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Abstract: Imitation learning has unlocked the potential for robots to exhibit
highly dexterous behaviours. However, it still struggles with long-horizon, multi-
object tasks due to poor sample efficiency and limited generalisation. Existing
methods require a substantial number of demonstrations to cover possible task
variations, making them costly and often impractical for real-world deployment.
We address this challenge by introducing oriented affordance frames, a struc-
tured representation for state and action spaces that improves spatial and intra-
category generalisation and enables policies to be learned efficiently from only
10 demonstrations. More importantly we show how this abstraction allows for
compositional generalisation of independently trained sub-policies to solve long-
horizon, multi-object tasks. To seamlessly transition between sub-policies, we
introduce the notion of self-progress prediction, which we directly derive from
the duration of the training demonstrations. We validate our method across three
real-world tasks, each requiring multi-step, multi-object interactions. Despite the
small dataset, our policies generalise robustly to unseen object appearances, ge-
ometries, and spatial arrangements, achieving high success rates without reliance
on exhaustive training data. Video demonstration can be found on our project
page: https://affordance-policy.github.io/.
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1 Introduction

Robots operating in domestic environments must solve complex, long-horizon tasks such as prepar-
ing a cup of tea, making coffee, or tidying a room, tasks that require coordinating interactions across
multiple objects and executing structured action sequences over time. While recent progress in pol-
icy learning [1, 2] and large-scale demonstration collection [3, 4, 5, 6] have improved low-level
manipulation, imitation learning still struggles with sample efficiency and compositional generali-
sation. These challenges are amplified in long-horizon, multi-object settings, where task complexity
scales quickly and end-to-end policies trained on long, monolithic trajectories often fail to gener-
alise, requiring an impractical number of demonstrations to capture all task variations.

A promising approach to addressing such tasks is to simplify the learning problem towards learning
sub-policies that can be composed to solve the longer-horizon task [7, 8, 9, 10, 11]. This however
presents several challenges: 1) identifying how to partition the task into sub-tasks that can be in-
dependently learned; 2) the distribution shift encountered by sub-policies when presented with the
full task configuration and 3) the need to learn an additional arbitration policy that knows when to
switch between each sub-policy.

In this work, we take an affordance-centric perspective to address each of these limitations. First,
we partition long-horizon, multi-object tasks into affordance-aligned sub-tasks, each defined around
a localised object interaction, such as pouring from a teapot or grasping a cup. This provides a
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Figure 1: Compositional Generalisation. Our representation allows for independent sub-policy training on
task-relevant objects from only 10 demonstrations (left). All sub-policies can then be seamlessly composed
at evaluation time to solve long-horizon tasks across a vast range of unseen intra-object spatial configurations
(right) where all objects are present in the scene as well as intra-category variations from the objects used during
training (top-right).

natural and task-relevant decomposition that enables independent training of sub-policies focused
on functionally distinct interactions.

Second, we address the distribution shift that arises when composing sub-policies in long-horizon
tasks, a challenge exacerbated by two dominant policy representations: image-based inputs [1, 12, 2,
13] and global coordinate frames [13, 12, 14, 15, 16, 17]. Image-based policies trained in isolation
fail to capture the full range of visual variations encountered when all task-relevant objects appear at
test time, while global frames require demonstrations to cover all possible spatial configurations. To
address this, we introduce oriented affordance frames: object-centric coordinate systems anchored
at task-relevant affordances and oriented toward the robot’s tool frame. These frames retain only
the functionally relevant structure of the task, abstracting away clutter and irrelevant details. By
rotating the frame with respect to the tool, each sub-policy is trained in a consistent local reference
frame, ensuring it remains in-distribution even under novel robot start configurations encountered
during policy composition. Grounding policies in these relative frames supports generalisation to
spatial variations and novel arrangements without requiring exhaustive demonstration coverage, and
naturally enables intra-category generalisation to objects with different appearances or geometries
[18, 19, 20, 21]. While affordance representations have been explored in prior work [22, 19, 23, 24],
their use in closed-loop behaviour cloning for robust, composable policy learning remains under-
explored.

Third, we augment each sub-policy with a continuous self-progress prediction signal, learned di-
rectly from the length of demonstration trajectories. This scalar output allows the system to au-
tonomously transition between sub-policies without requiring a separate arbitration policy or exter-
nal supervision, enabling smooth and robust policy composition across extended task horizons.

Our work makes three key contributions toward scalable and generalisable imitation learning for
long-horizon, multi-object manipulation tasks. (1) We introduce the concept of the oriented af-
fordance frame, a local, task-aligned reference frame that enables sub-policy learning to be both
spatially invariant and compositionally robust. (2) We develop a perception pipeline that leverages
pre-trained vision foundation models to detect and track these affordance frames without reliance on
fiducial markers, supporting real-world deployment. (3) We augment each sub-policy with a contin-
uous self-progress prediction signal, enabling automatic and reliable arbitration between sub-tasks
without requiring a high-level controller.

