
Efficient and Workload-Aware LLM Serving via

Runtime Layer Swapping and KV Cache Resizing

Anonymous Author(s)

Abstract

Efficiently serving large language models (LLMs) under dynamic and bursty1

workloads remains a key challenge for real-world deployment. Existing serving2

frameworks and static model compression techniques fail to adapt to workload3

fluctuations, leading to either service-level objective (SLO) violations under full-4

precision serving or persistent accuracy degradation with static quantization. We5

present MorphServe, a dynamic, workload-aware LLM serving framework based on6

morphological adaptation. MorphServe introduces two asynchronous, token-level7

runtime mechanisms: quantized layer swapping, which selectively replaces less8

impactful layers with quantized alternatives during high-load periods, and pressure-9

aware KV cache resizing, which dynamically adjusts KV cache capacity in response10

to memory pressure. These mechanisms enable state-preserving transitions with11

minimum runtime overhead and are fully compatible with modern scheduling and12

attention techniques. Extensive experiments on Vicuna and Llama family models13

with real-world workloads demonstrate that MorphServe reduces average SLO14

violations by 92.45% and improves the P95 TTFT latency by 2.2⇥–3.9⇥ compared15

to full-precision serving, without compromising generation quality. These results16

establish MorphServe as a practical and elastic solution for LLM deployment in17

dynamic environments.18

1 Introduction19

The rise of large language models (LLMs) has made efficient and reliable serving a core chal-20

lenge in modern AI infrastructure. Systems like vLLM [26] and TGI [23] optimize throughput via21

PagedAttention [26] and continuous batching [51, 44, 20], but assume fixed-precision execution22

and stable workloads. In contrast, real-world LLM workloads are dynamic and bursty [48, 2], with23

fluctuating request rates and context lengths. Even brief load spikes can cause memory exhaus-24

tion or queueing delays, leading to SLO violations—e.g., higher time-to-first-token (TTFT) and25

time-per-output-token (TOPT)—that degrade user experience and system throughput.26

One naive solution is to statically over-provision GPU resources to accommodate worst-case traffic27

spikes. However, over-provisioning leads to substantial cost inefficiencies during underutilized28

periods [24, 15]. Moreover, edge deployments lack the flexibility for dynamic scaling altogether [4].29

Thus, the inability to elastically match model resource usage to real-time demand results in either30

SLO violations under pressure, or significant resource waste during low-load intervals.31

Model compression techniques, such as quantization [29, 13, 28, 39], pruning [33, 41, 17], or low-32

rank approximation [21, 49], offer an alternative approach by statically reducing the resource footprint33

of deployed LLMs. While these methods are effective in lowering memory and compute demands,34

they introduce irreversible accuracy degradation that persists even during periods of low load,35

when full-precision inference could be served without penalty. This results in a rigid, suboptimal36

quality–efficiency tradeoff that fails to align with workload variability. Key-value cache (KVC)37

compression [5, 54, 27] and eviction [31, 12] methods have been proposed to further reduce memory38

usage. However, these techniques often rely on fixed heuristics, cannot adapt to different workloads,39

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



(a) (b) (c) (d)
Figure 1: Motivation for dynamic adaptation design in LLM serving. (a) Real-world LLM
workloads are highly dynamic and bursty in request and token volume. (b) Full-precision serving
suffers TTFT spikes and SLO violations when workload exceeds the saturation point. (c) Statically
quantized model causes constant accuracy degradation even during low-load periods when it is
possible to serve full-precision models. (d) MorphServe dynamically adapts to resource pressure and
consistently achieves an optimal balance between SLO compliance and accuracy.

lack compatibility with modern attention variants like Grouped Query Attention (GQA) [1, 7, 8] and40

Multi-Head Latent Attention (MLA) [34, 30], and remain inflexible to runtime serving conditions.41

In this paper, we present MorphServe, a dynamic, workload-aware LLM serving framework based42

on morphological adaptation. MorphServe continuously monitors system load and morphs model43

components—transformer layers and KVC blocks—on the fly in response to real-time memory44

pressure. When resource usage surges, MorphServe reduces model footprint by replacing selected full-45

precision layers with lightweight quantized alternatives and expands KVC capacity by dynamically46

attaching additional memory blocks. These adaptations are reversed as pressure subsides, restoring47

full precision and reclaiming memory from KVC without interrupting inference.48

MorphServe contributes the following: (1) A runtime layer swapping mechanism that enables49

workload-aware mixed-precision serving, allowing quantized and full-precision layers to coexist50

and be dynamically reconfigured based on runtime pressure without model flushing or architectural51

changes. (2) A pressure-aware KVC resizing mechanism that elastically adjusts KV cache capacity,52

supporting efficient batch prefilling and decoding under bursty traffic. (3) A tunable runtime policy53

that navigates the accuracy–latency Pareto frontier, balancing high-fidelity and low-latency objec-54

tives. (4) Full compatibility with existing KVC compression and eviction schemes, enabling further55

efficiency gains with minimal accuracy degradation.56

To achieve this, MorphServe introduces two complementary morphing mechanisms, both designed57

to support asynchronous and compatible kernel executions with minimal overhead: LayerSwapper58

identify low-impact transformer layers by a sensitivity-based profiling, selectively and asynchronously59

replacing them with lower-precision alternatives at runtime. KVResizer adaptively adjusts KVC60

capacity under memory pressure and runs in parallel with decoding using separate CUDA streams,61

ensuring seamless execution.62

Across extensive experiments on Llama 2 [46], Llama 3 [18], CodeLlama [38], and Vicuna [45] using63

four datasets [22, 53, 19, 11] under Azure LLM Inference [2] and BurstGPT [48] traces, MorphServe64

reduces average SLO violations by 92.45% and P95 TTFT latency by 2.2⇥–3.9⇥ over full-precision65

serving, while preserving comparable accuracy. Compared to static quantization via AWQ [29],66

