Under review as submission to TMLR

Structure-Preserving Network Compression Via Low-Rank
Induced Training Through Linear Layers Composition

Anonymous authors
Paper under double-blind review

Abstract

Deep Neural Networks (DNNs) have achieved remarkable success in addressing many pre-
viously unsolvable tasks. However, the storage and computational requirements associated
with DNNs pose a challenge for deploying these trained models on resource-limited devices.
Therefore, a plethora of compression and pruning techniques have been proposed in recent
years. Low-rank decomposition techniques are among the approaches most utilized to ad-
dress this problem. Compared to post-training compression, compression-promoted training
is still under-explored. In this paper, we present a theoretically-justified novel approach,
termed Low-Rank Induced Training (LoRITa), that promotes low-rankness through the
composition of linear layers and compresses by using singular value truncation. This is
achieved without the need to change the structure at inference time or require constrained
and/or additional optimization, other than the standard weight decay regularization. More-
over, LoRITa eliminates the need to (¢) initialize with pre-trained models, (i¢) specify rank
selection prior to training, and (%) compute SVD in each iteration. Our experimental re-
sults (7) demonstrate the effectiveness of our approach using MNIST on Fully Connected
Networks, CIFAR10 on Vision Transformers, and CIFAR10/100 on Convolutional Neural
Networks, and (#) illustrate that we achieve either competitive or state-of-the-art results
when compared to leading structured pruning and low-rank training methods in terms of
FLOPs and parameters drop.

1 Introduction

In recent years, the rapid progress of machine learning has sparked substantial interest, particularly in the
realm of Deep Neural Networks (DNNs), utilizing architectures such as Fully Connected Networks (FCNs)
(Rumelhart et al., [1986)), Convolutional Neural Networks (CNN) (LeCun et al., [1998), and Transformers
(Vaswani et all |2017). DNNs have demonstrated remarkable performance across diverse tasks, including
classification (Han et al. 2022), image reconstruction (Ravishankar et al.; |2019)), object recognition (Minaee
et al} 2021, natural language processing (Vaswani et al., [2017)), and image generation (Yang et al., |2023).
However, the extensive storage and computational requirements of these models hinder their application
in resource-limited devices. Addressing these challenges has become a focal point in recent research efforts
within the context of a variety of model compression algorithms (Li et al.| 2023; Mariné et al., [2023)).

Model compression techniques, based on their core strategies, can be classified into parameter quantization
(Krishnamoorthi, |2018), knowledge distillation (Hinton et al., 2015)), lightweight model design (Zhang et al.,
2018), model pruning (He et al.l [2019), and low-rank decomposition (Lin et al., 2018]). Post-training low-
rank decomposition algorithms for network compression necessitate pre-trained weights (Marino et al., [2023)),
whereas existing low-rank training methods require structural alterations to the network architecture, the
specification of a pre-defined rank during training, and/or additional constraints or iterations in the training
process. This paper specifically delves into low-rank training. Our approach aims to achieve a low-rank
model directly through training from random initialization.

In this paper, we introduce Low-Rank Induced Training (LoRITa), a novel approach that promotes low-
rankness through (7) the overparameterization of layers by linear composition and (#) Singular Value De-

Under review as submission to TMLR

composition (SVD) post-training truncation. Unlike the well-known Low-Rank Adaptation (LoRA) method
(Hu et al., 2021)), our approach eliminates the need for initializing with pre-trained models. LoRITa uses
weight decay, the commonly chosen regularizer, for training models. Next, we summarize our contributions.

o We introduce a simple yet effective method that combines low-rank promoted training through linear layer
composition with post-training singular value truncation on the product of composed trained weights.

e We provide theoretical justification for the low-rank nature of LoRITa-trained models by showing that
standard weight decay regularization naturally imposes low-rankness to models with linear layer compo-
sition before activation.

e Through extensive experiments conducted on DNN-based image classification tasks across different FCN,
CNNs, and ViTs architectures, using MNIST, CIFAR10, and CIFAR100 datasets, we demonstrate the
efficacy of our algorithm. Furthermore, as compared to leading structured pruning and low-rank training
methods, we show that LoRITa trained models achieve either competitive or SOTA results in term of
FLOPs reduction and parameters drop.

2 Related Work

In the past decade, numerous methods have been proposed in the realm of DNN compression, employing
techniques such as low-rank decomposition or model pruning. Recent survey papers, such as (Li et al.| [2023;
Mariné et al., 2023; He & Xiaol, [2023)), offer comprehensive overviews. This section aims to survey recent
works closely related to our method. Specifically, we explore papers focused on (i) post-training low-rank
compression methods, (#) low-rank training approaches, and (i) structured pruning methods.

Post-training Low-Rank Compression Methods: As an important compression strategy, low-rank
compression seeks to utilize low-rank decomposition techniques for factorizing the original trained full-rank
DNN model into smaller matrices or tensors. This process results in notable storage and computational
savings (refer to Section 4 in (Li et al., 2023)). In the work by (Yu et all |2017), pruning methods were
combined with SVD, requiring feature reconstruction during both the training and testing phases. Another
approach, presented in (Lin et al.} |2018)), treated the convolution kernel as a 3D tensor, considering the fully
connected layer as either a 2D matrix or a 3D tensor. Low-rank filters were employed to expedite convolu-
tional operations. For instance, using tensor products, a high-dimensional discrete cosine transform (DCT)
and wavelet systems were constructed from 1D DCT transforms and 1D wavelets, respectively. The authors
in (Liebenwein et al., 2021 introduced the Automatic Layer-wise Decomposition Selector (ALDS) method.
ALDS uses layer-wise error bounds to formulate an optimization problem with the objective of minimizing
the maximum compression error across layers. While our method and the aforementioned approaches utilize
low-rank decomposition and maintain the network structure in inference, a notable distinction lies in our
approach being a training method that promotes low-rankness through the composition of linear layers. It
is important to emphasize that any low-rank-based post-training compression technique can be applied to
a DNN trained with LoRITa. This will be demonstrated in our experimental results, particularly with the
utilization of three singular-value truncation methods.

Low-Rank Promoted Training Methods: Here, we review methods designed to promote low-rankness
in DNN training. These approaches typically involve employing one or a combination of various techniques,
such as introducing structural modifications (most commonly under-parameterization), encoding constraints
within the training optimization process, or implementing custom and computationally-intensive regulariza-
tion techniques such as the use of Bayesian estimator (Hawkins et al [2022), iterative SVD (Gural et al.,
2020), or the implementation of partially low-rank training (Waleffe & Rekatsinas, 2020). The study pre-
sented in (Kwon et al.l [2023) introduces an approach leveraging SVD compression for over-parameterized
DNNSs through low-dimensional learning dynamics inspired by a theoretical study on deep linear networks.
The authors identify a low-dimensional structure within weight matrices across diverse architectures. No-
tably, the post-training compression exclusively targets the linear layers appended to the FCN, necessitating
a specialized initialization. More importantly, a pre-specified rank is required, posing a challenge as finding
the optimal combination of ranks for all layers is a difficult problem. In comparison, our work shares sim-
ilarities as it employs a composition of multiple matrices. However, our approach encompasses all weight

Under review as submission to TMLR

matrices, attention layer weights, and convolutional layers, providing a more comprehensive treatment of
DNN architectures. The study conducted by Tai et al. (Tai et al., 2015)) introduced an algorithm aimed
at computing the low-rank tensor decomposition to eliminate redundancy in convolution kernels. Addition-
ally, the authors proposed a method for training low-rank-constrained CNNs from scratch. This involved
parameterizing each convolutional layer as a composition of two convolutional layers, resulting in a CNN
with more layers than the original. The training algorithm for low-rank constrained CNNs required enforc-
ing orthogonality-based regularization and additional updates. Notably, their approach did not extend to
attention layers in ViTs and fully connected weight matrices. Moreover, during testing, unlike our method,
their approach necessitates the presence of additional CNN layers. In a recent contribution by (Sui et al.,
2024)), a low-rank training approach was proposed to achieve high accuracy, high compactness, and low-rank
CNN models. The method introduces a structural change in the convolutional layer, employing under-
parameterization. Besides altering the structure, this method requires low-rank initialization and imposes
orthogonality constraints during training. The authors in (Idelbayev & Carreira-Perpinan, [2020) proposed
the low-rank compression of neural networks (LCNN) method, which uses ADMM to optimize the weight
matrices constrained with pre-selected ranks. Training using this method is computationally expensive, as
in each iteration, the SVD of each matrix is computed. It is noteworthy that LoRITa, in contrast, not only
preserves the existing structure at inference time but also eliminates the need for optimization with complex
constraints, relying on the standard training with weight decay.

