
Published in Transactions on Machine Learning Research (11/2024)

Structure-Preserving Network Compression Via Low-Rank
Induced Training Through Linear Layers Composition

Ismail R. Alkhouri∗ alkhour3@msu.edu; ismailal@umich.edu
Department of Computational Mathematics, Science & Engineering
Michigan State University
Department of Electrical Engineering & Computer Science
University of Michigan - Ann Arbor

Xitong Zhang∗ zhangxit@msu.edu
Department of Computational Mathematics, Science & Engineering
Michigan State University

Rongrong Wang wangron6@msu.edu
Department of Computational Mathematics, Science & Engineering
Department of Mathematics
Michigan State University

Reviewed on OpenReview: https: // openreview. net/ forum? id= 1KCrVMJoJ9

Abstract

Deep Neural Networks (DNNs) have achieved remarkable success in addressing many pre-
viously unsolvable tasks. However, the storage and computational requirements associated
with DNNs pose a challenge for deploying these trained models on resource-limited devices.
Therefore, a plethora of compression and pruning techniques have been proposed in re-
cent years. Low-rank decomposition techniques are among the approaches most utilized
to address this problem. Compared to post-training compression, compression-promoted
training is still under-explored. In this paper, we present a theoretically-justified tech-
nique termed Low-Rank Induced Training (LoRITa), that promotes low-rankness through
the composition of linear layers and compresses by using singular value truncation. This
is achieved without the need to change the structure at inference time or require con-
strained and/or additional optimization, other than the standard weight decay regulariza-
tion. Moreover, LoRITa eliminates the need to (i) initialize with pre-trained models, (ii)
specify rank selection prior to training, and (iii) compute SVD in each iteration. Our
experimental results (i) demonstrate the effectiveness of our approach using MNIST on
Fully Connected Networks, CIFAR10 on Vision Transformers, and CIFAR10/100 and Im-
ageNet on Convolutional Neural Networks, and (ii) illustrate that we achieve either com-
petitive or state-of-the-art results when compared to leading structured pruning and low-
rank training methods in terms of FLOPs and parameters drop. Our code is available at
https://github.com/XitongSystem/LoRITa/tree/main.

1 Introduction

In recent years, the rapid progress of machine learning has sparked substantial interest, particularly in the
realm of Deep Neural Networks (DNNs), utilizing architectures such as Fully Connected Networks (FCNs)
(Rumelhart et al., 1986), Convolutional Neural Networks (CNN) (LeCun et al., 1998), and Transformers
(Vaswani et al., 2017). DNNs have demonstrated remarkable performance across diverse tasks, including
classification (Han et al., 2022), image reconstruction (Ravishankar et al., 2019), object recognition (Minaee

∗The first two authors contributed equally.

1

https://openreview.net/forum?id=1KCrVMJoJ9
https://github.com/XitongSystem/LoRITa/tree/main

Published in Transactions on Machine Learning Research (11/2024)

et al., 2021), natural language processing (Vaswani et al., 2017), and image generation (Yang et al., 2023).
However, the extensive storage and computational requirements of these models hinder their application
in resource-limited devices. Addressing these challenges has become a focal point in recent research efforts
within the context of a variety of model compression algorithms (Li et al., 2023; Marinó et al., 2023).

Model compression techniques, based on their core strategies, can be classified into parameter quantiza-
tion (Krishnamoorthi, 2018), knowledge distillation (Hinton et al., 2015), lightweight model design (Zhang
et al., 2018), model pruning (He et al., 2019), and low-rank decomposition (Lin et al., 2018). Post-training
low-rank decomposition algorithms for network compression necessitate pre-trained weights (Marinó et al.,
2023), whereas existing low-rank training methods require structural alterations to the network architecture
(Howard, 2017), the specification of a pre-defined rank during training (Kwon et al., 2023), and/or addi-
tional constraints or iterations in the training process (Hawkins et al., 2022). This paper explores an effective
technique for low-rank training: Over-parameterizing weight matrices to achieve a low-rank model directly
through training from random initialization.

Over-parameterizing weight matrices has been employed in neural networks for various purposes beyond
compression, as discussed in more detail in Appendix C. In this paper, we revisit the concept of over-
parameterization, providing a detailed exploration of it from the perspective of compression. For clarity,
we introduce the term Low-Rank Induced Training (LoRITa) to describe the specific version of this tech-
nique of interest, which employs over-parameterization of the weight matrices by a linear composition of
dense matrices. We show both numerically and theoretically how this technique promotes low-rankness
of weight matrices. In addition, we extend this technique to convolutional neural networks. Unlike the
well-known Low-Rank Adaptation (LoRA) method (Hu et al., 2021), which focuses on low-rank fine-tuning,
the LoRITa approach utilizes dense full-rank factors during training. This method, when paired with post-
training compression techniques such as Singular Value Thresholding, eliminates the need to determine
or know the (sub)optimal ranks of the weights during training. A key finding of this paper is that the
layer-composition-based overparametrization should be combined with weight decay—a commonly used reg-
ularizer—to effectively promote low-rankness in models. Next, we summarize our contributions.

• We demonstrate that the simple technique of weight matrix over-parameterization through linear layer
composition, when combined with weight-decay, effectively encourages low-rankness during training.

• We provide justification for this observation and analyze its theoretical properties.

• We show through extensive experiments that LoRITa applies to a wide range of network architectures and
can be used in combination with various post-training compression methods. The experiments include
DNN-based image classification tasks across different FCNs, CNNs, and ViTs architectures, using MNIST,
CIFAR10, CIFAR100, and ImageNet datasets.

We note that LoRITa is a structure-preserving technique, meaning it does not alter the network architec-
ture, such as reducing the number of filters in CNNs or pruning redundant nodes. To modify the network
structure, LoRITa should be combined with other pruning techniques. In this regard, LoRITa functions as
a regularization method, akin to weight decay or dropout, which are commonly used in combination with
other regularizations.

Additionally, while LoRITa promotes low rankness during training, actual truncation or compression is
performed post-training using Singular Value Truncation (SVT) or other more advanced methods.

Since this paper focuses solely on LoRITa, the reported numerical results are based on LoRITa regular-
ization alone during training, in combination with the simplest SVT for compression. Nevertheless, we
observe comparable performance to more sophisticated algorithms, highlighting the benefits of the over-
parameterization approach. We leave studying the combinations of LoRITa with other pruning methods (or
using more advanced post-training compression approaches) to future studies.

2

Published in Transactions on Machine Learning Research (11/2024)

2 Related Work

In the past decade, numerous methods have been proposed in the realm of DNN compression, employing
techniques such as low-rank decomposition or model pruning. Recent survey papers, such as (Li et al., 2023;
Marinó et al., 2023; He & Xiao, 2023), offer comprehensive overviews. This section aims to survey recent
works closely related to our method. Specifically, we explore papers focused on (i) post-training low-rank
compression methods, (ii) low-rank training approaches, and (iii) structured pruning methods.

2.1 Post-training Low-Rank Compression Methods

As an important compression strategy, low-rank compression seeks to utilize low-rank decomposition tech-
niques for factorizing the original trained full-rank DNN model into smaller matrices or tensors. This process
results in notable storage and computational savings (refer to Section 4 in (Li et al., 2023)).

In the work by (Yu et al., 2017), pruning methods were combined with SVD, requiring feature reconstruction
during both the training and testing phases. Another approach, presented in (Lin et al., 2018), treated the
convolution kernel as a 3D tensor, considering the fully connected layer as either a 2D matrix or a 3D tensor.
Low-rank filters were employed to expedite convolutional operations. For instance, using tensor products,
a high-dimensional discrete cosine transform (DCT) and wavelet systems were constructed from 1D DCT
transforms and 1D wavelets, respectively.

The authors in (Liebenwein et al., 2021) introduced the Automatic Layer-wise Decomposition Selector
(ALDS) method. ALDS uses layer-wise error bounds to formulate an optimization problem with the objective
of minimizing the maximum compression error across layers.

While our method and the aforementioned approaches utilize low-rank decomposition and maintain the
network structure in inference, a notable distinction lies in our approach being a training method that
promotes low-rankness through the composition of linear layers. It is important to emphasize that any low-
rank-based post-training compression technique can be applied to a DNN trained with LoRITa. This will be
demonstrated in our experimental results, particularly with the utilization of three singular-value truncation
methods.

2.2 Low-Rank Promoting Methods

Here, we review methods designed to promote low-rankness in DNN training. These approaches typically
involve employing one or a combination of various techniques, such as introducing structural modifications
(most commonly under-parameterization), encoding constraints within the training optimization process, or
implementing custom and computationally-intensive regularization techniques such as the use of Bayesian
estimator (Hawkins et al., 2022), iterative SVD (Gural et al., 2020), or the implementation of partially
low-rank training (Waleffe & Rekatsinas, 2020).

The study presented in (Kwon et al., 2023) introduces an approach leveraging SVD compression for over-
parameterized DNNs through low-dimensional learning dynamics inspired by a theoretical study on deep
linear networks. The authors identify a low-dimensional structure within weight matrices across diverse
architectures. Notably, the post-training compression exclusively targets the linear layers appended to the
FCN, necessitating a specialized initialization. More importantly, a pre-specified rank is required, posing
a challenge as finding the optimal combination of ranks for all layers is a difficult problem. Since different
layers in the model may have different importance to the performance and should be compressed differently,
it requires the rank to be layer-specific. For example, the necessity of using layer-specific rank in LoRA is dis-
cussed in (Zhang et al., 2024). However, finding the ranks of all layers can be computationally expensive. In
LoRITa, this requirement is not needed, as we theoretically show that standard weight decay encourages low
rankness without specifying the rank during training. In comparison, our work shares similarities as it em-
ploys a composition of multiple matrices. However, our approach encompasses all weight matrices, attention
layer weights, and convolutional layers, providing a more comprehensive treatment of DNN architectures.