Through real-world experiments, we show that our affordance-centric approach enables sample-
efficient policy learning from just 10 demonstrations per sub-task, while significantly outperforming
image-based and global-frame baselines. It generalises robustly to unseen spatial configurations and
novel object instances, and supports seamless composition of independently trained sub-policies.
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Figure 2: Comparison of different reference frames for policy learning. A global reference frame (left)
requires demonstrations covering all spatial variations of both the object and the end-effector, leading to poor
spatial generalisation. End-effector and affordance-centric frames (middle) reduce this requirement but still
require extensive data to capture relative transformations. The proposed oriented affordance frame (right)
aligns the state and action representation with the task-relevant affordance and tool frames, thus ensuring spatial
invariance while minimising data requirements for policy learning.

Additionally, our marker-free perception pipeline maintains high performance, demonstrating the
practicality of our approach in realistic settings.

2 Related Work

Generalisation in Behaviour Cloning: Recent advances in generative modelling have revived
interest in behaviour cloning for learning complex, multi-modal behaviours from demonstra-
tions [1, 4, 3, 2]. Behaviour cloning typically maps input states often images or point clouds due
to their generality and ease of collection [1, 12, 2, 13] to actions. A major challenge is covariate
shift, where small differences between training and test inputs, especially in high-dimensional im-
age spaces, can degrade performance [25, 26]. Current efforts in generalisation focus on large-scale
data collection [13, 15, 16, 12] or architectural invariances [27, 28, 29]. However, these approaches
mainly tackle spatial generalisation and often retain task-irrelevant details, limiting policy compo-
sitionality. We instead propose learning affordance-centric 3D task frames that discard irrelevant
information and enable robust intra-category, spatial, and compositional generalisation.

Keypoint-based Representations for Manipulation: Keypoints have been widely used in robotic
manipulation to enable intra-category generalisation by focusing on task-relevant object regions [22,
30, 31, 32, 33, 23, 24, 34]. Early approaches trained custom vision models to detect keypoints
and solved task-specific SE(3) optimisations for single-step, open-loop tasks [22, 33]. More recent
methods [35, 24] leverage pre-trained vision models to extract keypoints or segmentations [36],
reducing the need for task-specific training but still operating in open-loop settings with limited
spatial invariance. In contrast, we focus on closed-loop behaviour cloning, using keypoint regions
as 3D task frames to achieve both spatial and intra-category invariance. We additionally propose a
general, task-agnostic pipeline that leverages foundation models to extract keypoint regions without
training custom models.

Task Frames: Task frames have long been used in classical robotics to define motions relative to ob-
jects or tools to simplify motion generation [37, 38, 39, 40, 41, 42]. Recent works have adapted this
idea to reinforcement learning and behaviour cloning. Chi et al. [5] introduced an end-effector–based
task frame to simplify in-the-wild data collection, but it still relied on image state representations,
which lack task-centric invariances, requiring large-scale demonstrations to generalise. Ke et al.
[18] improved spatial invariance by attaching frames to object centres, preserving relative transfor-
mations and improving data efficiency for simple tasks. However, their method did not account for
object rotations or intra-category variations, limiting generalisation with a tendency to violate robot
kinematics when the object rotated beyond certain limits. We address these limitations with a sim-
ple approach that supports arbitrary object orientations and generalisation across object instances by
introducing an oriented affordance task frame for behaviour cloning.

3 Affordance-Centric Policy Learning with Oriented Affordance Frames

The goal of our work is to train state-conditioned robotic policies π(at|st) that are 1) sample-
efficient, i.e. they can be learned from as little as 10 human demonstrations; 2) invariant to the
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spatial configuration of the task-relevant objects; 3) invariant to variations in the object geometry
and appearance; and 4) composable to solve multi-step and long-horizon tasks involving multiple
interacting objects.

To achieve this goal, we replace the image- or point cloud- based state representation that is currently
prevalent in many imitation learning approaches [1, 12, 2, 13, 43, 44]. Instead, we represent the state
st as the pose of the currently task-relevant tool frame relative to an oriented affordance frame. The
latter is a reference frame that is centred on the currently relevant affordance and oriented towards
the origin of the tool frame at the start of the task. We will describe these coordinate frames in detail
in the following (Sec. 3.1), before introducing a perception pipeline that can automatically detect and
track these frames on objects unseen during training (Sec. A.1). In Section 3.2, we will describe our
proposed method of policy arbitration that enables the autonomous composition of multiple policies
to solve long-horizon and multi-step tasks.

3.1 Oriented Affordance Frames for States and Actions

The choice of reference frame for representing state and actions significantly affects a policy’s ability
to generalise to spatial variations in multi-object tasks, as illustrated in Fig. 2. When states and
actions are represented in a fixed global reference frame (first panel), demonstration trajectories
must densely cover variations in object and robot poses to attain spatial generalisation. If an object
appears in a previously unseen global position, the policy will be out of distribution and likely fail.

Using relative coordinate frames, e.g. expressing the robot’s actions relative to its current end-
effector or using the pose of task-relevant objects relative to the end-effector, are simple examples
of using relative reference frames. As illustrated in the middle panels of Fig. 2, these partly alleviate
generalisation problems but still require demonstrations to cover all possible poses of task-relevant
objects relative to the robot (2nd panel in Fig. 2), or vice-versa (3rd panel), to avoid the policy being
out-of-distribution when encountering a previously unseen pose of the object relative to the robot.

