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Abstract

Recent work has demonstrated both benefits and limitations from using supervised
approaches (without temporal-difference learning) for offline reinforcement learning.
While off-policy reinforcement learning provides a promising approach for improv-
ing performance beyond supervised approaches, we observe that training is often
inefficient and unstable due to temporal difference bootstrapping. In this paper
we propose a best-of-both approach by first learning the behavior policy and critic
with supervised learning, before improving with off-policy reinforcement learning.
Specifically, we demonstrate improved efficiency by pre-training with a supervised
Monte-Carlo value-error, making use of commonly neglected downstream informa-
tion from the provided offline trajectories. We further generalize our approach to
entropy-regularized reinforcement learning and apply our proposed pre-training to
state-of-the-art hard and soft off-policy algorithms. We find that we are able to
more than halve the training time of the considered offline algorithms on standard
benchmarks, and surprisingly also achieve greater stability. We further build on
the importance of having consistent policy and value functions to propose novel
hybrid algorithms, TD3+BC+CQL and EDAC+BC, that regularize both the actor
and the critic towards the behavior policy. This helps to more reliably improve on
the behavior policy when learning from limited human demonstrations. Code is
available at: https://github.com/AdamJelley/EfficientOfflineRL

1 Introduction

Recent work has highlighted the effectiveness of supervised learning approaches (without temporal
difference learning) for offline reinforcement learning (Emmons et al., 2022; Chen et al., 2021; Brand-
fonbrener et al., 2021; Peng et al., 2019). Other work has analyzed the limitations of these supervised
approaches and considered when off-policy reinforcement learning should be favoured (Kumar et al.,
2022b; Brandfonbrener et al., 2022; Paster et al., 2022). Given these seemingly opposing approaches,
it is natural to ask: can we get the best of both supervised and temporal difference learning for offline
reinforcement learning? Specifically, can we obtain the training efficiency and stability of supervised
learning, while still enabling the performance benefits of multi-step temporal difference learning?

In this work we investigate such an approach, by supervised pre-training off-policy reinforcement
algorithms to obtain approximate behavior policy and values before attempting improvement, aiming
to efficiently achieve at least the behaviour policy performance. This is important because offline
policy evaluation is challenging, so policies usually must be evaluated online (Konyushkova et al.,
2022). Therefore, instabilities in training could lead to the deployment of an agent with performance
unexpectedly much worse than in the demonstration data, which could lead to harm (Gu et al., 2023).

As a motivational example, we can consider offline tabular Q-learning on the 4 state MDP illustrated
in Figure 1, where we are provided with a single offline trajectory from an unknown policy.

Tabular Q-learning initialises all Q-values to zero (or equivalently Q-networks are randomly initial-
ized such that all initial Q-values are close to zero for deep Q-learning), and then performs temporal
difference updates using the following update rule (Sutton et al., 2018):
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Figure 1: A motivational tabular MDP. In offline reinforcement learning, we are provided with
a dataset of trajectories. In this paper we utilize information from the entire trajectory to help
initialize a self-consistent critic for off-policy reinforcement learning, which eliminates much of the
initial inefficiency and instability associated with bootstrapping in temporal difference losses.

Q(st, at)← Q(st, at) + α
[
rt + γ max

a
Q(st+1, a)−Q(st, at)

]
(1)

For simplicity in this minimal motivational example, let us take the discount factor γ and the learning
rate α to be 1. Performing updates using the provided offline trajectory leads to the Q-value updates
shown in the left column of Table 1. We find that the policy converges to the optimal policy after
2 epochs, and the values converge to the correct optimal values after 3 epochs.

However, in the case of offline reinforcement learning, we have access to better initial Q-value
estimates in the form of Monte-Carlo samples from the trajectory. This follows since in addition to
Bellman’s optimally equation in Equation 1, we also have the definition of the Q-function for the
behavior policy πB for which we can compute a sample-based expectation from our offline data:

QπB (st, at) = Eτ∼πB

[ ∞∑
n=0

γnrt+n

∣∣∣st, at

]
(2)

Initialising the Q-values with Monte-Carlo estimates sampled from the provided trajectory and using
the same update rule given in Equation 1 leads to the Q-values shown in the right column of Table 1.
We now find that the policy converges to the optimal policy immediately after initialisation, and
the values converge to the optimal values after a single epoch.

Table 1: State-action values for each epoch of Q-learning to convergence for the motivational MDP
and offline trajectory provided in Figure 1 for both zero and Monte-Carlo value initialisations.

Epoch Zero Initialisation MC Value Initialisation
Q(0,→) Q(1,←) Q(1,→) Q(2,→) Q(0,→) Q(1,←) Q(1,→) Q(2,→)

0 0 0 0 0 0 or +0.51 0 +1 +3
1 0 -1 -2 +3 +1 0 +1 +3
2 -2 -2 +1 +3 +1 0 +1 +3
3 +1 0 +1 +3 +1 0 +1 +3

This minimal example demonstrates that the benefit of pre-training values on offline data arises even
in the absence of function approximation, near-optimal behavior policies, or complex MDPs. How-
ever, the inefficiency of boostrapping from randomly initialized temporal difference (TD) targets still
exists in the case of uninformed neural network initializations, and in sparse-reward environments
where rewards received at the end of long trajectories may take many TD updates to propagate.

1The MC initialisation value for Q(0, →) depends on the choice of first-visit or every-visit Monte-Carlo (Sutton et
al., 2018). In this example it doesn’t matter which is used after initialisation.
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In this paper, we provide similar approaches for pre-training a critic or value network, which can
be combined with most existing off-policy reinforcement learning algorithms, leading to improved
training efficiency and stability. We first consider return-maximising reinforcement learning, and
apply our approach to a minimal offline reinforcement learning baseline, TD3+BC (Fujimoto &
Gu, 2021). We then generalize our procedure for entropy-regularized reinforcement learning, and
apply our approach to a state-of-the-art offline baseline, EDAC (An et al., 2021). Finally, we build
on our insight into the importance of having consistent policy and value functions by introducing
novel hybrid algorithms, TD3+BC+CQL and EDAC+BC, that regularize both the actor and the
critic towards the behavior policy and values to enable smooth performance improvement over the
pre-training performance on the challenging Adroit environments (Rajeswaran et al., 2018).