The study conducted by (Tai et al., 2015) introduced an algorithm aimed at computing the low-rank tensor
decomposition to eliminate redundancy in convolution kernels. Additionally, the authors proposed a method

3

Published in Transactions on Machine Learning Research (11/2024)

for training low-rank-constrained CNNs from scratch. This involved parameterizing each convolutional layer
as a composition of two convolutional layers, resulting in a CNN with more layers than the original. The
training algorithm for low-rank constrained CNNs required enforcing orthogonality-based regularization and
additional updates. Notably, their approach did not extend to attention layers in ViTs and fully connected
weight matrices. Moreover, during testing, unlike our method, their approach necessitates the presence of
additional CNN layers.

In a recent contribution by (Sui et al., 2024), a low-rank training approach was proposed to achieve high
accuracy, high compactness, and low-rank CNN models. The method introduces a structural change in the
convolutional layer, employing under-parameterization. Besides altering the structure, this method requires
low-rank initialization and imposes orthogonality constraints during training.

The authors in (Idelbayev & Carreira-Perpinán, 2020) proposed the low-rank compression of neural networks
(LCNN) method, which uses ADMM to optimize the weight matrices constrained with pre-selected ranks.
Training using this method is computationally expensive, as in each iteration, the SVD of each matrix is
computed. It is noteworthy that LoRITa, in contrast, not only preserves the existing structure at inference
time but also eliminates the need for optimization with complex constraints, relying on the standard training
with weight decay.

2.3 Structured Pruning Methods

When contrasted with weight quantization and unstructured pruning approaches, structured pruning tech-
niques emerge as more practical (He & Xiao, 2023). This preference stems from the dual benefits of struc-
tured pruning: not only does it reduce storage requirements, but it also lowers computational demands. As
delineated in a recent survey (He & Xiao, 2023), there exists a plethora of structured pruning methods,
particularly tailored for CNNs. As our proposed approach offers both storage and computational reductions,
the following methods will serve as our baselines in the experimental results.

These methods belong to six categories. Firstly, we consider regularization-based methods, such as Scientific
Control for reliable DNN Pruning (SCOP) (Tang et al., 2020), Adding Before Pruning (ABP) (Tian et al.,
2021), and the only train once (OTO) (Chen et al., 2021) methods which introduce extra parameters for
regularization. Secondly, we consider methods based on joint pruning and compression, exemplified by
the Hinge technique (Li et al., 2020), and the Efficient Decomposition and Pruning (EDP) method (Ruan
et al., 2021). Thirdly, we consider activation-based methods such as Graph Convolutional Neural Pruning
(GCNP) (Jiang et al., 2022) (where the graph DNN is utilized to promote further pruning on the CNN of
interest), Channel Independence-based Pruning (CHIP) (Sui et al., 2021), Filter Pruning via Deep Learning
with Feature Discrimination in Deep Neural Networks with Receptive Field Criterion (RFC) (DLRFC) (He
et al., 2022)), which utilize a feature discrimination-based filter importance criterion, and Provable Filter
Pruning (PFP) (Liebenwein et al., 2019). Next, we consider weight-dependent methods, such as the adaptive
Exemplar filters method (EPruner) (Lin et al., 2021), Cross-layer Ranking & K-reciprocal Nearest Filters
method (CLR-RNF) (Lin et al., 2022), and Filter pruning using high-rank feature map (HRank) (Lin et al.,
2020). Next, we consider a method proposed in (Liu et al., 2022) based on automatically searching for
the optimal kernel shape (SOKS) and conducting stripe-wise pruning. Lastly, we consider Reinforcement
Learning based methods such as Deep compression with reinforcement learning (DECORE) (Alwani et al.,
2022).

3 Preliminaries

Notation: Given a matrix A ∈ Rm×n, SVD factorizes it into three matrices: A = UΣV⊤, where U ∈ Rm×m

and V ∈ Rn×n are orthogonal matrices, and Σ ∈ Rm×n is a diagonal matrix with non-negative real numbers
known as singular values, si. For a matrix A, its Schatten p-norm, ∥A∥p, is the ℓp norm on the singular
values, i.e., ∥A∥p := (

∑
i sp

i)1/p. The nuclear (resp. Frobenius) norm, denoted as ∥A∥∗ (resp. ∥A∥F),
corresponds to the Schatten p-norm with p = 1 (resp. p = 2). For any positive integer N , [N] := {1, . . . , N}.
We use σ(·) and SoftMax(·) to denote the ReLU and softmax activation functions, respectively.

4

Published in Transactions on Machine Learning Research (11/2024)

3.1 Fully Connected, Convolutional, & Attention Layers

Consider a DNN-based model with L fully-connected layers for which input x and output y are related as:

y(Θ, x) = WL . . . σ(W2σ(W1x)) , (1)

where Θ = {Wi, ∀i ∈ [L]} is the set of all parameters. For the sake of simplicity in notation, we will exclude
the consideration of the bias, as it should not affect our conclusion.

For CNNs, the input is a third-order tensor for a multi-channel image, with dimensions H × W × D, where
H is the height, W is the width, and D is the depth (the number of channels). The convolutional kernel is
a fourth-order tensor denoted by K, with dimensions FH × FW × FD × M . The output of the convolution
operation is a third-order tensor O given as

O(x, y, m) =
FH −1∑

i=0

FW −1∑
j=0

FD−1∑
k=0

I(x + i, y + j, k)K(i, j, k, m). (2)

Here, x and y are the pixel indices and m is the channel index in image O. The total number of output
channels is equal to the number of filters M . The summation iterates over the spatial dimensions of the
filter (i, j) and the input depth k.

ViTs consist of multi-head attention and fully connected layers. For one-head attention layer (Vaswani et al.,
2017), we have Y = SoftMax

(
XWQ(XWK)⊤

√
d

)
XWV , where X and Y are the input and output matrices,

respectively. We consider the trainable weights WQ, WK , and WV . Here, d corresponds to the queries and
keys dimension (Vaswani et al., 2017).

The goal is to compress the trained weights to minimize storage and computational requirements without
compromising test accuracy significantly.

3.2 Singular Value Thresholding

For a given matrix W and its SVD W = UΣV⊤ ∈ Rm×n, its best rank-r approximation can be represented
as W ≈ Wr := UrΣrV⊤

r , where Ur ∈ Rm×r contains the first r columns of U, Σr ∈ Rr×r is a diagonal
matrix that include the largest r singular values, and V⊤

r ∈ Rr×n contains the first r rows of V⊤. These are
called the r-term truncation of U, Σ, and V.

4 Compression with LoRITa

In this section, we start by presenting three simple ways to apply SVT to neural networks. Then, we present
the details of the LoRITa technique, followed by discussing the theoretical foundation of our method.

4.1 Singular Value Truncation of Trained Weights

Local Singular Value Truncation (LSVT) of Trained Weights: We simply apply SVT to each weight
matrix independently with a fixed rank r.

Global Singular Value Truncation (GSVT) of Trained Weights: For DNNs, not every layer holds
the same level of importance to the output. Therefore, using the local SVT might not lead to the best
compression method. To tackle this problem, we can apply a global singular value truncation strategy.
This involves normalizing the singular values of each matrix, i.e., dividing each weight matrix by its largest
singular value, and then sorting the singular values of the normalized matrices globally. Subsequently, we
decide which singular values to drop based on this global ranking. This approach offers an automated method
for identifying the principal components of the entire network.

Iterative Singular Value Truncation (ISVT) of Trained Weights: An alternative strategy to global
ranking is performance-preserving truncation. In each iteration, we fix the number of parameters to truncate,

5

Published in Transactions on Machine Learning Research (11/2024)

Standard Pipeline Our Pipeline

Post Training (Standard Pipeline): Post Training (Our Pipeline):

Ac
tiv

ati
on

𝐖1
2

Ac
tiv

ati
on

SVD𝑟(𝐖1
1𝐖1

2) SVD𝑟(𝐖2
1𝐖2

2)

Ac
tiv

ati
on

𝐖1

Ac
tiv

ati
on

SVD𝑟(𝐖1
) SVD𝑟(𝐖2

)

𝐖2

𝐖1
1 𝐖2

1 𝐖2
2

Figure 1: Illustrative example showcasing the standard (left) and our (right) pipelines. Here, a factorization of 2
is applied to each weight matrix in a simple 2-layered neural network. Post-training, conventional methods employ
singular value truncation on the trained weights, whereas in our approach, singular value truncation is conducted on
the product of two trained matrices for each weight matrix.

then we decide which layer we will use to remove these parameters by examining the one that induces the
lowest increase in the training loss after the truncation. More details are given in Appendix A.

With the r-term truncation, for LSVT, GSVT, and ISVT, the storage requirement reduces from mn to
(m + n)r. We use SVDr(W) ∈ Rm×n to denote the SVD r-truncated matrix of W ∈ Rm×n.

In LSVT, GSVT, and ISVT, our aim is to minimize the accuracy drop resulting from truncation by ensuring
that each weight matrix, W, exhibits high compressibility. This compressibility is characterized by a rapid
decay in the singular values of W. Such a decay pattern enables us to discard a substantial number of singular
values without significantly sacrificing accuracy. Consequently, this property enhances the effectiveness of
the compression process. Based on this discussion, a notable insight emerges:

The faster the singular values of W decay, the more favorable the compression outcome using SVD. This
observation leads to the desire for W to be of low rank, as low-rank matrices exhibit a faster decay in
singular values. The question that naturally arises is: How to enforce low-rankness in W during training
while preserving the DNN structure at the inference phase?

Next, we propose our method of low-rank promoted training through the composition of linear layers before
activation.

4.2 Model Re-parmeterization with LoRITa

We employ the following simple compression pipeline:

• During training, we employ LoRITa to achieve maximal decay of the singular values of the weight matrices
in a global manner without sacrificing the model’s capacity.