Pre-grasp  Post-grasp  

Figure 3: Affordance Frames, Oriented-Affordance Frames
and Tool Frames. Left: Affordance frames ( ), oriented affor-
dance frames ( ), and tool frame ( ) for a typical pick task.
Right: Frames for the pour task. The oriented affordance frames
have the same origin as the affordance frames, but are oriented
such that one of the axes (brown) points towards the origin of the
tool frame at the beginning of the task.

Affordance Frames: Relative refer-
ence frames can not only be centred
on the robot’s end-effector but also on
the affordances of task-relevant ob-
jects. Objects can have multiple task-
dependent localised affordances: e.g.
a cup has an affordance on the handle
for the task of picking up and an affor-
dance in the centre of the cup for the
task of pouring. Our work makes ex-
tensive use of affordance frames, but
– importantly and in contrast to pre-
vious work [45, 46] – orients them
towards the current tool frame and
leverage these representations in the
behaviour cloning setting.

Tool Frames: In multi-object tasks, a robot either directly interacts with an object (e.g. when
picking it up, pushing or opening it), or acts on a target object while holding a tool object, e.g. a
spoon. In addition to the affordance frame defined on to the target object, we define a tool frame
on the tool object. For simple pickup tasks, the tool frame is identical to the robot’s end-effector
frame, however for actions such as stirring tea with a spoon or pouring from a teapot, the tool frame
is placed on the scoop of the spoon or the spout of the teapot respectively as illustrated in Fig. 3.

Oriented-Affordance Frames: Given affordance frames and tool frames, we can now introduce
the oriented-affordance frame, a core concept of our paper. The oriented affordance frame is ob-
tained by rotating the affordance frame on the target object such that one of its axes (we consistently
choose the x-axis as this “funnel” axis) is directed towards the origin of the tool frame.

The oriented affordance frame is the central concept for our generalisable and sample-efficient policy
learning: we represent both the state st and the action sequences at of our trained policies π(at|st)
in the oriented affordance frame.
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Frame Initialisation and Update: We initialise the oriented affordance frame at the start of each
task. Our perception pipeline (detailed in Appendix A.1) extracts the pose of the currently relevant
affordance frame WTafford ∈ SE(3) in a global world reference frame. With knowledge of the
forward kinematics of the robot and the currently held tool object (if any), we also know the pose of
the tool frame WTtool. Using Algorithm 1 we calculate the rotation matrix Ralign that transforms the
affordance frame such that its x-axis points towards the origin of the tool frame, thus yielding the
oriented affordance frame WTo-aff = Ralign · WTafford.

While the origin of the oriented affordance frame can move during task execution if the robot moves
the target object, its orientation is kept anchored so that the x-axis keeps pointing to where the
origin of the tool frame was at the beginning of the task. Our experimental ablation in Sec. 4.2 will
demonstrate the benefit of this small but important detail.

State Representation: The state st for our policy comprises the current pose of the tool-frame
in the oriented affordance frame o-affTtool ∈ SE(3), the binary gripper state gs ∈ {0, 1}, and the
rotation o-affRaff of the target object relative to its anchored oriented-affordance frame.

Action Representation: The actions generated by the policy consist of a sequence of N = 16
desired next poses of the robot’s end effector in the oriented affordance frame {o-affTee}τ=t...t+N
and a sequence of gripper actions ga ∈ {0, 1} of equal length N .

funnel axis 

Figure 4: Adaptive Data Support of the
Oriented Affordance Frame. By align-
ing the affordance frame with the tool frame
at task initiation, demonstrated trajectories
become aligned along a consistent ‘fun-
nel’ axis, reducing variability and improv-
ing generalisation. This ensures that poli-
cies trained in the oriented affordance frame
remain robust to changes in object rotation
and robot poses, facilitating seamless policy
composition.

Intuitive Benefits of the Oriented Affordance Frame:
Expressing robot state and actions relative to the oriented
affordance frame maximises the utility of a small number
of demonstrations. Intuitively, all demonstrated trajecto-
ries tend to be aligned or, to some degree, in the vicinity
of the oriented (“funnel”) axis, independent of the relative
poses of the robot and target object, as illustrated in Fig-
ure 4. When composing multiple policies, the oriented
affordance frame representation ensures that the robot’s
tool frame at the end of a task is always in distribution, i.e.
within the data support of the following policy regardless
of the end-effector’s global location or the absolute pose
of the target object.

3.2 Policy Arbitration by Self-Progress Prediction

With the appropriate abstractions in place, we can now
train independent, affordance-centric sub-policies that
can be composed to solve longer-horizon tasks. To sup-
port automatic policy composition and arbitration, we
augment the action space and add a scalar policy self-
progress indicator aprogress ∈ [0, 1]. During policy train-
ing, we compute a task progress measure for a demon-

stration trajectory by linearly interpolating from 0 to 1 based on the duration of the trajectory. The
policy is then trained to output actions and the corresponding progress value in the added progress
indicator aprogress. During policy execution, this self-progress estimate determines when to transition
from one sub-policy to the next, based on a simple threshold. This lets us compose sub-policies to
solve complex long-horizon tasks without training an additional arbitration policy.

