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Abstract

To improve persistence diagram representation learning, we propose Multiset Transformer.
This is the first neural network that utilizes attention mechanisms specifically designed
for multisets as inputs and offers rigorous theoretical guarantees of permutation invari-
ance. The architecture integrates multiset-enhanced attentions with a pool-decomposition
scheme, allowing multiplicities to be preserved across equivariant layers. This capability
enables full leverage of multiplicities while significantly reducing both computational and
spatial complexity compared to the Set Transformer. Additionally, our method can greatly
benefit from clustering as a preprocessing step to further minimize complexity, an advantage
not possessed by the Set Transformer. Experimental results demonstrate that the Multi-
set Transformer outperforms existing neural network methods in the realm of persistence
diagram representation learning.

1 Introduction

In recent years, the field of machine learning has seen the growing importance of multisets, often referred to
as bags. These multisets provide an advanced form of traditional sets by allowing for multiple instances of
identical elements. Descriptors based on histograms and the bag-of-words model, both examples of multisets,
are not only common in Multiple Instance Learning (Dietterich et al., 1997; Babenko et al., 2010; Quellec
et al., 2017), but also in natural language processing and text mining. Furthermore, they are recognized
as among the primary representation techniques for tasks such as object categorization, as well as image
and video recognition (Dalal & Triggs, 2005; Zhang et al., 2010; Welleck et al., 2018). This widespread use
highlights the increasing importance and versatility of multisets in machine learning. Given their prevalence
and critical role, understanding and mastering representation for multisets becomes essential.

In the realm of topological data analysis (TDA), persistence diagrams (PDs) stand out as a pivotal descriptor
for persistent homology (PH), offering a multi-scale depiction of a space’s intrinsic topological attributes
(Edelsbrunner et al., 2002). Such topological insights have proven instrumental in deciphering complex
biological structures, such as neural connections (Giusti et al., 2016), and have found applications in material
science for analyzing porosity and nanomaterial structures (Nakamura et al., 2015). The recent fusion of
PH-derived features with machine learning has enhanced both model performance and interpretability (Hofer
et al., 2017; Horn et al., 2021). Nevertheless, the intrinsic multiset characteristics of PDs, as illustrated in
Figure 1, present significant challenges for their direct integration into traditional machine learning models.
These models predominantly necessitate inputs in a vector format, thus complicating the utilization of PDs.
This essential transformation of PDs into vectors is known as vectorization (Ali et al., 2023), which align
with our MST architecture.

Our contributions in this paper can be outlined in two primary areas: the introduction of a novel Multiset
Transformer (MST) and its subsequent application in PD representation learning. The MST architecture is
uniquely tailored to accept multisets as input, leveraging multiplicities to allocate greater attention to items
with higher frequencies. This innovative design allows MST to utilize the multiplicities in multiset inputs
while significantly reducing spatial and computational complexity compared to the Set Transformer. When
applied to PD representation learning, MST consistently outperforms the existing methodologies across a
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Figure 1: Persistence diagram examples. PDs are represented as point sets in R2 above the diagonal. Each
point’s size indicates its multiplicity, and its color reflects the distance from the diagonal. The left PD
contains 184 points, with 183 being distinct. After applying DBSCAN clustering, the diagram is reduced to
54 distinct points, as depicted in the right figure. Both PDs are characterized as multisets.

majority of the datasets we evaluated. Furthermore, our experimental results indicate that MST inherently
offers an approximation by clustering the multiset prior to processing.

2 Related Works

The transformer model, as introduced by Vaswani et al. (2017), has revolutionized the field of deep learn-
ing, particularly within natural language processing (NLP). Its inception has spurred the development of
numerous variants tailored to various data structures and applications, as outlined in the extensive surveys
by Lin et al. (2022) and Khan et al. (2022). A prominent example is the Set Transformer (Lee et al., 2019),
which offers a novel approach to processing unordered sets. However, to the best of our knowledge, this work
presents the first transformer variant specifically designed for handling multisets.

Persistent homology and its PD vectorization have played a pivotal role in the integration of TDA into
machine learning, as evidenced by works such as Dey & Wang (2022) and Ali et al. (2023). Traditional vec-
torization methods, including persistence landscapes (Bubenik et al., 2015) and persistence images (Adams
et al., 2017), have garnered significant attention. The comprehensive survey by Ali et al. (2023) offers a
structured framework, clarifying the various vectorization techniques available. In addition to these founda-
tional methods, there has been a growing interest in adapting machine learning architectures to this domain.
For instance, Hofer et al. (2017) introduced an innovative input layer for deep neural networks that processes
topological signatures, computing a learnable parameterized projection. This idea was further refined by
the same authors, who developed a neural network layer adept at handling barcodes by projecting points
using parameterized functionals, as detailed in Hofer et al. (2019). Another notable contribution is PersLay,
a specialized neural network layer for processing PDs, proposed by Carrière et al. (2020). The Persformer
architecture, introduced by Reinauer et al. (2021), exemplifies the application of transformers to PD vec-
torization, presenting a transformer-centric methodology for PDs. Notably, our contribution diverges from
the aforementioned works in a distinctive manner. The MST uniquely treats PDs as multisets rather than
viewing them as lists of points that may be duplicated. This approach enables the model to incorporate a
clustering phase before vectorization, effectively tackling the inherent computational challenges within this
domain.
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3 Preliminaries