Structured Pruning Methods: When contrasted with weight quantization and unstructured pruning
approaches, structured pruning techniques emerge as more practical (He & Xiao, [2023]). This preference
stems from the dual benefits of structured pruning: not only does it reduce storage requirements, but it
also lowers computational demands. As delineated in a recent survey (He & Xiaol [2023), there exists a
plethora of structured pruning methods, particularly tailored for Convolutional Neural Networks (CNNs).
As our proposed approach offers both storage and computational reductions, the following methods will
serve as our baselines in the experimental results. These methods belong to six categories. Firstly, we
consider regularization-based methods, such as Scientific Control for reliable DNN Pruning (SCOP) (Tang
et al.} [2020)), Adding Before Pruning (ABP) (Tian et al.,|2021)), and the only train once (OTO) (Chen et al.,
2021) methods which introduce extra parameters for regularization. Secondly, we consider methods based
on joint pruning and compression, exemplified by the Hinge technique (Li et all |2020)), and the Efficient
Decomposition and Pruning (EDP) method (Ruan et all 2021). Thirdly, we consider activation-based
methods such as Graph Convolutional Neural Pruning (GCNP) (Jiang et al., [2022)) (where the graph DNN
is utilized to promote further pruning on the CNN of interest), Channel Independence-based Pruning (CHIP)
(Sui et al., |2021)), Filter Pruning via Deep Learning with Feature Discrimination in Deep Neural Networks
with Receptive Field Criterion (RFC) (DLRFC) (He et all 2022)), which utilize a feature discrimination-
based filter importance criterion, and Provable Filter Pruning (PFP) (Liebenwein et al. 2019). Next, we
consider weight-dependent methods, such as the adaptive Exemplar filters method (EPruner) (Lin et al.
2021)), Cross-layer Ranking & K-reciprocal Nearest Filters method (CLR-RNF) (Lin et al., |2022)), and Filter
pruning using high-rank feature map (HRank) (Lin et al., 2020). Next, we consider a method proposed in
(Liu et al., 2022) based on automatically searching for the optimal kernel shape (SOKS) and conducting
stripe-wise pruning. Lastly, we consider Reinforcement Learning based methods such as Deep compression
with reinforcement learning (DECORE) (Alwani et al., 2022)).

3 Preliminaries

Notation: Given a matrix A € R™*", SVD factorizes it into three matrices: A = UXV T, where U € R™*™
and V € R™ ™ are orthogonal matrices, and 3 € R™*" is a diagonal matrix with non-negative real numbers
known as singular values, s;. For a matrix A, its Schatten p-norm, ||A||,, is the £, norm on the singular
values, i.e., [|[All, := (3, s?)Y/P. The nuclear (resp. Frobenius) norm, denoted as ||All. (resp. [|A|F),
corresponds to the Schatten p-norm with p = 1 (resp. p = 2). For any positive integer N, [N] :={1,...,N}.
We use o(-) and SoftMax(-) to denote the ReLU and softmax activation functions, respectively.

Under review as submission to TMLR

Fully Connected, Convolutional, & Attention Layers: Consider a DNN-based model with L fully-
connected layers for which the input x and output y are related as:

v(0,x) = Wy ...0(Wao(Wix)), (1)

where ©® = {W,,Vi € [L]} is the set of all parameters. For the sake of simplicity in notation, we will
temporarily exclude the consideration of the bias, as it should not affect our conclusion.

For CNNs, the input is a third-order tensor for a multi-channel image, with dimensions (H, W, D), where
H is the height, W is the width, and D is the depth (the number of channels). The convolutional kernel
is a fourth-order tensor denoted by K, with dimensions (Fy, Fw, Fp, M). The output of the convolution
operation is a third-order tensor O given as

Fy—1Fw—1Fp—1

O(z,ym)= Y > > Wa+iy+5kK(G,jkm). (2)

i=0 j=0 k=0
Here, = and y are the pixel indices and m is the channel index in image O. The total number of output
channels is equal to the number of filters M. The summation iterates over the spatial dimensions of the
filter (i,4) and the input depth k.

ViTs consist of multi-head attention and fully connected layers. For one-head attention layer (Vaswani et al.)

2017), we have Y = SoftMaX(W)

respectively. We consider the trainable weights Wq, W, and Wy,. Here, d corresponds to the queries and
keys dimension (Vaswani et al., [2017)).

XWy , where X and Y are the input and output matrices,

The goal is to compress the trained weights to minimize storage and computational requirements without
compromising test accuracy significantly.

4 Model Compression with LoRITa

In this section, we start by presenting three singular value truncation approaches that we employ in this
paper. Second, we present our proposed LoRITa framework. Third, we discuss the theoretical foundation of
our method.

Local Singular Value Truncation (LSVT) of Trained Weights: A standard approach to compress the
trained weights is through singular value truncation. For each trainable weight matrix W = USV T € R™*"
with a storage requirement of mn entries, its best rank-r approximation can be represented as W ~ U, X, V||
where U,. € R™*" contains the first r columns of U, ¥, € R"*" is a diagonal matrix that include the largest
r singular values, and V| € R"™*" contains the first r rows of V'. These are called the r-term truncation of
U, X, and V.

Global Singular Value Truncation (GSVT) of Trained Weights: For DNNs, not every layer holds the
same level of importance. Therefore, using the local SVT might not lead to the best compression method. To
tackle this problem, we can apply a global singular value truncation strategy. This involves normalizing the
singular values of each matrix w.r.t. the largest one for each layer, then sorting them globally. Subsequently,
we decide which singular values to drop based on this global ranking. This approach offers an automated
method for identifying the principal components of the entire network.

Iterative Singular Value Truncation (ISVT) of Trained Weights: Truncation by the magnitude of
every singular value (locally or globally) may not lead to the best outcomes. As such. we also employ the
following iterative data-driven approach. In each iteration, we fix the number of parameters to truncate,
then we decide which layer we will use to remove these parameters by examining the one that induces the
lowest increase in the training loss after the truncation. More details are given in Appendix [A]

With the r-term truncation, for LSVT, GSVT, and ISVT, the storage requirement reduces from mn to
(m 4+ n)r. We use SVD,.(W) € R™*" to denote the SVD r-truncated matrix of W € R™*™.

In LSVT, GSVT, and ISVT, our aim is to minimize the accuracy drop resulting from truncation by ensuring
that each weight matrix, W, exhibits high compressibility. This compressibility is characterized by a rapid

Under review as submission to TMLR

- " *-'-

Post Training (Standard Pipeline): Post Training (Our Pipeline):

Figure 1: Illustrative example showcasing the standard (left) and our (right) pipelines. Here, a factorization of 2
is applied to each weight matrix in a simple 2-layered neural network. Post-training, conventional methods employ
singular value truncation on the trained weights, whereas in our approach, singular value truncation is conducted on
the product of two trained matrices for each weight matrix.

i

=
|Activation |
|Activation |

| svD,(w,)

|Activation |
|Activati0n |

decay in the singular values of W. Such a decay pattern enables us to discard a substantial number of singular
values without significantly sacrificing accuracy. Consequently, this property enhances the effectiveness of
the compression process. Based on this discussion, a notable insight emerges:

The faster the singular values of W decay, the more favorable the compression outcome using SVD. This
observation leads to the desire for W to be of low rank, as low-rank matrices exhibit a faster decay in
singular values. The question that naturally arises is: How to enforce low-rankness in W during training
while preserving the DNN structure at the inference phase?

Next, we propose our method of low-rank promoted training through the composition of linear layers before
activation.

4.1 The Proposed LoRITa Framework

Our method is simple:

e During training, we employ overparametrization along with weight decay of suitable strength to achieve
maximal rank compression in a global manner without sacrificing the model’s capacity.

e Thanks to the overparametrized nature of the training procedure, post training, we have the flexibility of
employing a fixed-rank layer-wise singular value truncation, a global singular value truncation, or iterative
singular value truncation on the product of the appended trained matrices.