2 Preliminaries and Related Work

Online reinforcement learning (RL) involves an agent taking actions according to a policy π to inter-
act with a Markov Decision Process (MDP). An MDP can be defined by the tuple (S,A, T , r, d0, γ)
where S is the state space, A is the action space, T (s′|s, a) is the transition probability distribution,
r : S × A → R is the reward function, d0 is the distribution of initial states, and γ ∈ (0, 1] is a
discount factor. The goal is generally to learn the policy π∗ that maximises the expected discounted
returns: π∗ = arg maxπ Eπ,T [

∑∞
t=0 γtr(st, at)]. Offline RL poses the same goal, but the policy π

must be learned from a fixed dataset of interactions from a behavior policy πB , without any addi-
tional data collection. This behavior policy πB is generally unknown and arbitrarily optimal, and
may be a human policy, a hardcoded policy, another agent’s policy, or some mixture of policies.

Perhaps the most straightforward approach for learning a policy from the offline data is behavior
cloning (Pomerleau, 1991). Since the training is supervised, convergence is relatively stable and
efficient, but the learned policy can at best match the performance of the behavior policy since
behavior cloning does not utilise reward information, and online performance may be brittle due to
accumulating errors taking the agent out-of-distribution (OOD) of known states (Ross et al., 2011).

What if we want to improve on the behavior policy? behavior cloning variants such as BC-k%
(Levine et al., 2020) and Advantage-Weighted Regression (Peng et al., 2019; Peters & Schaal, 2007)
utilise reward information to selectively clone the behavior data. More recently, conditioning the
policy on desired returns or goals (Srivastava et al., 2021; Ma et al., 2022) has seen some success with
transformer based approaches (Chen et al., 2021; Janner et al., 2021; Carroll et al., 2022). While
these behavior cloning variants are sometimes able to achieve generalisation to greater returns at
test-time than observed in the dataset (Brandfonbrener et al., 2022; Kumar et al., 2022b), in general
their performance is more limited than true reinforcement learning approaches which can more
effectively use mechanisms such as trajectory stitching (Paster et al., 2022; Yang et al., 2022).

A more promising approach for improving on the behavior policy is to use off-policy reinforcement
learning, usually in the form of actor-critic algorithms (Lillicrap et al., 2019; Silver et al., 2014).
However, naively taking the offline dataset as the replay buffer for an off-policy algorithm usually
leads to policy collapse (Fujimoto et al., 2019). This occurs because as the policy (actor) and
values (critic) are optimised for maximal return, they necessarily go out-of-distribution of the data
(Chen & Jiang, 2019). Since there are no additional interactions to provide correcting feedback
on these actions and values as in the online case, growing extrapolation errors cause erroneous
values and actions that lead to performance equivalent to random. Most modifications of off-policy
reinforcement learning algorithms for the offline setting involve regularization of either the actions
or the values towards the provided dataset to prevent this out-of-distribution extrapolation (Fu
et al., 2022). TD3+BC (Fujimoto & Gu, 2021) modifies TD3 (Fujimoto et al., 2018) by introducing
a behavior cloning term to regularize the policy towards the behavior policy. Alternatively, CQL
(Kumar et al., 2020) modifies Q-learning to regularize the values for out-of-distribution actions to
prevent positive extrapolation error. However, since regularization towards the behavior policy or
values limits performance improvement (Moskovitz et al., 2022), recent approaches instead aim to
capture out-of-distribution uncertainty (Wu et al., 2021). SAC-N and EDAC (An et al., 2021) use the
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minimum of an ensemble of critics to obtain value estimates that minimise positive extrapolation
error (with EDAC introducing additional diversification loss over SAC-N to reduce the required
ensemble size), such that policy optimisation is less likely to lead to policy collapse.

While these off-policy RL approaches can lead to better performance than modified imitation ap-
proaches, their convergence can be inefficient due to the bootstrapping in the Bellman update used
for learning values. In this work we attempt to address these difficulties by pre-training with su-
pervised objectives, utilising Monte-Carlo (MC) return estimates. The use of MC values has a long
history in reinforcement learning, for which additional related work is discussed in Appendix A.

3 Pretraining Off-Policy Reinforcement Learning Algorithms

3.1 Outline Procedure

We now explain our pre-training procedure for the standard return maximising case. In this setting
we first compute the discounted return-to-go R from each state-action pair until the end of the
trajectory for all timesteps in the dataset. We can then pre-train the actor with behavior cloning
and the critic (Q-network) with the pre-computed discounted return-to-go, both using supervised
mean-squared error (MSE) minimisation (or cross-entropy for discrete actions). We note that for
more complex datasets the behavior policy and returns may be asymmetric or multi-modal, in which
case the implicit Gaussianity assumption for this loss may be limiting and other pre-training losses
may be required, but MSE is sufficient for most environments. This procedure provides initial actor
and critic networks consistent with the behavior data. Finally, a suitable off-policy reinforcement
learning algorithm (utilising a temporal difference loss) can be applied to these pre-trained actor
and critic networks to efficiently increase the policy return. Our pre-training procedure is outlined
in pseudocode in Algorithm 1. As we will see in Section 4, this increase in training efficiency more
than makes up for the time and computational expense associated with the pre-training.

3.2 Bias-Variance and Optimism-Pessimism Tradeoffs

Under the behavior policy, this discounted return to go provides a Monte-Carlo (MC) sample of the
expectation that the critic or Q-network aims to predict. In the case of deterministic environments
and a single deterministic behavior policy, this Monte Carlo sample will equal the expectation
exactly. For stochastic behavior policies and environments, this Monte Carlo sample may become
high variance, which can lead to performance drops after pre-training. In this case it would be
possible to use an n-step or λ-return to reduce this variance at the cost of bias introduced by
bootstrapping (a well known case of the bias-variance tradeoff) (Sutton et al., 2018). However, since
computing the λ-return would require inferring the current critic value for every downstream state
in the trajectory, a more practical way of controlling this tradeoff is simply to compute the TD(0)
return and combine it with the MC return using a tradeoff parameter λ ∈ [0, 1]:

R̃ = (1− λ)R + λ(r + γQ(s′, a′)) (3)

For large offline datasets with high environment coverage where the greatest training efficiency gains
are possible, there should be sufficient Monte Carlo samples to reduce this variance to a manageable
level for pre-training, so λ can be small in order to utilise more information from the offline data (i.e.
the full return to go). However, for smaller datasets capturing stochastic policies and environments,
larger λ may be beneficial. We investigate the empirical effect of varying λ in Appendix E.