• Post training, we use the LSVT, GSVT or ISVT on the trained weights.

More specifically, we perform the following steps:

• We first express each trainable weight matrix W ∈ Rm×n as a composition of N > 1 matrices: W =
W1W2 . . . WN . Here, W1 ∈ Rm×n and subsequent matrices W2, W3, . . . , WN ∈ Rn×n. For the model
given in Equation (1), the input/output relation becomes:

y(Θ, x) =
∏

k∈[N]

Wk
L . . . σ

(∏
k∈[N]

Wk
2σ(

∏
k∈[N]

Wk
1x)
)

, (3)

where Θ = {Wk
i , ∀k ∈ [N], ∀i ∈ [L]}.

6

Published in Transactions on Machine Learning Research (11/2024)

Algorithm 1 Compression with LoRITa+SVT.
Input: L trainable weights Wi, ∀i ∈ [L], factorization parameter N > 1, and singular value truncation
parameter r.
Output: Compressed and trained Weights.
1: For each i ∈ [L]
2: Replace Wi by W1

i , . . . , WN
i

3: Train Wk
i , ∀i ∈ [L], ∀k ∈ [N] using Adam and weight decay.

4: For each i ∈ [L]
5: Use SVDr(

∏
k∈[N] Wk

i) instead of Wi

• During training, we minimize the objective

min
Θ

1
J

∑
i∈[J]

ℓ(y(Θ, xi), yi) + λ
∑

j∈[N]

∑
l∈[L]

∥Wj
l ∥2

F ,

where λ is the weight decay parameter, and J is the number of data points (with (xi, yi)) in the training
set. We note that the proposed factorization works for arbitrary m and n.
Throughout the training process, we optimize the weight matrices Wk

i , for all i ∈ [L], and k ∈ [N].

• After the training is finished, we compute the product Wi :=
∏

k∈[N] Wk
i , i ∈ [L], and assign them as

the trained weights of the original model.

In summary, LoRITa utilizes the over-parameterized weights during training and reverts to the original
weights dimensions after training. The reversion ensures that LoRITa is a structure-preserving technique.

The underlying idea is that a model trained in this manner exhibits enhanced compressibility compared to
the original model described by Equation (1). The resulting weight matrices Wi demonstrate a faster decay
in singular values. This strategic approach to training and approximation aims to achieve a more compact
and efficient representation of the neural network trained weights, and preserve structure during inference.
The procedure is outlined in Algorithm 1. Figure 1 presents an example of our proposed method.

The matrices that correspond to the weights of attention layers are treated in a similar fashion as fully-
connected layers.

For convolutional layers, the fourth-order tensor K, with dimensions FH × FW × FD × M , is reshaped into
a matrix. This is achieved through a mode-4 unfolding, resulting in a matrix K(4) of size FHFW FD × M .
K(4) is then expressed as a composite of N matrices, denoted as K(4) = K1K2 · · · KN . Throughout the
training phase, each Ki is updated as a weight matrix. Post-training, SVD with r-truncation is applied to
K(4) = K1K2 · · · KN to obtain low-rank factors L and R, each with r columns, ensuring that K(4) ≈ LR⊤.
During the inference phase, we first compute the convolutions of the input with the filters in L reshaped
back to tensors, then apply R⊤ to the output of the convolutions. More specifically, we reshape L back to a
fourth-order tensor of size FH × FW × FD × r, denoted by L̃, then we conduct its convolution with the input

Õ(x, y, m′) =
FH −1∑

i=0

FW −1∑
j=0

FD−1∑
k=0

I(x + i, y + j, k)L̃(i, j, k, m′) ,

with m′ ∈ [r]. The final output is obtained as

O(x, y, m) =
r∑

m′=1
Õ(x, y, m′)R(m, m′) .

Compared to the convolution in Equation (2), the computational cost for a single convolution operation is
reduced from O(FHFW FDM) to O(FHFW FDr). Similarly, the storage requirements are also decreased by
a comparable magnitude. Figure 2 illustrates the operations performed with CNNs. Next, We will explain
the rationale behind our proposed approach.

7

Published in Transactions on Machine Learning Research (11/2024)

𝐈Inference: *(
𝐹
𝐻
×
𝐹
𝑊

𝐹𝐷

ሚ𝐋

(*

1
×
1

𝑟

෩𝐑

Re
sh

ap
e

𝐹
𝐻
×
𝐹
𝑊

𝐹𝐷

𝐊

𝑀

𝐹
𝐻
𝐹 𝑊

𝐹
𝐷

𝐊(4)

𝑟

𝐹
𝐻
𝐹
𝑊
𝐹 𝐷

𝐋

𝑟
𝑀
𝐑𝑇

1
×
1

𝑟

෩𝐑Reshape

𝐹
𝐻
×
𝐹
𝑊

𝐹𝐷

ሚ𝐋Reshape

Co
mp

res
sio

n
𝐹
𝐻
×
𝐹
𝑊

𝐹𝐷

𝐊1

Tr
ain

ing

𝑀

𝐊2

*
1
×
1

𝑀

𝐊3*

1
×
1 * *

𝑀

𝐊𝑁

1
×
1

SVT with 𝑟

Figure 2: Illustrative block diagram showcasing the compression (top), training (middle), and inference (bottom) for
every convolution layer in CNNs. Here, ‘∗’ denotes the convolution operator.

Remark 4.1. The benefit of over-parameterization in network training has been observed previously in
(Khodak et al., 2021; Arora et al., 2018; Guo et al., 2020; Huh et al., 2021) for various reasons. (Arora
et al., 2018) proved that over-parameterization can accelerate the convergence of gradient descent in deep
linear networks by analyzing the trajectory of gradient flow. (Guo et al., 2020) found that combining over-
parameterization with width expansion can enhance the overall performance of compact networks. (Huh
et al., 2021) noted through experiments that over-parameterization slightly improves the performance of the
trained network, and deeper networks appear to have better rank regularization. These previous works focus
on performance and acceleration. Our work complements these findings, providing numerical and theoretical
evidence to justify the benefits of over-parameterized weight factorization in network compression due to
the weight decay behaving as a rank regularizer. Further discussions for these methods are provided in
Appendix C.

4.3 Theoretical Underpinnings of LoRITa

In this subsection, we provide theoretical insight into why LoRITa has to be used with weight-decay.

4.3.1 Weight Decay Regularization & Low-Rankness in LoRITa

Here, we start by stating the following proposition, which says that minimizing the Frobenius norm of
the over-parameterized weight matrices is equivalent to minimizing the Schatten p-norm (0 < p < 1) of
the original weight matrices and the latter is well-known to promote the low-rankness. The proof of this
proposition is given in Appendix B.1.
Proposition 4.2. Let A ∈ Rm×n be an arbitrary matrix and r ≤ min{m, n} be its rank. For a fixed integer
N ∈ Z+, A can be expressed as the product of N matrices Ri ∈ Rmi×ni i.e., A =

∏
i∈[N] Ri (mi+1 = ni ≥ r,

i = 1, ..., N−1, m1 = m, nN = n), in infinitely many ways. For any p ∈ (0, 1] and pi > 0, ∀i ∈ [N], satisfying∑
i∈[N]

1
pi

= 1
p , it holds

∥A∥p = min
Ri,i∈[N]

(
p
∑

i∈[N]

1
pi

∥Ri∥pi
pi

)1/p

s.t.
∏

i∈[N]

Ri = A . (4)

Proposition 4.2 slightly extends Theorems 4 and 5 from (Shang et al., 2016), in its requirement on the
dimensions of the factors Ri. Furthermore, we do not assume any prior knowledge of the rank of A, which
is conventionally set to its upper bound min{m, n}.

8

Published in Transactions on Machine Learning Research (11/2024)

Proposition 4.2 indicates that the Schatten-p norm of any matrix is equivalent to the minimization of the
weighted sum of Schatten-pi norm of each factor matrix by which the weights of these terms are p

pi
for all

i ∈ [N].

For p = 1, N = 2, and p1 = p2 = 2, Equation (4) reduces to

∥A∥∗ = min
R1,R2

1
2
(
∥R1∥2

F + ∥R2∥2
F

)
s.t. R1R2 = A . (5)

For some integer q > 1, let p = 1
q , N = 2q, and p1 = p2 = · · · = p2q = 2. Then, Equation (4) becomes:

∥A∥1/q = min
Ri,i∈[2q]

(1
2q

∑
i∈[2q]

∥Ri∥2
F

)q

s.t.
∏

i∈[2q]

Ri = A . (6)

If p ∈ (0, 1], minimizing the Schatten p-norm encourages low-rankness. A smaller p strengthens the promotion
of sparsity by the Schatten p-norm (Nie et al., 2012). Think of the A matrix in Equation (5) and Equation (6)
as weight matrices in FCNs, matricized convolutional layers in CNNs, or matrices representing query, key, and
value in attention layers. These identities (Equation (5) and Equation (6)) imply that by re-parameterizing
the weight matrix A as a product of 2q other matrices Ri, where i ∈ [2q], and using Ri (instead of A) as the
variable in gradient descent (or Adam), the weight decay on the new variable corresponds to the right-hand
side of Equation (6). Additionally, Equation (6) suggests that the more Ri we use to represent A, the lower
rank we obtain for A. This explains why our proposed model in Equation (3) can achieve a lower rank for
the weights compared to the traditional formulation in Equation (1).
Remark 4.3. For any weight matrix of size m by n, our proposed training method requires training nmN
parameters instead of mn parameters where N is the factorization parameter. Yet in practice, it is more
efficient than those SVD-based low-rankness promoting techniques since no explicit SVD is needed. Although
Proposition 4.2 suggests that increasing N leads to enhancement in the low-rankness of the appended trained
weights, in practice, this leads to prolonged training durations and a more nonlinear landscape of the op-
timization problem. In experiments, we observe that N = 3 is usually sufficient to achieve near-optimal
performance, under affordable computational cost. Moreover, prioritizing shorter test times for large models
is particularly crucial. This consideration is significant, especially given that testing or inference happens
continuously, unlike training, which occurs only once or infrequently. This aspect significantly affects user
experience, especially on resource-limited devices where compressed models are often deployed.
Remark 4.4. In contrast to previous works, Proposition 4.2, the foundation of LoRITa, reveals that we
do not assume that the weights are strictly low-rank nor require the knowledge of the weight matrix’s (ap-
proximate) rank during the training phase. Consequently, our approach encourages low-rankness without
compromising the network’s capacity.

