
and resulting in a smaller EO value.

To further investigate the relationships between DP, EO, and Accuracy, we conducted experiments on
the CelebA and UTKFace datasets.

For CelebA dataset, our experiments focus on the “attractive” attribute as the target attribute and the
“gender” attribute as the sensitive attribute. To analyze the impact of data fitting term on the DP and
EO, we utilized a fixed balancing parameter λ during training. In Figure 2, we present the model’s
performance on the test set with different λ. As the λ parameter raising, both Acc and ∆DP decrease.
Conversely, ∆EO demonstrates a V -shaped or increasing trend. Therefore, we may numerically
choose an appropriate parameter such DP and EO are smaller with a high predicted accuracy.

Figure 2: Trend between accuracy and fairness metrics for CelebA dataset with different balanced
parameters.
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We also provide detailed insights into the UTKFace dataset. Despite intentionally inducing imbalances
in the dataset, we observed a simultaneous decrease in both the differential privacy (DP) and equal
opportunity (EO) metrics alongside an increase in accuracy as the number of epochs progressed.
Figure 3 illustrates the relationship between accuracy and fairness metrics (DP and EO) for the
UTKFace dataset, specifically with an imbalance factor of λ = 2.

From the figure, we can observe that accuracy, ∆EO, and ∆DP tend to stabilize on this dataset when
epoch number is larger than 40. Additionally, ∆EO and ∆DP exhibit relatively small differences and
can be simultaneously reduced.

In our setting for each sensitive attribute class, the ratio of the majority class to the minority class in
relation to the target classes is the same. This observation can possibly be attributed to the fact that
we maintained a consistent imbalance factor across all sensitive attribute classes.

Figure 3: Trend between accuracy and fairness metrics for UTKFace dataset as the epoch increases.

C ADDITIONAL DETAILS ABOUT NUMERICAL RESULTS

The experiments are conducted in a Linux environment using the PyTorch library, utilizing the
computational capabilities of a NVIDIA A100 Tensor Core GPU. In the classification task, the
cross-entropy loss function is employed. A batch size of 256 is used during training, and the initial
learning rate is set to 0.1.

C.1 ADULT

We follow the preprocessing procedures outlined as Yurochkin et al. (2019); Chuang & Mroueh
(2020). During the training process, Stochastic Gradient Descent (SGD) with momentum is utilized
as the optimization algorithm. The model is trained for a total of 40 epochs, with the learning rate
decayed by a factor of 10 at the 15th and 30th epochs.

In our experiments, we employ a dataset splitting strategy that involved dividing the data into training,
validation, and testing sets. The proportions used for the splits are 60% for training, 20% for
validation, and 20% for testing. To address the potential variability introduced by different dataset
splits, we apply 10 different random seeds for the splitting process. For each split, we conduct the
experiments and record the results. The reported results are the average over multiple experiments.

C.2 ACSINCOME

ACSIncome is a dataset to predict whether an individual’s income is above $50,000, after filtering the
2018 US-wide ACS PUMS data sample to only include individuals above the age of 16, who reported
usual working hours of at least 1 hour per week in the past year, and an income of at least $100.
When loading dataset, we follow the instruction in their readme file 1. There are 22, 268 samples
with 10 features.

1https://github.com/socialfoundations/folktables/tree/main
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In the numerical experiments, we consider “Race” as the sensitive attribute with 2 classes: while
and others. We followed the same approach as in the Adult dataset for dataset splitting and result
recording.

C.3 CELEBA

The CelebA dataset consists of over 200,000 celebrity images, with annotations for various attributes
such as gender, age, and presence of facial hair. The CelebA dataset is known for its imbalanced
class distribution, particularly with attributes such as gender, where the number of male and female
samples is significantly different. This dataset presents a challenge for fairness evaluation due to the
inherent bias in the data.

In our experiments on the CelebA dataset, the dataset was divided into training, validation, and testing
sets, with sizes of 162k, 18k, and 19k samples, respectively. To encode the input data and extract
meaningful representations, we utilized the ResNet-18 architecture. Following the encoding step, we
employed a two-layer neural network for prediction. The neural network consisted of a hidden layer
with a size of 100 neurons, and the Rectified Linear Unit (ReLU) activation function was applied.

During the training process, we utilized Stochastic Gradient Descent (SGD) with momentum as
the optimization algorithm. The model was trained for a total of 90 epochs. The learning rate was
decayed by a factor of 10 at the 20th, 40th, and 60th epochs. This learning rate decay strategy helps
facilitate convergence and improve the model’s performance over the course of training.

