
Dynamic Chain-of-thought for Low-Resource Event Extraction

Anonymous ACL submission

Abstract
Event extraction is a critical task that encom-001
passes several interdependent sub-tasks. The002
complex interplay among these sub-tasks ren-003
ders the overall task particularly challenging,004
particularly in low-resource scenarios where005
data availability is limited. However, the inher-006
ent logical coherence among these sub-tasks007
presents a promising avenue for addressing008
these challenges. This logical structure is par-009
ticularly advantageous in low-resource settings,010
as it facilitates a deeper understanding of the011
tasks by the model and reduces dependence on012
available data. Building on this observation,013
we explore the logical structure of event ex-014
traction with a focus on low-resource scenarios.015
Specifically, we propose a three-step Chain-of-016
Thought pattern to guide the model through017
the logical reasoning process. Additionally, we018
design a step-wise navigator that dynamically019
provides the model with relevant knowledge.020
Empirical results demonstrate the robustness of021
our approach in low-resource event extraction.022

1 Introduction023

Event extraction (EE) is an important but challeng-024

ing task in information extraction. Event extraction025

is typically decomposed into multiple interdepen-026

dent sub-tasks, which involve trigger identification,027

event type classification, argument identification,028

and role classification.029

Traditional methods (Lin et al., 2018; Wadden030

et al., 2019; Yang et al., 2019; Wang et al., 2019;031

Ma et al., 2020; Zhang et al., 2020; Liu et al.,032

2020; Li et al., 2020) rely heavily on extensively033

annotated datasets for training, which are often034

unavailable or costly to obtain in real-world ap-035

plications. While sampling from large language036

models has been proposed as a solution (Wang037

et al., 2023a; Ma et al., 2024), this approach can038

be expensive and unstable. Thus developing ef-039

fective low-resource event extraction techniques is040

imperative in this area.041

Input Sentence
He claimed Iraqi troops had destroyed five tanks.

1-Step

Event trigger is destroyed. Event type 
is Conflict.

Input 

Output

Instruction to extract trigger and coarse-
grained type. 

2-Step

Event trigger is destroyed. Event 
subtype is Conflict-Attack .

Input 

Output

Instruction to extract trigger and fine-
grained type +   

Guidance from Navigator

1-Step output

Conflict has 2 types of subtypes, 
including Attack and Demonstrate.

Step-wise Navigator

Event trigger is destroyed. Event 
subtype is Conflict-Attack. Attacker is 
troops. Target is tanks.

Input 

Output

Instruction to extract role and argument +   

Guidance from Navigator

2-Step output

Attack has 5 types of roles. including Time, 
Attacker, Target, Instrument an Place.

3-Step

Event trigger is destroyed. Event subtype is Conflict-Attack. 
Attacker is troops. Target is tanks.

Output Event Structure

Figure 1: An illustration of our dynamic chain of
thought method for event extraction.

Recent studies have explored sequence-to- 042

sequence methods for low-resource event extrac- 043

tion. In contrast to pipeline methods (Lin et al., 044

2018; Wadden et al., 2019; Yang et al., 2019), these 045

methods are typically end-to-end, some relying on 046

structured language (Lu et al., 2022, 2021) and 047

others using natural language prompts (Hsu et al., 048

2022; Ma et al., 2022; Zhao et al., 2023). How- 049

ever, they overlook the logical structure inherent 050

in the sub-tasks of event extraction, which could 051

potentially enhance the extraction process. 052

Intuitively, we propose that Chain-of-Thought 053

(CoT) reasoning (Wei et al., 2022; Fei et al., 2023; 054

Trivedi et al., 2023) can significantly enhance low- 055

resource event extraction. From the task perspec- 056

tive, event extraction follows a clear logical struc- 057

ture: recognizing a coarse-grained event type nat- 058

urally leads to the detection of fine-grained event 059
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types. Once the event type is determined, identify-060