4.3.2 Sufficiency of a Single Weight Decay Parameter in LoRITa

Proposition 4.2 is used for compressing a single matrix. In the case of nonlinear networks, we have to apply
it layer by layer. For each layer, a Schatten-p norm regularization of its weight matrix is introduced to the
objective function to penalize the rank, together we have L penalty terms,

min
Θ

1
J

∑
i∈[J]

ℓ(y(Θ, xi), yi) +
∑
l∈[L]

αl∥Wl∥p
p ,

where Θ = {Wl, l ∈ [L]}, and αl > 0 for all ł ∈ [L] are the strengths of the penalties. Let us set p = 1
K

with some even integer K (the smaller the p is set, the stronger it encourages low-rankness). Then for
each weight matrix, we apply Proposition 4.2 to re-parameterize the weight matrix into a depth-K deep
matrix factorization. This turns the above optimization into the following equivalent form that avoids the
computation of SVD on-the-fly.

min
Θ

1
J

J∑
i=1

ℓ(y(Θ, xi), yi) +
L∑

l=1

αlp

2

K∑
i=1

∥Wi
l∥2

F , (7)

9

Published in Transactions on Machine Learning Research (11/2024)

Model Dataset N = 1 N = 2 N = 3
FCN-6 MNIST 0.983 0.982 0.977
FCN-8 MNIST 0.983 0.982 0.977
FCN-10 MNIST 0.983 0.981 0.977

ViT-L8-H1 CIFAR10 0.717 0.729 0.727
ViT-L8-H4 CIFAR10 0.710 0.718 0.701
ViT-L8-H8 CIFAR10 0.705 0.719 0.714

(a) Without data augmentation.

Model Dataset N = 1 N = 2
CNN - VGG13 CIFAR10 0.919 0.922

CNN - ResNet18 CIFAR10 0.928 0.927
CNN - VGG13 CIFAR100 0.678 0.686

CNN - ResNet18 CIFAR100 0.708 0.714
ViT-L4-H8 CIFAR10 0.861 0.852
ViT-L8-H8 CIFAR10 0.865 0.857
ViT-L16-H8 CIFAR10 0.856 0.867

(b) With data augmentation.

Table 1: Test Accuracy results of standard (N = 1) and LoRITa (N > 1) models, Here, N represents the number
of composed matrices for each layer. When N = 1, it reduces to the original non over-parameterized model. When
N ≥ 2, there is actual over-parameterization and can be called LoRITa (our proposed technique).

where Θ = {Wi
l, l ∈ [L], i ∈ [K]}.

However, Equation (7) still has too many tuning parameters αl, l ∈ [L]. Fortunately, for ReLU networks, we
can reduce the number of hyper-parameters to 1 as shown in the following Proposition where the proof is
deferred to Appendix B.2.
Proposition 4.5. With ReLU activation, the optimization problem in Equation (7) is equivalent to the
following single-hyper-parameter problem

min
Θ

1
J

J∑
i=1

ℓ(y(Θ, xi), yi) + λ

L∑
l=1

K∑
i=1

∥Wi
l∥2

F , (8)

with some proper choice of λ, in the sense that they share the same minimizers.
Remark 4.6. Proposition 4.5 supports the practice of using a single weight decay parameter during network
training, as is commonly done in the literature.

5 Experimental Results

5.1 LoRITa Evaluation on FCNs, CNNs, & ViTs

To rigorously evaluate the effectiveness of the LoRITa method in achieving a rank reduction,
we first consider FCNs, CNNs, and ViTs on simple datasets (motivated by the composition of
their attention layers, which are essentially built from fully connected layers). The evalua-
tion criterion is the reduction in accuracy w.r.t. the percentage of Retained Singular Values.

6-layer FCN (LSVT) 8-layer FCN (LSVT) 10-layer FCN (LSVT)

6-layer FCN (GSVT) 8-layer FCN (GSVT) 10-layer FCN (GSVT)

Figure 3: Results of the FCNs in Table 1a. The top (resp. bottom) row
corresponds to applying the Local (resp. Global) SVT. N = 1 results
represent the baseline, whereas N > 1 results are for the LoRITa-trained
models.

The latter is defined as the number of
retained singular values divided by the
total number of singular values per ma-
trix, averaged across all trained matri-
ces. As a result, the drop in accuracy
is computed by subtracting the testing
accuracy with SVT from the testing ac-
curacy without applying SVT.

A variety of models, datasets, and over-
parameterization scenarios are consid-
ered, as outlined in Table 1. For the ViT
models, the number following ‘L’ and
‘H’ represents the number of layers and
the number of heads, respectively. For
comparison with baselines, we consider
the models with N = 1 (models with-
out over-parameterization using LoRITa

10

Published in Transactions on Machine Learning Research (11/2024)

during training). Further experimental setup details can be found in the caption of Table 1. We use PyTorch
to conduct our experiments, and our code will be released at a later date.

In each experiment, our initial phase consists of training the baseline model with optimal weight decay
settings to achieve the highest achievable test accuracy. Subsequently, we apply the LoRITa method to
re-parameterize the original model. This process involves initializing from a random state and tuning the
weight decay to ensure that the final test accuracies remain comparable to those of the initial models. See
the test accuracies in Table 1.

VGG13 (LSVT) CIFAR10 ResNet18 (LSVT) CIFAR10

VGG13 (GSVT) CIFAR10 ResNet18 (GSVT) CIFAR10

VGG13 (LSVT) CIFAR100 ResNet18 (LSVT) CIFAR100

VGG13 (GSVT) CIFAR100 ResNet18 (GSVT) CIFAR100

Figure 4: Low-rank compression results of the considered CNNs using the CIFAR10 (left) and the CIFAR100 (right)
datasets for the settings in Table 1b. N = 1 denotes the baseline, whereas N = 2 represents our method.

Subsequently, we implement SVT on the weight matrices to compress the model, examining the impact on
test accuracy as smaller singular values are eliminated. We delve into the LSVT and GSVT strategies, as
discussed in Section 4, to determine which singular values to eliminate.

4-layer ViT (LSVT) 8-layer ViT (LSVT) 16-layer ViT (LSVT)

4-layer ViT (GSVT) 8-layer ViT (GSVT) 16-layer ViT (GSVT)

1-head ViT (LSVT) 4-head ViT (LSVT) 8-head ViT (LSVT)

Figure 5: Low-rank compression of ViT models with data
augmentation with varied attention heads and layers. The
(top) and (bottom) plots correspond to the settings of Ta-
ble 1b and Table 1a, respectively. N = 1 denotes the
baseline, while N = 2 and N = 3 represent our method.

When employing GSVT on ViTs, singular values
within the attention and fully connected layers are
independently managed.

Similarly, for CNNs, compression is applied dis-
tinctly to both the convolutional and fully connected
layers, treating each type separately.

First, we evaluate our proposed method on fully
connected neural networks, varying the number of
layers, utilizing the Adam optimizer with a learn-
ing rate set to 1 × 10−2, and employing a constant
layer dimension of 96 (other than the last). Over-
parameterization is applied across all layers in the
model. To ensure a fair comparison, we begin by
tuning the baseline model (N = 1) across a range
of weight decay parameters {5 × 10−6, 1 × 10−5, 2 ×
10−4, 5 × 10−5, 1 × 10−4, 2 × 10−4}. Subsequently,
we extend our exploration of weight decay within
the same parameter range for models with N > 1.
As depicted in Table 1a, setting N to values larger
than one results in closely matched final test accu-
racies. The results for FCNs on the MNIST dataset
are illustrated in Figure 3. In these plots, LSVT
(resp. GSVT) is employed for the top (resp. bot-
tom) three plots, providing insights into the effectiveness of the proposed technique. As observed, in almost
all the considered cases, models trained with N > 1 achieve better compression results (w.r.t. the drop in

11

Published in Transactions on Machine Learning Research (11/2024)

test accuracy) when compared to the N = 1 models. For the example of the 10-layer FCN model (with
GSVT), using LoRITa with N = 3 achieves no drop in test accuracy by keeping only 15% of the singular
values. When LoRITa is not employed (N = 1), the model is required to retain approximately 22% of the
singular values in order to achieve the zero drop in test accuracy.

It is important to highlight that the strength of the parameter λ associated with the sparsity-promoting
regularizer (in this instance, weight decay) is not selected to maximize the compression rate. Instead, the
choice of λ is geared towards maximizing the test performance of the network, as is conventionally done.
Remarkably, adopting this approach still yields a commendable compression rate. In Appendix D, we
empirically demonstrate the faster decay of the singular values of the trained weights.

Next, we evaluate the performance of our proposed method on the well-known VGG13 and ResNet18 ar-
chitectures using the CIFAR10 and CIFAR100 datasets. The learning rate applied in this evaluation is
set to 3 × 10−4. The weight decay was searched over {1 × 10−2, 5 × 10−3, 1 × 10−3} for CIFAR10 and
{1× 10−5, 5×10−5, 1×10−4} for CIFAR100. The results are depicted in Figure 4. Consistent with the FCN
results, we observe improved compression outcomes for models trained with LoRITa. The findings from the
CNN results suggest that, despite using a straightforward matricization of the convolutional filter (Figure 2),
enhanced compression results are still evident. For the instance of VGG13, GSVT, and CIFAR100, retaining
20% of the singular values, not using LoRITa results in 60% drop in accuracy, whereas our LoRITa-trained
model only results in nearly 5% drop in test accuracy. Furthermore, we observe that the test accuracy of
the compressed model when LoRITa is applied is slightly higher than the test accuracy of the uncompressed
model. This is reported at approximately 65% retained singular values when N = 2 in Figure 4(left).