4 Evaluation

We describe the extensive experiments conducted to support the key claims our paper makes re-
garding (i) sample-efficient policy training from as little as 10 demonstrations, achieving substan-
tially better performance than other representations; (ii) spatial generalisation; (iii) generalisation
to new objects unseen during training; and (iv) the automatic arbitration between sub-policies in
long-horizon, multi-step tasks.

We focused our experiments on three multi-step, multi-object tasks representative of scenarios that
future domestic service robots are likely to encounter. The first task, preparing a cup of tea, is the
primary focus for our quantitative analysis. Additionally, two supplementary tasks – making coffee
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Figure 5: Affordance-centric task decomposition for the tea serving task. Left: Task decomposition hier-
archy; Top Right: Affordance-centric frames for each object; Bottom Right: Sub-task frame definitions.

and putting a pair of shoes on a rack – are included for qualitative evaluation. Videos demonstrating
the trained policies autonomously executing all tasks are available on the anonymous project page:
https://affordance-policy.github.io/.

4.1 Experimental Setup – Tea Making

Task Description: We focus our quantitative analysis on a tea-serving task involving five objects:
teacup, saucer, teapot, sugar bowl, and teaspoon. The task is decomposed into seven sequential
sub-tasks, each defined by the target object and relevant affordance: (1) rotating and grasping the
teacup; (2) placing the cup on the saucer; (3) rotating and grasping the teapot; (4) pouring tea into
the cup; (5) placing the teapot on the table; (6) scooping sugar with the spoon; and (7) transferring
sugar into the cup, stirring, and placing the spoon on the saucer.

We evaluate our method and baselines across these sub-tasks, their compositions (e.g., combining
tasks 3–5 into utilise teapot), and the full tea-serving sequence, as shown in Fig.5. For each object,
we define the corresponding affordance and tool frames (Fig.5). As noted in Appendix A.2, we
assume the human demonstrator can identify affordances and meaningful task partitions.

Perception System: We evaluate our method using two perception setups, explicitly indicated for
each experiment (Sec.4.2):
1) Marker-based: To isolate the impact of the oriented affordance frames from perception perfor-
mance (AppendixA.1), we use ArUco markers to obtain ground-truth affordance poses.
2) Large Vision Models: A subset of experiments—including those shown in the supplemen-
tary videos—employ our proposed perception pipeline based on pre-trained vision models (Ap-
pendix A.1, Fig. 9).

Policy Training: We use Diffusion Policy [1] for imitation learning, training each policy for 4500
epochs with the default parameters from the original implementation. The 16-dimensional state
space includes the robot’s tool frame pose relative to the oriented affordance frame o-affTtool, the
binary gripper state gs ∈ 0, 1, and the object’s orientation relative to the oriented affordance frame
o-affRaff. Both o-affRaff and the rotation component of o-affTtool are expressed as 6D vectors, follow-
ing [47]. For baselines, we additionally provide the 3D position of the current target object.

The action space is 11-dimensional, comprising the 3D robot position, 6D robot orientation [47], the
1D gripper action, and the 1D self-progress prediction. Our method represents the end-effector pose
in the oriented affordance frame, while baselines use either the end-effector frame, the affordance
frame or the global frame. Following Diffusion Policy’s temporal action generation, the policy
outputs a sequence of 16 actions, resulting in a 176-dimensional output vector.

4.2 Results

We report the results of our key experiments and ablation studies below. Each set of experiments
supports one of the core claims of our paper.

Sample-efficient Policy Learning from Only 10 Demonstrations: Our first experiment demon-
strates that the proposed oriented affordance frame enables highly sample-efficient policy learning
from just 10 demonstrations. We evaluated this on seven tasks from the tea-serving scenario, along
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Table 1: Summary of Results. Success rates for in-distribution (IND) and out-of-distribution (OOD) scenar-
ios for various tasks and composite tasks.

Oriented Affordance
Frame (Ours) End Effector Frame Global Frame

Task Demos IND Success OOD Success IND Success OOD Success IND Success OOD Success
Base Tasks

(T1) rotate and grasp cup 10 81.8% 81.8% 45.5% 45.5% 45.5% 0.0%
(T2) place cup on saucer 10 100% 100% 100% 100% 9.1% 0.0%

(T3) rotate and grasp teapot 10 90.9% 81.8% 27.3% 27.3% 81.8% 0.0%
(T4) pour tea into cup 10 100% 81.8% 45.5% 27.3% 54.5% 0.0%

(T5) place teapot on table 10 90.9% 72.7% 54.5% 54.5% 90.9% 0.0%
(T6) pick up teaspoon with sugar 10 81.8% 81.8% 45.5% 27.3% 72.7% 0.0%

(T7) stir spoon in cup 10 90.9% 81.8% 18.2% 9.1% 72.7% 0.0%
Average 10 90.9% 83.1% 48.1% 41.6% 59.7% 0.0%