ing the corresponding roles becomes easier. This061

logical reasoning simplifies the extraction process062

by narrowing the search space, reducing irrelevant063

choices, and focusing on the most likely outcomes.064

From the data perspective, the class imbalance065

problem is particularly significant in low-resource066

tasks, with smaller event categories often being067

overlooked due to insufficient data. The hierarchi-068

cal classification approach—first classifying into069

coarse-grained event types, then into fine-grained070

event types—can effectively mitigate the class im-071

balance problem. Without hierarchical classifica-072

tion, the model tends to be concentrated on a few073

dominant classes, neglecting the smaller ones.074

Based on our analysis, we propose a dynamic075

Chain-of-Thought framework enhanced by a step-076

wise navigator to address these challenges. As077

shown in Figure 1, the framework follows the in-078

herent logical structure of the sub-tasks. We first079

design a three-step reasoning prompt for inferring080

the coarse-grained event type, fine-grained event081

type, and roles in a step-by-step manner. Secondly,082

we propose a step-wise navigator to attach special-083

ized guidance to each step for navigating the most084

possible reasoning path to improve the correctness085

of each reasoning step. Specifically, the step-wise086

navigator extracts key components from the output087

of the previous step and provides corresponding088

guidance to guide the next reasoning path. The089

main idea of this framework is to effectively utilize090

the limited data by leveraging the model’s reason-091

ing ability, thereby enhancing performance even in092

low-resource scenarios.093

Experimental results show that our model out-094

performs competitive models in low-resource sce-095

narios. Deep analysis indicates that the proposed096

framework is capable of eliciting the inherent logi-097

cal structure of events, leveraging reasoning capa-098

bilities to improve performance even with limited099

data.100

Our contributions can be summarized as follows:101

• We investigate the inherent logic of event ex-102

traction tasks to enhance the model’s reason-103

ing capabilities in low-resource scenarios and104

design a dynamic chain of thought framework.105

• We design a specific step-wise navigator to106

guide dynamic chain of thought prompting,107

providing the model accurate guidance in low-108

resource scenarios.109

• Comprehensive empirical studies show the 110

effectiveness of the proposed method in low- 111

resource event extraction. 112

2 Related Works 113

Event Extraction has been tackled through several 114

mainstream approaches. Traditionally, researchers 115

have relied on classification-based sequence label- 116

ing models within pipeline frameworks (Lin et al., 117

2018; Wadden et al., 2019; Yang et al., 2019; Wang 118

et al., 2019; Ma et al., 2020; Zhang et al., 2020). 119

However, pipeline models often suffer from error 120

propagation. To address this, several studies (Yang 121

and Mitchell, 2016; Nguyen et al., 2016; Lin et al., 122

2020) have proposed integrating global features for 123

joint learning of both event triggers and arguments. 124

In recent years, researchers have turned their at- 125

tention to low-resource event extraction, proposing 126

generation-based models within end-to-end frame- 127

works (Paolini et al., 2021; Li et al., 2021; Lu et al., 128

2021; Liu et al., 2022a; Du et al., 2022; Wang 129

et al., 2023b). For example, Text2Event(Lu et al., 130

2021) introduces a sequence-to-structure genera- 131

tion paradigm for event extraction, while UIE(Lu 132

et al., 2022) employs a text-to-structure approach 133

with a Structural Extraction Language (SEL) to 134

unify various information extraction tasks. How- 135

ever, these approaches may face limitations due 136

to the mismatch between the generated structural 137

output and the training objectives of pre-trained 138

models such as T5 and BART. 139

Therefore, another line of work focuses on nat- 140

ural language prompts (Liu et al., 2022b; Hsu 141

et al., 2022; Zhao et al., 2023). For instance, DE- 142

GREE(Hsu et al., 2022) frames event extraction 143

as a conditional generation task, employing label- 144

guided prompts to convert events into template- 145

based sentences. However, manually designing 146

templates is time-consuming. DemoSG(Zhao et al., 147

2023) introduces a demonstration-based event ex- 148

traction paradigm, using annotated data and label 149

semantics to guide model generation. 150

Building on these advances, our work takes a 151

more comprehensive approach by considering both 152

the task structure and data characteristics. Based 153

on the inherent logical structure of event extrac- 154

tion, we propose chain-of-thought prompting with 155

multi-step reasoning. Additionally, we introduce 156

a step-wise navigator to automatically adjust the 157

input prompts, minimizing the need for manual 158

intervention. 159
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3 Method160