3.1 Multisets and Permutation Properties

A multiset can be viewed as an extension of the conventional set, permitting the inclusion of multiple
occurrences of identical elements. Formally, a multiset is defined by a base set X accompanied by its
multiplicity map M : X → Z+. To illustrate, consider the multiset {a, b, b}. Here, the base set X is
represented as {a, b}, and the associated multiplicity map M is such that M(a) = 1 and M(b) = 2.

Inherent to their definitions, both sets and multisets are indifferent to the order of their elements. Conse-
quently, functions defined on sets or multisets inherently possess the property of permutation invariance.
Definition 3.1 (Permutation Invariance). A function f is said to be permutation invariant if the order of
the components in its input vector does not influence its output. Formally, given any permutation σ of the
set of indices {1, 2, . . . , n} corresponding to a vector x, f is permutation invariant if and only if:

f (x1, x2, . . . , xn) = f
(
xσ(1), xσ(2), . . . , xσ(n)

)
, (1)

for all such permutations σ.

Conversely, while the concept of permutation invariance revolves around the indifference to order, there
exists a contrasting property where the order is preserved, termed as permutation equivariance.
Definition 3.2 (Permutation Equivariance). A vector-valued function f = (f1, . . . , fn) is characterized as
permutation equivariant if any permutation applied to the input vector’s elements results in a corresponding
permutation of the output components, ensuring that the functional relationship remains intact. Formally,
for every permutation σ of the set of indices {1, 2, . . . , n}:

f
(
xσ(1), . . . , xσ(n)

)
=

(
fσ(1)(x), . . . , fσ(n)(x)

)
, (2)

for all such permutations σ.

3.2 Pool-Decomposition Scheme

To achieve permutation invariance, the pool-decomposition scheme is commonly employed. Given a set
X = {x1, x2, . . . , xn} ∈ X , we define transformation functions ϕ : X → Rh and ρ : Rh → Rd, where h and d
denote the hidden and output dimensions, respectively. The operator pool signifies a permutation-invariant
pooling operation, such as sum, average, or max. Thus, a function f on X is expressed as:

f(X) = ρ (poolni=1 ϕ (xi)) (3)

This approach is referenced in multiple studies, including Ravanbakhsh et al. (2016); Qi et al. (2017); Zaheer
et al. (2017); Carrière et al. (2020); Reinauer et al. (2021). In our work, we adopt the pool-decomposition
schema as a cornerstone for our MST design.

4 Problem Setup

From a machine learning perspective, the problem can be formally described as follows: Let D denote
a bounded, finite multiset space representing the data space, let H denote a Hilbert space serving as the
feature space, and let Y represent the target space. Consider a learning system characterized by the mappings

D fθ−→ H gϕ−→ Y,

where the function fθ, parameterized by θ, maps elements of D to representations in H, and the function
gϕ, parameterized by ϕ, predicts outcomes in Y based on these representations. The objective is to develop
and refine the representation fθ such that gϕ can achieve better predictions by minimizing the loss function
L(gϕ(fθ(x)), y), where (x, y) ∈ D × Y. To illustrate, in this paper, we employ MST as the model for the
representation function fθ.
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From an application perspective, the problem centers on acquiring representations of PDs suitable for classifi-
cation tasks. These PDs are derived from graphs, which are fundamentally multisets, as depicted in Figure 1.
Inherently, PDs do not possess intrinsic bounds or finite limits; yet, for practical purposes, they are typically
preprocessed into bounded, finite multisets. For the purposes of this discussion, it is presupposed that PDs
are treated as bounded and finite multisets.

This representation learning framework adheres to key criteria outlined subsequently:

1. Permutation Invariance: Given the fundamental properties of multisets, the representation must
be order-agnostic. This ensures a consistent representation, irrespective of the ordering of elements.

2. Practical Feasibility: The training process for representations should be computationally feasible,
emphasizing feasibility and scalability, particularly for large-scale datasets.

3. Feature Retention: It is imperative for the representation to capture and retain key features. This
enables subsequent machine learning tasks to effectively exploit the data’s underlying structure.