Composite Tasks
(T1+T2) cup rearrangement 10 81.8% 81.8% 45.5% 0.0% 36.4% 0.0%

(T3+T4+T5) utilise teapot 10 81.8% 63.6% 18.2% 9.1% 45.5% 0.0%
(T6+T7) add sugar 10 72.2% 72.2% 9.1% 9.1% 63.6% 0.0%

Average 10 78.8% 72.7% 24.2% 6.1% 48.5% 0.0%

Complete Task
(T1+T2+T3+T4+T5+T6+T7) serve tea 10 81.8% 63.6% 9.1% 9.1% 0.0% 0.0%

Oriented Non-Oriented
0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

 R
at

e

Affordance Frame

10 20 30 40 50
Number of Demos

0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

 R
at

e

Success Rate vs. Number of Demonstrations

Oriented Affordance Frame
Non Oriented Affordance Frame

Ours Image-Based
0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

 R
at

e

State Representation

Ours Image-Based*
0

50

100

150

200

250

300

N
um

be
r o

f D
em

os

Number of Demos

Figure 6: Additional Comparisons. a) Comparison on different affordance frames; b) Success rate vs.
number of demonstrations for the different affordance frames; c) Performance of an image-based RGB policy
when trained with only 10 demonstrations for the cup rearrangement task; d) Relative number of demonstrations
required for standard image-based diffusion policy [5] to achieve the same generalisation and performance as
our system.

with their composite sequences (Fig. 5), using ArUco markers to obtain ground-truth poses for the
affordance frames. As shown in Table 1, our method achieved a 90.9% average success rate across
all seven tasks, outperforming the end-effector (48.1%) and global (59.7%) frame baselines. This
performance advantage persisted across composite tasks, with our method also exceeding 80% suc-
cess on the full tea-serving sequence, comprising all seven subtasks in order.

We further examined the cup rearrangement task, which combines rotating and grasping the cup
followed by placing it on the saucer. Fig. 6 shows that an image-based policy similar to [5]
failed completely with 10 demonstrations, requiring 305 demonstrations to match our 81.8% suc-
cess—representing a 30× increase in data requirements. Finally, we ablated the orientation compo-
nent of our frame representation. Replacing o-affTtool with a non-oriented version (affordTtool) nearly
halved success rates at 10 demos and failed to surpass 80% even with 50. In contrast, our method
reached 100% success with just 30 demonstrations, highlighting the critical role of the oriented
frame in maximising the utility of a small number of demonstrations.

Spatial Generalisation: Our second experiment shows that training with the oriented affordance
frame representation leads to better spatial generalisation than other representations, especially when
training from a few demonstrations. While the experiment described above evaluated the learned
policies under in-distribution conditions (denoted IND in Table 1) where the objects were placed in
the same sector of the robot’s workspace during training and evaluation, we now vary the spatial
configurations and place the objects in different parts of the robot workspace during evaluation. See
Fig. 1 for a visualisation. We again use the fiducial markers to provide ground-truth poses of the
affordance frames. Under these Out-of-Distribution (OOD) conditions, our proposed representation
again performs the best, achieving 83.1% success on average across all base seven tasks, 72.7% on
the composite tasks, and still 63.6% on the overall tea-serving task that composes all seven task.
The end-effector-centric representation performs much worse (41.6% on average for the base tasks,
6.1% for the compositions and 9.1% for the complete tea-serving scenario) and representing state
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Figure 8: Intra-category generalisation. We demonstrate the ability of our approach to enable generalisation
across large shape and size intra-category variations.

and action in a global frame fails completely throughout all experiments. A detailed breakdown is
provided in Table 1.

Training Evaluation

Task # Instances Success
cup rearrange 10 8/10
utilise teapot 3 3/3

Figure 7: Generalisation to intra-
category variations The set of objects used
for training and evaluating the intra-category
generalisation capabilities of the trained
sub-policies.

Intra-Category Generalisation: Our fourth set of ex-
periments supports our claim that oriented affordance
frames enable the transfer of trained policies to new ob-
jects unseen during training. These experiments use the
perception system from A.1.

As illustrated in Fig. 7, we collected all demonstrations
for the cup rearrange and utilise teapot composite tasks
with a single teapot and teacup. The learned policies suc-
cessfully executed on 8 of the 10 unseen teacups and all
3 unseen teapots. These new objects vary significantly in
appearance and geometry compared to the demonstration
objects. This successful intra-category generalisation is
possible due to the proposed perception pipeline’s abil-
ity to identify and transfer affordances from one object to
another despite considerable intra-category variations in
geometry and appearance. See Fig. 8 for further illustra-
tion of the generalisation in action.

Task Composition and Self-Progress Prediction:
Throughout our experiments involving composite tasks
(e.g. cup rearrangement or the full tea-making task), we
utilise the proposed self-progress prediction mechanism to fully autonomously control the transition
between base tasks. We found the self-progress prediction to be remarkably robust in all experi-
ments and did not observe it to cause any failures. More detailed results are provided in Appendix
A.7.