3.1 Task Definition161

The event extraction(EE) task consists of two sub-162

tasks: 1) event detection(ED), in which the model163

extracts trigger text and predicts the event type; and164

2) event argument extraction(EAE), in which the165

model extracts arguments and predicts the role of166

each argument given event triggers.167

Formally, given a set of sentences X = {xi}|X|
i=1,168

the event extraction task aims to extract a set of169

event records S = {Sj}|X|
j=1. Herein, Sj is a natural170

language sentence, consisting of 1) a trigger word171

Tj ; 2) a set of arguments Aj = {Ajk}
|Aj |
k=1 and 3)172

a set of roles Rj = {Rjk}
|Rj |
k=1. Each trigger Tj173

corresponds to an event type Ej . Each argument174

corresponds to an event role, thus |Aj | = |Rj |.175

In this paper, we model event extraction as a176

language generation task, in which a natural lan-177

guage text xi is given as input and outputs the event178

record Sj . As illustrated in Figure 2, the model179

takes the natural language text as the input and out-180

puts an event record, where "destroyed", "Conflict-181

Attack", "troops", and "tanks" are denoted as the182

event trigger, event sub-type, attacker and target,183

respectively.184

3.2 Dynamic CoT for Event Extraction185

By investigating the inherent logical structure of186

the event extraction, we design a dynamic Chain-of-187

thought(CoT) framework supported by a step-wise188

navigator. In this framework, we employ three-189

step prompts for different sub-tasks to obtain the190

complete event record in a step-by-step manner.191

3.2.1 Chain-of-Thought Design192

The event extraction task consists of two sub-193

tasks: event detection and event argument extrac-194

tion. Upon further analysis, we observe a clear195

logical structure in which coarse-grained event196

types categorize related fine-grained event types.197

Each event type has a defined set of participant198

roles. For instance, events such as birth, death,199

and marriage belong to the coarse-grained event200

type Life, whereas events like attack and demon-201

strate fall under the coarse-grained event type Con-202

flict. The Conflict-Attack event type includes five203

roles: "Attacker", "Target", "Instrument", "Time"204

and "Place". This hierarchical structure is illus-205

trated in Figure 2(c).206

Consequently, the first step in our Chain-of-207

Thought(CoT) process aims to identify the trigger208

word and classify events into these coarse-grained 209

event types. In the second step, we further divide 210

these coarse-grained event types to identify the 211

fine-grained event types. After determining the 212

event type, the third step in our CoT process fo- 213

cuses on role classification, where we identify the 214

roles present in the event and their corresponding 215

arguments. 216

3.2.2 Step-wise Navigator Module 217

In the section 3.1, we introduce the logical struc- 218

ture of the event extraction task. We further design 219

the step-wise navigator to guide the reasoning path 220

at each step. Due to the hierarchical structure hav- 221

ing different search paths, the role of the stepwise 222

navigator is to provide specific guiding information 223

to the model, thereby narrowing the search space 224

and selecting the most probable path. 225

Specifically, we first construct a hierarchical 226

knowledge base based on the definitions in the 227

dataset.1 In this knowledge base, we define coarse- 228

grained and fine-grained event types and provide 229

detailed descriptions for each event type. Addition- 230

ally, since roles are inherent attributes of events, 231

we also provide the roles and their definitions for 232

each event. In the second step, the step-wise navi- 233

gator module analyzes the previous step’s results 234

and adjusts the model’s input prompt for the next 235

step based on the predefined knowledge base. We 236

show a case in Figure 2(c). 237

This mechanism ensures that the model consis- 238

tently moves along the most probable reasoning 239

path, minimizing the accumulation of errors that 240

often arise in multi-step processes. This is benefi- 241

cial for low-resource scenarios. 242

3.2.3 Dynamic CoT Framework 243

Based on the CoT design and the step-wise nav- 244

igator, we develop the dynamic templates. Our 245

model extracts event structure in three steps, where 246

each step’s input and output follow a specific tem- 247

plate. The input template of each step consists of 248

the sentence xi, a dynamic prompt pi ∈ Pi and a 249

question qi ∈ Qi. Herein, we divide the task into 250

three steps, thus formulating pi =< p1i , p
2
i , p

3
i >, 251

qi =< q1i , q
2
i , q

3
i >. Specifically, the input prompt 252

pi is dynamic because it not only concatenates 253

the response from the previous step but also adds 254

guidance derived from the navigator. The output 255

1Definition from ACE English Annotation Guidelines for
Events V5.4.3:https://www.ldc.upenn.edu/collaborations/past-
projects/ace/annotation-tasks-and-specifications
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COT Module

Response1: Event trigger is destroyed. Event type is Conflict.

Input1: An event is something that happens. An Event’s Trigger is the word (in its scope) that most clearly expresses its occurrence.  
Given the [sentence], based on common sense, does any event exist in this sentence? If any event exists, what's the event type and its trigger word? 

Input2: Each event type has a particular set of subtypes. Given the [sentence], Event trigger is destroyed. Event type is Conflict. 
Conflict has 2 types of subtypes, including{"Attack": "An ATTACK Event is defined as a violent physical act causing harm or damage."; "Demonstrate": 
"A DEMONSRATE Event occurs whenever a large number of people come together in a public area to protest or demand some sort of official action."}. 
Based on common sense, if any event exists, what's the event subtype and its trigger word?
Response2: Event trigger is destroyed. Event subtype is Conflict-Attack .

Response3: Event trigger is destroyed. Event subtype is Conflict-Attack. Attacker is troops. Target is tanks.  

Question3: Event arguments will be taggable only when they occur within the scope of the corresponding Event. For each type and subtype of Event, 
there will be a specific set of participant roles that can be filled. Given the [sentence], Event trigger is destroyed. Event subtype is Conflict-Attack.
Attack has 5 types of roles, including{"Attacker": "The attacking agent."; "Target": " The target of the attack",detroops...,}. Based on common sense, if any 
event exists, what’s the argument and its role in each event?

1st-step

2nd-step

3rd-step

Encoder Decoder

Prompt

Sentence

Question

Response

(a) Model Training (c) Step-wise Navigator Module

Conflict

Attack

Demonstrate

Attacker

Target

Instrument

Time

Place

The attacking agent

The target of the 
attack

Where the attack 
takes place

......

Life

Justice

Personal

...

Coarse-grained 
Event Type

Roles

Sentence: He claimed Iraqi troops had destroyed five tanks. 

Dynamic navigating

Dynamic navigating

(b) Dynamic Chain of Thought Module

(1) SFT-Phase

(2) Inference-Phase

Model

1st-step-Input

2nd-step-Input

3rd-step-Input

1st-step-Respon

2nd-step-Respon

3rd-step-Respon

Model

1st-step-Input

1st-step-Respon

2nd-step-Input

Model

2nd-step-Respon

Model

3rd-step-Input

3rd-step-Respon

Fine-grained 
Event Type

Figure 2: An illustration of the proposed method.

template of each step also follows a particular for-256

mat, allowing us to use a deterministic algorithm257

to parse the event type from the previous step’s out-258

put. Given the event type parsed from the previous259

step, the navigator will attach the corresponding260

guidance to the input template for the next reason-261

ing step, thereby dynamically adjusting our input262

template based on the inference results.263

The three-step templates we constructed are as264

follows:265

Step 1 The first step involves extracting event266

triggers and classifying them into coarse-grained267

event types. The dynamic input template for this268

step includes a sentence xi, a prompt about event269

extraction p1i and question q1i . We construct the270

following input template: The output template for271

this step is: "Event trigger is <tri>. Event type272

is <type>". If there is no event, special place-273

holders will be generated(i.e. "Event trigger is274

[trigger]. Event type is [type]"). If there are mul-275

tiple events, different events are separated using276

the special placeholder "[SEP]". This step can be277

formulated as follows:278

r1i = LLM(xi, p
1
i , q

1
i ) (1)279

Where, p1i and q1i denote the prompt and question280

in step 1.281

Step 2 The second step involves identifying the282

event trigger and classifying it into fine-grained283

event types. The dynamic input template for this 284

step includes a sentence xi, a prompt about event 285

type p2i and question q2i . The prompt for this 286

step includes the description of the inferred coarse- 287

grained event type and the definitions of the corre- 288

sponding fine-grained event types. For example, as 289

illustrated in Figure 2, the output from the previous 290

step is parsed to identify the coarse-grained event 291

type as Conflict. The navigator indicates that Con- 292

flict includes two fine-grained event types: Attack 293

and Demonstrate with definitions for each of them. 294

We construct the following input template: 295

The output template for this step is: "Event trig- 296

ger is <tri>. Event subtype is <sub-type>". If 297

there is no event, special placeholders will be gen- 298

erated(i.e. "Event trigger is [trigger]. Event sub- 299

type is [event-type]"). This step can be formulated 300

as follows: 301

r2i = LLM(xi, r
1
i , p

2
i , q

2
i ) (2) 302

Step 3 The third step aims to extract the argu- 303

ments and classify them into event roles. The 304

dynamic input template for this step includes a 305

sentence xi, a prompt about event roles p3i and 306

question q3i . The prompt for this step includes the 307

inherent roles of the event type and their definitions. 308

We construct the following input template: 309

The output template for this step is: "Event trig- 310

ger is <tri>. Event subtype is <sub-type>. <Role> 311

is <Arg>". When there is no valid role for the 312
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queried event type, the special placeholder "[SEP]"313