In the training process, we express each trainable weight matrix W € R™*"™ as a composition of N > 1
matrices: W = WIW?2. . W Here, W! € R™*" and subsequent matrices W2, W3, ... WV ¢ R"xn,
For the model given in Equation , the input/output relation becomes:

y©@.x) =[] W’Z...a(T Wi I] W’fx)), (3)

ke[N] ke[N] ke[N]

where © = {W¥ Vk € [N],Vi € [L]}. The training minimizes the objective
1 j
win L S 3% 42 Y Y W%,
ielJ] JE[N]I€[L]
where A is the weight decay parameter, and J is the number of data points in the training set. We note that
the proposed factorization works for m > n and m < n.

Throughout the training process, we optimize the weight matrices W¥, for all i € [L], and k € [N]. Fol-
lowing the training phase, SVD r-truncation is applied to each product W; := er[N] WE. This involves

Under review as submission to TMLR

W RT T _>| Reshape |—> l
2| 2 B F, o
*E‘:ﬁ K@ | - SVTwithr |, 3L > -
kK B 4| = & 2
:
S

[l

Compression
Fy X Fy

Trainin
Fy X Fyy
= Z
B
1x1
3
B
x1
2
*
%
x 1
2

S
Inference: (1*‘;1)*H
Lx..m Z

Figure 2: Tllustrative block diagram showcasing the compression (top), training (middle), and inference (bottom) for
every convolution layer in CNNs. Here, ‘*’ denotes the convolution operator.

decomposing the weight matrix into two low-rank factors, and only these factors are retained for storage.
The underlying concept is that a model trained in this manner exhibits enhanced compressibility compared
to the original model described by Equation . The resulting weight matrices W; demonstrate a faster
decay in singular values. This strategic approach to training and approximation aims to achieve a more
compact and efficient representation of the neural network trained weights, and preserve structure during
inference. The procedure is outlined in Algorithm[I} Figure[I] presents an example of our proposed method.

The matrices that correspond to the weights of attention layers are treated in a similar fashion as fully-
connected layers.

For convolutional layers, the fourth-order tensor K, with dimensions Fy x Fyy x Fp x M, is reshaped into
a matrix. This is achieved through a mode-4 unfolding, resulting in a matrix K®* of size FyFw Fp x M.
K@ is then expressed as a composite of N matrices, denoted as K*) = K'K?...K~. Throughout the
training phase, each K is updated as a weight matrix. Post-training, SVD with r-truncation is applied to
K@ = K'K?...K" to obtain low-rank factors L and R, each with 7 columns, ensuring that K(* ~ LR .
During the inference phase, we first compute the convolutions of the input with the filters in L reshaped
back to tensors, then apply R to the output of the convolutions. More specifically, we reshape L back to a
fourth-order tensor of size Fyy x Fy x Fp x r, denoted by L, then we conduct its convolution with the input

Fg—1Fw—1Fp—1

O(r,ym)= Y Y Z (¢ + i,y + 4, k)L, 5. k,m') |

=0 4j=0 k=0

with m’ € [r]. The final output is obtained as

(x,y,m Z (x,y,m)R(m,m') .

Compared to the convolution in Equation , the computational cost for a single convolution operation is
reduced from O(FyFwFpM) to O(FyFw Fpr). Similarly, the storage requirements are also decreased by
a comparable magnitude. Figure [2]illustrates the operations performed with CNNs. Next, We will explain
the rationale behind our proposed approach.

4.2 Theoretical Underpinnings of LoRITa

In this subsection, we present theoretical results, providing support to the proposed low-rank training ap-
proach.

Under review as submission to TMLR

Algorithm 1 Low-Rank Promoted Training Through Linear Layers Composition.

Input: L trainable weights W,,Vi € [L], factorization parameter N > 1, & singular value truncation
parameter r.
Output: Compressed and trained Weights.

1: For each i € [L]

2: Replace W; by Wi, ... WV

3: Train W¥ Vi € [L],Vk € [N] using Adam and weight decay.
4: For each i € [L]

50 Use SVDr([],c v WF) instead of W;

4.2.1 Weight Decay Regularization & Low-Rankness in LoRITa

Here, we start by stating the following proposition where the proof is given in Appendix [B:1]

Proposition 4.1. Let A € R™*™ be an arbitrary matriz and r < min{m,n} be its rank. For a fixed integer
M € Zy, A can be expressed as the product of M matrices R; € R™i*™ e, A = Hie[M] R, (miz1=n; >,
t=1,.,.M —1, my = m, ny = n), in infinitely many ways. For any p € (0,1] and p; > 0, Vi € [M],
satisfying Zie[M] ;z% = %, it holds

/
g;{/pi)lp s.t. HRZ-:A. (4)

|Al, = min (p > |R:
i€ [M] | ie[M)

ic[M

Proposition slightly extends Theorems 4 and 5 from (Shang et all |2016)), in its requirement on the
dimensions of the factors R;. Furthermore, we do not assume any prior knowledge of the rank of A, which
is conventionally set to its upper bound min{m,n}.

Proposition [{.]] indicates that the Schatten-p norm of any matrix is equivalent to the minimization of the
weighted sum of Schatten-p; norm of each factor matrix by which the weights of these terms are 1% for all
i€ [M].

For p=1, M =2, and p; = ps = 2, Equation reduces to

o1
JAlL = min = ([RiJ? + [Ral?) st RiRa=A. (5)
Ri,Ro 2
For some integer g > 1, let p = %, M = 2q, and p; = py = --- = paq = 2. Then, Equation becomes:
. 1 2\?
1Al = min (50> IRE)" st [Ri= A)
i€[2q] i€[2q]

If p € (0, 1], minimizing the Schatten p-norm encourages low-rankness. A smaller p strengthens the promotion
of sparsity by the Schatten p-norm (Nie et al.|[2012). Think of the A matrix in Equation and Equation @
as weight matrices in FCNs, matricized convolutional layers in CNNs, or matrices representing query, key, and
value in attention layers. These identities (Equation and Equation @) imply that by re-parameterizing
the weight matrix A as a product of 2¢q other matrices R,;, where i € [2¢], and using R; (instead of A) as the
variable in gradient descent (or Adam), the weight decay on the new variable corresponds to the right-hand
side of Equation @ Additionally, Equation @ suggests that the more R; we use to represent A, the lower
rank we obtain for A. This explains why our proposed model in Equation can achieve a lower rank for
the weights compared to the traditional formulation in Equation .

Remark 4.2. While theoretically, increasing N suggests an enhancement in the low-rankness of the appended
trained weights, in practice, this leads to prolonged training durations. In experiments, we observe that N = 3
is usually sufficient to achieve near-optimal performance, under affordable computational cost. Moreover,
prioritizing shorter test times for large models is particularly crucial. This consideration is significant,

Under review as submission to TMLR

especially given that testing or inference happens continuously, unlike training, which occurs only once or
infrequently. This aspect significantly affects user experience, especially on resource-limited devices where
compressed models are often deployed.

Remark 4.3. In contrast to previous works, Proposition the foundation of LoRITa, reveals that we
do not assume that the weights are strictly low-rank nor require the knowledge of the weight matriz’s (ap-
prozimate) rank during the training phase. Consequently, our approach encourages low-rankness without
compromising the network’s capacity.

Remark 4.4. The benefit of overparametrization in network training has been observed previously in (Khodak
et all,|2021; |Arora et all, |2018; |Guo et al., |2020; | Huh et al,|2021) for various reasons. (Arora et al., |2018)
proved that overparametrization can accelerate the convergence of gradient descent in deep linear networks
by analyzing the trajectory of gradient flow. (Guo et all, |2020) found that combining overparametrization
with width expansion can enhance the overall performance of compact networks. (Huh et all |2021) noted
through experiments that overparametrization slightly improves the performance of the trained network, and
deeper networks appear to have better rank regularization. These previous works focus on performance and
acceleration. Our work complements these findings, providing numerical and theoretical evidence to justify
the benefits of overparametrized weight factorization in network compression due to the weight decay behaving
as a rank regularizer. Further discussions for these methods are provided in Appendiz[C

4.2.2 Sufficiency of a Single Weight Decay Parameter in LoRITa

When applying Proposition [£.1] to nonlinear networks, one can only do it layer by layer. For each layer, one
has to add the Schatten-p norm regularization of its weight matrix to the objective function to penalize the
rank. Since the penalty for different weight matrices may have different strengths, we arrive at the following

optimization problem
1 =
m@ln j Z E(y(@,xl), yz) + Z O‘l”WlHZ)
i€[J] le[L]
where © = {W,l € [L]}, and oy > 0 are the strengths of the penalties. Let us set p = + with some
even integer K. Then for each weight matrix, we apply Proposition [£.I] to enable a re-parametrization of
the weight matrix into a depth-K deep matrix factorization. This turns the above optimization into the

following equivalent form that avoids the computation of SVD on-the-fly
1 L o » K
. l i
Hgnjzg(y(@vxi),yi)+ZTZ”WIH%‘v (7)
i=1 1=1 i=1

where © = {Wi | € [L],i € [K]}.