5 Conclusion

Our experiments demonstrate that oriented affordance frames substantially enhance both sample ef-
ficiency and generalisation in imitation learning for long-horizon, multi-object tasks. By replacing
dense image- or point-cloud-based representations with an abstracted, affordance-centric formula-
tion, our approach enables robust policy learning from as few as 10 demonstrations. It generalises
effectively across spatial, intra-category, and combinatorial variations - crucial for solving complex,
long-horizon tasks. We also introduce a perception pipeline to detect and track these frames using
vision foundation models, along with a simple yet effective progress estimation metric derived from
demonstration duration to enable seamless sub-policy transitions. We hope this work encourages
further exploration of structured representations, priors, and compositionality in behaviour cloning,
paving the way toward more generalisable and practical robotic systems for real-world applications.
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A Appendix

A.1 A Perception Pipeline to Detect and Track Affordance Frames

SAM
DINO-ViT

Foundation
Pose

action

action

Affordance Detection
&

Tracking

Foundation
Pose

Affordance Frame Tracking

Reference Affordance 
Keypoints

π

Transform
Pose

Affordance Frame Detection

Policy Learning

Orient 
Frame

CSM Cube
(Image-to-3D)

Textured 
Mesh

Intra-
Category

Spatial

Generalise

Grounding
DINO

“teapot”

Affordance-Centric 
Policy Learning

Figure 9: Affordance-Centric Policy Learning. Affordance Frame Detection: We propose a framework
to detect affordance frames using pre-trained large vision models. Affordance Tracking: Once the frame is
detected we utilise Foundation Pose [48] to continuously track the frame in real-time as the robot interacts with
it. Policy Learning: At the start of each episode we appropriately orient the frame towards the tool frame of the
robot and train a state-based diffusion policy that operates with this frame as its task frame.

Automatically detecting and tracking the affordance frames necessary for the affordance-centric
policy learning presented in the previous section is not a trivial task. However, recent progress in
computer vision and especially in generalist vision foundation models, makes this possible now. In
this section, we present a perception pipeline that can detect and track affordance frames.

We note that we specifically do not claim the following approach to be superior to alternative meth-
ods. We do not present an in-depth analysis or comparison to alternatives, as this is beyond the scope
of our paper. We found that the pipeline presented in the following was effective in our setup, but
future work definitely can improve upon what we present here. A complete visual overview of our
perception pipeline is given in Fig. 9.

Assumptions: We assume that for each task, the human demonstrator provides the following
input during the policy training stage to aid the perception system later during autonomous policy
execution: (1) the name of the target object the robot has to interact with, e.g. “teapot”; and (2) three
reference points that localise the affordance-frame of the task.

Affordance Frame Detection: At the start of each subtask, given an input image of the robot’s
workspace from an external camera (see Fig. 13) and the user-provided name of the target object,
we first use Grounding DINO [49] to detect a bounding box around the object, leveraging its open-
vocabulary capabilities. The image is then cropped to this bounding box and passed to SAM [50]
to obtain a segmentation mask of the object. We additionally pass the cropped image to CSM
Cube’s [51] Image-to-3D model, which generates a textured mesh of the object. Both the segmen-
tation mask and the textured mesh are then used to initialise Foundation Pose [48] for object pose
estimation.

However, this pose is extracted relative to the mesh centre rather than the specific affordance relevant
to the task. To localise the affordance pose, we extract DINO-ViT features [52] from the current
image crop and match them against the DINO-ViT features of the three reference points provided
by the human demonstrator during policy training. This matching process allows us to transform the
mesh-centred pose detected by Foundation Pose to align with the affordance region. This process is
illustrated in Fig. 9 (top).
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Success Rate Type of Error
Joint

Limit Violation
Out of

Distribution
Tracking

Error
Affordance Frames
Oriented 82% 0.0% 100% 0.0%
Non-Oriented 46% 36.4% 63.6% 0.0%

Perception System
Aruco Markers 80% 0.0% 100% 0.0%
Foundation Pose [48] 70% 0.0% 66.7% 33.3%

Table 2: Ablation Study. Analysis of failure modes when comparing the two different affordance frames and
perception systems.

This entire process is performed once at the start of the task. For long-horizon tasks involving
multiple objects and sequential subtasks, we initialise all affordances at the beginning and track
them in parallel using multiple Foundation Pose models.

Affordance Frame Tracking: Once initialised, we continuously track the pose of an object using
Foundation Pose [48] and transform it to the affordance region at approximately 20 Hz on a desktop
computer with an RTX4090 GPU. This tracked frame is used to compute the oriented affordance
frame in which states and actions are represented. As we switch between subtasks for long-horizon
tasks, we transition between the already-initialised affordance frames required for the respective
subtasks.

Efficacy of Perception Pipeline: In the experiments, we decoupled the effects of the perception
pipeline (described in Appendix A.1) on the policy performance and used fiducial markers on the
objects to mark the pose of the various affordance frames. In this third set of experiments (Table 2),
we show that our proposed perception pipeline is able to detect and track affordance frames without
the use of fiducial markers, with only minimal decrease in task performance.