To validate the efficacy of our compression technique, we evaluate it using ViTs (Beyer et al., 2022), which are
noted for their capability to deliver leading-edge image classification outcomes with adequate pre-training. To
comprehensively show that our training approach can yield a model of lower rank under various conditions,
we first test our method on the CIFAR10 image classification task without data augmentation, employing
ViTs with different head counts. Following this, we evaluate our approach on larger ViTs, incorporating data
augmentation.

All the considered ViT models underwent optimization via the Adam optimizer with a learning rate of
3×10−4. The hidden dimension is 256 for all ViTs. To facilitate compression, we apply over-parameterization
across all attention modules within the model. For a fair comparison, we initially fine-tuned the baseline
model (N = 1) across the following weight decay parameters {5 × 10−5, 1 × 10−4, 2 × 10−4, 5 × 10−4, 1 ×
10−3, 2 × 10−3}. Subsequently, we explore weight decay within the same range for our models. As evidenced
in Table 1a and Table 1b, setting N to different values results in closely matched final test accuracies.

The compression effects on ViT models without data augmentation are depicted in Figure 5(top). We note
that with a higher N value, it is possible to achieve a nearly lower model rank. The baseline model’s test
accuracy begins to decline at an 85% compression rate (retaining 15% of the singular values), whereas the case
of N = 3 leads to stable test accuracy even at a 95% compression rate (retaining 5% of the singular values).
We extend our evaluation to include ViTs with different layers and data augmentation (Figure 5(bottom)).
The use of data augmentation displayed a considerable improvement in testing accuracy (before compression)
as shown when comparing the ViT results of Table 1b and Table 1a. Nevertheless, employing our method
consistently resulted in models of a lower rank, as illustrated in Figure 5. The outcomes consistently indicate
that our training approach results in models with a lower rank compared to employing only weight decay,
across a variety of training configurations and network architectures.

5.2 Comparison with Structured Pruning & Low-Rank Training Baselines on CNNs

Here, we compare LoRITa+ISVT with structured pruning and low-rank training techniques delineated in
Section 2. The metrics employed for this comparison are the required FLOPs and the number of parameters
dropped after compression/pruning, computed using the ‘ptflops’ Python package1.

Table 2 and Table 3 present the results for the ResNet20 and VGG-16 architectures, respectively, on the
CIFAR10 dataset. Table 4 and Table 5 present the results on ImageNet using ResNet18 and ResNet34

1https://pypi.org/project/ptflops/

12

https://pypi.org/project/ptflops/

Published in Transactions on Machine Learning Research (11/2024)

Method Acc.(%) (↑) Pruned Acc. Pruned FLOPs Pruned Model Param.
Acc.(%) (↑) Drop (%) (↓) FLOPs (M) (↓) Drop (%) (↓) Param.(M) (↓) Drop(%) (↑)

LoRITa+ISVT (N = 3) 91.63 91 -0.63 18.47 54.7 0.11 61
LoRITa+ISVT (N = 3) 91.63 90.54 -1.09 15.44 62.3 0.084 68.8
LoRITa+ISVT (N = 3) 91.63 90.17 -1.46 15.06 63.2 0.078 71
LoRITa+ISVT (N = 2) 92.33 91.64 -0.69 19.09 53.22 0.12 55.8
LoRITa+ISVT (N = 2) 92.33 90.27 -2.06 19.09 63.61 0.086 67.9

Baseline (N = 1) 92.34 90.26 -2.08 17.52 57.2 0.096 64.2
Baseline (N = 1) 92.34 90.01 -2.33 16.03 60.09 0.094 64.9

SOKS (Liu et al., 2022) 92.05 90.78 -1.27 15.49 62.04 0.14 48.14
SCOP (Tang et al., 2020) 92.22 90.75 -1.44 18.08 55.7 0.12 56.3

Hinge (Li et al., 2020) 92.54 91.84 -0.7 18.57 54.5 0.12 55.45
GCNP Jiang et al. (2022) 92.25 91.58 -0.67 20.18 50.54 0.17 38.51
ABP (Tian et al., 2021) 92.15 91.03 -1.12 21.34 47.7 0.15 45.1

LCNN (Idelbayev & Carreira-Perpinán, 2020) 91.25 90.13 -0.12 13.56 66.78 0.093 65.38

Table 2: Evaluation of LoRITa models as compared to SOTA structured pruning/low-rank training methods using
ResNet20 on CIFAR10. The results of the structured pruning methods are reported according to Table 5 in (He &
Xiao, 2023) (most recent survey paper) and ranked according to the FLOPs drop percentage. The last row results
are reported from Table 1 in (Xiao et al., 2023). The ResNet20 FLOPs (resp. parameters) is 40.81M (resp. 0.27M).

Method Acc.(%) (↑) Pruned Acc. Pruned FLOPs Pruned Model Param.
Acc.(%) (↑) Drop (%) (↓) FLOPs (M) (↓) Drop (%) (↓) Param.(M) (↓) Drop(%) (↑)

LoRITa+ISVT (N = 3) 93.62 93.07 -0.55 47.73 84.8 0.79 94.6
LoRITa+ISVT (N = 3) 93.62 92.58 -1.04 42.59 86.43 0.66 95.5
LoRITa+ISVT (N = 3) 93.62 92.19 -1.43 38.49 87.74 0.465 96.84
LoRITa+ISVT (N = 3) 93.62 91.21 -2.41 30.1 90.41 0.465 97.58
LoRITa+ISVT (N = 2) 94.13 93.23 -0.9 50.21 84.03 0.94 93.64
LoRITa+ISVT (N = 2) 94.13 92.8 -1.33 40.09 87.23 0.664 95.48
LoRITa+ISVT (N = 2) 94.13 92.00 -2.13 36.72 88.31 0.514 96.5

Baseline (N = 1) 93.78 92.09 -1.69 57.4 81.8 1.16 92.1
Baseline (N = 1) 93.78 91.19 -2.59 42.43 86.4 0.935 93.4

DECORE (Setting 1) (Alwani et al., 2022) 93.96 91.68 -2.28 36.95 88.25 0.26 98.26
DECORE (Setting 2) (Alwani et al., 2022) 93.96 92.44 -1.22 51.34 83.68 0.5 96.6

PFP (Liebenwein et al., 2019) 92.89 92.39 -0.5 47.09 85.03 0.84 94.32
OTO (Chen et al., 2021) 91.6 91 -0.6 51.28 83.7 0.37 97.5
ABP (Tian et al., 2021) 93.96 92.65 -1.31 52.81 83.21 1.5 89.79
EDP (Ruan et al., 2021) 93.6 93.52 -0.08 62.57 80.11 0.65 95.59
CHIP (Sui et al., 2021) 93.96 93.18 -0.78 67.32 78.6 1.87 87.3

DLRFC (He et al., 2022) 93.25 93.64 -0.39 72.51 76.95 0.83 94.38
HRank (Lin et al., 2020) 93.96 91.23 -2.73 73.9 76.51 1.75 88.12

EPruner (Lin et al., 2021) 93.02 93.08 0.06 74.42 76.34 1.65 88.8
CLR-RNF (Lin et al., 2022) 93.02 93.32 0.3 81.48 74.1 0.74 95

LCNN (Idelbayev & Carreira-Perpinán, 2020) 92.78 92.72 -0.06 45.71 85.47 1.45 91.14

Table 3: Evaluation of LoRITa models as compared to SOTA structured pruning/low-rank training methods using
VGG16 on CIFAR10. The results of the structured pruning methods are reported according to Table 3 in (He &
Xiao, 2023) (most recent survey paper) and ranked according to the FLOPs drop percentage. The last row results
are reported from Table 1 in (Xiao et al., 2023). The VGG16 FLOPs (resp. parameters) is 314.59M (resp. 14.73M).
Settings 1 and 2 for DECORE correspond to using different hyper-parameters including the penalty on incorrect
predictions (Alwani et al., 2022).

architectures, respectively. The columns denote: 1) Test accuracy before pruning (%); 2) Test accuracy after
pruning/compression (%); 3) Accuracy Drop (%); 4) FLOPs after pruning/compression (M); 5) FLOPs drop
(%); 6) Pruned model parameters (M); 7) Parameters drop (%).

For CIFAR10 (resp. ImageNet), the results of the structure pruning baselines are as reported in Table 3 and
Table 5 (resp. Table 18 and Table 19) of (He & Xiao, 2023), with arrows indicating preferable results. The
results of the low-rank training baseline, LCNN Idelbayev & Carreira-Perpinán (2020), are reported from
Table 1 in (Xiao et al., 2023).

For the baseline results, we remark that there could be different reasons for not using the same compression
ratio: (i) Different goals: Reducing the number of parameters and reducing the number of FLOPs are two
distinct goals, albeit related. Some papers may focus on one of these objectives, while others aim to achieve
a balance between both; (ii) Compression is not continuous: In the low-rank case, each time a singular value
is eliminated, we remove m + n parameters where m and n are the lengths of the left and right singular
vectors of that layer, respectively. Other methods may try to remove filters in CNN, which also has jumps

13

Published in Transactions on Machine Learning Research (11/2024)

Method Acc.(%) (↑) Pruned Acc. Pruned FLOPs Pruned Model Param.
Acc.(%) (↑) Drop (%) (↓) FLOPs (M) (↓) Drop (%) (↓) Param.(M) (↓) Drop(%) (↑)

LoRITa+ISVT (N = 3) 67.82 66.47 -1.35 1.01 44.2 6.17 47.22
LoRITa+ISVT (N = 2) 69.22 68.14 -1.08 1.08 40.33 6.67 42.94
SOKS (Liu et al., 2022) 70.42 69.16 -1.26 0.817 54.95 6.27 46.36

SCOP (Tang et al., 2020) 69.76 69.18 -0.58 1.11 38.8 7.1 39.30
SCOP (Tang et al., 2020) 69.76 68.62 -1.14 0.997 45 6.6 43.5
ABP (Tian et al., 2021) 70.29 67.83 -2.46 1.021 43.7 6.31 46

Table 4: Evaluation of LoRITa models as compared to SOTA structured pruning/low-rank training methods using
ResNet18 on ImageNet. The results of the structured pruning methods are reported according to Table 5 in (He &
Xiao, 2023) (most recent survey paper) and ranked according to the FLOPs drop percentage. The ResNet18 FLOPs
(resp. parameters) is 1.81G (resp. 11.69M).