MorphServe reduces F1 and Rouge-L degradation by up to 88.85% and improves memory utilization67

by 29.29%. These results demonstrate MorphServe’s ability to adapt to dynamic workloads while68

balancing performance and responsiveness.69

2 Background and Motivation70

Real-world LLM workloads are highly bursty. LLM serving systems face highly dynamic and71

bursty traffic patterns in real-world scenarios. As shown in Figure 1a, the production workloads72

of Microsoft Azure LLM services [2, 43] and BurstGPT [48] reveal rapid fluctuations in both the73

request arrival rates (i.e., request bursts) and the volumes of tokens. These fluctuations reflect the74

non-stationary nature of practical LLM inference workloads, which deviates from the traditional75

assumptions of most serving schemes [26, 51, 24].76

2



Request Dispatcher

Cache
Engine

Morphing
Executor

Model Replica

Worker 0

...

21

3

5

4

Responses

Serving Monitor

Morphing Controller

6

Cache
Engine

Morphing
Executor

Model Replica

Worker N-1

Requests

5’

...

Pre-quantized
Att Layers

Offline-profiled
Sequence

[27,18,...,2]

+

CPU DRAM

Figure 2: MorphServe dynamic adaptation workflow. Incoming requests (1) and real-time telemetry
from workers (2) are aggregated by the Serving Monitor and sent to the Request Dispatcher (3).
The Dispatcher routes new requests to workers (4) and forwards runtime metrics to the Morphing
Controller (5), which detects resource pressure and issues adaptation commands to corresponding
workers to reconfigure model layers and KVC (5). Each adaptation decision follows an offline-profiled
layer swapping sequence. Quantized model variants at different precision levels are preloaded into
CPU-pinned memory. Responses are returned to users (6), with only a small portion of tokens
generated by mixed-precision layers (in green), enabling seamless adaptation.

Request burst leads to long TTFT and SLO violation . As system load increases, even small surges77

can cause sharp spikes in time-to-first-token (TTFT) latency. In this work, we set the TTFT SLO78

threshold to 2 seconds, consistent with prior work [50, 16, 36]. As shown in Figure 1b, full-precision79

serving quickly exceeds the SLO threshold once it reaches the saturation point—defined as the load80

level at which available GPU memory becomes insufficient to schedule new requests for prefilling or81

to continue decoding for the ongoing batch. At this point, incoming requests are forced to wait until82

memory is reclaimed, incurring significant queueing latency with SLO violation.83

Static quantization trades quality for efficiency irrespective of load. To mitigate resource84

constraints, static quantization methods [29, 13, 28] have been widely adopted. However, these85

methods introduce persistent accuracy degradation across all conditions, regardless of whether86

the system is overloaded. As shown in Figure 1c, the INT4 quantized model with AWQ [29]87

consistently degrades accuracy—measured by F1 score following [28]—on the GovReport dataset88

from LongBench [3], even during periods when full-precision inference is feasible. This demonstrates89

that static quantization over-prioritizes efficiency, sacrificing model quality during low-load intervals.90

Workload-aware adaptation achieves optimal tradeoffs. As shown in the Pareto analysis in91

Figure 1d, MorphServe achieves superior tradeoffs by aligning dynamic quantization with real-time92

workload demand. A key insight is flexible, elastic mixed-precision LLM serving, where quantized93

and full-precision layers coexist and are dynamically reconfigured within a model in response to94

workload shifts. This contrasts with static quantization and recent dynamic methods [6, 14, 37], which95

prioritize serving performance or hardware efficiency but overlook runtime workload variability.96

Most importantly, MorphServe enables smooth navigation along the efficiency—accuracy Pareto97

frontier—from uncompressed, high-accuracy models to highly quantized, efficient ones.98

3 System Design99

MorphServe is designed with three primary objectives: (1) Dynamic adaptation: Respond to real-time100

workload demands and GPU memory pressure by dynamically adjusting model layer configuration101

and KVC capacity on the fly during inference. (2) Accuracy preservation: Ensure no degradation102

under light or moderate load, and introduce only minimal, necessary, and fine-grained token-level103

accuracy loss to sustain serving performance beyond the saturation point. (3) Low overhead: Minimize104

the performance impact of dynamic adaptation by leveraging asynchronous execution and overlapping.105

3.1 Architecture and Workflow106

System Architecture. As illustrated in Figure 2, MorphServe consists of three core compo-107

nents—Serving Monitor, Morphing Controller, and Morphing Actuator, which together form a108

feedback-driven control loop for dynamic adaptation.109

3



• Serving Monitor collects runtime metrics from all workers, including GPU memory utilization,110

request queue depth, throughput, and token-level latency (TTFT and TPOT). These metrics are111

smoothed over short time windows to identify workload shifts and early signs of system saturation.112

• Morphing Controller serves as the global GPU memory manager. When monitored metrics exceed113

user-predefined thresholds (e.g., KVC memory usage > 85%, queueing delay > 100 ms), it decides114

whether to trigger selective layer swapping (Section 3.3) and elastic KVC resizing (Section 3.4),115

and dispatches corresponding instructions to the target workers.116

• Morphing Actuator resides on each worker and executes adaptation commands locally. It dynami-117

cally reconfigures the model using LayerSwapper (Section 3.3), which switches a selective set of118

layers between full-precision and pre-quantized layers, or between different quantization levels119

(e.g., from INT8 to INT4) to reduce resource usage and improve inference latency under pressure.120