We ran 10 trials of the cup rearrange task, which is a composition of the base tasks of rotating and
grasping the tea cup and placing it on the saucer. When using the fiducial markers, 8 out of 10 trials
were successful, which is consistent with the results reported in Table 1, as expected. Removing
the fiducial markers and using the proposed perception pipeline to detect and track the affordance
frames resulted in 7 successful trials, indicating that only one additional failure case was introduced
by the full perception pipeline. This failure case was a tracking error, where the vision system lost
track of the objects pose due to occlusions from the robot, whereas the other two failure cases were a
result of the policy failing to successfully grasp the cup or stagnation typically seen when the policy
falls out of distribution. Further qualitative results in the accompanying videos show that we can
train policies from 10 demonstrations and successfully execute them without any fiducial markers
for the full tea-serving task, as well as the shoe-racking and coffee-making tasks, as illustrated in
Fig. 12.

A.2 Assumptions and Limitations

There is no free lunch [53], and the reduction in required demonstrations while gaining spatial and
intra-category invariance does not come for free. While our proposed approach significantly reduces
the burden on the human demonstrator to provide a large number of task demonstrations, we make
the following assumptions:

(1) The objects involved in the tasks have clearly defined affordances, and a human demonstrator
can identify the location of the relevant affordance frames. We find this to be a mild assumption for
many objects involved in typical tasks in a domestic scenario, but we acknowledge that some tasks
(e.g. laundry folding) will break this assumption.

(2) The affordance frames appear at locations on the object that are distinct and informative enough
for a perception pipeline to identify and track them, as well as transfer them across objects within
the same category. We found this assumption to hold well for the evaluated real-world tasks, but
objects without characteristic geometries or appearance will pose a challenge.
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(3) The human demonstrator can identify sub-tasks within the long-horizon task. This is a very mild
assumption, and the partitioning of tasks could be automated based on detecting when the robot
starts interacting with the next object, or even with the help of Large Language Models.

Limitations: While our evaluation showed the proposed approach to be effective in learning long-
horizon tasks, there are some noteworthy limitations that warrant further exploration. Most impor-
tantly, the proposed method depends on reliable object tracking to continually update the pose of the
affordance frame during a manipulation task. While the presented perception pipeline from Sec. A.1
worked well in the tested scenarios, it has limitations when tracking through occlusions, or dealing
with non-rigid (e.g. articulated or deformable) objects.

Second, the pose-based abstraction of objects could limit the applicability to tasks not easily rep-
resented by object affordance frames alone, potentially requiring additional modalities like tactile
sensing to capture more fine-grained object details. Despite these limitations, our contribution of-
fers a promising pathway to more sample-efficient and generalisable imitation learning of complex
long-horizon manipulation tasks.

Informally, our approach relieves the human demonstrator from the burden of collecting a large
number of diverse demonstrations and reduces the pressure on the policy learning algorithm to
extract task-relevant generalisation information from raw image-based state inputs. Instead, we
shift part of the inherent difficulty of imitation learning to a dedicated perception system that can
extract and track affordance frames. One might argue that this merely redistributes the difficulty
rather than reducing it. However, we are confident that this shift is highly beneficial: acquiring
large-scale training data for generalist vision models, such as those used in Sec. A.1, is significantly
cheaper and more scalable than collecting extensive human demonstrations and robot interaction
data, which remain expensive and labour-intensive. Thus, we expect the performance of specialised
vision perception systems to continue to improve rapidly, becoming even more useful in the context
of imitation learning soon.

A.3 Applicability to Mobile Manipulation

By training our policy with respect to a relative frame attached to an object, the robot’s action and
state space remain consistent regardless of the position of the robot’s base. This allows for the policy
to continue operation while the base of the robot is in motion. We demonstrate this by running the
same policy trained in the tabletop setting on a mobile manipulator robot and show how the end
effector of the robot can maintain task performance regardless of the movement of the robot’s base
as illustrated by the discrepancy between the green and red robot base locations in Figure 10. A
video of this experiment is provided in the supplementary material.

A.4 Closed Loop Control

Prior work have introduced the concept of local keypoints or regions on objects as compact repre-
sentations for manipulation tasks [23, 22, 35]. These systems have traditionally been used to define
start and end poses for simple pick-and-place operations, utilizing off-the-shelf inverse kinematics
and motion planners to move objects from one location to another in an open-loop manner [23, 22].
Other methods have incorporated these representations within the context of imitation learning, pri-
marily focusing on one-shot imitation learning [45, 54, 55]. In these cases, the keypoint locations
are used to define complex admittance controllers [45] or prompt large language model (LLM) [35]
to replicate a single trajectory, limiting their ability to react to changes or perturbations during policy
execution. Our approach in contrast, leverages these representations in a behaviour cloning setting
where we can learn closed-loop diffusion policies [1] that are robust to perturbations and allow us to
move beyond simple pick-and-place tasks to imitating more complex closed-loop tasks, including
non-prehensile manipulation, such as pushing objects as shown in Figure 11 below.