By addressing these priorities, we aim to bridge the gap between multiset representation learning and its
applications ensuring that the complex structure of the data remains most informative throughout the
representation process.

5 Multiset Transformer

The Multiset Transformer (MST) is based on the fundamental idea of leveraging the multiplicity inherent in
multisets to influence the attention score function. Essentially, the objective is to steer the model’s attention
towards items with relatively higher multiplicities. This is grounded in the belief that items with higher
multiplicities may carry more importance or relevance in certain contexts, and thus should be given more
weight during the attention process. To provide a comprehensive explanation of the MST, it is imperative
to first explain the underlying mechanisms of attention.

5.1 Scaled Dot-Product Attention Mechanism

The attention mechanism we employ is consistent with the one presented by Vaswani et al. (2017). Given n
query vectors Q ∈ Rn×dq , m key vectors K ∈ Rm×dk , and m value vectors V ∈ Rm×dv , where dq, dk, and
dv represent their respective dimensions, the attention function Att(Q,K, V ) is designed to map queries Q
to outputs using the key-value pairs. This is mathematically represented as:

Att(Q,K, V ;ω) = ω(QK⊤)V. (4)

The pairwise dot product QK⊤ ∈ Rn×m serves as a measure of similarity between each pair of query and
key vectors. The weights for this dot product are computed using the activation function ω. Consequently,
the output ω(QK⊤)V is essentially a weighted sum of V . Here, a value vector from V receives a higher
weight if its associated key vector has a larger dot product with the query. Note that the dot product QK⊤

necessitates dq = dk for dimensional consistency.

Building upon this, we specifically utilize the scaled dot-product attention in our construction, which is given
by:

Att(Q,K, V ) = softmax
(
QK⊤
√
dk

)
V. (5)

This formulation ensures that the attention weights are appropriately normalized, and the scaling factor√
dk aids in stabilizing the magnitudes of the dot products, especially when dk is large. Furthermore,

our architecture incorporates multihead attention, a technique that facilitates capturing a diverse range of
relationships and dependencies within the input data. Each attention head operates independently, allowing
the model to focus on different aspects of the input simultaneously. Additional details on multihead attention
can be found in the Appendix for clarity.
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5.2 Multiset Attention Mechanisms in the Transformer

Within the framework of the MST, attention is employed in two distinct manners: self-attention and attention
with learnable queries. To clarify these mechanisms, we first establish the necessary notations and their
interpretations.

A multiset is denoted as (X,MX), where X, the base set, is represented as an array of points in Rn×d.
The multiplicities associated with these points are specified by MX ∈ Rn×1, where each element of MX

corresponds to the multiplicity of the respective element in X. It is important to note that a multiset
reduces to a conventional set when all elements of MX are equal to unity, that is, Mi = 1 for each i.

5.2.1 Multiset-Enhanced Attention Mechanism

In this section, we introduce the concept of multiset attention, a novel approach designed to handle input
multisets and their associated multiplicities. The primary motivation behind this mechanism is to incorporate
the multiplicity information into the traditional attention mechanism, thereby enhancing its ability to focus
on elements with larger multiplicities.

Given input base sets Q ∈ Rn×d and X ∈ Rm×d, along with their respective multiplicities MQ ∈ Rn×1 and
MX ∈ Rm×1, we define the multiset-enhanced attention weights as:

A(Q,X) :=
(

softmax
(
QX⊤
√
d

)
+ αB

)
X, (6)

B := (MQ − 1)(MX − 1)⊤

∥(MQ − 1)(MX − 1)⊤∥F + ε
. (7)

Here, ∥∥F denotes the Frobenius norm, which is utilized to normalize this new term. The parameter α is
learnable, allowing the model to adjust its influence during training. ε is used as a small constant to avoid
zero division.

Intuitively, the introduction of the multiplicities term (7) enables the attention mechanism to allocate greater
emphasis to elements with higher multiplicities. This enhancement augments the mechanism’s ability to
selectively focus on the most salient elements within a multiset.

5.2.2 Multiset Self-Attention

Self-attention, as described by Vaswani et al. (2017), is characterized by the attention scores being derived
directly from the input. This mechanism inherently captures the intra-correlation present within the input
data. Building upon the multiset attention framework discussed in the previous sections, we extend this
concept to introduce the multiset self-attention.

Given an input matrix X ∈ Rm×d with multiplicity MX ∈ Rm×1, multiset self-attention is achieved by
setting Q = K = V = X, leading to the self-attention A(X,X). This self-attention A(X,X) is notable for
its property of permutation equivariance, which we formalize in the following theorem.

Theorem 5.1. The multiset self-attention, represented as A(X,X), is permutation equivariant.