Additionally, by pre-training on sampled returns with a symmetric error, the critic is equally likely to
under- or over-estimate the values of out-of-distribution actions when optimising the policy after pre-
training, even in the deterministic case where the returns are exact. This overestimation can lead to
policy collapse as discussed in Section 2. Therefore it can be helpful to add some value regularization
R(Q(s, a)) during pre-training, such as that introduced in CQL (Kumar et al., 2020) to effectively
lower-bound the Q function. We will see in Section 5 that including some value regularization can be
beneficial when the offline data is limited, to prevent the policy performance collapsing to random.
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3.3 Generalisation to Maximum Entropy Off-Policy RL Algorithms

The maximum entropy RL framework, and particularly Soft Actor-Critic (Haarnoja et al., 2019)
along with offline variants such as SAC-N and EDAC (An et al., 2021), have recently become
popular for their improved robustness and sample efficiency relative to the ‘hard’ return maximisation
considered above. This ‘soft’ RL framework involves maximising the expected return alongside the
entropy of the policy, balanced by a temperature parameter α (Ziebart et al., 2010):

π∗ = arg max
π

Eτ∼π,T

[ ∞∑
t=0

γtrt + αH(π(·|st))
]

(4)

where H(π(·|st)) = Eã∼π(·|st) [− log(π(ã|s))] is the entropy of the policy π in state st.

This also modifies the definition of the state-action value functions as follows:

Q(st, at) = Eτ∼π,T

[ ∞∑
n=0

γnrt+n + α

∞∑
n=1

γnH(π(·|st+n))
∣∣∣st, at

]
(5)

Therefore, in order to pre-train value functions for the behavior policy as before we must modify
the return-to-go to incorporate these entropy bonuses from every future timestep except the first.
However, since these entropy bonuses depend on the current policy, we now separate our pre-training
procedure above into two phases. First, we pretrain our policy with soft behavior cloning:

Lπθ
= Es,a∼D,ã∼π [α log(πθ(ã|s))− log(πθ(a|s))] (6)

This provides an approximate behavior policy with which we can compute Monte Carlo samples of
Equation 5 as soft returns-to-go, which can be used to augment the offline dataset as in Section 3.1.
These soft returns-to-go can then be used as the targets to pre-train the critic to achieve consistency
with the soft behavior cloned policy, and providing a springboard initialization for a soft off-policy
RL algorithm to efficiently improve the policy. The full pseudocode for this procedure is outlined in
Algorithm 2, and a further discussion of the rational for this procedure is included in Appendix B.

Algorithm 1 Pre-training Hard Off-Policy RL
Require: Dataset D for use as replay buffer

Initialise πθ and Qϕ parameters, θ and ϕ
for each transition (st, at, st+1, rt) ∈ D do

Compute Rt =
∑T −t

n=0 γnrt+n

▷ Or n-step/λ-return/R̃ (eq. 3)
Append Rt to transition:

(st, at, st+1, rt, Rt)
end for
while not converged do ▷ Pre-Training

Sample batch B = (s, a, s′, r, R) ∼ D
Update θ with behavior cloning:
Lθ = EB

[
(π(s)− a)2]

Update ϕ with (generalized) return:
Lϕ = EB

[
(Q(s, a)−R)2]

(+R(Q(s, a))
▷ Optional regularization R(Q(s, a))

Update target networks (Polyak update):
ϕ′ ← τϕ′ + (1− τ)ϕ

end while
while t < T do ▷ Off-Policy RL

Sample batch (s, a, s′, r, R) ∼ D
Apply hard offline RL update to
pre-trained π and Q to improve returns

end while

Algorithm 2 Pre-training Soft Off-Policy RL
Require: Dataset D for use as replay buffer

Initialise πθ and Qϕ parameters, θ and ϕ
while not converged do ▷ Actor Pre-Training

Sample batch B = (s, a, s′, r) ∼ D
Update θ with soft behavior cloning:
Lθ = EB,ã∼π [α log(π(ã|s))− log(π(a|s))]

end while
for transition (st, at, st+1, rt) ∈ D do

Rt =
T −t∑
n=0

γnrt+n + α
T −t∑
n=1

γnH(π(·|st+n))

▷ Or n-step/λ-return/R̃ (eq. 3)
Append R to transition: (s, a, s′, r, R)

end for
while not converged do ▷ Critic Pre-Training

Sample batch B = (s, a, s′, r, R) ∼ D
Update ϕ with (generalized) soft return:
Lϕ = EB

[
(Q(s, a)−R)2]

(+R(Q(s, a))
Update target networks: ϕ′ ← τϕ′ + (1− τ)ϕ

end while
while t < T do ▷ Off-Policy RL

Sample batch (s, a, s′, r, R) ∼ D
Apply soft RL updates to pre-trained π and Q

end while
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4 Initial Experiments on D4RL MuJoCo

4.1 Implementation Details

We begin our investigation into the benefits of pre-training off-policy RL algorithms by considering
the D4RL MuJoCo benchmark (Fu et al., 2021). We utilise the standard HalfCheetah, Hopper and
Walker2d environments and the medium dataset (a suboptimal policy with approximately 1/3 of
the performance of the expert) of 1M transitions, since this provides a meaningful behavior policy to
learn from at initialisation, with room for improvement with off-policy reinforcement learning. We
also consider the medium-replay and full-replay datasets with an identical approach in Appendix F.