A.5 Tasks

A.6 Experimental Setup – Further Details

For all evaluations, we used a Franka Panda manipulator arm equipped with Intel Realsense cam-
eras as shown in Figure 13. We utilised Cartesian impedance control to control the robot. All
demonstrations were collected using a GELLO teleoperation device [6]. During data collection, all
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Figure 10: Robustness to moving base. We demonstrate our ability to maintain task performance
regardless of the robot’s moving base when operating with respect to an affordance-centric task
frame.
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Figure 11: Closed-loop control. We demonstrate our ability to learn robust policies that react to
object perturbations during execution beyond simple pick-and-place tasks.

objects are equipped with an individual ArUco marker (Figure 13) which we use for identifying the
affordance-centric frames via measured rigid transforms from this marker, as well as for tracking
these frames across the demonstration. We chose this method to obtain the affordance frame as it
allowed us to decouple the performance of the perception system from the utility of the affordance
frames for policy learning and composition, which was the main focus of this work. For all the video
demonstrations in the supplementary, we switched to the marker-free setup as shown in Figure 13
(right).

A.7 Policy Composition – Further Details

Having trained each affordance-centric policy, we can compose them to solve long-horizon, multi-
object tasks. We first define the order of sub-tasks and their associated affordance frames required to
complete the full task. The robot then performs an initialisation scan of the environment to identify
the initial locations of all objects and their local affordance frames in the scene. Once identified it
runs the first policy corresponding to the first sub-task. As the policy is trained to output end-effector
poses defined in the oriented affordance frame o-affTee, we transform these actions to the base frame
of the robot Tee before executing them with a Cartesian impedance controller. If aprogress generated
by the policy increases beyond a predefined threshold φ, indicating sub-task completion, we switch
affordance frames and repeat the process with the next policy corresponding to the next sub-task.
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Tea Serving Shoe Racking Coffee Making

Figure 12: Demonstrating our system across three diverse real-world tasks. The Tea Serving and Coffee
Making tasks are very complex compared to many tasks typically encountered in the literature and require
multiple sequential object interactions and a high level of interaction precision, e.g. when operating the coffee
machine or pouring tea into the cup. Videos of the robot autonomously executing learned policies for all tasks
are provided in the supplementary material.
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Figure 13: Experimental Setup. Left: Marker-based setup using 2 wrist-mounted D405 Intel Re-
alsense cameras for top down detection. Right: Marker-free setup using a front-facing D455 Intel
Realsense camera running Foundation Pose.

Figure 15 illustrates the predicted progress while executing each base task in the tea-serving sce-
nario. The system switches to the next policy when the predicted progress reaches a predefined
threshold.

We further tested the responsiveness of this self-progress indicator to external disturbances for the
task of rotating a cup and then grasping it. As illustrated in Fig. 14, a human interfered during task
execution by moving or rotating the cup. The self-progress prediction value immediately decreases
as the task is partially reset and gradually increases as the robot proceeds with solving the task.

A.8 Diffusion Policy

Throughout this work, we leverage diffusion policies [1] as our central behaviour cloning algorithm.
Diffusion policy models the conditional action distribution as a denoising diffusion probabilistic
model (DDPM), allowing for better representation of the multi-modality in human-collected demon-
strations. Specifically, diffusion policy uses DDPM to model the action sequence p(At | ot,xt),
where At = {at, . . . ,at+C} represents a chunk of next C actions. The final action is output of the
following denoising process:

Ak−1
t = α(Ak

t − γεθ(ot,xt,Ak
t )) +N (0, σ2I), (1)

where Ak
t is the denoised action sequence at time k. Denoising starts from AK

t sampled from Gaus-
sian noise and is repeated till k = 1. In Equation (1), (α, γ, σ) are the parameters of the denoising
process and εθ is the score function trained using the MSE loss `(θ) = (εk − εθ(ot,xt,Ak

t + εk))
2.

The noise at step k of the diffusion process, εk, is sampled from a Gaussian of appropriate variance.
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Figure 14: Self-Progress Behaviour with Disturbances. Predicted progress over the course of a task exposed
to two different disturbances and resets mid-execution. The task requires the robot to rotate a coffee mug and
then grasp it. We indicate the start of the two disturbances where we reset this rotation by the grey dotted
vertical lines in the plot.
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Figure 15: Self-Progress Predictions across the Tea Making Task. Each sub-plot indicates the predicted
self-progress for a different sub-task in the tea-making task.

The policy predicts a sequence of 16 actions, of which we execute the first 8. The diffusion network
has 8.08 million parameters, we used a learning rate of 10−4. The rest of the implementation is
identical to the original implementation [1].
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Algorithm 1: Calculation of Ralign

Input: ptool,pafford
Output: Ralign

1 Function ComputeRotationMatrix(ptool,pafford):
2 Define the Vectors:
3 vfunnel ← [1, 0, 0]T

4 ptool ← Position of the tool frame
5 pafford ← Position of the affordance frame
6 Calculate the Direction Vector:
7 d← ptool − pafford

8 dnorm ← d
‖d‖

9 Find the Rotation Axis and Angle:
10 r← vfunnel × dnorm
11 rnorm ← r

‖r‖
12 cos(θ)← vfunnel · dnorm
13 sin(θ)← ‖r‖
14 Construct the Rotation Matrix:

15 K←

[
0 −rz ry
rz 0 −rx
−ry rx 0

]
16 Ralign ← I + sin(θ)K+ (1− cos(θ))K2

17 return Ralign
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