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Abstract

Event extraction is a critical task that encom-
passes several interdependent sub-tasks. The
complex interplay among these sub-tasks ren-
ders the overall task particularly challenging,
particularly in low-resource scenarios where
data availability is limited. However, the inher-
ent logical coherence among these sub-tasks
presents a promising avenue for addressing
these challenges. This logical structure is par-
ticularly advantageous in low-resource settings,
as it facilitates a deeper understanding of the
tasks by the model and reduces dependence on
available data. Building on this observation,
we explore the logical structure of event ex-
traction with a focus on low-resource scenarios.
Specifically, we propose a three-step Chain-of-
Thought pattern to guide the model through
the logical reasoning process. Additionally, we
design a step-wise navigator that dynamically
provides the model with relevant knowledge.
Empirical results demonstrate the robustness of
our approach in low-resource event extraction.

1 Introduction

Event extraction (EE) is an important but challeng-
ing task in information extraction. Event extraction
is typically decomposed into multiple interdepen-
dent sub-tasks, which involve trigger identification,
event type classification, argument identification,
and role classification.

Traditional methods (Lin et al., 2018; Wadden
et al., 2019; Yang et al., 2019; Wang et al., 2019;
Ma et al., 2020; Zhang et al., 2020; Liu et al.,
2020; Li et al., 2020) rely heavily on extensively
annotated datasets for training, which are often
unavailable or costly to obtain in real-world ap-
plications. While sampling from large language
models has been proposed as a solution (Wang
et al., 2023a; Ma et al., 2024), this approach can
be expensive and unstable. Thus developing ef-
fective low-resource event extraction techniques is
imperative in this area.
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Figure 1: An illustration of our dynamic chain of
thought method for event extraction.

Recent studies have explored sequence-to-
sequence methods for low-resource event extrac-
tion. In contrast to pipeline methods (Lin et al.,
2018; Wadden et al., 2019; Yang et al., 2019), these
methods are typically end-to-end, some relying on
structured language (Lu et al., 2022, 2021) and
others using natural language prompts (Hsu et al.,
2022; Ma et al., 2022; Zhao et al., 2023). How-
ever, they overlook the logical structure inherent
in the sub-tasks of event extraction, which could
potentially enhance the extraction process.

Intuitively, we propose that Chain-of-Thought
(CoT) reasoning (Wei et al., 2022; Fei et al., 2023;
Trivedi et al., 2023) can significantly enhance low-
resource event extraction. From the task perspec-
tive, event extraction follows a clear logical struc-
ture: recognizing a coarse-grained event type nat-
urally leads to the detection of fine-grained event



types. Once the event type is determined, identify-
ing the corresponding roles becomes easier. This
logical reasoning simplifies the extraction process
by narrowing the search space, reducing irrelevant
choices, and focusing on the most likely outcomes.
From the data perspective, the class imbalance
problem is particularly significant in low-resource
tasks, with smaller event categories often being
overlooked due to insufficient data. The hierarchi-
cal classification approach—first classifying into
coarse-grained event types, then into fine-grained
event types—can effectively mitigate the class im-
balance problem. Without hierarchical classifica-
tion, the model tends to be concentrated on a few
dominant classes, neglecting the smaller ones.

Based on our analysis, we propose a dynamic
Chain-of-Thought framework enhanced by a step-
wise navigator to address these challenges. As
shown in Figure 1, the framework follows the in-
herent logical structure of the sub-tasks. We first
design a three-step reasoning prompt for inferring
the coarse-grained event type, fine-grained event
type, and roles in a step-by-step manner. Secondly,
we propose a step-wise navigator to attach special-
ized guidance to each step for navigating the most
possible reasoning path to improve the correctness
of each reasoning step. Specifically, the step-wise
navigator extracts key components from the output
of the previous step and provides corresponding
guidance to guide the next reasoning path. The
main idea of this framework is to effectively utilize
the limited data by leveraging the model’s reason-
ing ability, thereby enhancing performance even in
low-resource scenarios.

Experimental results show that our model out-
performs competitive models in low-resource sce-
narios. Deep analysis indicates that the proposed
framework is capable of eliciting the inherent logi-
cal structure of events, leveraging reasoning capa-
bilities to improve performance even with limited
data.

Our contributions can be summarized as follows:

o We investigate the inherent logic of event ex-
traction tasks to enhance the model’s reason-
ing capabilities in low-resource scenarios and
design a dynamic chain of thought framework.

e We design a specific step-wise navigator to
guide dynamic chain of thought prompting,
providing the model accurate guidance in low-
resource scenarios.

e Comprehensive empirical studies show the
effectiveness of the proposed method in low-
resource event extraction.

2 Related Works

Event Extraction has been tackled through several
mainstream approaches. Traditionally, researchers
have relied on classification-based sequence label-
ing models within pipeline frameworks (Lin et al.,
2018; Wadden et al., 2019; Yang et al., 2019; Wang
et al., 2019; Ma et al., 2020; Zhang et al., 2020).
However, pipeline models often suffer from error
propagation. To address this, several studies (Yang
and Mitchell, 2016; Nguyen et al., 2016; Lin et al.,
2020) have proposed integrating global features for
joint learning of both event triggers and arguments.