However, Equation @ still has too many tuning parameters «y, ! € [L]. Fortunately, for ReLU networks, we
can reduce the number of hyperparameters to 1 as will be shown in the following Proposition. The proof is
deferred to Appendix

Proposition 4.5. With ReLU activation, the optimization problem Equation (@ s equivalent to the follow-
ing single-hyper-parameter problem

J L K
o1 i
min ~ E Uy (©,%;),yi) + A E E Wil , (8)
i=1 =1 1i=1

in the sense that they share the same minimizers.

Remark 4.6. Proposition[[.5 supports the practice of using a single weight decay parameter during network
training, as is commonly done in the literature.

5 Experimental Results

5.1 LoRITa Evaluation on FCNs, CNNs, & ViTs

To rigorously evaluate the effectiveness of our proposed LoRITa method in achieving a rank reduction, we
first consider FCNs, CNNs; and ViTs (motivated by the composition of their attention layers, which are

Under review as submission to TMLR

Model Dataset N=1 N=2

Model Dataset N=1 N=2 N= CNN-VGGI3 CIFARI0 0919 0.922
FCN-6 MNIST 0.983 0.982 0977 CNN - ResNet18 CIFAR10 0.928 0.927
FCN-8 MNIST 0.983 0.982 0977 CNN - VGG13 CIFAR100 0.678 0.686
FCN-10 MNIST 0.983 0.981 0.977 CNN - ResNetl8 CIFAR100 0.708 0.714
ViT-L8-H1 CIFAR10 0.717 0.729 0.727 ViT-L4-H8 CIFAR10 0.861 0.852
ViT-L8-H4 CIFAR10 0.710 0.718 0.701 ViT-L8-H8 CIFARI0 0.865 0.857
ViT-L8-H8 CIFAR10 0.705 0.719 0.714 ViT-L16-H8 CIFARI0O 0.856 0.867

(a) Without data augmentation. (b) With data augmentation.

Table 1: Test Accuracy results of standard (N = 1) and LoRITa (N > 1) models

essentially built from fully connected layers). The evaluation criterion is the reduction in accuracy w.r.t.
the percentage of Retained Singular Values. The latter is defined as the number of retained singular values
divided by the total number of singular values per matrix, averaged across all trained matrices. As a result,
the drop in accuracy is computed by subtracting the testing accuracy with SVT from the testing accuracy
without applying SVT.

A variety of models, datasets, and over- 6-layer FCN (LSVT) 8-layer FCN (LSVT) 10-tayer FCN(LSVT)
parameterization scenarios are consid-
ered, as outlined in Table[l} For the ViT
models, the number following ‘I’ and
‘H’ represents the number of layers and

Accuracy Drop (%)
I
8

Accuracy Drop (%)
Accuracy Drop (%)

5 10 15 20 25 30 0 5 10 15 20 25 30 5 10 15 20 25 30

the number Of heads, reSpeCtively. For Retained Singular Values (%) Retained Singular Values (%) Retained Singular Values (%)
comparison with baselines, we consider 6-layer FCN (GSVT) 8-layer FCN (GSVT) 10-layer FCN (GSVT)

the models with N = 1 (models with-
out overparameterization using LoRITa
during training). Further experimental
setup details can be found in the caption
of Table[I] We use PyTorch to conduct 5 10 15 20 25 30 o 5 10 15 20 25 30 0 5 10 15 20 25 30

] . Retained Singular Values (%) Retained Singular Values (%) Retained Singular Values (%)
our experiments, and our code will be Figure 3: Results of the FCNs in Table The top (resp. bottom) row
released at a later date.

corresponds to applying the Local (resp. Global) SVT. N = 1 results
represent the baseline, whereas N > 1 results are for the LoRITa-trained
models.

o

Accuracy Drop (%)

Accuracy Drop (%)
Accuracy Drop (%)

In each experiment, our initial phase
consists of training the baseline model
with optimal weight decay settings to achieve the highest achievable test accuracy. Subsequently, we apply
the LoRITa method to re-parameterize the original model. This process involves initializing from a random
state and tuning the weight decay to ensure that the final test accuracies remain comparable to those of the
initial models. See the test accuracies in Table [1

Subsequently, we implement SVT on the weight matrices to compress the model, examining the impact on
test accuracy as smaller singular values are eliminated. We delve into the LSVT and GSVT strategies, as
discussed in Section [4] to determine which singular values to eliminate.

When employing GSVT on ViTs, singular values within the attention and fully connected layers are inde-
pendently managed. Similarly, for CNNs, compression is applied distinctly to both the convolutional and
fully connected layers, treating each type separately.

First, we evaluate our proposed method on fully connected neural networks, varying the number of layers,
utilizing the Adam optimizer with a learning rate set to 1 x 1072, and employing a constant layer dimension
of 96 (other than the last). Overparameterization is applied across all layers in the model. To ensure a
fair comparison, we begin by tuning the baseline model (N = 1) across a range of weight decay parameters
{5x107%,1x1075,2x107%,5x107°,1 x 107%,2 x 10~*}. Subsequently, we extend our exploration of weight
decay within the same parameter range for models with N > 1. As depicted in Table[Ia] setting N to values
larger than one results in closely matched final test accuracies. The results for FCNs on the MNIST dataset
are illustrated in Figure [3] In these plots, LSVT (resp. GSVT) is employed for the top (resp. bottom) three
plots, providing insights into the effectiveness of the proposed technique.

Under review as submission to TMLR

VGG13 (LSVT) CIFARI0 ResNet18 (LSVT) CIFAR10 VGG13 (LSVT) CIFAR100 ResNet18 (LSVT) CIFAR100
~ 0 -~ 0 -~ 0 — < 0
g 20 g0 &-20 g-20
la) o _ a a
> —-40 > 40 > _a0 g _40
£ 60 £ 60 £ s
o o o _ O 60
< -80 < -80 &% <
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Retained Singular Values (%) Retained Singular Values (%) Retained Singular Values (%) Retained Singular Values (%)
VGG13 (GSVT) CIFAR10 ResNet18 (GSVT) CIFAR10 VGG13 (GSVT) CIFAR100 ResNet18 (GSVT) CIFAR100
< 0 s 0 -~ 0 -~ 0
e 2 S g
g2 g 20 §-20 g2
a o _ a a
> -40 > 40 > a0 > 40
£ 60 — N=1 £ 60 | — N=1 £ £
o N 9 — N= o _ Y —60
< -80 N=211 & _gof) N=2 g 60 g
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Retained Singular Values (%) Retained Singular Values (%) Retained Singular Values (%) Retained Singular Values (%)

Figure 4: Low-rank compression results of the considered CNNs using the CIFAR10 (left) and the CIFAR100 (right)
datasets for the settings in Table N =1 denotes the baseline, whereas N = 2 represents our method.