For our implementations we utilise the Clean Offline Reinforcement Learning codebase (CORL)
(Tarasov et al., 2022), that provides algorithm implementations benchmarked to match published
performance measures. During our investigation into improving the efficiency of off-policy reinforce-
ment learning algorithms, we found that introducing LayerNorm (Ba et al., 2016) into both the actor
and critic networks significantly improved training efficiency and stability, independently verifying
the findings of Ball et al. (2023), as demonstrated in Figure 2. Therefore for all results demonstrated
in this paper, we use the benchmarked implementations and default hyperparameters found in the
CORL codebase, with the new addition of a LayerNorm after every linear layer except the final one
for each network. We investigate the effect of LayerNorm in more detail in Appendix C.

We use TD3+BC (Fujimoto & Gu, 2021) as a ‘hard’ off-policy algorithm, and EDAC (An et al.,
2021) as a ‘soft’ entropy-regularized algorithm to apply after pre-training. For EDAC, we include
the auxiliary ensemble diversification loss as value regularization during pre-training, to prevent the
collapse of the ensemble. We pre-train until convergence in each case, which can be determined by
monitoring the convex supervised loss functions. We find this corresponds to just 10-50k updates
and is a small proportion of the total updates required for offline RL convergence. The online
performance for both algorithms as a function of the number of offline updates, including pre-
training, is demonstrated below in Figure 2.

4.2 Results and Analaysis

Figure 2: Performance mean ± standard deviation at each training step over 3 independent seeds.
Supervised pre-training before offline reinforcement learning is more efficient than offline reinforce-
ment learning from scratch. Surprisingly, performance is also more stable long after pre-training.

We find that pre-training as described in Algorithms 1, 2 leads to much more efficient training, both
for TD3+BC (a hard RL algorithm with actor regularization) and for EDAC (a soft RL algorithm
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with critic regularization), even when taking the cost of pre-training into account. In particular, we
find that on the more difficult Hopper and Walker2d environments, the inclusion of pre-training
generally reaches expert-level performance in less than 1/2 of the training steps and
computation time required without pre-training (and in less than 1/5 of the training steps
and computation time of the currently used implementations without LayerNorm or pre-training).
Surprisingly, we notice that in many cases the final performance is also more stable,
even hundreds of thousands of updates after pre-training, which we discuss further in Appendix D.

However, in some cases, we find that the performance drops after critic pre-training. Fundamentally,
this arises because at the end of pre-training we change the objective of the actor from imitation
learning (predicting the action that would have been chosen in the dataset), to off-policy reinforce-
ment learning (predicting the action that will maximise the critic prediction). If the values predicted
by the critic are sufficiently accurate for the behavior policy as a result of our proposed critic pre-
training, then the performance should smoothly improve, but if values are inaccurate due to sample
variance then the performance may drop and take some time for Bellman updates to reduce this
variance. The dynamics of these environments are deterministic, but the D4RL datasets are col-
lected with a stochastic policy (SAC, Haarnoja et al. (2018)) and from stochastic initial states, which
leads to variance in the MC value estimates. Since the action spaces are larger for HalfCheetah and
Walker2d than for Hopper (6 dimensional rather than 3), there will be more variance in the policy at
each timestep and therefore also in the return. Furthermore, since all but one of the medium-level
Hopper trajectories end in termination, this increases the return signal-to-noise ratio for Hopper
relative to the HalfCheetah and Walker2d environments which end with timeouts (and so all tra-
jectories have more similar returns). To mitigate the performance drop off in these environments,
we incorporate a small amount of TD target using Equation 3, with λ = 0.1 for HalfCheetah, and
Walker2d for EDAC. We investigate the inclusion of λ in Appendix E.

As an ablation, we also investigate pre-training the actor alone (BC only pre-training) in Appendix D.
We find that performance quickly deteriorates after pre-training due to the inconsistent random critic
values, verifying our hypothesis on the performance drop, and the findings of Orsini et al. (2021).

5 Extension to Data-Limited Adroit Environments

We now consider the Adroit tasks (Rajeswaran et al., 2018). These are more complex and realistic
environments that require controlling a 24-DoF robotic hand to perform tasks such as aligning a
pen, hammering a nail, opening a door, or relocating a ball. The human datasets provided for these
environments are very limited, consisting of just 25 trajectories of human demonstrations. The
cloned datasets augment these trajectories with a behavior cloned policy to get a 50-50 mixture.
These demonstrations can be improved upon by acting more efficiently, but are much better than
random behavior, so the optimal policy and values should be close to those of the behavior data.

5.1 Motivation for Actor and Critic Regularization With Pre-Training

In such data-limited settings however, off-policy algorithms often suffer from policy collapse as
discussed in Section 3.1, since the actor or critic erroneously extrapolate out-of-distribution (OOD)
of the offline data. Indeed, when we applied our pre-training approach from Section 4 to TD3+BC
and EDAC on the Adroit environments, we found that the human-level pre-training performance
often rapidly collapsed after pre-training. As we saw in Section 4.2 and Appendix D, consistency of
both actor and critic are crucial for performance improvement. However, most offline RL methods
only apply regularization to only one of either the actor or the critic (as also noted by Tarasov et al.
(2023)). Motivated by this insight, we introduce two new algorithms that incorporate regularization
on both the actor and the critic to enable smooth performance improvement after pre-training in data-
limited domains. First, we introduce TD3+BC+CQL, which combines the existing behavior cloning
on the actor, with additional CQL regularization on the critic, to penalise large OOD Q-values.
Second, we introduce EDAC+BC, which combines the existing uncertainty-based regularization on
the critic, with additional behavior cloning on the actor, to penalise OOD actions.
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5.2 Implementation Details

For all baselines we use their benchmarked CORL implementations (Tarasov et al., 2022) and previ-
ously published hyperparameters where possible. Crucially, for the TD3+BC and EDAC baselines,
we use the same regularization as TD3+BC+CQL and EDAC+BC for the existing regularization
components. We train all algorithms for 300k updates (corresponding to up to 4 hours training time
on our RTX2080 GPUs). For our novel algorithms, we pre-train for 200k steps, to provide ample
time for supervised convergence. To fairly measure performance we then average online performance
evaluated every 10000 offline updates between 200k and 300k updates, over 4 independent seeds.
Full details of our hyperparameters and procedure are provided in Appendicies G and H.