In recent years, researchers have turned their at-
tention to low-resource event extraction, proposing
generation-based models within end-to-end frame-
works (Paolini et al., 2021; Li et al., 2021; Lu et al.,
2021; Liu et al., 2022a; Du et al., 2022; Wang
et al., 2023b). For example, Text2Event(Lu et al.,
2021) introduces a sequence-to-structure genera-
tion paradigm for event extraction, while UIE(Lu
et al., 2022) employs a text-to-structure approach
with a Structural Extraction Language (SEL) to
unify various information extraction tasks. How-
ever, these approaches may face limitations due
to the mismatch between the generated structural
output and the training objectives of pre-trained
models such as T5 and BART.

Therefore, another line of work focuses on nat-
ural language prompts (Liu et al., 2022b; Hsu
et al., 2022; Zhao et al., 2023). For instance, DE-
GREE(Hsu et al., 2022) frames event extraction
as a conditional generation task, employing label-
guided prompts to convert events into template-
based sentences. However, manually designing
templates is time-consuming. DemoSG(Zhao et al.,
2023) introduces a demonstration-based event ex-
traction paradigm, using annotated data and label
semantics to guide model generation.

Building on these advances, our work takes a
more comprehensive approach by considering both
the task structure and data characteristics. Based
on the inherent logical structure of event extrac-
tion, we propose chain-of-thought prompting with
multi-step reasoning. Additionally, we introduce
a step-wise navigator to automatically adjust the
input prompts, minimizing the need for manual
intervention.



3 Method
3.1 Task Definition

The event extraction(EE) task consists of two sub-
tasks: 1) event detection(ED), in which the model
extracts trigger text and predicts the event type; and
2) event argument extraction(EAE), in which the
model extracts arguments and predicts the role of
each argument given event triggers.

Formally, given a set of sentences X = {xl}l)jl,
the event extraction task aims to extract a set of
event records S = {5 }'fi‘l Herein, S} is a natural
language sentence, consisting of 1) a trigger word
Tj; 2) a set of arguments A; = {Ajk}‘kijl' and 3)
a set of roles R; = {R]k}‘kliﬁ' Each trigger T;
corresponds to an event type £;. Each argument
corresponds to an event role, thus |A;| = | R;|.

In this paper, we model event extraction as a
language generation task, in which a natural lan-
guage text x; is given as input and outputs the event
record S;. As illustrated in Figure 2, the model
takes the natural language text as the input and out-
puts an event record, where "destroyed"”, "Conflict-
Attack", "troops”, and "tanks" are denoted as the
event trigger, event sub-type, attacker and target,
respectively.

3.2 Dynamic CoT for Event Extraction

By investigating the inherent logical structure of
the event extraction, we design a dynamic Chain-of-
thought(CoT) framework supported by a step-wise
navigator. In this framework, we employ three-
step prompts for different sub-tasks to obtain the
complete event record in a step-by-step manner.

3.2.1 Chain-of-Thought Design

The event extraction task consists of two sub-
tasks: event detection and event argument extrac-
tion. Upon further analysis, we observe a clear
logical structure in which coarse-grained event
types categorize related fine-grained event types.
Each event type has a defined set of participant
roles. For instance, events such as birth, death,
and marriage belong to the coarse-grained event
type Life, whereas events like attack and demon-
strate fall under the coarse-grained event type Con-
flict. The Conflict-Attack event type includes five
roles: "Attacker”, "Target", "Instrument”, "Time"
and "Place”. This hierarchical structure is illus-
trated in Figure 2(c).

Consequently, the first step in our Chain-of-
Thought(CoT) process aims to identify the trigger

word and classify events into these coarse-grained
event types. In the second step, we further divide
these coarse-grained event types to identify the
fine-grained event types. After determining the
event type, the third step in our CoT process fo-
cuses on role classification, where we identify the
roles present in the event and their corresponding
arguments.

3.2.2 Step-wise Navigator Module

In the section 3.1, we introduce the logical struc-
ture of the event extraction task. We further design
the step-wise navigator to guide the reasoning path
at each step. Due to the hierarchical structure hav-
ing different search paths, the role of the stepwise
navigator is to provide specific guiding information
to the model, thereby narrowing the search space
and selecting the most probable path.

Specifically, we first construct a hierarchical
knowledge base based on the definitions in the
dataset.! In this knowledge base, we define coarse-
grained and fine-grained event types and provide
detailed descriptions for each event type. Addition-
ally, since roles are inherent attributes of events,
we also provide the roles and their definitions for
each event. In the second step, the step-wise navi-
gator module analyzes the previous step’s results
and adjusts the model’s input prompt for the next
step based on the predefined knowledge base. We
show a case in Figure 2(c).

This mechanism ensures that the model consis-
tently moves along the most probable reasoning
path, minimizing the accumulation of errors that
often arise in multi-step processes. This is benefi-
cial for low-resource scenarios.