4-layer ViT (LSVT) 8-layer ViT (LSVT) 16-layer ViT (LSVT)

0 =]

As observed, in almost all the considered cases, mod-
els trained with N > 1 achieve better compression
results (w.r.t. the drop in test accuracy) when com-
pared to the N = 1 models. For the example of the

lo_layer FCN model (Wlth GSVT)a uSing LoRITa RetainidSm;glarV:iles("ieo) Retamsedsin;u\ar\/;lsues1%? Retainzd&néglarv:?ues("z/e[)’
with N' = 3 achieves no drop in test accuracy by = 4-layer ViT (GSVT) 8-layer ViT (GSVT) 16-layer ViT (GSVT)
keeping only 15% of the singular values. When — E —
LoRITa is not employed (N = 1), the model is re-
quired to retain approximately 22% of the singular
values in order to achieve the zero drop in test accu- ' s
racy. It is important to highlight that the strength Retoined Singular Values (4] Retaines Sguar vatues (0 Retained Smgular Vaues (%)
of the parameter A associated with the sparsity-)} .4 viT (LSVT) 4-head VIT (LSVT) $-head ViT (LSVT)
promoting regularizer (in this instance, weight de- .

cay) is not selected to maximize the compression S-10
rate. Instead, the choice of A is geared towards

N=1
N=2 /

Accuracy Drop (%)
A
S
Accuracy Drop (%)
Accuracy Drop (%)

0 — 0 0

— N=1
N=2

Accuracy Drop (%)
A
S
Accuracy Drop (%)
A
S

Accuracy Drop (%)
A
3

N=2

-30

Accuracy Drop (%)
&
S

Accuracy Drop (%)
L
S o
Accuracy Drop (%)

. P -40 _ _40 — N=1

maximizing the test performance of the network, as 5 -s o —s0 — =

. . . . -60 _ B
is conventionally done. Remarkably, adopting this 0 5 10 15 20 T o 15 20
Retained Singular Values (%) Retained Singular Values (%) Retained Singular Values (%)

approach still yields a commendable compression
rate. In Appendix we empirically demonstrate Figure 5: Low-rank compression of ViT models with data

the faster decay of the singular values of the trained augmentation with varied attention heads and layers. The
weights (top) and (bottom) plots correspond to the settings of Ta-

ble and Table respectively. N = 1 denotes the
Next, we evaluate the performance of our proposed baseline, while N = 2 and N = 3 represent our method.

method on the well-known VGG13 and ResNet18

architectures using the CIFAR10 and CIFAR100 datasets. The learning rate applied in this evaluation is
set to 3 x 1074, The weight decay was searched over {1 x 10725 x 1073,1 x 1073} for CIFAR10 and
{1x1075,5%x107°,1 x 10~*} for CIFAR100. The results are depicted in Figure[4dl Consistent with the FCN
results, we observe improved compression outcomes for models trained with LoRITa. The findings from the
CNN results suggest that, despite using a straightforward matricization of the convolutional filter (Figure|2)),
enhanced compression results are still evident. For the instance of VGG13, GSVT, and CIFAR100, retaining
20% of the singular values, not using LoRITa results in 60% drop in accuracy, whereas our LoRITa-trained
model only results in nearly 5% drop in test accuracy. Furthermore, we observe that the test accuracy of
the compressed model when LoRITa is applied is slightly higher than the test accuracy of the uncompressed
model. This is reported at approximately 656% retained singular values when N = 2 in Figure left).

To validate the efficacy of our compression technique, we evaluate it using ViTs (Beyer et al.} 2022)), which are
noted for their capability to deliver leading-edge image classification outcomes with adequate pre-training. To
comprehensively show that our training approach can yield a model of lower rank under various conditions,

10

Under review as submission to TMLR

we first test our method on the CIFARI10 image classification task without data augmentation, employing
ViTs with different head counts. Following this, we evaluate our approach on larger ViTs, incorporating data
augmentation.

All the considered ViT models underwent optimization via the Adam optimizer with a learning rate of
3x 1074, The hidden dimension is 256 for all ViTs. To facilitate compression, we apply overparameterization
across all attention modules within the model. For a fair comparison, we initially fine-tuned the baseline
model (N = 1) across the following weight decay parameters {5 x 10751 x 1074,2 x 107%,5 x 10741 x
1073,2 x 1073}. Subsequently, we explore weight decay within the same range for our models. As evidenced
in Table [Ta] and Table [TB] setting N to different values results in closely matched final test accuracies.

The compression effects on ViT models without data augmentation are depicted in Figure top). We note
that with a higher N value, it is possible to achieve a lower model rank. The baseline model’s test accuracy
begins to decline at an 85% compression rate (retaining 15% of the singular values), whereas the case of
N = 3 leads to stable test accuracy even at a 95% compression rate (retaining 5% of the singular values). We
extend our evaluation to include ViTs with different layers and data augmentation (Figure [f|bottom)). The
use of data augmentation displayed a considerable improvement in testing accuracy (before compression)
as shown when comparing the ViT results of Table and Table Nevertheless, employing our method
consistently resulted in models of a lower rank, as illustrated in Figure|sl The outcomes consistently indicate
that our training approach results in models with a lower rank compared to employing only weight decay,
across a variety of training configurations and network architectures.

5.2 Comparison with Structured Pruning & Low-Rank Training Baselines on CNNs

Here, we compare our LoRITa compression method with structured pruning and low-rank training techniques
delineated in Section [2] The metrics employed for this comparison are the required FLOPs and the number
of parameters dropped after compression/pruning, computed using the ‘ptflops’ Python packagdﬂ The
outcomes are showcased in Table [2| for the ResNet20 architecture and Table [3] for the VGG-16 architecture,
both trained on the CIFAR10 dataset. The columns denote: 1) Test accuracy before pruning (%); 2) Test
accuracy after pruning/compression (%); 3) Accuracy Drop (%); 4) FLOPs after pruning/compression (M);
5) FLOPs drop (%); 6) Pruned model parameters (M); 7) Parameters drop (%). The results of the structure
pruning baselines are as reported in Table 3 and Table 5 of (He & Xiao] |2023) for ResNet20 and VGG-16,
respectively, with arrows indicating preferable results. The results of the low-rank training baseline, LCNN
Idelbayev & Carreira-Perpinan| (2020), are reported from Table 1 in (Xiao et al., 2023]). We note that we
exclude the method proposed in (Xiao et al.,|2023) because it leverages additional hardware information to
train the model.

It’s important to underscore that the reported structured pruning results in these tables are ranked based
on the best achievable FLOPs drop percentage, as reducing FLOPs is the most desirable outcome when
compressing and/or pruning NNs. We select the best baselines with respect to FLOPs and parameter drop,
hence the different sets of methods for each architecture.

For LoRITa and the baseline (N = 1), we apply GSVT, followed by implementing the ISVT approach for
which only 120 training data points were used to compute the loss. Apart from using N = 2 and N = 3,
the different results of LoRITa correspond to applying ISVT with different desired compression rates (see
Appendix [A| for more details). Here, we use SGD with learning rate 10~2. Furthermore, it’s noteworthy
that following all the considered baselines, the reported results for LoRITa in Tables [2| and [3] are post one
round of fine-tuning, whereas most of the considered baselines employ multiple rounds of fine-tuning of the
compressed model. As long as the top-1 accuracy isn’t compromised by much (approximately 2%, as per
(He & Xiao, [2023))), larger FLOPs drop signifies better compression methods. It’s also imperative to note
that the last column, Parameters drop, is vital as it signifies the amount of memory reduction.

For VGG16, our results boast the best FLOPs drop and demonstrate competitive parameter drop. In the case
of ResNet20, our results achieve the best parameter drop and FLOPs drop compared to structured pruning
methods. When compared to the low-rank training baseline (LCNN), our method outperforms LCNN in

Thttps://pypi.org/project/ptflops/

11

https://pypi.org/project/ptflops/

Under review as submission to TMLR

Method Acc.(%) (1) Pruned Acc.(%) (1) Acc. Drop (%) (1) Pruned FLOPs(M) (1) FLOPs Drop(%) (1) Pruned Model Param.(M) (}) Param. Drop(%) (1)
LoRITa (N =: 91.63 91 -0.63 18.47 54.7 0.11 61
LoRITa (7 90.54 -1.09 15.44 0.084 68.8
LoRITa (N 90.17 -1.46 15.06 0.078 71
LoRITa (1 91.64 -0.69 19.09 0.12 55.8
LoRITa (] 90.27 -2.06 19.09 0.086 67.9

90.26 -2.08 17.52 572 0.096 64.2

90.01 -2.33 16.03 60.09 0.094 64.9

SOKS (Liu et al.|[2022 92.05 90.78 -1.27 15.49 62.04 0.14 48.14

SCOP (Tang et al.|[2020 92.22 90.75 144 18.08 55.7 0.12 56.3

Hinge (L1 et al.{}2020 92.54 91.84 -0.7 18.57 54.5 0.12 55.45

GCNP [Jiang et al.[(2022 92.25 91.58 -0.67 20.18 50.54 0.17 38.51

ABP (Tian et al.[}2021 92.15 91.03 -1.12 21.34 47.7 0.15 45.1

LCNN {Idelbayev & Carreira-Perpindn] 2020 91.25 90.13 -0.12 13.56 66.78 0.093 65.38

Table 2: Evaluation of LoRITa models as compared to SOTA structured pruning/low-rank training methods using
ResNet20 on CIFAR10. The results of the structured pruning methods are reported according to Table 5 in (He &
Xiao, [2023) (most recent survey paper) and ranked according to the FLOPs drop percentage. The last row results
are reported from Table 1 in (Xiao et al.|2023). The ResNet20 FLOPs (resp. parameters) is 40.81M (resp. 0.27M).