5.2.3 Multset Attention with Learnable Queries

In the previous section, we introduce a permutation equivariant multiset self-attention. However, to ensure
the permutation invariant property in a MST, it is necessary to incorporate a permutation invariant operator,
i.e., the pool operator in Equation (3). The core of our approach lies in the multiset attention with learnable
queries. Specifically, we set K = V = X and introduce a learnable matrix Q ∈ Rn×d, where n is a user-
defined parameter. It is worth noting that the query is independent of the input and is shared across all
input instances, enabling the capture of common features during training. To account for multiplicity, we
define the multiset attention with learnable queries as:
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AQ(X) :=
(

softmax
(
QX⊤
√
d

)
+B

)
X, (8)

B := Mα(MX − 1)⊤

∥Mα(MX − 1)⊤∥F + ε
. (9)

where Mα ∈ Rn×1 are learnable parameters. Similarly, we formalize its permutation invariant in the following
theorem.
Theorem 5.2. The multiset attention with learnable queries AQ(X) is permutation invariant.

The terms introduced in Equations (7) and (9) are not the only possible choices, yet they are carefully
selected for their alignment with several key aspects of our framework. Firstly, these multiplicity bias
terms successfully incorporate biases associated with multiplicities into the attention weights, aligning with
our philosophy of assigning attention based on multiplicities. Moreover, they are key in maintaining the
permutation equivariant or invariant properties, which are important for our model’s integrity. Finally, they
demonstrate mathematical consistency by reducing to zero for set inputs, when MQ = 1 and MX = 1, these
attentions degenerate to the original ones.

5.3 Multiset Attention Blocks

Multiset self-attention and multiset attention with learnable queries are crucial in the construction of the
MST. To ensure clarity and maintain consistency with existing literature, we adopt and slightly modify
terminologies introduced by Lee et al. (2019).

The cornerstone of our proposed architecture is the Multiset Attention Block (MAB). This block can be
described using the following formulation:

MAB(Q,X) := LN(H + FFN(H)), (10)
H := LN(Q+A(Q,X)). (11)

Here, FFN denotes a position-wise feedforward layer, specifically row-wise. The symbol LN represents layer
normalization, as illustrated by Ba et al. (2016).

Based on the MAB, we construct several foundational components important for the MST. The multiset
attention block with learnable queries, denoted as MABQ, is formulated for a given set X. Mathematically,
it can be expressed as:

MABQ(X) := LN(H + FFN(H)), (12)
H := LN(Q+AQ(X)). (13)

The Multiset Self-Attention Block (SAB) is a specialized case of the MAB wherein the input set serves as
both the key and value. This block can be represented as:

SAB(X) := MAB(X,X). (14)

Inspired by the Induced Set Attention Block (ISAB) as presented in Lee et al. (2019), we also introduce the
Induced Multiset Attention Block (IMAB). This block is designed to provide similar functionality but with
reduced computational demands. It is defined as:

IMAB(X) := MAB (X,MABQ(X)) . (15)

It is evident that both SAB and IMAB maintain permutation equivariance. In contrast, MABQ exhibits
permutation invariance.
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5.4 Multiset Transformer Overall Architecture

The MST is formulated on the foundation of a pool-decomposition scheme, as articulated in Equation (3).
The rationale for this architectural decision is bifurcated. Initially, it guarantees that the model attains an
optimal level of expressiveness, facilitating the capture of complex patterns and interrelationships within the
dataset. Concomitantly, it is imperative to note that the model embodies a permutation-invariant property, a
requisite dictated by the inherent characteristics of a multiset. The overall architecture of the MST, detailing
its various components and their interconnections, is illustrated in Figure 2.

X

MX

Equivariant Layers H An Invariant Layer R

Figure 2: MST architecture. Base set X with multiplicities MX is processed by equivariant layers, preserving
permutation order. Representation output R is generated, with multiplicities MX used as input to an
invariant layer.

Within the given figure, a multiset is denoted as (X,MX), where X represents the base set, and MX indicates
its corresponding multiplicities. The architecture consists of two main components: the Equivariant Layers
and an Invariant Layer. The Equivariant Layers are structured as a sequence of permutation equivariance
blocks, which can be either SABs or IMABs. The outputs from these layers, denoted as H, possess per-
mutation equivariance. Given that H maintains permutation equivariance in relation to X, it follows that
the multiplicities MX are intrinsically the multiplicities of H. This architectural design ensures that the
multiplicities not only enrich the Equivariant Layers but also strengthen the subsequent Invariant Layer.