3.2.3 Dynamic CoT Framework

Based on the CoT design and the step-wise nav-
igator, we develop the dynamic templates. Our
model extracts event structure in three steps, where
each step’s input and output follow a specific tem-
plate. The input template of each step consists of
the sentence x;, a dynamic prompt p; € F; and a
question ¢g; € ;. Herein, we divide the task into
three steps, thus formulating p; =< pll, p?, pg’ >,
q; =< qil, q? , qg’ >. Specifically, the input prompt
p; is dynamic because it not only concatenates
the response from the previous step but also adds
guidance derived from the navigator. The output

"Definition from ACE English Annotation Guidelines for
Events V5.4.3:https://www.ldc.upenn.edu/collaborations/past-
projects/ace/annotation-tasks-and-specifications
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Figure 2: An illustration of the proposed method.

template of each step also follows a particular for-
mat, allowing us to use a deterministic algorithm
to parse the event type from the previous step’s out-
put. Given the event type parsed from the previous
step, the navigator will attach the corresponding
guidance to the input template for the next reason-
ing step, thereby dynamically adjusting our input
template based on the inference results.

The three-step templates we constructed are as
follows:

Step 1 The first step involves extracting event
triggers and classifying them into coarse-grained
event types. The dynamic input template for this
step includes a sentence x;, a prompt about event
extraction p} and question g}. We construct the
following input template: The output template for
this step is: "Event trigger is <tri>. Event type
is <type>". If there is no event, special place-
holders will be generated(i.e. "Event trigger is
[trigger]. Event type is [type]"). If there are mul-
tiple events, different events are separated using
the special placeholder "[SEP]". This step can be
formulated as follows:

ri = LLM (zi,p}, q;) (1)

Where, pl1 and ql-1 denote the prompt and question
in step 1.

Step 2 The second step involves identifying the
event trigger and classifying it into fine-grained

event types. The dynamic input template for this
step includes a sentence z;, a prompt about event
type p7 and question ¢?. The prompt for this
step includes the description of the inferred coarse-
grained event type and the definitions of the corre-
sponding fine-grained event types. For example, as
illustrated in Figure 2, the output from the previous
step is parsed to identify the coarse-grained event
type as Conflict. The navigator indicates that Con-
[lict includes two fine-grained event types: Atfack
and Demonstrate with definitions for each of them.
We construct the following input template:

The output template for this step is: "Event trig-
ger is <tri>. Event subtype is <sub-type>". If
there is no event, special placeholders will be gen-
erated(i.e. "Event trigger is [trigger]. Event sub-
type is [event-type]"). This step can be formulated
as follows:

Step 3 The third step aims to extract the argu-
ments and classify them into event roles. The
dynamic input template for this step includes a
sentence x;, a prompt about event roles p} and
question ¢3. The prompt for this step includes the
inherent roles of the event type and their definitions.
We construct the following input template:

The output template for this step is: "Event trig-
ger is <tri>. Event subtype is <sub-type>. <Role>
is <Arg>". When there is no valid role for the



queried event type, the special placeholder "[SEP]"
is generated(i.e. "Event trigger is [trigger]. Event
subtype is [event-type]. [Role] is [Arg]"). This
step can be formulated as follows:

r$ = LLM (v;,72,p%,¢}) 3)

3.3 Training and Inference
3.3.1 Training

During the training phase, we follow the CoT three-
step strategy. Given a passage, we construct three
parallel data instances. For each step, the input in-
cludes the ground truth response from the previous
step. As illustrated in Figure 2:

e For the first step, given the passage and
prompt, the model is expected to replace
"<tri>" with the gold trigger "destroyed" and
replace "<type>" with the gold event type
"Conflict".

e For the second step, given the passage,
prompt, and the ground truth response from
the first step, the model is expected to replace
"<sub-type>" with the gold subtype "Conflict-
Attack’.

e For the third step, given the passage, prompt,
and the ground truth response from the sec-
ond step, the model is expected to replace
"<role>" with the gold roles "Attacker” and
replace "<arg>" with the gold arguments
"troops".

The goal is to maximize the objective text 1" proba-
bility given the input text X, prompts P and ques-
tions (). Therefore, we optimize the negative log-
likelihood loss function:

1
L=—m > logp(T|X; P;Q;0) (4)
T (X, T)er

where 6 is the model parameters, P is the dynamic
CoT prompts at each step, () is the question at each
step, and (X, T') is a (input,output) pair in training
set 7.

3.3.2 Inference

In the inference phase, we also follow the CoT
three-step strategy, but in a sequential manner. Un-
like the training phase, the input for each step is the
model’s prediction from the previous step, rather
than the ground truth.

Dataset Split # Sentence
ACEO5-EN Train 17,172
Validation 923
Test 832
ACEO5-ENT  Train 19,216
Validation 901
Test 676

Table 1: Distribution of data across different datasets.