Method Acc.(%) (↑) Pruned Acc. Pruned FLOPs Pruned Model Param.
Acc.(%) (↑) Drop (%) (↓) FLOPs (M) (↓) Drop (%) (↓) Param.(M) (↓) Drop(%) (↑)

LoRITa+ISVT (N = 2) 72.05 71.91 -0.14 1.92 47.54 11.31 48.11
SOKS (Liu et al., 2022) 74.01 73.52 -0.49 1.612 55.98 11.27 48.3

SCOP (Tang et al., 2020) 73.31 72.62 -0.69 2.021 44.8 11.86 45.6
SCOP (Tang et al., 2020) 73.31 72.93 -0.38 2.231 39.1 13.15 39.7
ABP (Tian et al., 2021) 73.86 72.15 -1.71 1.923 47.5 10.75 50.7

Table 5: Evaluation of LoRITa models as compared to SOTA structured pruning/low-rank training methods using
ResNet34 on ImageNet. The results of the structured pruning methods are reported according to Table 3 in (He &
Xiao, 2023) (most recent survey paper) and ranked according to the FLOPs drop percentage. The ResNet34 FLOPs
(resp. parameters) is 3.66G (resp. 21.8M) .

in the ratios; (iii) Some compression methods may suddenly break when the compression ratio exceeds a
certain threshold, and this threshold varies.

In the tables, N > 1 refers to the use of over-parameterization, i.e. LoRITa, and N = 1 refers to the classical
training of the non-overparameterized network, i.e., the baseline. For both LoRITa+ISVT and the baseline,
we apply GSVT, followed by implementing the ISVT approach for which only 120 training data points were
used to compute the loss. Apart from using N = 2 and N = 3, the different results of LoRITa+ISVT
correspond to applying ISVT with different desired compression rates (see Appendix A for more details).
Here, we use SGD with learning rate 10−2. Furthermore, it’s noteworthy that following all the considered
baselines, the reported results for LoRITa+ISVT in Tables 2, 3, 4, and 5 are post one round of fine-tuning,
whereas most of the considered baselines employ multiple rounds of fine-tuning of the compressed model.
As long as the top-1 accuracy isn’t compromised by much (approximately 2%, as per (He & Xiao, 2023)),
larger FLOPs drop signifies better compression methods. It’s also imperative to note that the last column,
Parameters drop, is vital as it signifies the amount of memory reduction.

For VGG16, our results boast the best FLOPs drop and demonstrate competitive parameter drop. In the case
of ResNet20, our results achieve the best parameter drop and FLOPs drop compared to structured pruning
methods. When compared to the low-rank training baseline (LCNN), our method outperforms LCNN in
VGG16 while slightly underperforming in ResNet20 in terms of FLOPs drop. However, it is important to
mention that LCNN is significantly more expensive to run, as it requires computing the SVD for every matrix
at each iteration during training. In addition to the expensive training, the strong penalty term in LCNN
prevents it from reaching the same test accuracy as other methods before compression, resulting in non-
competitive test accuracy after pruning even with a small compression rate. Moreover, we observe that for
both the considered architectures, with any fixed level of accuracy drop, our N = 3 model, on average,
outperforms our N = 2 model in terms of both FLOPs drop and parameter drop. Furthermore, LoRITa
models achieve improved performance when compared to applying ISVT on the baseline model (N = 1).

LoRITa combined with ISVT compression achieves either the best or nearly the best results across the two
CNN CFIAR10 architectures. Most other methods achieve competitive results on one architecture. To
highlight this point, we include comparison results from the baselines that considered both architectures in
Table 6.

14

Published in Transactions on Machine Learning Research (11/2024)

Method FLOPs Drop(%) ResNet20 (↑) Param. Drop(%) ResNet20 (↑) FLOPs Drop(%) VGG16 (↑) Param. Drop(%) VGG16 (↑)
LoRITa+ISVT (N = 3) 63.2 71 90.41 97.58

SOKS 62.04 48.14 72.2 78.33
Hinge 54.5 55.45 39.07 80.5
GCNP 50.54 38.51 73.07 93.06
ABP 47.7 45.1 83.21 89.71
PFP 45.46 62.67 85.03 94.32

LCNN 66.78 65.38 85.47 91.14

Table 6: Evaluation of LoRITa as compared to SOTA structured pruning/low-rank training methods that considered
ResNet20 and VGG16. The results of the structured pruning methods are reported according to Table 3 in (He &
Xiao, 2023) (most recent survey paper) and ranked according to the FLOPs drop percentage. The last row results
are reported from Table 1 in (Xiao et al., 2023).

For ImageNet results on ResNet18, we achieve the best parameters drop while reporting slightly lower
FLOPs drop when compared to the second best results. For ResNet34, LoRITa+ISVT reports the second
best FLOPs drop and lightly lower parameters drop when compared to the second best results with only
-0.14% of pruned test accuracy drop.

As mentioned in the introduction section, our numerical experiments focus on examining the effect of LoRITa,
so the reported results are based on LoRITa regularization alone with the simplest SVT post-training com-
pression. Across different architectures and datasets, our performance is competitive with other more so-
phisticated methods. It is possible to further boost the performance when LoRITa is used in combination
with other pruning methods and/or with more advanced post-training compression methods.

6 Conclusion & Future Work

In this study, we studied a compression technique, Low-Rank Induced Training (LoRITa). This
theoretically-justified technique promotes low-rankness through the composition of linear layers and achieves
compression by employing simple singular value truncation. Notably, LoRITa accomplishes this without ne-
cessitating changes to the model structure at inference time, and it avoids the need for constrained or
additional optimization steps. Furthermore, LoRITa eliminates the requirement to initialize with full-rank
pre-trained models or specify rank selection before training. Our experimental validation, conducted on a
diverse range of architectures and datasets, attests to the effectiveness of the proposed approach. Through
rigorous testing, we have demonstrated that LoRITa combined with an iterative singular value truncation
yields compelling results in terms of model compression and resource efficiency, offering a promising av-
enue for addressing the challenges associated with deploying deep neural networks on resource-constrained
platforms.

In future works, we plan to explore more efficient fine-tuning methods for LoRITa-compressed models for
which larger models such as LLMs are considered.

Acknowledgements

The work was supported by NSF CCF-2212065 and NSF BCS-2215155. The authors would like to thank
Avrajit Ghosh (Michigan State University) for insightful discussions.

References
Manoj Alwani, Yang Wang, and Vashisht Madhavan. Decore: Deep compression with reinforcement learning.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12349–
12359, 2022.

Sanjeev Arora, Nadav Cohen, and Elad Hazan. On the optimization of deep networks: Implicit acceleration
by overparameterization. In International Conference on Machine Learning, pp. 244–253. PMLR, 2018.

Lucas Beyer, Xiaohua Zhai, and Alexander Kolesnikov. Better plain vit baselines for imagenet-1k. arXiv
preprint arXiv:2205.01580, 2022.

15

Published in Transactions on Machine Learning Research (11/2024)

Tianyi Chen, Bo Ji, Tianyu Ding, Biyi Fang, Guanyi Wang, Zhihui Zhu, Luming Liang, Yixin Shi, Sheng
Yi, and Xiao Tu. Only train once: A one-shot neural network training and pruning framework. Advances
in Neural Information Processing Systems, 34:19637–19651, 2021.

Shuxuan Guo, Jose M Alvarez, and Mathieu Salzmann. Expandnets: Linear over-parameterization to train
compact convolutional networks. Advances in Neural Information Processing Systems, 33:1298–1310, 2020.

Albert Gural, Phillip Nadeau, Mehul Tikekar, and Boris Murmann. Low-rank training of deep neural
networks for emerging memory technology. arXiv preprint arXiv:2009.03887, 2020.

Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen, Jianyuan Guo, Zhenhua Liu, Yehui Tang, An Xiao,
Chunjing Xu, Yixing Xu, et al. A survey on vision transformer. IEEE transactions on pattern analysis
and machine intelligence, 45(1):87–110, 2022.

Cole Hawkins, Xing Liu, and Zheng Zhang. Towards compact neural networks via end-to-end training: A
bayesian tensor approach with automatic rank determination. SIAM Journal on Mathematics of Data
Science, 4(1):46–71, 2022.

Yang He and Lingao Xiao. Structured pruning for deep convolutional neural networks: A survey. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2023.

Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. Filter pruning via geometric median for deep
convolutional neural networks acceleration. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 4340–4349, 2019.

Zhiqiang He, Yaguan Qian, Yuqi Wang, Bin Wang, Xiaohui Guan, Zhaoquan Gu, Xiang Ling, Shaoning
Zeng, Haijiang Wang, and Wujie Zhou. Filter pruning via feature discrimination in deep neural networks.
In European Conference on Computer Vision, pp. 245–261. Springer, 2022.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

Andrew G Howard. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685,
2021.

Minyoung Huh, Hossein Mobahi, Richard Zhang, Brian Cheung, Pulkit Agrawal, and Phillip Isola. The
low-rank simplicity bias in deep networks. arXiv preprint arXiv:2103.10427, 2021.