is generated(i.e. "Event trigger is [trigger]. Event314

subtype is [event-type]. [Role] is [Arg]"). This315

step can be formulated as follows:316

r3i = LLM(xi, r
2
i , p

3
i , q

3
i ) (3)317

3.3 Training and Inference318

3.3.1 Training319

During the training phase, we follow the CoT three-320

step strategy. Given a passage, we construct three321

parallel data instances. For each step, the input in-322

cludes the ground truth response from the previous323

step. As illustrated in Figure 2:324

• For the first step, given the passage and325

prompt, the model is expected to replace326

"<tri>" with the gold trigger "destroyed" and327

replace "<type>" with the gold event type328

"Conflict".329

• For the second step, given the passage,330

prompt, and the ground truth response from331

the first step, the model is expected to replace332

"<sub-type>" with the gold subtype "Conflict-333

Attack".334

• For the third step, given the passage, prompt,335

and the ground truth response from the sec-336

ond step, the model is expected to replace337

"<role>" with the gold roles "Attacker" and338

replace "<arg>" with the gold arguments339

"troops".340

The goal is to maximize the objective text T proba-341

bility given the input text X , prompts P and ques-342

tions Q. Therefore, we optimize the negative log-343

likelihood loss function:344

L = − 1

|τ |
∑

(X,T )∈τ
log p(T |X;P ;Q; θ) (4)345

where θ is the model parameters, P is the dynamic346

CoT prompts at each step, Q is the question at each347

step, and (X,T ) is a (input,output) pair in training348

set τ .349

3.3.2 Inference350

In the inference phase, we also follow the CoT351

three-step strategy, but in a sequential manner. Un-352

like the training phase, the input for each step is the353

model’s prediction from the previous step, rather354

than the ground truth.355

Dataset Split # Sentence

ACE05-EN Train 17,172
Validation 923
Test 832

ACE05-EN+ Train 19,216
Validation 901
Test 676

Table 1: Distribution of data across different datasets.

Given a passage, the model conducts event ex- 356

traction through a three-step process. In the first 357

step, it predicts the event trigger and event type. 358

In the second step, the model’s response from the 359

first step is utilized by a step-wise navigator to dy- 360

namically adjust the input template, guiding the 361

prediction of the event subtype. In the third step, 362

the response from the second step is incorporated 363

into the input template, and the model predicts 364

the roles and arguments to generate the final event 365

records. 366

4 Experiment 367

This section introduces the dataset and experimen- 368

tal setup employed to validate our method. Sub- 369

sequently, we present the experimental results and 370

analyze the findings. 371

Dataset As shown in Table 1, we assess our 372

method using two benchmarks, ACE05-EN and 373

ACE05-EN+, derived from the ACE2005 dataset, 374

which features 33 event types and 22 entity roles. 375

Our data splitting and preprocessing procedures 376

align with those used in prior studies by Wadden 377

et al. (2019) and Lin et al. (2020). Additionally, for 378

low-resource settings, we adopt a data sampling 379

strategy following Hsu et al. (2022), conducting 380

experiments with various proportions of training 381

data.2. 382

Baselines (1) OneIE (Lin et al., 2020): This 383

state-of-the-art classification model excels in high- 384

resource settings, utilizing global feature extrac- 385

tion to optimize event extraction outcomes. (2) 386

BERT_QA (Du and Cardie, 2021): This classi- 387

fication model approaches event extraction as a 388

Question Answering (QA) task, enabling end-to- 389

end argument extraction. (3) TANL (Paolini et al., 390

2021): This generative method leverages trans- 391

lation between augmented natural languages to 392

2Detailed statistics presented in Table 5
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Event Detection F1-Score (%) ↑

Method ACE05-EN ACE05-EN+

1% 3% 5% 10% 20% 30% 1% 3% 5% 10% 20% 30%

BERT-QA 20.5 44.2 50.7 53.1 60.9 61.8 – – – – – –
OneIE 40.9 50.1 58.5 60.4 65.3 65.5 39.0 52.5 60.6 58.1 66.5 66.4
Text2Event 14.2 35.2 46.6 47.0 55.6 60.7 15.7 38.4 43.9 46.3 56.5 62.0
TANL 34.1 48.1 53.4 54.8 61.8 61.6 30.3 50.9 53.1 55.7 60.8 61.7
DEGREE 55.1 62.8 63.8 66.1 64.4 64.4 56.4 62.5 61.1 62.3 62.5 67.1
DICE 22.9 44.5 53.1 53.4 61.5 64.1 18.9 41.7 48.7 54.0 63.8 66.0
FlanT5-Large 25.9 44.0 50.3 54.8 60.1 63.9 29.1 40.3 48.8 51.3 58.2 61.7
Llama2-7b 16.5 20.1 28.6 43.0 48.1 51.0 24.1 35.8 25.1 23.1 35.0 31.4

Ours 36.5 48.5 54.8 61.6 62.6 65.6 37.0 50.8 56.5 63.0 64.5 66.5
Ours(Type) 45.5 58.7 59.8 64.4 66.3 67.2 48.8 57.2 60.9 65.7 66.8 67.4

Event Argument Classification F1-Score (%) ↑

Method ACE05-EN ACE05-EN+

1% 3% 5% 10% 20% 30% 1% 3% 5% 10% 20% 30%

BERT-QA 4.7 14.7 21.6 25.5 30.3 35.3 – – – – – –
OneIE 9.4 19.1 24.4 26.5 41.7 43.3 10.4 20.6 29.7 35.5 46.7 48.0
Text2Event 3.9 12.2 19.1 24.9 32.3 39.2 5.7 16.5 21.3 26.4 35.2 42.1
TANL 8.5 17.2 24.7 29.0 34.0 39.2 8.6 22.3 30.4 29.2 34.6 39.0
DEGREE 13.1 26.1 27.6 42.1 40.7 44.0 16.0 26.4 29.9 39.5 41.3 48.5
DICE 5.4 16.5 21.1 26.2 34.3 36.5 5.2 19.5 21.7 27.4 36.5 46.3
FlanT5-Large 8.6 16.7 23.3 24.3 32.5 38.2 8.7 17.5 24.4 25.9 35.0 41.1
Llama2-7b 2.6 6.7 5.0 10.3 21.3 25.5 7.7 14.1 10.5 13.8 15.6 27.4