In addition, it applies KVResizer (Section 3.4) to adjust KVC memory allocation by elastically121

expanding or shrinking the number of KVC blocks as needed. All adaptations are asynchronous122

overlapping communication and computation [42] with preallocated memory buffers to seamlessly123

overlap with ongoing inference.124

MorphServe’s adaptive and versatile architecture enables efficient and timely operation across diverse125

and bursty workloads, ensuring serving quality under pressure while avoiding unnecessary degradation126

during underloaded periods.127

Token-level Workload Adaptation. Unlike existing model and KVC compression schemes, which128

affect the entire request [35, 29, 13, 28, 52], MorphServe enables fine-grained, token-level workload129

adaptation. During a single request’s decoding phase, MorphServe may temporarily replace a subset130

of layers. For example, switching 2 layers from full-precision to INT4 when saturation is detected131

(examples shown in Section 3.3). This allows early tokens to be generated at full precision, while132

only later tokens experience minimal accuracy degradation. Once the pressure subsides, the affected133

layers are restored to full precision, enabling continued decoding at the original accuracy. As a result,134

accuracy degradation is confined to a small portion of tokens, even within a single request.135

State-Preserving Morphing During Inference. A key feature of MorphServe’s serving workflow136

is its ability to seamlessly adapt model layer precision and elastically resize KVC capacity on-137

the-fly during request execution, without model flushing or re-prefilling. When system pressure138

triggers adaptation, the Morphing Controller can selectively swap model layers without disrupting139

the attention state or decoding progress, avoiding expensive serving pauses and recomputation. This140

design allows MorphServe to intervene mid-inference at the token level, preserving continuity in141

generation and enabling real-time adaptation with minimal runtime interference.142

3.2 Offline Profiling for Layer Swapping Sequence143

To identify a layer swapping sequence that minimizes accuracy impact during runtime, MorphServe144

performs offline profiling to construct a prioritized swapping order based on sensitivity analysis. In145

this subsection, we describe how MorphServe profiles and ranks layers to establish this sequence146

with a focus on accuracy and robustness.147

Problem Statement. The objective is to minimize cumulative accuracy degradation over the time148

interval during which one or more layers are quantized.149

Let f(xt) denote the full-precision model output at time t, and f (Qt)(xt) the output when a subset150

of layers Qt are quantized at that time. The cumulative degradation over the interval [t1, tn] can be151

formulated as:152

min
{nk}

tnX

t=t1

�(f(xt), f
(Qt)(xt)) (1)

This problem has a sequential and state-dependent structure: each swapping decision impacts153

downstream accuracy until the corresponding layer is restored to full precision. Selecting which154

layers to replace introduces combinatorial complexity, making exact optimization intractable. To155

address this, MorphServe performs offline profiling using hybrid sensitivity metrics to evaluate the156

accuracy impact of each layer. The resulting sequence provides a prioritized order of layers that can157

be replaced with minimal expected accuracy degradation. We now describe the sensitivity metrics158

and the greedy policy used to construct this sequence.159

Sensitivity Analysis for Layer Swapping. To construct the swapping sequence, MorphServe160

estimates the sensitivity of each decoder layer using cosine similarity-based local and global metrics161

4



Layer
Swapping

Attention Layer KV Cache Block La
ye

r D
im

en
sio

n
Sc

al
ed

 V
al

ue

Attention Layer

La
ye

r D
im

en
sio

n
Sc

al
ed

 V
al

ue

Attention Layer

La
ye

r D
im

en
sio

n
Sc

al
ed

 V
al

ue

Attention Layer KV Cache Block La
ye

r D
im

en
sio

n
Sc

al
ed

 V
al

ue

(a) Full-precision serving 

(b) Full-precision layers La
ye

r 2
8, 

29
 be

fo
re

 sw
ap

pin
g Layer 28, 29 after swapping(c) Layer & KV morphing 

(d) Morph serving (f) KV morphing 

Block 0
Block 1

Block 960
...

listatakesthat
funcPythonaWrite

...

Block 961
Block 962

...

sevenandscoreFour

fatherouragoyears
...forthbrought

self_attn.q_proj
...

self_attn.q_proj

mlp.gate_proj
...

(e) Layer morphing

Full-precision layer (FP16)
mlp.gate_proj

...
W_q

W_gate

Quantized layer (W4)

...
W_q

W_gate

Replace
Attach & Detach

...

Replacing FP16 with INT4 frees 75% memory for new KVC blocks.

Figure 3: Synergy of dynamic layer swapping and elastic KVC resizing. Figure (a)–(d) illustrate
the model state morphing process: starting from full-precision serving (a), selected layers (b) are
replaced with quantized versions (c) without disrupting the inference computation. This process
leads to mixed-precision layer serving (d). Figure (e) shows the detailed decoder layer swapping
mechanism. Figure (f) demonstrates KVC block management under KVResizer, where newly vacant
memory blocks are dynamically reallocated to KVC or deallocated from KVC based on real-time
workload shifts. KVResizer reduces the request preemption rate for decoding and incoming request
queueing time for prefilling.

that capture its impact on overall model accuracy. These sensitivity scores are used to rank layers,162

providing a prioritized order that approximates the optimal swapping strategy.163

• Layer Transformation Sensitivity (LTS) measures the direct change between a layer’s input and164

output:165 LTSp = cos (hp(x), xp) (2)
Where xp is the input and hp(x) is the output of layer p. Lower similarity indicates stronger166

transformations and higher potential sensitivity to layer swapping.167

• Layer Replacement Sensitivity (LRS) quantifies the output distortion caused by replacing the original168

layer with its quantized version:169

LRSp = cos
�
hp(x), h

Q
p (x)