Given a passage, the model conducts event ex-
traction through a three-step process. In the first
step, it predicts the event trigger and event type.
In the second step, the model’s response from the
first step is utilized by a step-wise navigator to dy-
namically adjust the input template, guiding the
prediction of the event subtype. In the third step,
the response from the second step is incorporated
into the input template, and the model predicts
the roles and arguments to generate the final event
records.

4 Experiment

This section introduces the dataset and experimen-
tal setup employed to validate our method. Sub-
sequently, we present the experimental results and
analyze the findings.

Dataset As shown in Table 1, we assess our
method using two benchmarks, ACEO5-EN and
ACEO05-ENT, derived from the ACE2005 dataset,
which features 33 event types and 22 entity roles.
Our data splitting and preprocessing procedures
align with those used in prior studies by Wadden
et al. (2019) and Lin et al. (2020). Additionally, for
low-resource settings, we adopt a data sampling
strategy following Hsu et al. (2022), conducting
experiments with various proportions of training
data.”.

Baselines (1) OnelE (Lin et al., 2020): This
state-of-the-art classification model excels in high-
resource settings, utilizing global feature extrac-
tion to optimize event extraction outcomes. (2)
BERT_QA (Du and Cardie, 2021): This classi-
fication model approaches event extraction as a
Question Answering (QA) task, enabling end-to-
end argument extraction. (3) TANL (Paolini et al.,
2021): This generative method leverages trans-
lation between augmented natural languages to

"Detailed statistics presented in Table 5



Event Detection F1-Score (%) 1

~ Nt

Method ACEO05-EN ACE05-EN

1% 3% 5% 10% 20% 30% 1% 3% 5% 10% 20% 30%
BERT-QA 20.5 442 50.7 53.1 609 61.8 - - - - - -
OnelE 409 50.1 585 604 653 655 39.0 525 60.6 581 665 664
Text2Event 142 352 46,6 470 556 60.7 157 384 439 463 565 62.0
TANL 341 48.1 534 548 618 61.6 30.3 509 531 557 608 61.7
DEGREE 551 628 63.8 661 0644 644 564 625 61.1 623 625 67.1
DICE 229 445 5311 534 615 64.1 189 4177 487 540 638 66.0
FlanT5-Large 259 440 503 548 60.1 639 29.1 403 48.8 513 582 61.7
Llama2-7b 16.5 20.1 28.6 43.0 48.1 51.0 241 358 251 231 350 314
Ours 36.5 485 548 61.6 62.6 656 37.0 50.8 56.5 63.0 645 66.5
Ours(Type) 455 587 598 644 663 67.2 488 572 609 657 668 67.4

Event Argument Classification F1-Score (%) 1
+

Method ACEO05-EN ACEO05-EN

1% 3% 5% 10% 20% 30% 1% 3% 5% 10% 20% 30%
BERT-QA 47 147 216 255 303 353 - - - - - -
OnelE 94 191 244 265 41.7 433 104 20.6 29.7 355 46.7 48.0
Text2Event 39 122 191 249 323 392 57 165 213 264 352 421
TANL 85 172 247 29.0 340 392 86 223 304 292 346 39.0
DEGREE 13.1  26.1 27.6 421 40.7 440 16.0 264 299 395 413 485
DICE 54 165 21.1 262 343 365 52 195 217 274 365 463
FlanT5-Large 8.6 167 233 243 325 382 87 175 244 259 350 4l1.1
Llama2-7b 2.6 6.7 50 103 213 255 77 141 105 138 156 274
Ours 159 246 288 341 409 448 16.8 28.2 32.6 393 434 482
Ours(Type) 20.6 30.5 333 386 423 47.1 239 341 368 434 482 51.0

Table 2: Trigger classification F1-scores and argument classification F1-scores (%) across datasets with different
training data.“Ours(type)” refer to the method enhanced by the label semantics of coarse-grained event types

following Hsu et al. (2022).

solve structured prediction tasks, including event
extraction. (4) Text2Event (Lu et al., 2021): This
generative approach converts event records into a
structured tree, proposing a sequence-to-structure
model. (5) DEGREE (Hsu et al., 2022): This
generative method manually designs templates for
various event types, using label semantics to guide
the model to capture entity relationships for event
extraction. (6) DICE (Ma et al., 2023): This gen-
erative method designs a Mention Identification
module to improve trigger word recognition and ar-
gument extraction. (7) FlanT5 (Chung et al., 2022):
This generative approach is the base model of our
method, solving event extraction without employ-
ing CoT prompting. (§)LLAMA (Touvron et al.,
2023): This generative method employs Lora Fine-
tuning to specifically tailor large language models
for the event extraction task.

Evaluation Metrics Our criteria align with those
used in previous studies Wadden et al. (2019); Lin
et al. (2020); Hsu et al. (2022). We employ two
main metrics: (1) Trigger F1-score, where a trig-
ger is correctly identified (Tri-1) if its offset corre-

sponds to the label and correctly classified (Tri-C)
if its event type also matches. (2) Argument F1-
score, which considers an argument correctly iden-
tified (Arg-I) if both its offset and event type align
with the label, and correctly classified (Arg-C) if
its role is also accurate.