Ours 15.9 24.6 28.8 34.1 40.9 44.8 16.8 28.2 32.6 39.3 43.4 48.2
Ours(Type) 20.6 30.5 33.3 38.6 42.3 47.1 23.9 34.1 36.8 43.4 48.2 51.0

Table 2: Trigger classification F1-scores and argument classification F1-scores (%) across datasets with different
training data.“Ours(type)” refer to the method enhanced by the label semantics of coarse-grained event types
following Hsu et al. (2022).

.

solve structured prediction tasks, including event393

extraction. (4) Text2Event (Lu et al., 2021): This394

generative approach converts event records into a395

structured tree, proposing a sequence-to-structure396

model. (5) DEGREE (Hsu et al., 2022): This397

generative method manually designs templates for398

various event types, using label semantics to guide399

the model to capture entity relationships for event400

extraction. (6) DICE (Ma et al., 2023): This gen-401

erative method designs a Mention Identification402

module to improve trigger word recognition and ar-403

gument extraction. (7) FlanT5 (Chung et al., 2022):404

This generative approach is the base model of our405

method, solving event extraction without employ-406

ing CoT prompting. (8)LLAMA (Touvron et al.,407

2023): This generative method employs Lora Fine-408

tuning to specifically tailor large language models409

for the event extraction task.410

Evaluation Metrics Our criteria align with those411

used in previous studies Wadden et al. (2019); Lin412

et al. (2020); Hsu et al. (2022). We employ two413

main metrics: (1) Trigger F1-score, where a trig-414

ger is correctly identified (Tri-I) if its offset corre-415

sponds to the label and correctly classified (Tri-C) 416

if its event type also matches. (2) Argument F1- 417

score, which considers an argument correctly iden- 418

tified (Arg-I) if both its offset and event type align 419

with the label, and correctly classified (Arg-C) if 420

its role is also accurate. 421

Implementations We use Flan-T5-large as our 422

base model. AdamW (Loshchilov and Hutter, 423

2018) is used as the optimizer, with a learning rate 424

of 2e− 5. The gradient accumulation steps are set 425

to 4, and the number of epochs is set to 100 with 426

an early stopping mechanism. All experiments are 427

conducted on a single 3090 GPU. The experimental 428

results are obtained by averaging three runs with 429

random initialization. "Ours" relies on dynamic 430

prompts and simple templates to facilitate logical 431

reasoning, while DEGREE’s templates depend on 432

label semantics. To ensure a fairer comparison with 433

DEGREE, we also evaluate our model enhanced 434

with the label semantics of coarse-grained event 435

types, referred to as "Ours(type)". 436
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4.1 Main Results437

We compare our method with several strong438

baselines. These baselines can be roughly sep-439

arated into two categories classification meth-440

ods(i.e., BERT-QA, OneIE) and generative meth-441

ods (Text2Event, TANL, DEGREE, DICE, Flan-442

T5, LLAMA). Table 2 shows the results on two443

different datasets. Following the consensus of pre-444

vious work, we prioritize the Argument classifi-445

cation F1-score as the key metric for comparing446

model performance.447

It can be observed that classification-based meth-448

ods, such as OneIE, demonstrate competitive per-449

formance in the event detection(ED) task when suf-450

ficient training data is available (e.g., 30%). How-451

ever, their performance degrades significantly un-452

der low-resource conditions (e.g., 1%). Further-453

more, these methods exhibit limitations in event454

argument extraction(EAE). In contrast, generative455

approaches have shown strong capabilities in both456

ED and EAE, particularly in low-resource scenar-457

ios. Specifically, the state-of-the-art method DE-458

GREE enhanced with design prompt outperforms459

other baselines, which shows the effectiveness of460

the prompt strategy. Notably, Llama2-7b, a large461

language model, does not perform well in either462

task. This may be due to the complex task defini-463

tion involved. In the ED task, our method achieves464

competitive results using only 25% of the data com-465

pared to DEGREE, significantly reducing compute466

resource requirements. Furthermore, in the EAE467

task, our method consistently outperforms other468

strong baselines, highlighting the effectiveness of469

the dynamic chain-of-thought framework in low-470

resource scenarios. The results demonstrate that471

leveraging the inherent logic of event extraction472

sub-tasks allows for more efficient use of limited473

data, mitigating the performance degradation typi-474

cally caused by data scarcity.475

4.2 Ablation Study476

We conduct an ablation study to analyze the con-477

tributions of different components in our model to478

the low-resource event extraction task. Results are479

shown in Table 3. Firstly, removing all the Chain-480

of-Thought design leads to the largest performance481

drop, highlighting its key role in reasoning through482

complex event structures. Furthermore, dividing483

the ED task into two steps using the CoT strategy484

is beneficial. Removing the classification of coarse-485

grained event types leads to a moderate decline486

Method Tri./Arg. F1-Score (%) ↑

ACE05-EN ACE05-EN+

Ours 61.6/34.1 63.0/39.3
w/o Chain-of-thought 54.8/24.3 51.3/25.9
w/o Event type 56.3/30.9 59.2/35.6
w/o Step-wise navigator 55.6/30.1 57.1/32.8

Table 3: Ablation study for the key components of the
dynamic chain of thought framework with 10% training
data on ACE05-EN and ACE05-EN+.