The Invariant Layer can be constructed either by employing invariant operators or by applying the MABQ

operation. This procedure ultimately results in the final output R, serving as the representation of the
multiset. Therefore, a conventional architecture wherein the Equivariant Layers are constructed via IMAB
and the Invariant Layer is performed by MABQ can be expressed as:

H = IMAB(IMAB(. . . IMAB(X) . . .)), (16)
R = MABQ(H). (17)

This architecture ensures a balance between expressiveness and complexity, making it suitable for a wide
range of applications.

5.5 Complexity Analysis of Multiset Transformer and Set Transformer

To thoroughly highlight the advantages of the MST, we conduct a complexity analysis comparing it to the
Set Transformer (ST), particularly focusing on scenarios involving multiset inputs. Notably, the attention
mechanism significantly influences the complexity of these architectures, forming the core of our analysis.

For a multiset X ∈ Rn×d, where d is fixed, and accompanied by its multiplicity information MX ∈ Rn×1,
it’s important to acknowledge that the ST processes inputs in the form of lists. In cases where MX results
in a multiset list, the size of the list can scale to O(nm), with m representing the maximum multiplicity
within MX . Consequently, the complexities of the Set Attention Block (SAB) and Induced Set Attention
Block (ISAB) operations in the Set Transformer are O(n2m2) and O(nmq), respectively. Here, q denotes
the number of inducing points in ISAB.

In contrast, the MST, designed to handle multiplicities without duplicating elements, demonstrates complex-
ities of O(n2) and O(nq) for the SAB and IMAB, respectively. This comparison underscores the inherent
lower complexity of the MST when processing multiset inputs. Similarly, the space complexity exhibits the
same favorable results, with d being held constant.
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6 Experiments

In the experiments section, our studies are divided into two primary parts: synthetic experiments and
persistence diagram (PD) representation learning. The goal of the synthetic experiments is to provide
a preliminary study to confirm that the framework operates as expected. On the other hand, the PD
representation learning aims to demonstrate the effectiveness and relevance of our framework on real-world
datasets. Through these experiments, we attempt to substantiate both the theoretical foundations and the
practical usefulness of our proposed approach.

6.1 Synthetic Experiments

In the synthetic experiments, our goal was to demonstrate the ability of the MST to highlight elements that
appear with the highest frequency within a multiset. We employed synthetic samples composed of multisets
of 2-dimensional points. The true label is determined based on the element that appears with the highest
frequency. For the purpose of learning representations of these multisets, we employed the MST, both with
and without multiplicity inputs. Subsequently, these representations were fed into a fully connected layer
for prediction, as outlined in Figure 3.

(X,MX) MST R FC Y

Figure 3: Sythetic data classification pipeline. A multiset sample (X,MX) is processed by a Multiset
Transformer (MST) to generate its representation R. This representation is then used by a fully connected
(FC) classifier to make predictions Y . In the context of problem setup (Section 4), MST corresponds to the
representation function fθ and FC corresponds to the task-specific function gϕ.

With the given architecture, we utilized a ten-fold cross-validation method, which was conducted over 10
separate iterations. To elaborate, the entire dataset was partitioned into 10 equal folds. For each of these
iterations, our model was trained using nine of these folds and subsequently tested on the one remaining fold.
This ensured that every individual fold had a turn as the test set. The accuracy was averaged over these 10
iterations to yield the result for a single run. To enhance the robustness of our results, this entire process
was repeated for a total of 5 runs, with each run shuffling the data randomly. The cumulative results, which
include both the mean and standard deviation from all 5 runs, are presented in Table 1.

Table 1: Results on synthetic datasets. In this table, ‘# Classes’ refers to the total number of class labels
in the dataset. ‘Ratio’ is defined as the data ratio, calculated using |X|

∥MX ∥1
. ‘MST (w/o mult.)’ represents

the Multiset Transformer without multiplicity inputs. ‘MST’ denotes the Multiset Transformer. Note that
all ratios are presented in decimal form, and prediction accuracies are expressed as percentages.

# Classes Ratio MST (w/o mult.) MST
2 0.03 55.94±0.50 100.00±0.00
3 0.03 39.92±0.58 99.88±0.15
5 0.04 26.72±0.72 88.86±2.07
11 0.05 15.06±0.24 41.14±2.24

To ensure consistency in our experiments, hyperparameters were kept constant across all configurations.
These hyperparameters are detailed in the Appendix. In the table, we use the data ratio |X|

∥MX ∥1
, which

represents the ratio of the count of unique items to the sum of their multiplicities, to highlight the size
difference between set and multiset representations.