Implementations We use Flan-T5-large as our
base model. AdamW (Loshchilov and Hutter,
2018) is used as the optimizer, with a learning rate
of 2e — 5. The gradient accumulation steps are set
to 4, and the number of epochs is set to 100 with
an early stopping mechanism. All experiments are
conducted on a single 3090 GPU. The experimental
results are obtained by averaging three runs with
random initialization. "Ours" relies on dynamic
prompts and simple templates to facilitate logical
reasoning, while DEGREE’s templates depend on
label semantics. To ensure a fairer comparison with
DEGREE, we also evaluate our model enhanced
with the label semantics of coarse-grained event
types, referred to as "Ours(type)".



4.1 Main Results

We compare our method with several strong
baselines. These baselines can be roughly sep-
arated into two categories classification meth-
ods(i.e., BERT-QA, OnelE) and generative meth-
ods (Text2Event, TANL, DEGREE, DICE, Flan-
T5, LLAMA). Table 2 shows the results on two
different datasets. Following the consensus of pre-
vious work, we prioritize the Argument classifi-
cation F1-score as the key metric for comparing
model performance.

It can be observed that classification-based meth-
ods, such as OnelE, demonstrate competitive per-
formance in the event detection(ED) task when suf-
ficient training data is available (e.g., 30%). How-
ever, their performance degrades significantly un-
der low-resource conditions (e.g., 1%). Further-
more, these methods exhibit limitations in event
argument extraction(EAE). In contrast, generative
approaches have shown strong capabilities in both
ED and EAE, particularly in low-resource scenar-
ios. Specifically, the state-of-the-art method DE-
GREE enhanced with design prompt outperforms
other baselines, which shows the effectiveness of
the prompt strategy. Notably, Llama2-7b, a large
language model, does not perform well in either
task. This may be due to the complex task defini-
tion involved. In the ED task, our method achieves
competitive results using only 25% of the data com-
pared to DEGREE, significantly reducing compute
resource requirements. Furthermore, in the EAE
task, our method consistently outperforms other
strong baselines, highlighting the effectiveness of
the dynamic chain-of-thought framework in low-
resource scenarios. The results demonstrate that
leveraging the inherent logic of event extraction
sub-tasks allows for more efficient use of limited
data, mitigating the performance degradation typi-
cally caused by data scarcity.

4.2 Ablation Study

We conduct an ablation study to analyze the con-
tributions of different components in our model to
the low-resource event extraction task. Results are
shown in Table 3. Firstly, removing all the Chain-
of-Thought design leads to the largest performance
drop, highlighting its key role in reasoning through
complex event structures. Furthermore, dividing
the ED task into two steps using the CoT strategy
is beneficial. Removing the classification of coarse-
grained event types leads to a moderate decline

Tri./Arg. F1-Score (%) 1

Method

ACEO5-EN  ACEO05-EN+
Ours 61.6/34.1 63.0/39.3
w/o Chain-of-thought 54.8/24.3 51.3/25.9
w/o Event type 56.3/30.9 59.2/35.6
w/o Step-wise navigator ~ 55.6/30.1 57.1/32.8

Table 3: Ablation study for the key components of the
dynamic chain of thought framework with 10% training
data on ACE05-EN and ACE05-EN*.
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Figure 3: Influence of each step in the dynamic chain
of thought design.

in performance. Finally, the Step-wise navigator
improves event extraction by providing adaptive
guidance, with a notable impact. This evidence
highlights that all components are highly beneficial
for low-resource event extraction by guiding the
model through step-by-step reasoning to investi-
gate its inherent logic and effectively mitigate the
lack of insufficient labeled data.

5 Analysis and Discussion

In this section, we provide a detailed analysis and
discussion to highlight the importance of various
factors within the proposed model when applied
to a low-resource scenario, where only 10% of the
training data is available.

5.1 Influence of Dynamic Chain of thought

As shown in Figure 3, the results reveal that the
dynamic chain of thought framework contributes
significantly to performance improvements in low-
resource event extraction(EE). Its effectiveness by
dynamically adjusting the reasoning steps based on
the step-wise navigator module, allowing for more
accurate and adaptive decision-making. The 3-step
Chain-of-thought(CoT) outperforms both 2-step
and 1-step methods across all tasks and datasets.
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Figure 4: Impact of guidance in each step provided by
step-wise navigator.

This indicates that investigating the inherent logi-
cal consistency of EE sub-tasks provides the model
with a deeper and more comprehensive understand-
ing of event triggers and arguments, which leads to
improved performance in low-resource scenarios.

5.2 Effects of Step-wise Navigator

The step-wise navigator is crucial in the dynamic
CoT strategy, as it supplies relevant information to
the model and guides it along the next reasoning
path. To evaluate its impact, we analyze its effect
at various stages of the reasoning process.