Method Acc.(%) (1) Pruned Acc.(%) (1) Acc. Drop (%) ({) Pruned FLOPs(M) (}) FLOPs Drop(%) (1) Pruned Model Param.(M) (}) Param. Drop(%) (1)
LoRITa (N =: 93.62 93.07 -0.55 47.73 84.8 0.79 94.6
LoRITa (! 93.62 92.58 -1.04 42.59 86.43 0.66 95.5
LoRITa (93.62 92.19 -1.43 38.49 87.74 0.465 96.84
LoRITa (1 93.62 91.21 -2.41 30.1 90.41 0.465 97.58
LoRITa (1 94.13 93.23 0.9 50.21 84.03 0.94 93.64
LoRITa (1 94.13 92.8 133 40.09 87.23 0.664 95.48
LoRITa (1 94.13 92.00 -2.13 36.72 88.31 0.514 96.5
93.78 92.09 -1.69 57.4 81.8 1.16 92.1
93.78 91.19 -2.59 42.43 86.4 0.935 93.4
DECORE (Setting 1) {Alwani et al.| 2022 93.96 91.68 228 36.95 88.25 0.26 98.26
DECORE (Setting 2) (Alwani et al.||2022 93.96 92.44 -1.22 51.34 83.68 0.5 96.6
PFP (Liebenwein et al.[|[2019 92.89 92.39 -0.5 47.09 85.03 0.84 94.32
OTO {Chen et al.[2021} 91.6 91 -0.6 51.28 83.7 0.37 97.5
ABP (Than et al.[J2021 93.96 92.65 -1.31 52.81 83.21 1.5 89.79
EDP (Ruan et al.[12021} 93.6 93.52 -0.08 62.57 80.11 0.65 95.59
CHIP {Sui et al.[[202] 93.96 93.18 -0.78 67.32 78.6 1.87 87.3
DLRFC {He et al.[12022] 93.25 93.64 -0.39 72.51 76.95 0.83 94.38
HRank {Lin ct al.| (2020 93.96 91.23 273 73.9 76.51 175 88.12
EPruner {Lin et al.{l2021} 93.02 93.08 0.06 74.42 76.34 1.65 88.8
CLR-RNF (Lin et al.[[2022 93.02 93.32 0.3 81.48 74.1 0.74 95
LCNN (Idelbayev & Carreira-Perpindn|[2020 92.78 92.72 -0.06 15.71 85.47 1.45 91.14

Table 3: Evaluation of LoRITa models as compared to SOTA structured pruning/low-rank training methods using
VGG16 on CIFAR10. The results of the structured pruning methods are reported according to Table 3 in (He &
Xiao, [2023) (most recent survey paper) and ranked according to the FLOPs drop percentage. The last row results
are reported from Table 1 in (Xiao et al.,2023)). The VGG16 FLOPs (resp. parameters) is 314.59M (resp. 14.73M).
Settings 1 and 2 for DECORE correspond to using different hyper-parameters including the penalty on incorrect
predictions (Alwani et al., |2022).

VGG16 while slightly underperforming in ResNet20 in terms of FLOPs drop. However, it is important to
mention that LCNN is significantly more expensive to run, as it requires computing the SVD for every matrix
at each iteration during training. In addition to the expensive training, the strong penalty term in LCNN
prevents it from reaching the same test accuracy as other methods before compression, resulting in non-
competitive test accuracy after pruning even with a small compression rate. Moreover, we observe that for
both the considered architectures, with any fixed level of accuracy drop, our N = 3 model, on average,
outperforms our N = 2 model in terms of both FLOPs drop and parameter drop. Furthermore, LoRITa
models achieve improved performance when compared to applying ISVT on the baseline model (N = 1).

6 Conclusion & Future Work

In this study, we introduced a novel approach, Low-Rank Induced Training (LoRITa). This theoretically-
justified method promotes low-rankness through the composition of linear layers and achieves compression
by employing singular value truncation. Notably, LoRITa accomplishes this without necessitating changes to
the model structure at inference time, and it avoids the need for constrained or additional optimization steps.
Furthermore, LoRITa eliminates the requirement to initialize with full-rank pre-trained models or specify
rank selection before training. Our experimental validation, conducted on a diverse range of architectures
and datasets, attests to the effectiveness of the proposed approach. Through rigorous testing, we have
demonstrated that LoRITa yields compelling results in terms of model compression and resource efficiency,
offering a promising avenue for addressing the challenges associated with deploying deep neural networks on
resource-constrained platforms.

In future works, we plan to develop more efficient fine-tuning methods for LoRITA-compressed models for
which (7) larger datasets such as ImageNet, and (4¢) larger models such as LLMs are considered.

12

Under review as submission to TMLR

References

Manoj Alwani, Yang Wang, and Vashisht Madhavan. Decore: Deep compression with reinforcement learning.
In Proceedings of the IEEE/CVFE Conference on Computer Vision and Pattern Recognition, pp. 12349—
12359, 2022.

Sanjeev Arora, Nadav Cohen, and Elad Hazan. On the optimization of deep networks: Implicit acceleration
by overparameterization. In International Conference on Machine Learning, pp. 244-253. PMLR, 2018.

Lucas Beyer, Xiaohua Zhai, and Alexander Kolesnikov. Better plain vit baselines for imagenet-1k. arXiv
preprint arXiv:2205.01580, 2022.

Tianyi Chen, Bo Ji, Tianyu Ding, Biyi Fang, Guanyi Wang, Zhihui Zhu, Luming Liang, Yixin Shi, Sheng
Yi, and Xiao Tu. Only train once: A one-shot neural network training and pruning framework. Advances
in Neural Information Processing Systems, 34:19637-19651, 2021.

Shuxuan Guo, Jose M Alvarez, and Mathieu Salzmann. Expandnets: Linear over-parameterization to train
compact convolutional networks. Advances in Neural Information Processing Systems, 33:1298-1310, 2020.

Albert Gural, Phillip Nadeau, Mehul Tikekar, and Boris Murmann. Low-rank training of deep neural
networks for emerging memory technology. arXiv preprint arXiv:2009.03887, 2020.

Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen, Jianyuan Guo, Zhenhua Liu, Yehui Tang, An Xiao,
Chunjing Xu, Yixing Xu, et al. A survey on vision transformer. IEEFE transactions on pattern analysis
and machine intelligence, 45(1):87-110, 2022.

Cole Hawkins, Xing Liu, and Zheng Zhang. Towards compact neural networks via end-to-end training: A
bayesian tensor approach with automatic rank determination. SIAM Journal on Mathematics of Data
Science, 4(1):46-71, 2022.

Yang He and Lingao Xiao. Structured pruning for deep convolutional neural networks: A survey. IFEE
Transactions on Pattern Analysis and Machine Intelligence, 2023.

Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. Filter pruning via geometric median for deep
convolutional neural networks acceleration. In Proceedings of the IEEE/CVFE conference on computer
viston and pattern recognition, pp. 4340-4349, 2019.

Zhigiang He, Yaguan Qian, Yuqi Wang, Bin Wang, Xiaohui Guan, Zhaoquan Gu, Xiang Ling, Shaoning
Zeng, Haijiang Wang, and Wujie Zhou. Filter pruning via feature discrimination in deep neural networks.
In European Conference on Computer Vision, pp. 245—261. Springer, 2022.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv preprint
arXiv:1508.02531, 2015.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685,
2021.

Minyoung Huh, Hossein Mobahi, Richard Zhang, Brian Cheung, Pulkit Agrawal, and Phillip Isola. The
low-rank simplicity bias in deep networks. arXiv preprint arXiv:2103.10427, 2021.

Yerlan Idelbayev and Miguel A Carreira-Perpinan. Low-rank compression of neural nets: Learning the rank
of each layer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 8049-8059, 2020.