ACE-EN-Tri ACE-EN-Arg ACE-EN+-Tri ACE-EN+-Arg
20

30

40

50

60

70

F1
 S

co
re

 (%
)

61.6

34.1

63.0

39.3

56.3

30.9

59.2

35.6

54.8

24.3

51.3

25.9

3-Steps(Ours)
2-Steps
1-Step

Figure 3: Influence of each step in the dynamic chain
of thought design.

in performance. Finally, the Step-wise navigator 487

improves event extraction by providing adaptive 488

guidance, with a notable impact. This evidence 489

highlights that all components are highly beneficial 490

for low-resource event extraction by guiding the 491

model through step-by-step reasoning to investi- 492

gate its inherent logic and effectively mitigate the 493

lack of insufficient labeled data. 494

5 Analysis and Discussion 495

In this section, we provide a detailed analysis and 496

discussion to highlight the importance of various 497

factors within the proposed model when applied 498

to a low-resource scenario, where only 10% of the 499

training data is available. 500

5.1 Influence of Dynamic Chain of thought 501

As shown in Figure 3, the results reveal that the 502

dynamic chain of thought framework contributes 503

significantly to performance improvements in low- 504

resource event extraction(EE). Its effectiveness by 505

dynamically adjusting the reasoning steps based on 506

the step-wise navigator module, allowing for more 507

accurate and adaptive decision-making. The 3-step 508

Chain-of-thought(CoT) outperforms both 2-step 509

and 1-step methods across all tasks and datasets. 510
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Figure 4: Impact of guidance in each step provided by
step-wise navigator.

This indicates that investigating the inherent logi-511

cal consistency of EE sub-tasks provides the model512

with a deeper and more comprehensive understand-513

ing of event triggers and arguments, which leads to514

improved performance in low-resource scenarios.515

5.2 Effects of Step-wise Navigator516

The step-wise navigator is crucial in the dynamic517

CoT strategy, as it supplies relevant information to518

the model and guides it along the next reasoning519

path. To evaluate its impact, we analyze its effect520

at various stages of the reasoning process.521

As shown in Figure 4, the results across datasets522

demonstrate that the step-wise navigator effectively523

improves the F1 score in both the second and third524

steps. The most significant gains occurred in the525

"All-step", suggesting that the navigator plays an526

essential role in maintaining coherence and enhanc-527

ing decision-making throughout the chain of rea-528

soning steps. The navigator’s role becomes even529

more crucial as the complexity of the reasoning530

task increases, where intermediate decisions (Step531

2 and Step 3) require more careful alignment and532

logical consistency. By guiding the model through533

each reasoning step, the navigator helps reduce er-534

ror propagation and enhance the model’s capacity535

to make accurate predictions in later steps.536

Method Base Model F1-Score (%) ↑

Trigger Argument

In-context learning
Few shot(2-shot) GPT4o-mini 16.5 5.4
Vanilla CoT GPT4o-mini 14.5 6.2
Dynamic CoT GPT4o-mini 16.6 8.7

Supervised fine-tuning with 1% data
Flan-T5 FlanT5-Large 25.9 8.6
Ours FlanT5-Large 36.5 15.9

Table 4: Results of different methods using GPT4o-mini
and Flan-T5-Large.

5.3 Impact of Training Paradigms 537

Although Chain-of-Thought (CoT) prompting has 538

demonstrated significant capabilities in reasoning 539

tasks with a large language model, it also exhibits 540

substantial limitations in low-resource event extrac- 541

tion(EE)(Gao et al., 2023; Han et al., 2023). We an- 542

alyze our method on a large language model(LLM) 543

using few-shot (2-shot), vanilla CoT (’think step 544

by step’), and our dynamic CoT strategy. Notably, 545

vanilla CoT does not show significant improvement 546

compared to the few-shot method, suggesting that 547

random reasoning paths in the large model cannot 548

help with limited resources. Besides, our method 549

achieves higher performance than both the few- 550

shot and vanilla CoT methods, indicating the ef- 551

fectiveness of our CoT design. Compared to direct 552

inference from the LLM, the fine-tuning method 553

using a small model achieves higher performance. 554

This suggests that LLMs still have limitations in 555

this task, possibly due to the complex definitions 556

involved in EE sub-tasks. Instead, our method with 557

only 1% data outperforms all baselines by lever- 558

aging the dynamic CoT template that effectively 559

guides the model through event structures and en- 560

hances reasoning despite limited data. 561

6 Conclusion 562

In this study, we present a novel approach for low- 563

resource event extraction by leveraging the inherent 564

logic in the event extraction task through a dynamic 565

Chain-of-Thought reasoning pattern. Additionally, 566

we propose a step-wise navigator to dynamically 567

provide relevant knowledge based on the previ- 568

ous step and minimize distractions from irrelevant 569

options for focusing on the most likely reasoning 570

paths. The empirical results validate the effective- 571

ness of our approach, demonstrating harnessing the 572

inherent logic within the sub-tasks can significantly 573

improve performance in low-resource settings. 574
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Limitations575

Our method introduces a three-step chain-of-576

thought(CoT) template based on the inherent logic577

of event extraction sub-tasks, effectively leveraging578

limited data to elicit the model’s reasoning ability579

to address the challenge of generalizing to complex580

event records. However, there are some limita-581

tions in our approach. Firstly, since we employ a582

pipeline model, there is a risk of error propagation,583

where mistakes made in earlier steps can affect584

the final results. Additionally, our method relies585

on a manually designed CoT template, which may586

limit generalization. Although we apply a step-587

wise navigator to alleviate this, it still remains a588

rule-based design, limiting its flexibility in more di-589

verse contexts. Future work could focus on explor-590

ing automated approaches for generating diverse591

CoT templates to further enhance generalization in592

a low-resource scenario. Additionally, Our method593

achieves strong performance on the English dataset594

ACE05-EN; however, its extension to other English595

datasets and multilingual datasets remains limited.596

Expanding the applicability of our approach to a597

broader range of datasets will be a key focus of our598

future research.599
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A Dateset Detail830