�
(3)

where hQ
p (x) is the output of layer p with quantized weights. Lower similarity implies greater170

deviation due to replacement.171

• Model Degradation Sensitivity (MDS) measures the model-level accuracy impact from replacing a172

layer p given the current set of quantized layers Q:173

MDS(Q)
p = cos

⇣
f (Q)(x), f (Q[{p})(x)

⌘
(4)

where f (Q)(x) is the model output with layers Q replaced. This state-aware metric captures the174

incremental global degradation introduced by swapping layer p in the current context.175

We combine these metrics into a unified Layer Importance Score (LIS):176

LISp = ↵1 · LTSp + ↵2 · LRSp + � · MDS(Q)
p (5)

In this formulation, LTSp and LRSp are local sensitivity metrics that evaluate the behavior of the177

layer p in isolation, while MDS(Q)
p is a global metric that measures the model-level degradation178

when replacing p, given the current replaced layer set Q. For a given model, the LIS for each layer is179

computed offline during profiling, and the resulting sequence is stored and used directly at runtime.180

This design avoids any runtime recomputation or decision-making overhead. Full details on the181

scoring, hyperparameter tuning, and selection algorithms are provided in the Appendix.182

3.3 LayerSwapper: Runtime Layer Swapping183

To enable efficient and non-disruptive layer replacement during inference, MorphServe leverages the184

precomputed layer swapping sequence from offline profiling to guide the dynamic runtime adaptation185

mechanism. This mechanism consists of two key components: (1) model preloading with kernel186

5



precompilation, which ensures that both full-precision and quantized versions of layers are memory-187

resident and ready for execution; and (2) asynchronous layer swapping, which allows selected layers188

to be swapped between CPU and GPU memory on-the-fly without blocking inference.189

• Model Preloading and Kernel Precompilation. Prior to serving, all decoder layer variants (e.g.,190

FP16, INT8, INT4, and INT3) are preloaded into a contiguous, pinned CPU memory region, while191

the full-precision model replica is loaded into a preallocated contiguous GPU memory, as shown in192

the Figure 2. MorphServe tracks the memory addresses of all layer variants, enabling efficient direct193

memory copies for layer swapping. To avoid runtime latency, inference kernels corresponding194

to precision levels are precompiled in advance. We also implement kernel fusion to optimize195

performance, while the rest of the serving pipeline reuses state-of-the-art techniques—such as196

PagedAttention [26] and FLASHATTENTION [10, 9]—to ensure compatibility and efficiency.197

• Asynchronous In-place Layer Swapping. At runtime, MorphServe performs in-place layer swapping198

using asynchronous CUDA streams to avoid interference with ongoing decoding. As illustrated in199

Figure 3, when layers 28 and 29 are selected for replacement, the swapping process is launched200

asynchronously while earlier layers (e.g., 0–27) continue computation without interruption. Full-201

precision layers are safely discarded from GPU memory since their backup copies reside in pinned202

CPU memory, and quantized variants are copied into the same memory addresses to avoid pointer203

remapping. Due to the relatively compact size of each decoder layer (e.g., 0.4 GB for FP16 and204

0.1 GB for INT4 in Llama 2 7B), the PCIe transfer latency is minimal - approximately 4 ms for205

INT4 and 16 ms for FP16 for Llama2 7B on PCIe Gen4 with up to 26-28 GB/s bandwidth. In206

practice, the complete layer swapping process for a INT4 variant—including memory transfer207

and reconstruction—takes approximately 6 ms and is fully overlapped with decoding, resulting in208

negligible TPOT overhead. Additional performance breakdowns are provided in Section 4.209

3.4 KVResizer: Elastic KVC Resizing210

To support bursty workloads and fluctuating memory demands, MorphServe integrates dynamic layer211

swapping with KVResizer, a mechanism for elastic resizing of key-value cache (KVC) blocks. This212

section addresses two key questions: (1) how KVResizer dynamically allocates and releases KVC213

blocks in response to runtime memory pressure, and (2) how it collaborates with layer swapping to214

maintain serving efficiency under peak load.215

KVResizer is triggered when the Serving Monitor detects insufficient GPU memory to allocate KVC216

blocks for incoming request prefilling or ongoing decoding. To free memory, MorphServe initiates217

layer swapping, replacing selected full-precision layers with quantized variants. This reduces the218

model’s memory footprint—e.g., replacing an FP16 layer with INT4 can save up to 75% memory, as219

shown in Figure 3—enabling allocation of new KVC blocks.220

KVResizer extends PagedAttention [26] with kernel-level support for on-demand KVC block alloca-221

tion/deallocation, implemented through memory mapping without requiring kernel recompilation. All222

resizing operations are executed asynchronously using separate CUDA streams to avoid interference223

with ongoing decoding.224

Unlike static preallocation strategies (e.g., in vLLM [26]), KVResizer adjusts KVC capacity dynam-225

ically based on real-time memory availability. Once the pressure subsides, both temporary KVC226

blocks and quantized layers are released and restored to their full-precision state, ensuring memory227

reuse and accuracy recovery.228

As a result, KVResizer enhances system efficiency across both the prefilling and decoding phases229

under high-load conditions.230

• Reducing queueing Time and TTFT During Prefilling. Under static scheduling, incoming requests231

may queue indefinitely when no GPU memory is available for KV allocation. Since FIFO schedulers232

typically release memory only after a request finishes decoding, long queueing delays directly233

translate into TTFT violations. In MorphServe, KVResizer is triggered when the queue length or234

wait time exceeds a threshold, proactively attaching new KV blocks to admit pending requests.235

This significantly reduces queueing time and improves TTFT under bursty traffic.236

• Reducing Preemption and Improving TPOT During Decoding. In the decoding phase, requests are237

preempted if no KV blocks are available, forcing swaps to host memory or full recomputation, both238

of which introduce delays and degrade TPOT and end-to-end latency. By dynamically attaching239

6



Better

Better

Better

Better

Better

Better

Better

Better

Better

Better

Better

Better

Better

Better

Better

Better

Figure 4: MorphServe provides the best latency–accuracy tradeoff across four models and

two traces, with four datasets. MorphServe in accuracy mode (dark green) reduces P95 TTFT by
2.2⇥–3.9⇥ compared to full-precision serving while maintaining comparable generation quality. In
performance mode (light green), MorphServe consistently outperforms INT4 quantized models in
output quality with no additional latency overhead.