Yerlan Idelbayev and Miguel A Carreira-Perpinán. Low-rank compression of neural nets: Learning the rank
of each layer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 8049–8059, 2020.

Di Jiang, Yuan Cao, and Qiang Yang. On the channel pruning using graph convolution network for convo-
lutional neural network acceleration. In IJCAI, pp. 3107–3113, 2022.

Mikhail Khodak, Neil Tenenholtz, Lester Mackey, and Nicolo Fusi. Initialization and regularization of
factorized neural layers. arXiv preprint arXiv:2105.01029, 2021.

Raghuraman Krishnamoorthi. Quantizing deep convolutional networks for efficient inference: A whitepaper.
arXiv preprint arXiv:1806.08342, 2018.

Soo Min Kwon, Zekai Zhang, Dogyoon Song, Laura Balzano, and Qing Qu. Efficient compression of overpa-
rameterized deep models through low-dimensional learning dynamics. arXiv preprint arXiv:2311.05061,
2023.

16

Published in Transactions on Machine Learning Research (11/2024)

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to docu-
ment recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Yawei Li, Shuhang Gu, Christoph Mayer, Luc Van Gool, and Radu Timofte. Group sparsity: The hinge
between filter pruning and decomposition for network compression. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 8018–8027, 2020.

Zhuo Li, Hengyi Li, and Lin Meng. Model compression for deep neural networks: A survey. Computers, 12
(3):60, 2023.

Lucas Liebenwein, Cenk Baykal, Harry Lang, Dan Feldman, and Daniela Rus. Provable filter pruning for
efficient neural networks. arXiv preprint arXiv:1911.07412, 2019.

Lucas Liebenwein, Alaa Maalouf, Dan Feldman, and Daniela Rus. Compressing neural networks: Towards
determining the optimal layer-wise decomposition. Advances in Neural Information Processing Systems,
34:5328–5344, 2021.

Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang, Baochang Zhang, Yonghong Tian, and Ling Shao.
Hrank: Filter pruning using high-rank feature map. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 1529–1538, 2020.

Mingbao Lin, Rongrong Ji, Shaojie Li, Yan Wang, Yongjian Wu, Feiyue Huang, and Qixiang Ye. Network
pruning using adaptive exemplar filters. IEEE Transactions on Neural Networks and Learning Systems,
33(12):7357–7366, 2021.

Mingbao Lin, Liujuan Cao, Yuxin Zhang, Ling Shao, Chia-Wen Lin, and Rongrong Ji. Pruning networks
with cross-layer ranking & k-reciprocal nearest filters. IEEE Transactions on neural networks and learning
systems, 2022.

Shaohui Lin, Rongrong Ji, Chao Chen, Dacheng Tao, and Jiebo Luo. Holistic cnn compression via low-rank
decomposition with knowledge transfer. IEEE transactions on pattern analysis and machine intelligence,
41(12):2889–2905, 2018.

Guangzhe Liu, Ke Zhang, and Meibo Lv. Soks: Automatic searching of the optimal kernel shapes for
stripe-wise network pruning. IEEE Transactions on Neural Networks and Learning Systems, 2022.

Giosué Cataldo Marinó, Alessandro Petrini, Dario Malchiodi, and Marco Frasca. Deep neural networks
compression: A comparative survey and choice recommendations. Neurocomputing, 520:152–170, 2023.

Shervin Minaee, Yuri Boykov, Fatih Porikli, Antonio Plaza, Nasser Kehtarnavaz, and Demetri Terzopoulos.
Image segmentation using deep learning: A survey. IEEE transactions on pattern analysis and machine
intelligence, 44(7):3523–3542, 2021.

Feiping Nie, Heng Huang, and Chris Ding. Low-rank matrix recovery via efficient schatten p-norm min-
imization. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 26, pp. 655–661,
2012.

Saiprasad Ravishankar, Jong Chul Ye, and Jeffrey A Fessler. Image reconstruction: From sparsity to data-
adaptive methods and machine learning. Proceedings of the IEEE, 108(1):86–109, 2019.

Xiaofeng Ruan, Yufan Liu, Chunfeng Yuan, Bing Li, Weiming Hu, Yangxi Li, and Stephen Maybank. Edp:
An efficient decomposition and pruning scheme for convolutional neural network compression. IEEE
Transactions on Neural Networks and Learning Systems, 32(10):4499–4513, 2021. doi: 10.1109/TNNLS.
2020.3018177.

D. E. Rumelhart, J. L. McClelland, and the PDP Research Group. Parallel Distributed Processing: Explo-
rations in the Microstructure of Cognition (Vol. 2). MIT Press, 1986.

Fanhua Shang, Yuanyuan Liu, and James Cheng. Unified scalable equivalent formulations for schatten
quasi-norms. arXiv preprint arXiv:1606.00668, 2016.

17

Published in Transactions on Machine Learning Research (11/2024)

Yang Sui, Miao Yin, Yi Xie, Huy Phan, Saman Aliari Zonouz, and Bo Yuan. Chip: Channel independence-
based pruning for compact neural networks. Advances in Neural Information Processing Systems, 34:
24604–24616, 2021.

Yang Sui, Miao Yin, Yu Gong, Jinqi Xiao, Huy Phan, and Bo Yuan. Elrt: Efficient low-rank training for
compact convolutional neural networks. arXiv preprint arXiv:2401.10341, 2024.

Cheng Tai, Tong Xiao, Yi Zhang, Xiaogang Wang, et al. Convolutional neural networks with low-rank
regularization. arXiv preprint arXiv:1511.06067, 2015.

Yehui Tang, Yunhe Wang, Yixing Xu, Dacheng Tao, Chunjing Xu, Chao Xu, and Chang Xu. Scop: Scientific
control for reliable neural network pruning. Advances in Neural Information Processing Systems, 33:10936–
10947, 2020.

Guanzhong Tian, Yiran Sun, Yuang Liu, Xianfang Zeng, Mengmeng Wang, Yong Liu, Jiangning Zhang, and
Jun Chen. Adding before pruning: Sparse filter fusion for deep convolutional neural networks via auxiliary
attention. IEEE Transactions on Neural Networks and Learning Systems, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

Roger Waleffe and Theodoros Rekatsinas. Principal component networks: Parameter reduction early in
training. arXiv preprint arXiv:2006.13347, 2020.

Jinqi Xiao, Chengming Zhang, Yu Gong, Miao Yin, Yang Sui, Lizhi Xiang, Dingwen Tao, and Bo Yuan.
Haloc: hardware-aware automatic low-rank compression for compact neural networks. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 37, pp. 10464–10472, 2023.

Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang, Bin Cui,
and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of methods and applications. ACM
Computing Surveys, 56(4):1–39, 2023.

Xiyu Yu, Tongliang Liu, Xinchao Wang, and Dacheng Tao. On compressing deep models by low rank and
sparse decomposition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 7370–7379, 2017.

Ruiyi Zhang, Rushi Qiang, Sai Ashish Somayajula, and Pengtao Xie. Autolora: Automatically tuning matrix
ranks in low-rank adaptation based on meta learning. arXiv preprint arXiv:2403.09113, 2024.

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient convolutional
neural network for mobile devices. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 6848–6856, 2018.

18

Published in Transactions on Machine Learning Research (11/2024)

Appendix

In this Appendix, we first provide a detailed description of the ISVT approach used (Appendix A). Then,
we present the proofs in Appendix B. In Appendix C, we review recent works that use linear composition for
non-compression methods, followed by demonstrating the faster decay of singular values in LoRITa-trained
networks (Appendix D).

A Detailed Description of the Iterative SVT Approach

Here, we provide the exact implementation of the ISVT approach we employ in our paper. In each iteration,
we fix the number of parameters to truncate. Then, we decide which layer for which these parameters are
to be removed by examining which induces the lowest increase in the training loss after the truncation. In
particular, for each iteration, we begin by fixing the number of parameters to truncate, setting this number
to 500. Next, we select a layer, denoted as l, and remove the smallest singular values from this layer until
we have moved 500 parameters. After this truncation, we compute the training loss and store this loss
as E(l). This process is repeated for all layers to identify the layer l that results in the smallest training
loss E(l). Once this layer is identified, we truncate 500 parameters from it. We then proceed to the next
iteration, truncating another 500 parameters. This iterative process continues until the desired compression
rate is reached. To alleviate the computational cost, we use only 120 randomly subsampled training data to
compute E(l).

B Proofs

B.1 Proof of Proposition 4.2

Proof of Proposition 4.2. By Theorem 5 of (Shang et al., 2016), we have

∥A∥p = min
Ri,i∈[N]

(
p
∑

i∈[N]

∥Ri∥pi
pi

/pi

)1/p

s.t.
∏

i∈[N]

Ri = A ,
(9)

provided that

{Ri}N
i=1 ∈ T := {{Ti}N

i=1 : Ti ∈ Rr×r, i = 2, ..., N − 1, T1 ∈ Rn×r, TN ∈ Rr×m},

with r being the rank of A ∈ Rm×n. We want to show that this result still holds if we replace the set T with

T ′ := {{Ti}N
i=1 : Ti ∈ Rmi×ni , ni, mi ≥ r, and mi+1 = ni for i = 1, ..., N − 1, nN = n, m1 = m}.