In this study, we use the ACE20053English831

dataset (Doddington et al., 2004). For low-resource832

scenarios, we adopt the data partitioning strategy833

from the DEGREE (Hsu et al., 2021) experimental834

setup. The training data is split by documents, offer-835

ing a more realistic approach compared to instance-836

based splitting. Table 5 provides the statistics for837

both ACE05-E and ACE05-E+.838

B Prompt Detail839

We analyze our prompting strategy on a large lan-840

guage model using three approaches: few-shot (2-841

shot), vanilla CoT (i.e., ’think step by step’), and842

our dynamic CoT strategy. Tables 7, 8, and 9 sep-843

arately present the prompts used for each approach.844

Since the few-shot and vanilla CoT methods lack845

sufficient knowledge of event extraction, we incor-846

porate additional knowledge and examples to pro-847

vide a more comprehensive understanding of the848

EE task. For dynamic CoT, we use the LangChain849

framework to conduct multi-round conversations850

and apply the GPT model to implement the CoT851

prompts we designed.852

C Implementation Detail853

This section describes the implementation details854

of our method. In the main experiment table 2,855

we present two results for our method: ‘Ours’ and856

‘Ours (type).’ The ‘Ours’ approach uses only the857

sentence, the prompts, and the questions as input,858

while ‘Ours (type)’ refers to a type-enhanced ver-859

sion that also incorporates coarse-grained event860

types.861

To ensure a fairer comparison, we follow a sim-862

ilar experimental setup to DEGREE (Hsu et al.,863

2022), but our type-enhanced method is more ef-864

ficient and resource-saving. Specifically, given a865

passage, annotated coarse-grained event types are866

treated as positive examples. During training, we867

sample m unrelated event types as negative exam-868

ples, with m typically set to 3 in our experiments.869

During inference, each coarse-grained event type is870

extracted separately. Our type-enhanced approach871

tests on 8 coarse-grained event types, whereas DE-872

GREE tests on 33 fine-grained types, which pro-873

vides DEGREE with more semantic information874

and increases the pressure for our model. This ex-875

plains why our approach initially performs worse876

3https://catalog.ldc.upenn.edu/LDC2006T06

Dataset Split Number of Sentences

ACE05-EN Train 17,172
Train-30% 5429
Train-20% 3467
Train-10% 1688
Train-5% 649
Train-3% 451
Train-1% 103
Val. 923
Test 832

ACE05-EN+ Train 19,216
Train-30% 6159
Train-20% 3834
Train-10% 1915
Train-5% 628
Train-3% 434
Train-1% 92
Val. 901
Test 676

Table 5: Data Statics. Our data splitting for low re-
sources aligns with those used in prior studies by (Hsu
et al., 2021).

Model
ACE05-E ACE05-E+

Tri-C Arg-C Tri-C Arg-C
DyGIE++ 70.0 50.0 - -
Joint3EE 69.8 52.1 - -
EE_QA 72.4 53.3 - -
MQAEE 71.7 53.4 - -
TANL 68.4 47.6 - -
BART-Gen* 71.1 53.7 - -
OneIE 74.7 56.8 72.5 55.9
Text2Event 71.9 53.8 70.3 53.4
DEGREE 72.2 55.8 71.7 56.8
UIE 73.4 54.8 70.7 52.6
Ours 72.5 55.2 71.8 53.8

Table 6: Performance comparison with 100% data on
ACE05-E and ACE05-E+ datasets.

than DEGREE with less than 5% of the data. How- 877

ever, as more training examples become available, 878

models can learn more sophisticated features from 879

the data, allowing our approach to gradually sur- 880

pass DEGREE once more than 10% of the data is 881

used. Table 6 shows the results of high-resource 882

event extraction. We can observe that by using only 883

25% of the data, our method achieves competitive 884

results with DEGREE. 885
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2-shot example for GPT4o-mini

Knowledge of Event Extraction
An event is something that happens. An Event’s Trigger is the word (in its scope) that most clearly expresses its occurrence. Each event type has a particular
set of roles and arguments.
Set of event types: {Life.Be-Born, Life.Marry, Life.Divorce, Life.Injure, Life.Die, Movement.Transport, Transaction.Transfer-Ownership, Transaction.Transfer-
Money, Business.Start-Org, Business.Merge-Org, Business.Declare-Bankruptcy, Business.End-Org, Conflict.Attack, Conflict.Demonstrate, Contact.Meet,
Contact.Phone-Write, Personnel.Start-Position, Personnel.End-Position, Personnel.Nominate, Personnel.Elect, Justice.Arrest-Jail, Justice.Release-Parole,
Justice.Trial-Hearing, Justice.Charge-Indict, Justice.Sue, Justice.Convict, Justice.Sentence, Justice.Fine, Justice.Execute, Justice.Extradite, Justice.Acquit,
Justice.Pardon, Justice.Appeal}.
Set of Roles: {’Origin’, ’Entity’, ’Seller’, ’Money’, ’Defendant’, ’Destination’, ’Price’, ’Person’, ’Time’, ’Sentence’, ’Recipient’, ’Plaintiff’, ’Target’,
’Position’, ’Artifact’, ’Beneficiary’, ’Adjudicator’, ’Agent’, ’Prosecutor’, ’Giver’, ’Instrument’, ’Vehicle’, ’Place’, ’Buyer’, ’Org’, ’Crime’, ’Attacker’,
’Victim’}
Example
Example of no event:
Sentence: Martha Stewart is one of those stories that is in the news big time again.
Result: Event trigger is [trigger]. Event type is [event_type].[event_subtype]. [role] is [arg]. [SEP]
Example of one event:
Sentence: Senator Christopher Dodd of Connecticut made the announcement today that he would not be the 10th candidate for the nomination.
Result: Event trigger is nomination. Event subtype is Personnel.Nominate. Person is candidate. [SEP]
Input
Given the sentence: "He claimed Iraqi troops had destroyed five tanks.", does any event exist in this sentence? If any event exists, what is the event type and its
trigger word? What’s the role and argument?
Please only return the event extraction result. Return format: Event trigger is [trigger]. Event type is [event_type].[event_subtype]. [role] is [arg]. If two or
more events exist, use [SEP] to concatenate.