KV blocks at runtime, MorphServe reduces preemption events and maintains decoding continuity,240

leading to better overall system responsiveness.241

Together, these improvements enable MorphServe to utilize GPU memory more efficiently across242

load conditions, mitigate bottlenecks under saturation, and achieve a balanced trade-off between243

accuracy and responsiveness in volatile serving scenarios.244

4 Experiment245

Evaluation Setup. We evaluate MorphServe across a diverse range of LLM architectures, workload246

traces, and tasks. We consider four representative models: Vicuna 7B v1.5 [32], Llama 2 7B [46],247

Llama 3 8B [18], and CodeLlama 34B [38], spanning multiple scales and attention types—including248

Multi-Head Attention (MHA) [47] and Grouped-Query Attention (GQA) [1]. We test two real-world249

LLM inference workload traces: the BurstGPT trace [48] and the Azure LLM Inference trace [43, 2].250

We report results from a representative 72-second trace snippet (Figure 1) for both workloads, though251

MorphServe is effective across the full traces. The request arrival rates of each trace is downscaled252

by 1.75⇥ and 4.75⇥ to fit our hardware environment. To evaluate generation quality, we use four253

public datasets: GovReport [22] and Multi-News [11] (long-form summarization), QMSum [53]254

(query-based summarization), and DuReader [19] (reading comprehension). For each test, we align255

workload timestamps with context passages from the datasets. Prompt and response lengths are set to256

512 and 256 tokens for Vicuna 7B v1.5 and Llama 2 7B, and to 1024 and 512 tokens for Llama 3257

8B and CodeLlama 34B. We report F1 and Rouge-L scores to assess generation quality. End-to-end258

experiments for Vicuna 7B v1.5, LLaMA 2 7B, and LLaMA 3 8B are conducted on an NVIDIA L4259

GPU with 24 GB HBM and 256 GB of CPU DRAM, while CodeLLaMA 34B is evaluated on an260

A100 server with 80 GB HBM and 2 TB of CPU DRAM.261

Implementation. MorphServe is implemented on top of SwiftLLM [25, 40], a lightweight and262

modular LLM inference framework that reproduces vLLM performance with simplified components.263

We added approximately 2,200 lines of Python and 500 lines of C++/CUDA to support MorphServe’s264

optimized KVC management and attention kernel extensions, which enable efficient layer swapping265

and KVC resizing at runtime.266

Baselines. We include the full-precision (FP16) model as an upper-bound reference and an INT4267

quantized model as a static compression baseline. For quantization, we adopt AWQ [29] due to its268

efficient inference kernel support; however, the setup is compatible with any post-training quantization269

7



Figure 5: MorphServe dynamically adapts KVC block capacity to workload fluctuations. The
red line indicates the KV cache capacity under full-precision serving. MorphServe (green) elastically
attaches new KV blocks during peak loads, pushing the saturation boundary and preventing request
preemption or KVC swapping in the full-precision baseline (blue). Static quantization (orange)
underutilizes memory due to its fixed configuration, even when resource headroom is available.

Figure 6: MorphServe delays saturation and achieves up to 1.83⇥ throughput than full-precision
serving under increasing request rates.

method and can be replaced accordingly. To evaluate the flexibility of MorphServe, we configure it in270

two runtime modes: In accuracy mode, MorphServe prioritizes output quality by raising the threshold271

for triggering layer swapping and limiting the number of quantized layer replacements, thereby272

minimizing accuracy degradation. In performance mode, MorphServe enables more aggressive layer273

swapping to improve throughput and reduce latency under memory pressure. All baselines and274

MorphServe configurations are evaluated on the same serving engine to ensure fair comparison.275

4.1 Main Results276

TTFT and Accuracy. As shown in Figure 4, MorphServe significantly reduces P95 TTFT latency277

while preserving output quality in all model-trace-dataset configurations. Compared to full-precision278

baselines, MorphServe reduces the P95 TTFT by 2.9⇥–15.7⇥ (2.2⇥–3.9⇥ in accuracy mode and279

3.4⇥–19.5⇥ in performance mode) while maintaining quality within 0.51%–3.82% degradation on280

F1 or Rouge-L scores, as low as 0.11%–2.18% in accuracy mode. In contrast, static quantization281

exhibits 2.34%-9.47% degradation compared to full-precision inference, due to suffering from282

persistent quality loss across the entire serving lifetime. In particular, MorphServe excels in long-283

context datasets such as GovReport, leveraging LayerSwapper and KVResizer to optimize memory284

and computing efficiency. MorphServe with different configurations (green stars) visualizes the285

ability to navigate the latency-accuracy Pareto frontier, offering the best balance of performance and286

quality based on real-time workload shifts.287

Workload Adaptation and Saturation Resilience. As shown in Figure 5, MorphServe adaptively288

manages KVC block capacity in response to fluctuating load. In the full-precision baseline, KVC289

usage saturates the static capacity limit during peak periods, resulting in elevated queueing delays,290

request preemption, and frequent KVC swapping, which can lead to SLO violations. Static quan-291

tization, while reducing the memory footprint, degrades model accuracy and underutilizes GPU292

memory, even during low-load periods. MorphServe attaches new blocks during bursty traffic and293

releases them as load subsides, enabled by the synergistic LayerSwapper and KVResizer mechanism.294