5.3 Results and Analysis

Env-Dataset BC CQL TD3+BC EDAC
Pre-Trained

TD3+BC+CQL
(Ours)

Pre-Trained
EDAC+BC

(Ours)
pen-human 68.3 ± 12.7 51.1 ± 3.8 64.0 ± 2.1 9.2 ± 1.6 74.1 ± 15.1 71.7 ± 15.5
door-human 0.6 ± 0.7 6.6 ± 6.4 0.1 ± 0.1 −0.2 ± 0.1 0.6 ± 0.6 13.2 ± 3.8

hammer-human 9.6 ± 4.4 6.7 ± 1.4 5.6 ± 2.5 0.4 ± 0.3 10.6 ± 6.1 15.8 ± 5.3
relocate-human 2.2 ± 0.6 0.6 ± 0.2 0.4 ± 0.1 0.5 ± 0.1 1.9 ± 0.5 3.6 ± 0.5

pen-cloned 53.2 ± 12.3 50.3 ± 3.9 21.7 ± 4.9 13.6 ± 12.5 60.5 ± 13.0 52.6 ± 18.3
door-cloned 0.3 ± 0.5 6.6 ± 3.6 0.1 ± 0.5 −0.1 ± 0.0 0.0 ± 0.3 0.2 ± 0.5

hammer-cloned 3.6 ± 1.4 4.0 ± 1.5 2.8 ± 2.0 0.7 ± 0.1 1.4 ± 0.6 8.3 ± 6.4
relocate-cloned 0.1 ± 0.0 0.2 ± 0.1 −0.1 ± 0.1 0.2 ± 0.1 0.1 ± 0.0 0.1 ± 0.1

Table 2: Normalized average returns (± standard deviation) on Adroit, by averaging performance
between 200k and 300k updates over 4 independent seeds. Our combined algorithms ensure that both
the actor and critic are regularized to stay close to the behavior policy after pre-training, often giving
greater performance than the component algorithms when learning from limited demonstrations.

We find that behavior cloning (BC) provides a strong baseline, notably greatly outperforming pre-
viously quoted BC performances on these environments due to our addition of LayerNorm. We see
that CQL and EDAC (with LayerNorm) perform reasonably with this evaluation approach using the
same hyperparameters as specified in the original papers (Kumar et al., 2020; An et al., 2021), al-
though may benefit from a greater training budget. The original TD3+BC paper did not consider the
Adroit environments, but we see comparable performances with relatively strong behavior cloning
regularization (tuned with α = 1 for the pen environments and α = 0.1 for other environments).
However, our additions of CQL regularization to TD3+BC and BC regularization to
EDAC both generally lead to improved performance in these environments. In fact, we
find that our new hybrid algorithms perform similarly using this evaluation procedure even without
pre-training, due to their strong inherent regularization, as shown and discussed further in Appendix
I. Performance plots in these environments for the human datasets are provided in Appendix J.

6 Conclusion

We have demonstrated that pre-training policies and value functions to first be consistent with the
provided offline dataset can improve the efficiency and stability of subsequent off-policy reinforcement
learning. In particular, this consistency can reduce subsequent inefficiency and instability associated
with bootstrapped temporal difference learning, and can more than halve the number of updates (and
therefore computation time) required for state-of-the-art offline algorithms to converge on standard
environments. Building on our insight into the importance of policy and value consistency, we
demonstrated that combining regularization on both components can mitigate unexpected policy
performance collapse when learning from limited human demonstrations. We hope our research
inspires further work towards bridging the gap between classic and deep algorithms to improve the
efficiency, stability and safety of offline reinforcement learning as scale continues to increase.
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A Additional Related Work on Use of Monte-Carlo Values and
Pre-Training in Reinforcement Learning

Recent work (Fujimoto et al., 2022; Patterson et al., 2022; Chen & Jiang, 2019) has demonstrated
that the Bellman error can be a poor proxy for the real value error, particularly when used for
incomplete, off-policy datasets as in the offline setting, causing significant issues with utilising the
Bellman error as the objective for training value functions offline. Monte-Carlo (MC) return esti-
mates have previously been used successfully in online reinforcement learning to improve the sample
efficiency of online exploration (Bellemare et al., 2016; He et al., 2016; Ostrovski et al., 2017; Oh
et al., 2018; Tang, 2021; Wilcox et al., 2022), but these approaches do not consider the use of MC
returns in offline RL. More recently Chebotar et al. (2023) (Q-transformer) and Geng et al. (2024)
consider incorporating MC values into offline RL with similar motivation to our work, but do not
consider doing so as a separate pre-training stage, which could therefore affect final convergence.

In the context of offline RL, Brandfonbrener et al. (2021) similarly recognise the effectiveness of
learning the behaviour policy and value function before improvement, but do not consider the use of
supervised learning to improve efficiency, and only take one step of TD improvement to prevent out-
of-distribution extrapolation of this value function, rather than the more general and controllable
combination of actor and critic regularization we propose. Pre-training policies with imitation
learning for offline RL was recently investigated by Orsini et al. (2021), but they found that the gain
from pre-training is generally insignificant due to policy updates from randomly initialised critic
networks causing the policy to rapidly deteriorate (as we find in Section 4), motivating our work on
pre-training the critic. Other work has considered pre-training off-policy algorithms using expert
demonstrations (Goecks et al., 2020; Zhang & Ma, 2018), but only consider the online setting and
do not consider efficiency. Our work instead provides an analysis of the benefits of pre-training with
a supervised value-error objective, and demonstrates that this subsequently leads to more efficient
and stable offline reinforcement learning.