Table 7: 2-shot example for GPT4o-mini.

Vanilla chain of thought example for GPT4o-mini

Knowledge of Event Extraction
An event is something that happens. An Event’s Trigger is the word (in its scope) that most clearly expresses its occurrence. Each event type has a particular
set of roles and arguments.
Set of event types: {Life.Be-Born, Life.Marry, Life.Divorce, Life.Injure, Life.Die, Movement.Transport, Transaction.Transfer-Ownership, Transaction.Transfer-
Money, Business.Start-Org, Business.Merge-Org, Business.Declare-Bankruptcy, Business.End-Org, Conflict.Attack, Conflict.Demonstrate, Contact.Meet,
Contact.Phone-Write, Personnel.Start-Position, Personnel.End-Position, Personnel.Nominate, Personnel.Elect, Justice.Arrest-Jail, Justice.Release-Parole,
Justice.Trial-Hearing, Justice.Charge-Indict, Justice.Sue, Justice.Convict, Justice.Sentence, Justice.Fine, Justice.Execute, Justice.Extradite, Justice.Acquit,
Justice.Pardon, Justice.Appeal}.
Set of Roles: {’Origin’, ’Entity’, ’Seller’, ’Money’, ’Defendant’, ’Destination’, ’Price’, ’Person’, ’Time’, ’Sentence’, ’Recipient’, ’Plaintiff’, ’Target’,
’Position’, ’Artifact’, ’Beneficiary’, ’Adjudicator’, ’Agent’, ’Prosecutor’, ’Giver’, ’Instrument’, ’Vehicle’, ’Place’, ’Buyer’, ’Org’, ’Crime’, ’Attacker’,
’Victim’}
Example
Example of no event
Sentence: Martha Stewart is one of those stories that is in the news big time again.
Result: Event trigger is [trigger]. Event type is [event_type].[event_subtype]. [role] is [arg]. [SEP]
Reason: ...
Example of one event
Sentence: Senator Christopher Dodd of Connecticut made the announcement today that he would not be the 10th candidate for the nomination.
Result: Event trigger is nomination. Event subtype is Personnel.Nominate. Person is candidate. [SEP]
Reason: ...
Input
Given the sentence: "He claimed Iraqi troops had destroyed five tanks.", does any event exist in this sentence? If any event exists, what is the event type and its
trigger word? What’s the role and argument?
Let’s think step by step. Please analyze the reason and return the event extraction result. Return format: Event trigger is [trigger]. Event type is
[event_type].[event_subtype]. [role] is [arg]. If two or more events exist, use [SEP] to concatenate.

Table 8: Vanilla chain of thought example for GPT4o-mini
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Dynamic chain of thought example for GPT4o-mini

Input-1:
Firstly let us extract the trigger and event type. An event is something that happens. An Event’s Trigger is the word (in its scope) that most clearly expresses
its occurrence. Let us first consider the 9 event types, namely: Life, Movement, Transaction, Business, Conflict, Contact, Personnel, Justice. There is also
[event_type], which means the event does not exist.
Given the "He claimed Iraqi troops had destroyed five tanks.", does any event exist in this sentence? If any event exists, what is the event type and its trigger
word?
eturn format like: Event trigger is [trigger]. Event type is [event_type]. If two and more events exist, use [SEP] concat. If no event exists, return the format
prompt.
return format example: Event trigger is [trigger]. Event type is [event_type].
Event trigger is attend. Event type is Contact. [SEP]
Event trigger is attend. Event type is Contact. [SEP] Event trigger is war. Event type is Conflict. [SEP]
Output-1:
Event trigger is destroyed. Event type is Conflict.
Input-2:
Secondly, let us extract the event subtype. Each event type has a particular set of subtypes.
Given the "He claimed Iraqi troops had destroyed five tanks.", does any event exist in this sentence? If any event exists, what is the event type and its trigger
word? Event trigger is claimed. Event type is Conflict. Based on common sense, if any event exists, what’s the event subtype and its trigger word?
Please return format like: Event trigger is [trigger]. Event type is [event_type]. If two and more events exist, use [SEP] concat. If no event exists, return the
format prompt.
return format example: Event trigger is [trigger]. Event type is [event_type].
Event trigger is attend. Event type is Contact. [SEP]
Event trigger is attend. Event type is Contact. [SEP] Event trigger is war. Event type is Conflict. [SEP]
Output-2:
Event trigger is destroyed. Event subtype is Conflict.Attack.
Input-3:
Thirdly, let us extract the role and argument. Each event subtype has a particular set of roles and arguments.
Given the "He claimed Iraqi troops had destroyed five tanks.", does any event exist in this sentence? If any event exists, what is the event type and its trigger
word? Event trigger is claimed. Event subtype is Conflict.Attack.
Based on common sense, if any event exists, what’s the role and argument?
Please return format like: Event trigger is [trigger]. Event subtype is [event_type]. [role] is [arg]. If two and more events exist, use [SEP] concat. If no event
exists, return the format prompt.
return format example: Event trigger is [trigger]. Event subtype is [event_type]. [role] is [arg]. [SEP]
Event trigger is war. Event subtype is Conflict.Attack. Target is building. [SEP]
Event trigger is war. Event subtype is Conflict.Attack. Target is building. Instrument is tanks. [SEP] Event trigger is attend. Event subtype is Move-
ment.Transport. Artifact is Mike. [SEP]
Output-3:
Event trigger is destroyed. Event subtype is Conflict.Attack. Attacker is troops. Target is tanks.

Table 9: Dynamic chain of thought example for GPT4o-mini
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