MorphServe improves overall KVC memory utilization and output accuracy by 29.29% and 3.58%,295

respectively, compared to static quantization. The adaptation allows MorphServe to expand KVC296

usage by up to 32.97% beyond the full-precision limit when needed, and reduce the queueing delay297

by up to 3.8⇥. MorphServe also mitigates request preemption and KVC swapping under saturation298

conditions. This enhances system responsiveness and improves token-level efficiency, contributing to299

reduced TPOT and end-to-end request latency.300

8



Figure 7: MorphServe incurs negligible runtime overhead while improving tail TPOT latency.

MorphServe (green) achieves comparable average TPOT latency to the full-precision baseline (blue),
while reducing P99 latency by up to 1.23⇥. Performance mode (light green) improves the average
TPOT by up to 1.17⇥ through aggressive layer morphing.

Throughput. In Figure 6, we compare MorphServe with baselines on DuReader under varying301

request rates. All configurations maintain low TTFT at low RPS, but as load increases, full-precision302

inference encounters the threshold, where TTFT spikes abruptly due to memory exhaustion and303

queueing delays. In contrast, MorphServe consistently pushes back this saturation point, achieving304

1.6⇥–1.83⇥ higher throughput than full-precision serving across all evaluated models.305

CPU Memory Overhead. Compared to full-precision, MorphServe introduces modest additional306

host memory usage by maintaining a mixed set of full-precision and quantized variants of transformer307

layers. Fortunately, the overhead is bounded: quantized weights (e.g., W8, W4, W3) are significantly308

smaller than their full-precision counterparts, and the combined memory footprint typically does309

not exceed 2⇥ the original model size. Moreover, multi-GPU deployment of large models or model310

replicas hosted on multiple GPUs within the same node can share a single copy of quantized, CPU-311

memory-residential model weights across GPUs, eliminating redundant CPU memory consumption.312

In our experiments on an NVIDIA A100 8⇥ 80GB server with 2 TB of host memory, the total313

memory footprint, including both swapped-out full-precision layers and INT4 quantized variants of314

CodeLlama 34B, accounted for only 4.42% of available host memory, introducing negligible memory315

bandwidth and capacity overhead. These results confirm that MorphServe’s host memory footprint is316

practical and sustainable for both cloud-scale and high-end edge deployments.317

Runtime Performance Overhead. Figure 7 presents the cumulative distribution (CDF) of time-per-318

output-token (TPOT) across two datasets and four models under the Azure LLM trace. MorphServe319

delivers average TPOT comparable to full-precision serving while improving P95 and P99 TPOT320

tail latency by up to 1.06⇥ and 1.23⇥, respectively. These gains are achieved by eliminating request321

preemption stalls and avoiding KVC swapping or recomputation—two primary sources of long-tail322

delays. The performance mode of MorphServe reduces average TPOT by 1.11⇥-1.17⇥, while323

the accuracy mode introduces overhead of up to 1.06⇥ as it preserves more full-precision layers324

and applies stricter thresholds for layer swapping. In accuracy mode, this conservative strategy325

increases memory usage and may lead to occasional queueing delays under load. The TPOT gain326

from MorphServe is due to faster inference on quantized layers, and the highly efficient kernels on327

layer swapping (e.g., ⇠6 ms for a Llama 2 7B INT4 attention layer). These results confirm that328

MorphServe introduces negligible runtime overhead while effectively reducing tail latency.329

MorphServe supports an optional offline calibration step to pre-compute layer sensitivity scores for330

more accurate morphing decisions. While this process improves accuracy-latency tradeoffs, it is not331

required for MorphServe to function. For a model, the calibration is a once-for-all process. Given its332

offline nature and minimal duration, the overhead is negligible and acceptable in practice. Details of333

the calibration procedure and associated cost are provided in the Appendix.334

5 Conclusion335

This paper presents MorphServe, a novel workload-aware LLM serving framework based on morpho-336

logical adaptation. MorphServe dynamically adjusts model precision through LayerSwapper and KVC337

memory capacity through KVResizer, in a coordinated manner based on real-time resource usage.338

MorphServe maintains high-quality inference under normal conditions and adapts gracefully during339

overload periods. Our design achieves substantial improvements in SLO compliance rates, memory340

efficiency, and serving robustness, while incurring minimal quality loss and runtime overhead.341

9



References342

[1] Joshua Ainslie, James Lee-Thorp, Michiel De Jong, Yury Zemlyanskiy, Federico Lebrón, and343

Sumit Sanghai. Gqa: Training generalized multi-query transformer models from multi-head344

checkpoints. arXiv preprint arXiv:2305.13245, 2023.345

[2] Azure. Azure llm inference traces. Accessed: May 15, 2025.346

[3] Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,347

Xiao Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long348

context understanding. arXiv preprint arXiv:2308.14508, 2023.349

[4] Fenglong Cai, Dong Yuan, Zhe Yang, and Lizhen Cui. Edge-llm: A collaborative framework350

for large language model serving in edge computing. In 2024 IEEE International Conference351

on Web Services (ICWS), pages 799–809. IEEE, 2024.352

[5] Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu Liu, Keming Lu, Wayne Xiong, Yue353