Table 1 demonstrates the enhanced performance of the MST when equipped with multiplicity. Specifically,
this advantage is clearly shown in scenarios involving 2 or 3 classes, where MST achieves near-perfect
or perfect accuracies, significantly surpassing its counterpart. Intriguingly, the relative improvements for
datasets with 5 or 11 classes, measured at approximately 232% and 173%, respectively, are higher than
those observed in the 2 and 3 class cases (79% and 150%). This suggests that with an increasing number
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of classes, MST not only maintains its lead but does so with a more pronounced relative margin, despite a
seemingly narrower absolute margin of improvement. These findings highlight the successful achievement of
MST’s design objectives, validating its effectiveness in leveraging the attributes of multiplicity in multisets.

6.2 Persistence Diagram Representation Learning

In this segment of our study, we concentrate on validating the efficacy of the MST as a neural network
vectorization method for PDs. To our knowledge, PERSLAY (Carrière et al., 2020) currently maintains state-
of-the-art (SOTA) benchmarks in the majority of its datasets within this specialized field. Consequently, we
designate PERSLAY as our comparative baseline.

6.2.1 Dataset Selection and Evaluation Metrics

Adapting the approach proposed by Carrière et al. (2020), this study harnesses PD representation learning
for graph datasets. Specifically, our focus gravitates towards chemoinformatics network datasets such as
MUTAG, COX2, DHFR, NCI1, and NCI109 (Debnath et al., 1991; Sutherland et al., 2003; Wale et al.,
2008; Shervashidze et al., 2011). Beyond this, we delve into the bioinformatics dataset PROTEIN (Dobson
& Doig, 2003) and larger real-world social networks, which include movie (IMDB-BINARY, IMDB-MULTI)
and scientific collaboration networks (COLLAB) (Yanardag & Vishwanathan, 2015). As classification is
the primary goal for all datasets in focus, we utilize classification accuracy as the evaluation criterion. An
extensive analysis and quantitative overview of these datasets can be found in the Appendix.

6.2.2 Persistence Diagrams

In our experimental framework, we primarily utilize two types of topological features: ordinary PDs
and extended PDs. These diagrams are represented as multisets in R2, denoted as X1, X2, X3, . . .,
where the subscripts indicate different types of PDs resulting from various filtrations. When com-
bined with their corresponding multiplicities, we have pairs of PDs and their multiplicities, such as
(X1,MX1), (X2,MX2), (X3,MX3), . . ..

The computation of persistence values relies on filtrations, which are in turn generated by specific functions.
In the context of this research, we primarily employ heat kernel signatures (HKS) as these specific functions
to maintain consistency with the settings in Carrière et al. (2020). A more comprehensive explanation of
these features, along with the selection of filtration methods, is provided in the Appendix for further clarity.

6.2.3 Graph Classification Architecture

To ensure a rigorous and unbiased comparison, we adopt the experimental settings described in Carrière
et al. (2020). Our network comprises two main components: first, we employ MSTs to effectively learn
representations of PDs, and subsequently, we use a fully connected layer for prediction tasks. A visual
representation of this architecture can be found in Figure 4.

G (X2,MX2)

(X1,MX1)

(X3,MX3)

MST 1

MST 2

MST 3

R1

R2

R3

Concat(R1, R2, R3) FC Y

Figure 4: Graph classification architecture. Given a graph G, it’s encoded into various ordinary or extended
PDs, i.e., (Xi,MXi

). Here, we have i ∈ {1, 2, 3} as demonstration. In experimentation, we can have
i ∈ {1, 2, . . . , n} for some finite integer n. Each diagram is processed by an independent instance of the
Multiset Transformer (MST i), yielding its representation Ri. These representations are concatenated to
form the complete feature set of the graph. The classifier, represented by a fully connected layer (FC), then
makes predictions based on this comprehensive representation.
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6.2.4 Main Results

Similar to the experiments in Subsection 6.1, we applied a ten-fold cross-validation over 10 iterations on
our dataset. Each iteration trained the model on nine folds and tested on one, ensuring all folds served as
the test set. After averaging the accuracy over the 10 iterations for a single run, we repeated this process
for 5 runs with random shuffling of data each time. The aggregated results, including mean and standard
deviation from the 5 runs, are detailed in Table 2.

Table 2: PD representation learning results. This table utilizes the abbreviation ‘PSL’ to denote PERSLAY,
‘R’ to signify the data ratio, which is computed as |X|

∥MX ∥1
, and ‘MST’ to represent the Multiset Transformer.

Data ratios are displayed in decimal form, whereas all accuracy measures are provided in percentage format.