Di Jiang, Yuan Cao, and Qiang Yang. On the channel pruning using graph convolution network for convo-
lutional neural network acceleration. In IJCAI pp. 3107-3113, 2022.

Mikhail Khodak, Neil Tenenholtz, Lester Mackey, and Nicolo Fusi. Initialization and regularization of
factorized neural layers. arXiv preprint arXiv:2105.01029, 2021.

13

Under review as submission to TMLR

Raghuraman Krishnamoorthi. Quantizing deep convolutional networks for efficient inference: A whitepaper.
arXi preprint arXiv:1806.08342, 2018.

Soo Min Kwon, Zekai Zhang, Dogyoon Song, Laura Balzano, and Qing Qu. Efficient compression of overpa-
rameterized deep models through low-dimensional learning dynamics. arXiv preprint arXiv:2311.05061,
2023.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to docu-
ment recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

Yawei Li, Shuhang Gu, Christoph Mayer, Luc Van Gool, and Radu Timofte. Group sparsity: The hinge
between filter pruning and decomposition for network compression. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 8018-8027, 2020.

Zhuo Li, Hengyi Li, and Lin Meng. Model compression for deep neural networks: A survey. Computers, 12
(3):60, 2023.

Lucas Liebenwein, Cenk Baykal, Harry Lang, Dan Feldman, and Daniela Rus. Provable filter pruning for
efficient neural networks. arXiv preprint arXiv:1911.07412, 2019.

Lucas Liebenwein, Alaa Maalouf, Dan Feldman, and Daniela Rus. Compressing neural networks: Towards
determining the optimal layer-wise decomposition. Advances in Neural Information Processing Systems,
34:5328-5344, 2021.

Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang, Baochang Zhang, Yonghong Tian, and Ling Shao.
Hrank: Filter pruning using high-rank feature map. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 1529-1538, 2020.

Mingbao Lin, Rongrong Ji, Shaojie Li, Yan Wang, Yongjian Wu, Feiyue Huang, and Qixiang Ye. Network
pruning using adaptive exemplar filters. IEEE Transactions on Neural Networks and Learning Systems,
33(12):7357-7366, 2021.

Mingbao Lin, Liujuan Cao, Yuxin Zhang, Ling Shao, Chia-Wen Lin, and Rongrong Ji. Pruning networks
with cross-layer ranking & k-reciprocal nearest filters. IEEE Transactions on neural networks and learning
systems, 2022.

Shaohui Lin, Rongrong Ji, Chao Chen, Dacheng Tao, and Jiebo Luo. Holistic cnn compression via low-rank
decomposition with knowledge transfer. IEEFE transactions on pattern analysis and machine intelligence,
41(12):2889-2905, 2018.

Guangzhe Liu, Ke Zhang, and Meibo Lv. Soks: Automatic searching of the optimal kernel shapes for
stripe-wise network pruning. IEFE Transactions on Neural Networks and Learning Systems, 2022.

Giosué Cataldo Maring, Alessandro Petrini, Dario Malchiodi, and Marco Frasca. Deep neural networks
compression: A comparative survey and choice recommendations. Neurocomputing, 520:152-170, 2023.

Shervin Minaee, Yuri Boykov, Fatih Porikli, Antonio Plaza, Nasser Kehtarnavaz, and Demetri Terzopoulos.
Image segmentation using deep learning: A survey. IEEFE transactions on pattern analysis and machine
intelligence, 44(7):3523-3542, 2021.

Feiping Nie, Heng Huang, and Chris Ding. Low-rank matrix recovery via efficient schatten p-norm min-
imization. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 26, pp. 655-661,
2012.

Saiprasad Ravishankar, Jong Chul Ye, and Jeffrey A Fessler. Image reconstruction: From sparsity to data-
adaptive methods and machine learning. Proceedings of the IEEE, 108(1):86-109, 2019.

Xiaofeng Ruan, Yufan Liu, Chunfeng Yuan, Bing Li, Weiming Hu, Yangxi Li, and Stephen Maybank. Edp:
An efficient decomposition and pruning scheme for convolutional neural network compression. IEEE
Transactions on Neural Networks and Learning Systems, 32(10):4499-4513, 2021. doi: 10.1109/TNNLS.
2020.3018177.

14

Under review as submission to TMLR

D. E. Rumelhart, J. L. McClelland, and the PDP Research Group. Parallel Distributed Processing: Explo-
rations in the Microstructure of Cognition (Vol. 2). MIT Press, 1986.

Fanhua Shang, Yuanyuan Liu, and James Cheng. Unified scalable equivalent formulations for schatten
quasi-norms. arXiv preprint arXiv:1606.00668, 2016.

Yang Sui, Miao Yin, Yi Xie, Huy Phan, Saman Aliari Zonouz, and Bo Yuan. Chip: Channel independence-
based pruning for compact neural networks. Advances in Neural Information Processing Systems, 34:
2460424616, 2021.

Yang Sui, Miao Yin, Yu Gong, Jingi Xiao, Huy Phan, and Bo Yuan. Elrt: Efficient low-rank training for
compact convolutional neural networks. arXiv preprint arXiv:2401.10341, 2024.

Cheng Tai, Tong Xiao, Yi Zhang, Xiaogang Wang, et al. Convolutional neural networks with low-rank
regularization. arXiv preprint arXiv:1511.06067, 2015.

Yehui Tang, Yunhe Wang, Yixing Xu, Dacheng Tao, Chunjing Xu, Chao Xu, and Chang Xu. Scop: Scientific
control for reliable neural network pruning. Advances in Neural Information Processing Systems, 33:10936—
10947, 2020.

Guanzhong Tian, Yiran Sun, Yuang Liu, Xianfang Zeng, Mengmeng Wang, Yong Liu, Jiangning Zhang, and
Jun Chen. Adding before pruning: Sparse filter fusion for deep convolutional neural networks via auxiliary
attention. IEFEE Transactions on Neural Networks and Learning Systems, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, f.ukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

Roger Waleffe and Theodoros Rekatsinas. Principal component networks: Parameter reduction early in
training. arXiv preprint arXiv:2006.13347, 2020.

Jingi Xiao, Chengming Zhang, Yu Gong, Miao Yin, Yang Sui, Lizhi Xiang, Dingwen Tao, and Bo Yuan.
Haloc: hardware-aware automatic low-rank compression for compact neural networks. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 37, pp. 10464-10472, 2023.

Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang, Bin Cui,
and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of methods and applications. ACM
Computing Surveys, 56(4):1-39, 2023.

Xiyu Yu, Tongliang Liu, Xinchao Wang, and Dacheng Tao. On compressing deep models by low rank and
sparse decomposition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 7370-7379, 2017.

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient convolutional
neural network for mobile devices. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 6848-6856, 2018.

15

Under review as submission to TMLR

A Detailed Description of the Iterative SVT Approach

Here, we provide the exact implementation of the ISVT approach we employ in our paper. In each iteration,
we fix the number of parameters to truncate. Then, we decide which layer for which these parameters are
to be removed by examining which induces the lowest increase in the training loss after the truncation. In
particular, for each iteration, we begin by fixing the number of parameters to truncate, setting this number
to 500. Next, we select a layer, denoted as [, and remove the smallest singular values from this layer until
we have moved 500 parameters. After this truncation, we compute the training loss and store this loss
as E(l). This process is repeated for all layers to identify the layer [that results in the smallest training
loss E(l). Once this layer is identified, we truncate 500 parameters from it. We then proceed to the next
iteration, truncating another 500 parameters. This iterative process continues until the desired compression
rate is reached. To alleviate the computational cost, we use only 120 randomly subsampled training data to
compute E(l).

B Proofs

B.1 Proof of Proposition [4.]

Proof of Proposition[{.1, By Theorem 5 of (Shang et all [2016), we have

Al = min (

st. [[Ri:A,

i€[M]

/pz)

provided that
(RIM, eT ={{T3M, T, eR™>*"i=2,...,.M—1,T; € R"*" Ty € R"™™},
with r being the rank of A € R™*™. We want to show that this result still holds if we replace the set T with
T = {{T M, T e R™>" pyomy >, and myyy =n; fori =1,..., M — 1,np = n,m; = m}.