As shown in Figure 4, the results across datasets
demonstrate that the step-wise navigator effectively
improves the F1 score in both the second and third
steps. The most significant gains occurred in the
"All-step"”, suggesting that the navigator plays an
essential role in maintaining coherence and enhanc-
ing decision-making throughout the chain of rea-
soning steps. The navigator’s role becomes even
more crucial as the complexity of the reasoning
task increases, where intermediate decisions (Step
2 and Step 3) require more careful alignment and
logical consistency. By guiding the model through
each reasoning step, the navigator helps reduce er-
ror propagation and enhance the model’s capacity
to make accurate predictions in later steps.

F1-Score (%) 1

Method Base Model

Trigger Argument
In-context learning
Few shot(2-shot) GPT40-mini 16.5 54
Vanilla CoT GPT40-mini 14.5 6.2
Dynamic CoT GPT40-mini 16.6 8.7

Supervised fine-tuning with 1% data
Flan-T5 FlanT5-Large
Ours FlanT5-Large

259 8.6
36.5 15.9

Table 4: Results of different methods using GPT40-mini
and Flan-T5-Large.

5.3 Impact of Training Paradigms

Although Chain-of-Thought (CoT) prompting has
demonstrated significant capabilities in reasoning
tasks with a large language model, it also exhibits
substantial limitations in low-resource event extrac-
tion(EE)(Gao et al., 2023; Han et al., 2023). We an-
alyze our method on a large language model(LLM)
using few-shot (2-shot), vanilla CoT (’think step
by step’), and our dynamic CoT strategy. Notably,
vanilla CoT does not show significant improvement
compared to the few-shot method, suggesting that
random reasoning paths in the large model cannot
help with limited resources. Besides, our method
achieves higher performance than both the few-
shot and vanilla CoT methods, indicating the ef-
fectiveness of our CoT design. Compared to direct
inference from the LLM, the fine-tuning method
using a small model achieves higher performance.
This suggests that LLMs still have limitations in
this task, possibly due to the complex definitions
involved in EE sub-tasks. Instead, our method with
only 1% data outperforms all baselines by lever-
aging the dynamic CoT template that effectively
guides the model through event structures and en-
hances reasoning despite limited data.

6 Conclusion

In this study, we present a novel approach for low-
resource event extraction by leveraging the inherent
logic in the event extraction task through a dynamic
Chain-of-Thought reasoning pattern. Additionally,
we propose a step-wise navigator to dynamically
provide relevant knowledge based on the previ-
ous step and minimize distractions from irrelevant
options for focusing on the most likely reasoning
paths. The empirical results validate the effective-
ness of our approach, demonstrating harnessing the
inherent logic within the sub-tasks can significantly
improve performance in low-resource settings.



Limitations

Our method introduces a three-step chain-of-
thought(CoT) template based on the inherent logic
of event extraction sub-tasks, effectively leveraging
limited data to elicit the model’s reasoning ability
to address the challenge of generalizing to complex
event records. However, there are some limita-
tions in our approach. Firstly, since we employ a
pipeline model, there is a risk of error propagation,
where mistakes made in earlier steps can affect
the final results. Additionally, our method relies
on a manually designed CoT template, which may
limit generalization. Although we apply a step-
wise navigator to alleviate this, it still remains a
rule-based design, limiting its flexibility in more di-
verse contexts. Future work could focus on explor-
ing automated approaches for generating diverse
CoT templates to further enhance generalization in
a low-resource scenario. Additionally, Our method
achieves strong performance on the English dataset
ACEOQ5-EN; however, its extension to other English
datasets and multilingual datasets remains limited.
Expanding the applicability of our approach to a
broader range of datasets will be a key focus of our
future research.
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A Dateset Detail

In this study, we use the ACE2005°English
dataset (Doddington et al., 2004). For low-resource
scenarios, we adopt the data partitioning strategy
from the DEGREE (Hsu et al., 2021) experimental
setup. The training data is split by documents, offer-
ing a more realistic approach compared to instance-
based splitting. Table 5 provides the statistics for
both ACEO5-E and ACEO5-E+.

B Prompt Detail

We analyze our prompting strategy on a large lan-
guage model using three approaches: few-shot (2-
shot), vanilla CoT (i.e., ’think step by step’), and
our dynamic CoT strategy. Tables 7, 8, and 9 sep-
arately present the prompts used for each approach.
Since the few-shot and vanilla CoT methods lack
sufficient knowledge of event extraction, we incor-
porate additional knowledge and examples to pro-
vide a more comprehensive understanding of the
EE task. For dynamic CoT, we use the LangChain
framework to conduct multi-round conversations
and apply the GPT model to implement the CoT
prompts we designed.

C Implementation Detail

This section describes the implementation details
of our method. In the main experiment table 2,
we present two results for our method: ‘Ours’ and
‘Ours (type).” The ‘Ours’ approach uses only the
sentence, the prompts, and the questions as input,
while ‘Ours (type)’ refers to a type-enhanced ver-
sion that also incorporates coarse-grained event
types.