B Rational for Separation of Actor and Critic Pre-training for Entropy
regularized Reinforcement Learning

In section 3.3 and algorithm 2 of the main text, we propose separating the pre-training of the
policy and value network into two separate phases for entropy-regularized reinforcement learning
algorithms. By first pre-training the policy with soft behaviour cloning, an approximate behaviour
policy can be learned which then enables approximate behaviour entropy bonuses to be included
in the subsequent pre-training of the critic. However, an alternative approach could be to pre-
train the policy and critic in parallel, as in the pure return maximisation framework. In theory this
would require updating the returns-to-go for each policy update to incorporate the changing entropy
bonuses as the variance of the policy is updated. Since this requires a complete forward pass of the
policy for all subsequent states in the trajectories of the states sampled for an update, this makes
the pre-training infeasibly expensive.

Another potential approach is to only train the mean of the standard Gaussian policy to match the
behaviour policy, and keep the variance constant such that all entropy bonuses could be caluclated
an intialisation and would be unaffected by policy pre-training. However, we note that the standard
tanh squashing applied to the policy to keep the sampled action within the environment action
bounds leads to a changing entropy of the resulting policy, even with the Gaussian variance kept
constant.

A final approach we considered was to compute the soft returns-to-go based on the initialisation
policy, and then only pre-train the values (no behaviour cloning). While this approach was successful
and led to training efficiency gains, the rapid updating of the actor at the beginning of training
(and particularly the rapidly changing policy entropy) quickly leads to inconsistent values, so we
found that the investment in pre-training the policy with soft behaviour cloning first was worth the
computational time in most cases.
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C Investigation Into Affect of LayerNorm

Figure 3: Investigation into the affect of adding LayerNorm to both the actor and critic networks
for TD3+BC on Hopper and HalfCheetah-medium. All lines show mean and standard deviation in
normalised return at each timestep over 3 seeds.

We investigate the effect of the addition of LayerNorm (Ba et al., 2016) to both the actor and critic
networks for TD3+BC on the Hopper-medium and HalfCheetah-medium datasets. The standard
author implementation of TD3+BC (along with that of SAC-N, EDAC and most other off-policy
reinforcement learning algorithms (Tarasov et al., 2022)) does not include any form of representa-
tional normalisation, and is shown in green. We consider the addition of LayerNorm after every
linear layer in the network (before activation) except the final linear layer. We find that adding
LayerNorms to the critic network leads to significant improvement in training efficiency and stabil-
ity. This independently verifies the findings of Ball et al. (2023), who hypothesise that this occurs
because the normalisation prevents severe value extrapolation for out-of-distribution actions, leading
to overestimation error. Surprisingly, we find that the addition of LayerNorm to the actor (without
addition to the critic) leads to worse efficiency and stability than the default (no LayerNorm) for
the HalfCheetah environment. However, the addition of LayerNorm to both the actor and the critic
leads to greater training efficiency and stability than the default or applying either normalisation
alone, for both environments.

We find that these insights generally hold across investigated environments and datasets. However,
we notice this this addition comes at the cost of a few percent in final performance for HalfCheetah.
Since this is the only environment for which this was found to occur and we still see significant
improvements in efficiency and stability, we apply LayerNorm to both the actor and the critic for all
experiments in this paper (except where explicitly stated otherwise) towards our goal of improving
training efficiency. We also expect the addition of LayerNorm to be universally introduced to off-
policy reinforcement learning algorithms going forwards.
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D Ablation of Critic Pre-Training

Figure 4: Ablation of critic pre-training (imitation only pre-training shown in red). This demon-
strates the benefit of our proposed critic pre-training. Both implementations utilise LayerNorm. All
lines show mean and standard deviation in normalised return at each timestep over 3 seeds.

We see that when pre-training the actor with behaviour cloning, the initial performance matches our
proposed actor and critic pre-training, but quickly declines after pre-training due to the randomly
initialised critic, matching the findings of Orsini et al. (2021). Therefore we see that the improved
efficiency and stability from pre-training arises due to our combined actor and critic pre-training.
This demonstrates that having a consistent actor and critic is essential for performance improvement.

Surprisingly, we also notice that in many cases the final performance is also more stable, even
hundreds of thousands of updates after pre-training. As analyzed in Fujimoto et al. (2022) and
Chen & Jiang (2019), for finite data regimes such as the offline setting, the Bellman equation can
be satisfied by infinitely many suboptimal solutions. Additionally, Q-values trained by minimising
the Bellman error are often empirically found be to be inaccurate (Schulman et al., 2018). We
hypothesise that this additional stability could be occurring because the initial pre-training using the
value error reduces the subset of possible solutions to those with lower value error when subsequently
minimising the Bellman error on the finite offline dataset. However, since this benefit is auxiliary to
our central focus of improving efficiency, we leave investigation of this effect to further work.
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E Investigation into Empirical Bias Variance Tradeoff

Figure 5: Investigation into the empirical bias-variance tradeoff by varying λ defined in equation 3
for TD3+BC on Hopper and HalfCheetah medium. All lines show mean and standard deviation in
normalised return at each timestep over 3 seeds.

We investigate the bias-variance tradeoff described in section 3.2 in practice by empirically varying
λ for TD3+BC on the Hopper and HalfCheetah medium datasets. We find that while all values of
λ ∈ [0, 1] provide efficiency benefits over no pre-training, the benefit is more significant for λ = 0
(corresponding to the originally proposed value-error pre-training), likely because even for λ = 0.1
the temporal difference component to the loss can have significant impact on the training dynamics,
and the pre-training duration is not long enough for this bootstrapping loss to reach consistency.
However, including some temporal difference component (λ > 0) can help to smooth the transition
with off-policy reinforcement learning as we see for HalfCheetah, while the inclusion of some Monte-
Carlo component helps to improve the training efficiency.

We also see that stability on convergence for the Hopper environment is greater for smaller λ and
particularly apparent for λ = 0, supporting our hypothesis in Section 4 and Appendix D that this
additional stability follows from the use of the value error (rather than the temporal difference error)
in pre-training.
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F MuJoCo Medium-Replay and Full-Replay Dataset Experiments

We apply our pre-training approach proposed in Section 3 with an identical experimental implemen-
tation to that described in Section 4.1 to the medium-replay and full-replay datasets, shown below
in Figures 6 and 7 respectively.