In other words, we want to show that

min (Z|

/pz) G (ZI /pz) p,

M M "
{Ri}; ;{eTA i€[M] (R} 1RTA i€[M]
Hie[}\l] i Hie[M] T

where the only distinction between the optimizations on the left and right hand sides of this equality lies in
substituting the set 7 under the min operator with 7, so that we allow a more flexible choice of dimensions
of the factors. We will prove this equality by separately proving

)) 1/p .) 1/p
min b /pi> > min o /pi) (10)
iem] T Hie[M] g

and

min (Z\ /pz) "< m (ZI

M M ’
{Ri};2, €T, i€[M)] {R:};2, €77, ic[M]

ic[M] Ri=A Hie[M] Ri=A

nim) " (11)

To prove Equatlon , let {R }T 1 € T be a global minimizer of the optimization on the left hand side

of Equation (|1 We denote by R* the augmented matrices obtained by paddmg/ appending all-zero rows

and columns to each R until its dimension grows from r X 7 to m; X n;. Then, {R}}M is a point in 7. In

16

Under review as submission to TMLR

addltlon since the 0-padding does not change the product nor the Schatten p—norm of the matrices, plugging
{R;}T_| into the left hand side optimization of Equation and {R* _, into the right hand side one
ylelds to:

.) 1/p *1Ds 1/p *
min 52/]71‘) = (Z IR; ﬁé/pi) (Z IR; /p’)
{Ri}i:if;\ ic[M] ie[M] i€[M]
ie[M] T
) _ 1/p
- i (5 i)
H' 1 _a €M
1e[M]

which proves this direction.

To prove Equation , with a little abuse of notation, suppose now {R;}M, € T’ represents a global
minimizer of the right hand side of Equation . Let U € R™*" be the matrix containing the top r left
singular vectors of A (A is of rank-r by assumption), then

A =UUTA =UU'R}---R},.

Next, we want to construct from {R}}*, € T’ a new sequence of matrices of different dimensions {R*}

T Wthh yields equal or a smaller objective value than {R;},. The construction proceeds like the followmg7
first define R} := UUTRlVl, where V7 is the matrix contalmng the first right eigenvectors of UUTRY.
This definition ensures that R} € R™" and ||R;||, < [|R}||,- Fori=2,..., M —1, define R =V, RV, e
R"™" where V;_; was defined in the previous iteration and V; is matrlx holding the top-r right singular
vectors of V] R} as columns. For i = M, define 1?{]*\4 =V, Ri € R™". With this definition, we can
verify the following properties for ﬁ:‘

« (RI}M eT
HR;‘HP < ||R¥]|p, for any i =1, ..., M, since V; have orthonormal columns
N Hie[M] f{:‘ = A, which is due to
A=UU'A
=UU'R;---R},
= (UU'R{V)(V{R;V2)(Vy - V1) (Vi Ryy)
=R!---R,.

Plugging {R;} € T’ and {Rj } € T into the right and left hand sides of Equation respectively yields,

i) 1/p
{R,iI}I}%IIIET~ (Z IR; Z:/m)
HiE[JW]_RiSA i€[M]

= . 1/
<(3 IRl /m)
ie[M]
. 1/p
<(X Imiigm)
ie[M)
i 1/p
= e (X IRdm)
==l e[M)
Hie[M]Ri:A

17

Under review as submission to TMLR

where the first inequality arises because ﬁj € 7 may not represent a minimizer, and therefore, its corre-
sponding objective function value would be greater or equal to the minimum. The second inequality is due to
the second bullet point above, whereas the final equality is due to the assumption that {R}} € T’ represents
a minimizer of the right hand side of Equation . This completes the proof of the second direction. [

B.2 Proof of Proposition [4.5]

Proof of Proposition[{.5. The proposition is derived from the scaling ambiguity inherent in the ReLU acti-
vation. The the scaling ambiguity allows for the output of the network to remain unchanged when a scalar is
multiplied by the weight matrix of one layer and the same scalar is divided by the weight matrix of another
layer.

Let {W}, i € [K],l € [L]}, be the minimizer of Equation . Then by taking

L N\ 1/L
A= g (H Oéz) ; (12)

one can verify that the rescaled weights,

{(BWiie [Kl.Ie L]} with fi=/30 (13)

become the minimizer of Equation and the corresponding minimum coincides with the minimum of
Equation .

Let us first prove that the objective of Equation evaluated at the rescaled weights ﬁle coincides with
the objective of Equation evaluated at the original weights W; Indeed, since Hze[L] B1 =1 (due to the
definition of 8; and \), and the scaling ambiguity, the two networks corresponding to the rescaled weights and
the original weights have identical output. Consequently, when we insert the original and rescaled weights
to Equation and Equation , respectively, the first terms of the objectives are identical. Additionally,
with the chosen value of §;, direct calculations confirm that the second terms in these objectives are also the
same. This indicates that rescaling each weight W; by (£; maintains the consistency of the objective values.

Next, we show that {Ble,i € [K],l € [L]} is a minimizer (may not be unique) of Equation , by
contradiction. If it is not one of the minimizers, then there must exist another set of weights {W%z €
[K],1 € [L]} that achieve lower objective values for Equation . This in turn implies that the reversely
rescaled weights {éW;,z € [K],l € [L]} by f; must achieve the same low value for the original objective

function Equation . This contradicts the assumption that {W?, i € [K],l € [L]} is a minimizer of
Equation . Thus, the proof is concluded. O

C Discussion on Linear Layers Composition Methods For Non-Compression Tasks

Here, we review recent studies that utilize linear composition for non-compression purposes. This means
the methods that involve substituting each weight matrix with a sequence of consecutive layers without
including any activation functions. The study presented in (Guo et al.| |2020)) introduced ExpandNet, where
the primary objective of the composition is to enhance generalization and training optimization. The authors
empirically show that this expansion also mitigates the problem of gradient confusion.

The research conducted in (Khodak et al.l 2021) explores spectral initialization and Frobenius decay in
DNNs with linear layer composition to enhance training performance. The focus is on the tasks of training
low-memory residual networks and knowledge distillation. In contrast to our method, this approach employs
under-parameterization, where the factorized matrices are smaller than the original matrix. Additionally,
the introduced Frobenius decay regularizes the product of matrices in a factorized layer, rather than the
individual terms. This choice adds complexity to the training optimization compared to the standard weight
decay used in our approach.

18

Under review as submission to TMLR

The study conducted in (Huh et al.,2021)) provides empirical evidence demonstrating how linear overparam-
eterization of DNN models can improve the generalization performance by inducing a low-rank bias. Unlike
our work, they did not consider the role of weight decay in enforcing low-rankness.

D Demonstrating the Faster Decay of Singular Values in LoRITa-trained Models

In Figure [6] we empirically demonstrate the faster decay of singular values in LoRITa-trained models. In
particular, Figure [6] (left) (resp. Figure[6] (right)) show the singular values of the first (resp. second) weight
matrix of the standard model (N = 1) and LoRITa-trained models (N = 2 and N = 3) for the FCN8
architecture of Table [Ta] As observed, models trained with LoRITa exhibit faster decay, and increasing N
promotes faster decay.

Layer O Layer 1

10 —— Baseline Model N=1
— LoRITa N=2
0.8 — LoRITa N=3

10 —— Baseline Model N=1
— LoRITa N=2
0.8 —— LoRITa N=3

Normalized Singular Values
Normalized Singular Values

0 20 40 60 80 o 20 40 60 80
SV Index SV Index

Figure 6: Empirically showing the faster decay of singular values of the first two weight matrices (layer 0 (left) and
layer 1 (right)) of the standard model (N = 1) vs. LoRITa-trained models (N = 2 and N = 3) using the FCN8
architecture of Table @

19

	Introduction
	Related Work
	Preliminaries
	Model Compression with LoRITa
	The Proposed LoRITa Framework
	Theoretical Underpinnings of LoRITa
	Weight Decay Regularization & Low-Rankness in LoRITa
	Sufficiency of a Single Weight Decay Parameter in LoRITa

	Experimental Results
	LoRITa Evaluation on FCNs, CNNs, & ViTs
	Comparison with Structured Pruning & Low-Rank Training Baselines on CNNs

	Conclusion & Future Work
	Detailed Description of the Iterative SVT Approach
	Proofs
	Proof of Proposition 4.1
	Proof of Proposition 4.5

	Discussion on Linear Layers Composition Methods For Non-Compression Tasks
	Demonstrating the Faster Decay of Singular Values in LoRITa-trained Models