To ensure a fairer comparison, we follow a sim-
ilar experimental setup to DEGREE (Hsu et al.,
2022), but our type-enhanced method is more ef-
ficient and resource-saving. Specifically, given a
passage, annotated coarse-grained event types are
treated as positive examples. During training, we
sample m unrelated event types as negative exam-
ples, with m typically set to 3 in our experiments.
During inference, each coarse-grained event type is
extracted separately. Our type-enhanced approach
tests on 8 coarse-grained event types, whereas DE-
GREE tests on 33 fine-grained types, which pro-
vides DEGREE with more semantic information
and increases the pressure for our model. This ex-
plains why our approach initially performs worse

3hitps://catalog.ldc.upenn.edu/LDC2006T06
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Dataset Split Number of Sentences
ACEO5-EN  Train 17,172
Train-30% 5429
Train-20% 3467
Train-10% 1688
Train-5% 649
Train-3% 451
Train-1% 103
Val. 923
Test 832
ACEO5-ENT  Train 19,216
Train-30% 6159
Train-20% 3834
Train-10% 1915
Train-5% 628
Train-3% 434
Train-1% 92
Val. 901
Test 676

Table 5: Data Statics. Our data splitting for low re-
sources aligns with those used in prior studies by (Hsu

et al., 2021).
Model ACEO5-E ACEOS5-E+
Tri-C  Arg-C | Tri-C = Arg-C

DyGIE++ 70.0  50.0 - -
Joint3EE 69.8  52.1 - -
EE_QA 724 533 - -
MQAEE 717 534 - -
TANL 684 47.6 - -
BART-Gen* | 71.1 53.7 - -
OnelE 747 56.8 | 72.5 559
Text2Event | 719  53.8 | 703 534
DEGREE 722 558 | 71.7  56.8
UIE 734 548 | 70.7 526
Ours 725 552 | 71.8 538

Table 6: Performance comparison with 100% data on
ACEO5-E and ACEO5-E+ datasets.

than DEGREE with less than 5% of the data. How-
ever, as more training examples become available,
models can learn more sophisticated features from
the data, allowing our approach to gradually sur-
pass DEGREE once more than 10% of the data is
used. Table 6 shows the results of high-resource
event extraction. We can observe that by using only
25% of the data, our method achieves competitive
results with DEGREE.



2-shot example for GPT40-mini

Knowledge of Event Extraction

An event is something that happens. An Event’s Trigger is the word (in its scope) that most clearly expresses its occurrence. Each event type has a particular
set of roles and arguments.

Set of event types: {Life.Be-Born, Life.Marry, Life.Divorce, Life.Injure, Life.Die, Movement. Transport, Transaction.Transfer-Ownership, Transaction. Transfer-
Money, Business.Start-Org, Business.Merge-Org, Business.Declare-Bankruptcy, Business.End-Org, Conflict.Attack, Conflict. Demonstrate, Contact.Meet,
Contact.Phone-Write, Personnel.Start-Position, Personnel.End-Position, Personnel.Nominate, Personnel.Elect, Justice. Arrest-Jail, Justice.Release-Parole,
Justice.Trial-Hearing, Justice.Charge-Indict, Justice.Sue, Justice.Convict, Justice.Sentence, Justice.Fine, Justice.Execute, Justice.Extradite, Justice.Acquit,
Justice.Pardon, Justice.Appeal }.

Set of Roles: {’Origin’, ’Entity’, *Seller’, "Money’, 'Defendant’, *Destination’, ’Price’, *Person’, *Time’, ’Sentence’, "Recipient’, ’Plaintift”, *Target’,
*Position’, ’Artifact’, *Beneficiary’, *Adjudicator’, *Agent’, *Prosecutor’, *Giver’, *Instrument’, *Vehicle’, *Place’, *Buyer’, *Org’, Crime’, *Attacker’,
*Victim’ }

Example

Example of no event:

Sentence: Martha Stewart is one of those stories that is in the news big time again.

Result: Event trigger is [trigger]. Event type is [event_type].[event_subtype]. [role] is [arg]. [SEP]

Example of one event:

Sentence: Senator Christopher Dodd of Connecticut made the announcement today that he would not be the 10th candidate for the nomination.

Result: Event trigger is nomination. Event subtype is Personnel.Nominate. Person is candidate. [SEP]

Input

Given the sentence: "He claimed Iragi troops had destroyed five tanks.", does any event exist in this sentence? If any event exists, what is the event type and its
trigger word? What'’s the role and argument?

Please only return the event extraction result. Return format: Event trigger is [trigger]. Event type is [event_type].[event_subtype]. [role] is [arg]. If two or
more events exist, use [SEP] to concatenate.

Table 7: 2-shot example for GPT40-mini.

Vanilla chain of thought example for GPT40-mini

Knowledge of Event Extraction

An event is something that happens. An Event’s Trigger is the word (in its scope) that most clearly expresses its occurrence. Each event type has a particular
set of roles and arguments.