Datasets
Ordinary PDs Extended PDs

PSL
w/o Clustering w/ Clustering

PSL
w/o Clustering w/ Clustering

R MST R MST R MST R MST
MUTAG 70.2 0.91 89.25±0.77 0.14 87.03±1.13 85.1 1.00 89.54±1.32 0.51 90.50±0.67
COX2 79.0 0.92 81.20±1.04 0.04 80.67±0.27 81.5 1.00 81.61±0.51 0.47 79.96±1.18
DHFR 71.8 0.90 74.12±0.37 0.04 76.37±0.18 78.2 0.99 73.18±0.49 0.48 71.55±0.70
NCI1 68.9 0.98 69.12±0.17 0.22 68.65±1.23 72.3 0.99 70.28±0.12 0.69 69.57±0.19
NCI109 66.2 0.97 66.38±0.40 0.22 64.87±0.51 67.0 0.99 68.75±0.27 0.68 67.11±0.45
PROTEIN 69.7 0.99 72.92±0.47 0.37 72.89±0.26 72.2 0.94 75.49±0.44 0.21 74.16±0.22
IMDB-B 64.7 0.99 70.76±0.47 0.70 70.66±0.42 68.8 0.49 75.40±0.14 0.06 74.72±0.42
IMDB-M 42.0 0.99 45.44±0.35 0.78 44.95±0.48 48.2 0.44 51.46±0.29 0.06 50.33±0.17
COLLAB 69.2 0.99 69.90±0.32 0.61 70.42±0.26 71.6 0.52 74.18±0.38 0.01 72.26±0.21

In our results, we primarily showcase two variations of the model: the MST applied directly and the MST
preceded by a clustering preprocess. Detailed comparisons and visualizations of the MST model with the
clustering preprocess can be found in Figure 5. In our experiments, we utilize the DBSCAN clustering algo-
rithm, with the hyperparameters detailed in the Appendix. Our primary goal was to assess the effectiveness
of the MST in the context of PD representation learning, and the results yielded valuable insights on multiple
fronts.

X

MX

X ′

MX′

CL.
Equivariant Layers An Invariant Layer R

Figure 5: Multiset Transformer architecture with clustering preprocessing. In this architecture, ‘CL’ repre-
sents the clustering preprocessing step. Initially, the input multiset (X,MX) undergoes clustering to approx-
imate its structure. The output of this preprocessing stage is a clustered multiset, denoted by (X ′,MX′),
which then serves as the input for the Multiset Transformer.

Firstly, the results demonstrate that, across a majority of datasets, the performance of the MST without
clustering preprocessing exceeds that of PERSLAY. This trend holds true for both Extended and Ordinary
PDs, thereby highlighting the robustness and superiority of the MST in the task of PD vectorization using
neural networks.

In comparing the performance of the MST with and without clustering, it may initially be hypothesized that
the incorporation of clustering could detrimentally impact model performance due to data simplification.
Contrary to this intuition, our empirical results reveal that the integration of clustering with the MST gen-
erally results in only a marginal decrease in accuracy. This is particularly notable in the case of Extended
PDs for the COLLAB dataset, where even when reduced to just 0.01 of the original input size, the perfor-
mance still surpasses that of the baseline model. Given the substantial benefits in terms of computational
complexity reduction and improved scalability, this slight trade-off in accuracy is deemed justifiable.
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More interestingly, in specific scenarios such as Extended PDs for the MUTAG and Ordinary PDs for DHFR
and COLLAB, clustering not only mitigates the anticipated performance degradation but also actively boosts
accuracy. This nuanced observation suggests that clustering might capture intrinsic data structures beneficial
for representation in certain contexts.

6.2.5 Ablation Study

In this section, we conduct an ablation study to examine the entries presented in Table 2. The primary
aim of this analysis is to demonstrate the performance improvements attributable to the introduction of
multiplicity terms. To thoroughly investigate the influence of multiplicities on our model, we specifically
focus on entries characterized by lower data ratios in Table 2. We present the results in Table 3.

Table 3: Ablation analysis of PD representation learning. This table employs the abbreviation ‘PD’ to
indicate the type of Persistence Diagram, either Ordinary or Extended, ‘R’ to denote the Data Ratio, which
is expressed in decimal form, and ‘MST’ to represent the Multiset Transformer. The results of column MST
are the same as those in Table 2. The variants of MST are described as ‘MST (w/o mult.)’, indicating
the Multiset Transformer excluding multiplicities, and ‘MST (w/o PD)’, denoting the Multiset Transformer
excluding persistence diagrams. Accuracy measures are displayed in percentage format.