Dong, Baobao Chang, Junjie Hu, et al. Pyramidkv: Dynamic kv cache compression based on354

pyramidal information funneling. arXiv preprint arXiv:2406.02069, 2024.355

[6] Hao Mark Chen, Fuwen Tan, Alexandros Kouris, Royson Lee, Hongxiang Fan, and Stylianos I356

Venieris. Progressive mixed-precision decoding for efficient llm inference. arXiv preprint357

arXiv:2410.13461, 2024.358

[7] Yuang Chen, Cheng Zhang, Xitong Gao, Robert D Mullins, George A Constantinides, and359

Yiren Zhao. Optimised grouped-query attention mechanism for transformers. arXiv preprint360

arXiv:2406.14963, 2024.361

[8] Sai Sena Chinnakonduru and Astarag Mohapatra. Weighted grouped query attention in trans-362

formers. arXiv preprint arXiv:2407.10855, 2024.363

[9] Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv364

preprint arXiv:2307.08691, 2023.365

[10] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and366

memory-efficient exact attention with io-awareness. Advances in neural information processing367

systems, 35:16344–16359, 2022.368

[11] Alexander R Fabbri, Irene Li, Tianwei She, Suyi Li, and Dragomir R Radev. Multi-news: A369

large-scale multi-document summarization dataset and abstractive hierarchical model. arXiv370

preprint arXiv:1906.01749, 2019.371

[12] Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, and S Kevin Zhou. Ada-kv: Optimizing372

kv cache eviction by adaptive budget allocation for efficient llm inference. arXiv preprint373

arXiv:2407.11550, 2024.374

[13] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training375

quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.376

[14] Elias Frantar, Roberto L Castro, Jiale Chen, Torsten Hoefler, and Dan Alistarh. Marlin: Mixed-377

precision auto-regressive parallel inference on large language models. In Proceedings of the378

30th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming,379

pages 239–251, 2025.380

[15] Yao Fu, Leyang Xue, Yeqi Huang, Andrei-Octavian Brabete, Dmitrii Ustiugov, Yuvraj Patel,381

and Luo Mai. {ServerlessLLM}:{Low-Latency} serverless inference for large language models.382

In 18th USENIX Symposium on Operating Systems Design and Implementation (OSDI 24),383

pages 135–153, 2024.384

[16] Bin Gao, Zhuomin He, Puru Sharma, Qingxuan Kang, Djordje Jevdjic, Junbo Deng, Xingkun385

Yang, Zhou Yu, and Pengfei Zuo. {Cost-Efficient} large language model serving for multi-386

turn conversations with {CachedAttention}. In 2024 USENIX Annual Technical Conference387

(USENIX ATC 24), pages 111–126, 2024.388

10



[17] Shangqian Gao, Chi-Heng Lin, Ting Hua, Zheng Tang, Yilin Shen, Hongxia Jin, and Yen-Chang389

Hsu. Disp-llm: Dimension-independent structural pruning for large language models. Advances390

in Neural Information Processing Systems, 37:72219–72244, 2024.391

[18] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,392

Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama393

3 herd of models. arXiv preprint arXiv:2407.21783, 2024.394

[19] Wei He, Kai Liu, Jing Liu, Yajuan Lyu, Shiqi Zhao, Xinyan Xiao, Yuan Liu, Yizhong Wang,395

Hua Wu, Qiaoqiao She, et al. Dureader: a chinese machine reading comprehension dataset from396

real-world applications. arXiv preprint arXiv:1711.05073, 2017.397

[20] Yongjun He, Yao Lu, and Gustavo Alonso. Deferred continuous batching in resource-efficient398

large language model serving. In Proceedings of the 4th Workshop on Machine Learning and399

Systems, pages 98–106, 2024.400

[21] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,401

Lu Wang, Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR,402

1(2):3, 2022.403

[22] Luyang Huang, Shuyang Cao, Nikolaus Parulian, Heng Ji, and Lu Wang. Efficient attentions for404

long document summarization. In Proceedings of the 2021 Conference of the North American405

Chapter of the Association for Computational Linguistics: Human Language Technologies,406

pages 1419–1436, Online, June 2021. Association for Computational Linguistics.407

[23] Hugging Face. Text generation inference. Accessed: May 15, 2025.408

[24] Shashwat Jaiswal, Kunal Jain, Yogesh Simmhan, Anjaly Parayil, Ankur Mallick, Rujia Wang,409

Renee St Amant, Chetan Bansal, Victor Rühle, Anoop Kulkarni, et al. Serving models,410

fast and slow: optimizing heterogeneous llm inferencing workloads at scale. arXiv preprint411

arXiv:2502.14617, 2025.412

[25] Xuanlin Jiang, Yang Zhou, Shiyi Cao, Ion Stoica, and Minlan Yu. Neo: Saving gpu memory413

crisis with cpu offloading for online llm inference. arXiv preprint arXiv:2411.01142, 2024.414

[26] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph415

Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model416

serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems417

Principles, pages 611–626, 2023.418

[27] Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye,419

Tianle Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for420

before generation. Advances in Neural Information Processing Systems, 37:22947–22970, 2024.421

[28] Haokun Lin, Haobo Xu, Yichen Wu, Jingzhi Cui, Yingtao Zhang, Linzhan Mou, Linqi Song,422

Zhenan Sun, and Ying Wei. Duquant: Distributing outliers via dual transformation makes423

stronger quantized llms. Advances in Neural Information Processing Systems, 37:87766–87800,424

2024.425

[29] Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan426

Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization427

for on-device llm compression and acceleration. Proceedings of Machine Learning and Systems,428