F.1 Medium-replay

The medium-replay dataset consists of 1M transitions from the replay buffer of an agent trained
from random to medium performance. The influence of our pre-training approach is shown below.

Figure 6: Application of supervised pre-training to the medium-replay MuJoCo datasets. We gener-
ally see training efficiency gains similar to those observed in Figure 2. Plots show mean and standard
deviation at each timestep for 3 independent runs.

We generally see similar efficiency and stability gains to those observed for the medium datasets in
Figure 2. However, we see there are no efficiency gains to be made on the HalfCheetah environments
given the baselines with our addition of LayerNorm converge so quickly. We also notice that the
performance of Walker2d for EDAC is much cleaner, likely due to greater diversity of data helping
to stabilise performance.

18



Reinforcement Learning Conference (August 2024)

F.2 Full-replay

The full-replay dataset consists of 1M transitions from the replay buffer of an agent trained from
random to expert performance. The influence of our pre-training approach is shown below.

Figure 7: Application of supervised pre-training to the full-replay MuJoCo datasets. We generally
see training efficiency gains similar to those observed in Figure 2. Plots show mean and standard
deviation at each timestep for 3 independent runs.

Yet again we see similar efficiency and stability gains to those observed for the medium datasets
in Figure 2 (with the exception of the HalfCheetah environments). In some cases, the efficiency
gains may be further improved by optimisation of the pre-training duration and temporal difference
component λ from those that were originally selected for the medium datasets.
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G Key Hyperparameters for Adroit Experiments

The Adroit experiments were performed and evaluated as described in Section 5 of the main paper,
with more detail provided below in Appendix H. Key hyperparameters for each algorithm are pro-
vided in Table 3 below. Full hyperparameter configurations (including those not provided below) are
available in the config files of the provided CORL codebase (Tarasov et al., 2022). Where possible,
hyperparameters were chosen to match previously published values for the Adroit environments,
and otherwise their default implementation values. Crucially, where hyperparameters are shared
between algorithms (such as between TD3+BC and TD3+BC+CQL) they were chosen to be equal,
to investigate whether additional regularization on the critic/actor can improve over the exisiting
tuned regularization on the actor/critic alone.

To incorporate our additional regularization losses which may be of different scales to the existing
losses, we utilise the normalisation strategy described in TD3+BC (Fujimoto & Gu, 2021). Namely
for primary loss α and additional auxiliary loss β which may be of a different scale, we combine
them as follows to more evenly balance the losses throughout training:

L = α/|α|+ c β/|β| (7)

where | · | denotes the magnitude of the gradient-detached loss and c is the regularization coefficient
referred to as CQL/BC-regularizer provided in Table 3.

Finally, we note that for the behaviour cloning baseline and for the behaviour cloning regularization
in both TD3+BC(+CQL) and EDAC+BC we use ‘hard’ behaviour cloning (using a mean-squared
error objective). In the case of the BC baseline and EDAC+BC it would be possible to use ‘soft’
behaviour cloning as in Equation 6, but we found in both cases ‘hard’ behaviour cloning (using the
sampled action from the Gaussian policy for EDAC) performed much better. However we still use
‘soft’ behaviour cloning for pre-training EDAC+BC to maintain the policy entropy in pre-training.

Table 3: Adroit Experiments Key Hyperparameters

ALGORITHM TASK PARAMETER VALUE

BC All BC Objective MSE
CQL All n-actions 10
CQL All Temperature 1.0

TD3+BC(+CQL) Pen α 1.0
TD3+BC(+CQL) Door/Hammer/Relocate α 0.1
TD3+BC+CQL Pen CQL-regularizer 1.0
TD3+BC+CQL Door/Hammer/Relocate CQL-regularizer 10.0
TD3+BC+CQL All n-actions 10
TD3+BC+CQL All Temperature 1.0
TD3+BC+CQL All Pre-training λ 0

EDAC(+BC) Pen N (num critics) 20
EDAC(+BC) Pen (Human) η 1000
EDAC(+BC) Pen (Cloned) η 10
EDAC(+BC) Door/Hammer/Relocate N (num critics) 50
EDAC(+BC) Door/Hammer/Relocate η 200
EDAC+BC All BC Objective MSE
EDAC+BC All BC-regularizer 1.0
EDAC+BC All Pre-training λ 0
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H Evaluation Procedure for Adroit Experiements

Evaluation for the Adroit experiments is carried out as described in Section 5. In particular, we train
all algorithms using the standard hyperparameters provided above for 300k steps, and evaluate their
performance by evaluating the agent performance every 10k steps between 200k and 300k steps.
For the algorithms including pre-training, we pre-train for 200k steps to allow more than sufficient
convergence of the pre-training stage (using λ = 0). There are two motivations for this evaluation
procedure. Firstly, we would like to measure the performance of the algorithms after a relatively
short training time (i.e. reduced number of training steps) to provide a quantitative measure of the
performance efficiency. Secondly, since the performance of the offline RL algorithms considered on
this benchmark (and in general) are very unstable, online performance varies significantly between
random and human performance during training. Therefore, to reduce the variance of the results
and to incorporate performance stability, we do not take a single (or best) checkpoint, but rather
average the performance of checkpoints taken every 10k steps between 200k and 300k training steps,
each evaluated online for 10 episodes. This is more representative of real world performance off
offline RL algorithms where the online performance may not be possible to evaluate during training.

One additional consideration for evaluation resulted from the fact that we noticed that, aside from
the pen environment, the human demonstrations in the human datasets were much longer than the
truncation limit of the online truncation limit of the environments. The truncation limit for all
environments (for the v1 environments other than pen) is set to 200 timesteps, while the maximum
demonstration lengths are 300, 624 and 527 timesteps for the Door, Hammer and Relocate envi-
ronments respectively. This partially explains the poor performance of previous algorithms on the
non-pen environments in this benchmark (An et al., 2021), since the environment does not allow suf-
ficient time to receive reward for successfully imitating the demonstrated behaviour, such as opening
the door or hammering the nail, before truncating the epsiode! Therefore we adjust the truncation
limit in these environments to match the maximum demonstration lengths. To compute the standard
human normalized score (defined as (agent_score−random_score)/(human_score−random_score),
we maintain the same maximal human scores as provided in the d4rl benchmark, but adjust the
minimal random scores by running the independent uniform random policy in the environments for
the new truncation time limits. This gives rise to the new environment evaluation variables provided
below in Table 4. Crucially, despite this improved evaluation procedure, we evaluate all algorithms
considered using this procedure in an identical manner, to provide a fair comparison of algorithm
performance that takes into account both efficiency and stability.