In this paper, we focus on analyzing four groups of training and test datasets that contain binary
sensitive attributes. Each group consists of a total of 162,770 training samples and 19,962 test
samples.

To provide detailed insights into the dataset characteristics, we present the sample numbers and
proportions for different target/sensitive attribute settings in Table 3. Additionally, Table 4 provides
the sample numbers and proportions for different target/sensitive attribute settings, specifically
focusing on scenarios involving two sensitive attributes.

Training 162770 162770 162770 162770
Attractive/gender Smile/gender Wavy hair/gender Attractive/young

Target c0 Target c1 Target c0 Target c1 Target c0 Target c1 Target c0 Target c1
Sensitive Class 0 29920 (18.38%) 49247 (30.26%) 43688(26.84%) 41002 (25.19%) 52289 (32.12%) 58499 (35.94%) 30618 (18.81%) 48549 (29.83%)
Sensitive Class 1 64589 (39.68%) 19014 (11.68%) 50821 (31.22%) 27259 (16.75%) 42220 (25.94%) 9762 (6.00%) 5364 (3.30%) 78239 (48.07%)

Testing 19962 19962 19962 19962
Attractive/gender Smile/gender Wavy hair/gender Attractive/young

Target c0 Target c1 Target c0 Target c1 Target c0 Target c1 Target c0 Target c1
Sensitive Class 0 4263 (21.36%) 5801 (29.06%) 5354(26.82%) 4621 (23.15%) 6178(30.95%) 6517 (32.65%) 4066 (20.37%) 5998 (30.05%)
Sensitive Class 1 7984(40.00%) 1914 (9.59%) 6893(34.53%) 3094 (15.50%) 6069(30.40%) 1198 (6.00%) 782 (3.92%) 9116 (45.67%)

Table 3: Compositions of the CelebA datasets with a binary sensitive attribute.

Traning Sensitive Attribute
Target Attribute Female and Old Female and Young Male and Old Male and Young
Attractive 7522 (4.62%) 23096 (14.19%) 22398 (13.76%) 26151 (16.07%)
Unattractive 3645 (2.24%) 1719 (1.06%) 60944 (37.44%) 17295 (10.63%)

Testing Attractive 1299 (6.51%) 2767 (13.86%) 2964 (14.85%) 3034 (15.20%)
Unattractive 617 (3.09%) 165 (0.83%) 7367 (36.91%) 1749 (8.76%)

Table 4: Compositions of the CelebA datasets with multiple sensitive attributes.

C.4 UTKFACE

In our approach, we utilize the ResNet-18 architecture to encode the input data into a representation of
dimension 100. After encoding the input data, we employ a two-layer neural network for prediction.
This neural network consists of a hidden layer with a size of 100 neurons and applies the Rectified
Linear Unit (ReLU) activation function. The training model we use is the cross-entropy loss.
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During the training process, we employ Stochastic Gradient Descent (SGD) with momentum as the
optimization algorithm. We train the model for a total of 90 epochs. To facilitate effective training,
we implement a learning rate decay strategy. Specifically, we reduce the learning rate by a factor of
ten at the 20th, 40th, and 60th epochs.

In this dataset, we examine the target attribute of gender, which includes two categories: Male and
Female. The sensitive attribute we focus on is ethnicity, specifically distinguishing between Caucasian
and non-Caucasian groups. Table 5 outlines the sample numbers and proportions based on different
data imbalance settings, where α is the imbalance factor.

Imbalance(α) 2 3 4
Training 11972 10716 10022

Ethnicity
Gender Caucasian Others Caucasian Others Caucasian Others
Male 3991 (33.34%) 1995 (16.66%) 4019 (37.50%) 1339 (12.50%) 4009 (40%) 1002 (10%)

Female 1995 (16.66%) 3991 (33.34%) 1339 (12.50%) 4019 (37.50%) 1002 (10%) 4009 (40%)
Testing 3664 3564 3704

Ethnicity
Gender Caucasian Others Caucasian Others Caucasian Others
Male 916 (25.00%) 916 (25.00%) 1782 (50.00%) 1782 (50.00%) 1852 (50.00%) 1852 (50.00%)

Female 916 (25.00%) 916 (25.00%) 1782 (50.00%) 1782 (50.00%) 1852 (50.00%) 1852 (50.00%)

Table 5: Composition of the UTKFace datasets.
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