In other words, we want to show that

min
{Ri}N

i=1∈T ,∏
i∈[N]

Ri=A

(∑
i∈[N]

∥Ri∥pi
pi

/pi

)1/p

= min
{Ri}N

i=1∈T ′,∏
i∈[N]

Ri=A

(∑
i∈[N]

∥Ri∥pi
pi

/pi

)1/p

,

where the only distinction between the optimizations on the left and right hand sides of this equality lies in
substituting the set T under the min operator with T ′, so that we allow a more flexible choice of dimensions
of the factors. We will prove this equality by separately proving

min
{Ri}N

i=1∈T ,∏
i∈[N]

Ri=A

(∑
i∈[N]

∥Ri∥pi
pi

/pi

)1/p

≥ min
{Ri}N

i=1∈T ′,∏
i∈[N]

Ri=A

(∑
i∈[N]

∥Ri∥pi
pi

/pi

)1/p

(10)

19

Published in Transactions on Machine Learning Research (11/2024)

and

min
{Ri}N

i=1∈T ,∏
i∈[N]

Ri=A

(∑
i∈[N]

∥Ri∥pi
pi

/pi

)1/p

≤ min
{Ri}N

i=1∈T ′,∏
i∈[N]

Ri=A

(∑
i∈[N]

∥Ri∥pi
pi

/pi

)1/p

. (11)

To prove Equation (10), let {R∗
i }T

i=1 ∈ T be a global minimizer of the optimization on the left hand side
of Equation (10). We denote by R̃∗

i the augmented matrices obtained by padding/appending all-zero rows
and columns to each R∗

i until its dimension grows from r × r to mi × ni. Then, {R̃∗
i }N

i is a point in T ′. In
addition, since the 0-padding does not change the product nor the Schatten p-norm of the matrices, plugging
{R∗

i }T
i=1 into the left hand side optimization of Equation (10) and {R̃∗

i }T
i=1 into the right hand side one

yields to:

min
{Ri}N

i=1∈T ,∏
i∈[N]

Ri=A

(∑
i∈[N]

∥Ri∥pi
pi

/pi

)1/p

=
(∑

i∈[N]

∥R∗
i ∥pi

pi
/pi

)1/p

=
(∑

i∈[N]

∥R̃∗
i ∥pi

pi
/pi

)1/p

≥ min
{Ri}N

i=1∈T ′,∏
i∈[N]

Ri=A

(∑
i∈[N]

∥Ri∥pi
pi

/pi

)1/p

,

which proves this direction.

To prove Equation (11), with a little abuse of notation, suppose now {R∗
i }N

i=1 ∈ T ′ represents a global
minimizer of the right hand side of Equation (11). Let U ∈ Rm×r be the matrix containing the top r left
singular vectors of A (A is of rank-r by assumption), then

A = UU⊤A = UU⊤R∗
1 · · · R∗

N .

Next, we want to construct from {R∗
i }N

i=1 ∈ T ′ a new sequence of matrices of different dimensions {R̃∗
i }T

i=1 ∈
T which yields equal or a smaller objective value than {R∗

i }N
i=1. The construction proceeds like the following,

first define R̃∗
1 := UU⊤R∗

1V1, where V1 is the matrix containing the first r right eigenvectors of UU⊤R∗
1 .

This definition ensures that R̃∗
1 ∈ Rr×r and ∥R̃∗

1∥p ≤ ∥R∗
1∥p. For i = 2, ..., N −1, define R̃∗

i := V⊤
i−1R∗

i Vi ∈
Rr×r, where Vi−1 was defined in the previous iteration and Vi is matrix holding the top-r right singular
vectors of V⊤

i−1R∗
i as columns. For i = N , define R̃∗

N := V⊤
N−1R∗

N ∈ Rr×n. With this definition, we can
verify the following properties for R̃∗

i

• {R̃∗
i }N

i=1 ∈ T

• ∥R̃∗
i ∥p ≤ ∥R∗

i ∥p, for any i = 1, ..., N , since Vi have orthonormal columns

•
∏

i∈[N] R̃∗
i = A, which is due to

A = UU⊤A
= UU⊤R∗

1 · · · R∗
N

= (UU⊤R∗
1V1)(V⊤

1 R∗
2V2)(V⊤

2 · · · VN−1)(V⊤
N−1R∗

N)

= R̃∗
1 · · · R̃∗

N .

20

Published in Transactions on Machine Learning Research (11/2024)

Plugging {R∗
i } ∈ T ′ and {R̃∗

i } ∈ T into the right and left hand sides of Equation (11) respectively yields,

min
{Ri}N

i=1∈T ,∏
i∈[N]

Ri≤A

(∑
i∈[N]

∥Ri∥pi
pi

/pi

)1/p

≤
(∑

i∈[N]

∥R̃∗
i ∥pi

pi
/pi

)1/p

≤
(∑

i∈[N]

∥R∗
i ∥pi

pi
/pi

)1/p

= min
{Ri}N

i=1∈T ′,∏
i∈[N]

Ri=A

(∑
i∈[N]

∥Ri∥pi
pi

/pi

)1/p

,

where the first inequality arises because R̃∗
i ∈ T may not represent a minimizer, and therefore, its corre-

sponding objective function value would be greater or equal to the minimum. The second inequality is due to
the second bullet point above, whereas the final equality is due to the assumption that {R∗

i } ∈ T ′ represents
a minimizer of the right hand side of Equation (11). This completes the proof of the second direction.

B.2 Proof of Proposition 4.5

Proof of Proposition 4.5. The proposition is derived from the scaling ambiguity inherent in the ReLU acti-
vation. The the scaling ambiguity allows for the output of the network to remain unchanged when a scalar is
multiplied by the weight matrix of one layer and the same scalar is divided by the weight matrix of another
layer.

Let {Ŵi
l, i ∈ [K], l ∈ [L]}, be the minimizer of Equation (7). Then by taking

λ = p

2

(
L∏

i=1
αl

)1/L

, (12)

one can verify that the rescaled weights,

{βlŴi
l, i ∈ [K], l ∈ [L]} with βl =

√
αlp

2λ
, (13)

become the minimizer of Equation (8) and the corresponding minimum coincides with the minimum of
Equation (7).

Let us first prove that the objective of Equation (8) evaluated at the rescaled weights βlŴi
l coincides with

the objective of Equation (7) evaluated at the original weights Ŵi
l. Indeed, since

∏
l∈[L] βl = 1 (due to the

definition of βl and λ), and the scaling ambiguity, the two networks corresponding to the rescaled weights and
the original weights have identical output. Consequently, when we insert the original and rescaled weights
to Equation (7) and Equation (8), respectively, the first terms of the objectives are identical. Additionally,
with the chosen value of βl, direct calculations confirm that the second terms in these objectives are also the
same. This indicates that rescaling each weight Ŵi

l by βl maintains the consistency of the objective values.

Next, we show that {βlŴi
l, i ∈ [K], l ∈ [L]} is a minimizer (may not be unique) of Equation (8), by

contradiction. If it is not one of the minimizers, then there must exist another set of weights {W̃i
l, i ∈

[K], l ∈ [L]} that achieve lower objective values for Equation (8) . This in turn implies that the reversely
rescaled weights { 1

βl
W̃i

l, i ∈ [K], l ∈ [L]} by βl must achieve the same low value for the original objective
function Equation (7). This contradicts the assumption that {Ŵi

l, i ∈ [K], l ∈ [L]} is a minimizer of
Equation (7). Thus, the proof is concluded.

21

Published in Transactions on Machine Learning Research (11/2024)

C Discussion on Linear Layers Composition Methods For Non-Compression Tasks

Here, we review recent studies that utilize linear composition for non-compression purposes. This means
the methods that involve substituting each weight matrix with a sequence of consecutive layers without
including any activation functions. The study presented in (Guo et al., 2020) introduced ExpandNet, where
the primary objective of the composition is to enhance generalization and training optimization. The authors
empirically show that this expansion also mitigates the problem of gradient confusion.

The research conducted in (Khodak et al., 2021) explores spectral initialization and Frobenius decay in
DNNs with linear layer composition to enhance training performance. The focus is on the tasks of training
low-memory residual networks and knowledge distillation. In contrast to our method, this approach employs
under-parameterization, where the factorized matrices are smaller than the original matrix. Additionally,
the introduced Frobenius decay regularizes the product of matrices in a factorized layer, rather than the
individual terms. This choice adds complexity to the training optimization compared to the standard weight
decay used in our approach.

The study conducted in (Huh et al., 2021) provides empirical evidence demonstrating how linear overparam-
eterization of DNN models can improve the generalization performance by inducing a low-rank bias. Unlike
our work, they did not consider the role of weight decay in enforcing low-rankness.

D Demonstrating the Faster Decay of Singular Values in LoRITa-trained Models

In Figure 6, we empirically demonstrate the faster decay of singular values in LoRITa-trained models. In
particular, Figure 6 (left) (resp. Figure 6 (right)) show the singular values of the first (resp. second) weight
matrix of the standard model (N = 1) and LoRITa-trained models (N = 2 and N = 3) for the FCN8
architecture of Table 1a. As observed, models trained with LoRITa exhibit faster decay, and increasing N
promotes faster decay.

(Global) (Global)

Figure 6: Empirically showing the faster decay of singular values of the first two weight matrices (layer 0 (left) and
layer 1 (right)) of the standard model (N = 1) vs. LoRITa-trained models (N = 2 and N = 3) using the FCN8
architecture of Table 1a.

22

	Introduction
	Related Work
	Post-training Low-Rank Compression Methods
	Low-Rank Promoting Methods
	Structured Pruning Methods

	Preliminaries
	Fully Connected, Convolutional, & Attention Layers
	Singular Value Thresholding

	Compression with LoRITa
	Singular Value Truncation of Trained Weights
	Model Re-parmeterization with LoRITa
	Theoretical Underpinnings of LoRITa
	Weight Decay Regularization & Low-Rankness in LoRITa
	Sufficiency of a Single Weight Decay Parameter in LoRITa

	Experimental Results
	LoRITa Evaluation on FCNs, CNNs, & ViTs
	Comparison with Structured Pruning & Low-Rank Training Baselines on CNNs

	Conclusion & Future Work
	Detailed Description of the Iterative SVT Approach
	Proofs
	Proof of Proposition 4.2
	Proof of Proposition 4.5

	Discussion on Linear Layers Composition Methods For Non-Compression Tasks
	Demonstrating the Faster Decay of Singular Values in LoRITa-trained Models