6:87–100, 2024.429

[30] Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr,430

Chong Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient431

mixture-of-experts language model. arXiv preprint arXiv:2405.04434, 2024.432

[31] Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios433

Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of impor-434

tance hypothesis for llm kv cache compression at test time. Advances in Neural Information435

Processing Systems, 36:52342–52364, 2023.436

[32] lmsys. vicuna-7b-v1.5. Accessed: May 15, 2025.437

11



[33] Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large438

language models. Advances in neural information processing systems, 36:21702–21720, 2023.439

[34] Fanxu Meng, Zengwei Yao, and Muhan Zhang. Transmla: Multi-head latent attention is all you440

need. arXiv preprint arXiv:2502.07864, 2025.441

[35] Antonio Polino, Razvan Pascanu, and Dan Alistarh. Model compression via distillation and442

quantization. arXiv preprint arXiv:1802.05668, 2018.443

[36] Yifan Qiao, Shu Anzai, Shan Yu, Haoran Ma, Yang Wang, Miryung Kim, and Harry Xu.444

Conserve: Harvesting gpus for low-latency and high-throughput large language model serving.445

arXiv preprint arXiv:2410.01228, 2024.446

[37] Enrico Reggiani, Alessandro Pappalardo, Max Doblas, Miquel Moreto, Mauro Olivieri, Os-447

man Sabri Unsal, and Adrián Cristal. Mix-gemm: An efficient hw-sw architecture for mixed-448

precision quantized deep neural networks inference on edge devices. In 2023 IEEE International449

Symposium on High-Performance Computer Architecture (HPCA), pages 1085–1098. IEEE,450

2023.451

[38] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan,452

Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation453

models for code. arXiv preprint arXiv:2308.12950, 2023.454

[39] Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng455

Zhang, Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantiza-456

tion for large language models. arXiv preprint arXiv:2308.13137, 2023.457

[40] shengyu Liu and Jover Qian. Swiftllm. Accessed: May 15, 2025.458

[41] Sharath Turuvekere Sreenivas, Saurav Muralidharan, Raviraj Joshi, Marcin Chochowski,459

Ameya Sunil Mahabaleshwarkar, Gerald Shen, Jiaqi Zeng, Zijia Chen, Yoshi Suhara, Shizhe460

Diao, et al. Llm pruning and distillation in practice: The minitron approach. arXiv preprint461

arXiv:2408.11796, 2024.462

[42] Steve Rennich. Cuda c/c++ streams and concurrency. Accessed: May 15, 2025.463

[43] Jovan Stojkovic, Chaojie Zhang, Íñigo Goiri, Josep Torrellas, and Esha Choukse. Dynamollm:464

Designing llm inference clusters for performance and energy efficiency. In 2025 IEEE Inter-465

national Symposium on High Performance Computer Architecture (HPCA), pages 1348–1362.466

IEEE, 2025.467

[44] Biao Sun, Ziming Huang, Hanyu Zhao, Wencong Xiao, Xinyi Zhang, Yong Li, and Wei Lin.468

Llumnix: Dynamic scheduling for large language model serving. In 18th USENIX Symposium469

on Operating Systems Design and Implementation (OSDI 24), pages 173–191, 2024.470

[45] The Vicuna Team. Vicuna: An open-source chatbot impressing gpt-4 with 90Accessed: May471

15, 2025.472

[46] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,473

Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open474

foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.475

[47] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,476

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information477

processing systems, 30, 2017.478

[48] Yuxin Wang, Yuhan Chen, Zeyu Li, Xueze Kang, Zhenheng Tang, Xin He, Rui Guo, Xin Wang,479

Qiang Wang, Amelie Chi Zhou, et al. Burstgpt: A real-world workload dataset to optimize llm480

serving systems. arXiv preprint arXiv:2401.17644, 2024.481

[49] Bingyang Wu, Ruidong Zhu, Zili Zhang, Peng Sun, Xuanzhe Liu, and Xin Jin. {dLoRA}:482

Dynamically orchestrating requests and adapters for {LoRA}{LLM} serving. In 18th USENIX483

Symposium on Operating Systems Design and Implementation (OSDI 24), pages 911–927, 2024.484

12



[50] Yi Xiong, Hao Wu, Changxu Shao, Ziqing Wang, Rui Zhang, Yuhong Guo, Junping Zhao,485

Ke Zhang, and Zhenxuan Pan. Layerkv: Optimizing large language model serving with486

layer-wise kv cache management. arXiv preprint arXiv:2410.00428, 2024.487

[51] Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-Gon Chun. Orca:488

A distributed serving system for {Transformer-Based} generative models. In 16th USENIX489

Symposium on Operating Systems Design and Implementation (OSDI 22), pages 521–538, 2022.490

[52] Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn Chen, Size Zheng, Luis Ceze, Arvind491

Krishnamurthy, Tianqi Chen, and Baris Kasikci. Atom: Low-bit quantization for efficient and492

accurate llm serving. Proceedings of Machine Learning and Systems, 6:196–209, 2024.493

[53] Ming Zhong, Da Yin, Tao Yu, Ahmad Zaidi, Mutethia Mutuma, Rahul Jha, Ahmed Hassan494

Awadallah, Asli Celikyilmaz, Yang Liu, Xipeng Qiu, et al. Qmsum: A new benchmark for495

query-based multi-domain meeting summarization. arXiv preprint arXiv:2104.05938, 2021.496

[54] Xiabin Zhou, Wenbin Wang, Minyan Zeng, Jiaxian Guo, Xuebo Liu, Li Shen, Min Zhang, and497

Liang Ding. Dynamickv: Task-aware adaptive kv cache compression for long context llms.498

arXiv preprint arXiv:2412.14838, 2024.499

13