Table 4: Adroit Environment Evaluation Parameters

ENV
NEW

TIMESTEP
LIMIT

NEW MIN
(RANDOM)

SCORES

MAX
(HUMAN)
SCORES

pen 100 −162.09 3076.83
door 300 −84.52 2880.57

hammer 624 −856.83 12794.13
relocate 527 −37.95 4233.88
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I Pre-Training Ablation on Adroit Environments

We ablate the pre-training stage of our new hybrid algorithms, TD3+BC+CQL and EDAC+BC,
on the Adroit environment below in Table 5.

Table 5: Pre-training Ablation for Our Hybrid Algorithms on Adroit Environments.

TD3-BC-CQL Pre-trained
TD3-BC-CQL EDAC-BC Pre-trained

EDAC-BC

pen-human 79.7± 10.1 74.1± 15.1 83.8± 14.8 71.7± 15.5
door-human 0.6± 0.3 0.6± 0.6 0.9± 1.0 13.2± 3.8
hammer-human 13.2± 9.7 10.6± 6.1 9.3± 3.8 15.8± 5.3
relocate-human 2.9± 1.4 1.9± 0.5 2.1± 0.7 3.6± 0.5
pen-cloned 63.7± 12.5 60.5± 13.0 56.3± 21.3 52.6± 18.3
door-cloned 0.1± 0.4 0.0± 0.3 0.8± 0.7 0.2± 0.5
hammer-cloned 2.2± 0.7 1.4± 0.6 4.9± 2.6 8.3± 6.4
relocate-cloned 0.0± 0.1 0.1± 0.0 0.0± 0.0 0.1± 0.1

We see that both versions of each algorithm (with and without pre-training) perform similarly,
although there appears to be a slight benefit from pre-training for EDAC+BC in some environments.
This is likely partially just because there is little efficiency gain to be made from pre-training in this
data-limited setting, and partly because the combined regularization is sufficient to keep the actor
and critic consistent with each other and with the data distribution. Also both of the additional
regularization components (behaviour cloning and CQL-style regularization) do not rely on temporal
difference bootstrapping and therefore have similar efficiency to supervised learning and reduce the
benefit of pre-training. However, a shorter pre-training period may demonstrate greater benefits from
pre-training (since 200k steps is really more than required, providing additional time for non-pre-
trained versions to learn), along with increased dataset size. Importantly, these hybrid algorithms,
motivated by our pre-training approach, still demonstrate promising improvements in performance
relative to the component algorithms in this data-limited setting, as demonstrated in Table 2.

We also note that even with our substantial efforts to make our evaluation procuedure as ‘fair’ as
possible between algorithms (as described in Appendicies G and H) the variances (and therefore
confidence intervals) of these Adroit results are still non-negligible due to the nature of the limited
human data, the stochastic starting states of the environment, the high variance algorithms used,
and our limited computation resources. However, our aim is not to show that any one algorithm
is ‘best’, as this is dependent on a wide range of factors and is often entirely infeasible in general
(Patterson et al., 2023). Indeed, the performance of these algorithms is generally comparable (as
intuitively might be expected given the same limited behaviour data), and significantly improving on
the behaviour policy is challenging. Rather, our results on this benchmark aim to demonstrate the
idea that if the performance of an algorithm collapses after pre-training (or more generally, imitation
learning gives rise to non-negligible performance but off-policy RL does not), this can be mitigated
by introducing additional regularization towards the behaviour policy, and it is often more effective
to regularize both the actor and the critic rather than just one of these components, as in Table 2.
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J Performance Plots for Adroit Experiments

Figure 8: Training plots for Adroit environments using the human datasets. As described in Sec-
tion 5, we introduce additional combined regularization, giving rise to novel hybrid algorithms
TD3+BC+CQL and EDAC+BC, to prevent performance collapse after pre-training. We find that
combining actor and critic regularization leads to better performance than equivalent actor or critic
regularization alone (regularization hyperparameters provided in Table 3). However, we see that in
many of these data-limited environments, subsequent off-policy reinforcement learning is not able to
improve upon the initial pre-training performance corresponding to imitation learning (with Layer-
Norm). Plots show mean and standard deviation at each timestep for 4 independent runs.
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K Outlook and Discussion

For academics and RL practitioners with a modest computational budget, the application of the
proposed pre-training approach could significantly speed up research and development time, enabling
more ideas to be investigated (Togelius & Yannakakis, 2023). For larger computational budgets and
datasets, the proposed pre-training approach could save many thousands of GPU hours spent on
un-initialised bootstrapping with associated cost and emissions, which is becoming of increasing
importance for training large models (Patterson et al., 2021; Wu et al., 2022). Given that offline
reinforcement learning currently appears to be a promising avenue to scaling reinforcement learning
and achieving associated emergent properties witnessed in related domains (Kumar et al., 2022a;
Reed et al., 2022; Agarwal et al., 2020), we anticipate the scale of offline reinforcement learning to
only increase. Additionally, for human datasets where the available offline data is generally high
quality, our combined regularization approaches, TD3+BC+CQL and EDAC+BC, may additionally
help to improve the stability of offline RL and therefore lead to safer online deployment of policies
learned entirely offline.

L Broader Impact Statement

Our work considers making offline reinforcement learning more computationally efficient and stable.
We hope that attempting to reduce the phenomenon of policy collapse and improving the stability of
offline reinforcement learning may lead to safer online deployment of policies learned entirely offline.
Additionally, this could save significant cost and emissions for training large offline reinforcement
models, which have recently been increasing in scale. The authors are not aware of any additional
ethical concerns arising from our contributions that are not present in existing methods.
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