Set of event types: {Life.Be-Born, Life.Marry, Life.Divorce, Life.Injure, Life.Die, Movement. Transport, Transaction.Transfer-Ownership, Transaction. Transfer-
Money, Business.Start-Org, Business.Merge-Org, Business.Declare-Bankruptcy, Business.End-Org, Conflict.Attack, Conflict. Demonstrate, Contact.Meet,
Contact.Phone-Write, Personnel.Start-Position, Personnel.End-Position, Personnel.Nominate, Personnel.Elect, Justice. Arrest-Jail, Justice.Release-Parole,
Justice.Trial-Hearing, Justice.Charge-Indict, Justice.Sue, Justice.Convict, Justice.Sentence, Justice.Fine, Justice.Execute, Justice.Extradite, Justice.Acquit,
Justice.Pardon, Justice.Appeal }.

Set of Roles: {’Origin’, "Entity’, *Seller’, "Money’, 'Defendant’, ’Destination’, ’Price’, *Person’, *Time’, ’Sentence’, "Recipient’, ’Plaintiff’, *Target’,
’Position’, *Artifact’, *Beneficiary’, *Adjudicator’, *Agent’, ’Prosecutor’, *Giver’, ’Instrument’, *Vehicle’, "Place’, *Buyer’, *Org’, Crime’, ’Attacker’,
*Victim’ }

Example

Example of no event

Sentence: Martha Stewart is one of those stories that is in the news big time again.

Result: Event trigger is [trigger]. Event type is [event_type].[event_subtype]. [role] is [arg]. [SEP]

Reason: ...

Example of one event

Sentence: Senator Christopher Dodd of Connecticut made the announcement today that he would not be the 10th candidate for the nomination.

Result: Event trigger is nomination. Event subtype is Personnel.Nominate. Person is candidate. [SEP]

Reason: ...

Input

Given the sentence: "He claimed Iraqi troops had destroyed five tanks.", does any event exist in this sentence? If any event exists, what is the event type and its
trigger word? What’s the role and argument?

Let’s think step by step. Please analyze the reason and return the event extraction result. Return format: Event trigger is [trigger]. Event type is
[event_type].[event_subtype]. [role] is [arg]. If two or more events exist, use [SEP] to concatenate.

Table 8: Vanilla chain of thought example for GPT40-mini
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Dynamic chain of thought example for GPT40-mini

Input-1:

Firstly let us extract the trigger and event type. An event is something that happens. An Event’s Trigger is the word (in its scope) that most clearly expresses
its occurrence. Let us first consider the 9 event types, namely: Life, Movement, Transaction, Business, Conflict, Contact, Personnel, Justice. There is also
[event_type], which means the event does not exist.

Given the "He claimed Iraqi troops had destroyed five tanks.", does any event exist in this sentence? If any event exists, what is the event type and its trigger
word?

eturn format like: Event trigger is [trigger]. Event type is [event_type]. If two and more events exist, use [SEP] concat. If no event exists, return the format
prompt.

return format example: Event trigger is [trigger]. Event type is [event_type].

Event trigger is attend. Event type is Contact. [SEP]

Event trigger is attend. Event type is Contact. [SEP] Event trigger is war. Event type is Conflict. [SEP]

Output-1:

Event trigger is destroyed. Event type is Conflict.

Input-2:

Secondly, let us extract the event subtype. Each event type has a particular set of subtypes.

Given the "He claimed Iraqi troops had destroyed five tanks.", does any event exist in this sentence? If any event exists, what is the event type and its trigger
word? Event trigger is claimed. Event type is Conflict. Based on common sense, if any event exists, what’s the event subtype and its trigger word?

Please return format like: Event trigger is [trigger]. Event type is [event_type]. If two and more events exist, use [SEP] concat. If no event exists, return the
format prompt.

return format example: Event trigger is [trigger]. Event type is [event_type].

Event trigger is attend. Event type is Contact. [SEP]

Event trigger is attend. Event type is Contact. [SEP] Event trigger is war. Event type is Conflict. [SEP]

Output-2:

Event trigger is destroyed. Event subtype is Conflict. Attack.

Input-3:

Thirdly, let us extract the role and argument. Each event subtype has a particular set of roles and arguments.

Given the "He claimed Iraqi troops had destroyed five tanks.", does any event exist in this sentence? If any event exists, what is the event type and its trigger
word? Event trigger is claimed. Event subtype is Conflict. Attack.

Based on common sense, if any event exists, what’s the role and argument?

Please return format like: Event trigger is [trigger]. Event subtype is [event_type]. [role] is [arg]. If two and more events exist, use [SEP] concat. If no event
exists, return the format prompt.

return format example: Event trigger is [trigger]. Event subtype is [event_type]. [role] is [arg]. [SEP]

Event trigger is war. Event subtype is Conflict. Attack. Target is building. [SEP]

Event trigger is war. Event subtype is Conflict.Attack. Target is building. Instrument is tanks. [SEP] Event trigger is attend. Event subtype is Move-
ment.Transport. Artifact is Mike. [SEP]

Output-3:

Event trigger is destroyed. Event subtype is Conflict.Attack. Attacker is troops. Target is tanks.

Table 9: Dynamic chain of thought example for GPT40-mini
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