Dataset PD R MST MST (w/o mult.) MST (w/o PD)
MUTAG Ord. 0.14 87.03±1.13 85.63±1.16 80.96±0.78
COX2 Ord. 0.04 80.67±0.27 80.63±0.37 73.92±0.65
DHFR Ord. 0.04 76.37±0.18 76.19±0.24 66.11±0.56
NCI1 Ord. 0.22 68.65±0.14 67.28±0.18 57.11±0.33
NCI109 Ord. 0.22 64.87±0.51 63.35±0.58 56.06±0.16
PROTEIN Ext. 0.21 74.16±0.22 72.76±0.35 63.74±0.46
IMDB-B Ext. 0.06 74.72±0.42 71.10±0.63 62.72±0.75
IMDB-M Ext. 0.06 50.33±0.17 50.64±0.41 43.24±0.39
COLLAB Ext. 0.01 72.26±0.21 71.58±0.26 40.30±0.34

Consistently across all datasets, the MST model, when fully equipped with PD and its associated multiplic-
ities, demonstrates superior performance over its counterparts. A direct comparison between the complete
MST model and its variant, MST (w/o mult.), provides insights into the pivotal role of the multiplicities
terms within the MST framework. Notably, the exclusion of these terms from the model’s architecture in-
variably leads to a decrease in accuracy for most datasets. To illustrate, datasets such as MUTAG, NCI1,
NCI109, PROTEIN, and IMDB-B exhibit an accuracy reduction exceeding 1%.

As anticipated, the omission of the entire PD results in a more pronounced decline in accuracy than merely
excluding its multiplicities. Nevertheless, the recurrent performance dip across datasets, when solely re-
moving multiplicities, accentuates their integral role in PD representation learning. For instance, in the
IMDB-B dataset, the performance disparity between the full MST and MST (w/o mult.) stands at 3.62%,
underscoring the multiplicities’ influence on the efficacy of PD.

To summarize, this ablation analysis emphasizes the criticality of the multiplicities bias within the MST
framework. Their consistent and positive impact on the MST’s performance across various datasets is a
testament to their importance. The enhanced performance due to multiplicities underscores the MST’s
robustness, as evidenced not only through synthetic experiments but also in real-world applications.

6.3 Limitations and Further Works

While the MST effectively meets our objectives by exhibiting strong performance on both synthetic and
real-world datasets, there are certain limitations to our study that warrant attention.

Firstly, the improved accuracies achieved through clustering warrant a deeper exploration. A thorough
investigation is essential to determine the underlying mechanisms contributing to this improvement.

11



Under review as submission to TMLR

Furthermore, it is widely acknowledged that the significance of a feature, specifically a point in the PD, is
determined by its lifespan, which is schematically represented as the distance to the diagonal in Figure 1. The
greater the lifespan, the more significant the feature. In our experiments, we did not employ this assump-
tion. However, we suggest that this property could be more comprehensively integrated into representation
learning. Such integration may pave the way for the development of more refined and effective models in
the future.

7 Conclusion

In this paper, we present the Multiset Transformer, the first neural network based on attention mechanisms
designed specifically for multisets as inputs, and it comes with rigorous theoretical guarantees of permutation
invariance. This model leverages the multiplicities in a multiset by allocating more attention to elements with
larger multiplicities. The synthetic experiments demonstrate that our model achieves the intended design
goals. In the domain of persistent diagram vectorization using neural networks, our approach surpasses
existing state-of-the-art methods across most datasets. Furthermore, with its inherent ability to approximate
sets into multisets via clustering, the Multiset Transformer offers a viable solution for datasets of any size,
provided they can be efficiently clustered.

References
Henry Adams, Tegan Emerson, Michael Kirby, Rachel Neville, Chris Peterson, Patrick Shipman, Sofya

Chepushtanova, Eric Hanson, Francis Motta, and Lori Ziegelmeier. Persistence images: A stable vector
representation of persistent homology. Journal of Machine Learning Research, 18, 2017.

Dashti Ali, Aras Asaad, Maria-Jose Jimenez, Vidit Nanda, Eduardo Paluzo-Hidalgo, and Manuel Soriano-
Trigueros. A survey of vectorization methods in topological data analysis. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2023.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Boris Babenko, Ming-Hsuan Yang, and Serge Belongie. Robust object tracking with online multiple instance
learning. IEEE transactions on pattern analysis and machine intelligence, 33(8):1619–1632, 2010.

Peter Bubenik et al. Statistical topological data analysis using persistence landscapes. J. Mach. Learn. Res.,
16(1):77–102, 2015.

Gunnar Carlsson and Vin De Silva. Zigzag persistence. Foundations of computational mathematics, 10:
367–405, 2010.

Mathieu Carrière, Frédéric Chazal, Yuichi Ike, Théo Lacombe, Martin Royer, and Yuhei Umeda. Perslay:
A neural network layer for persistence diagrams and new graph topological signatures. In International
Conference on Artificial Intelligence and Statistics, pp. 2786–2796. PMLR, 2020.

David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Extending persistence using poincaré and
lefschetz duality. Foundations of Computational Mathematics, 9(1):79–103, 2009.

Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection. In 2005 IEEE computer
society conference on computer vision and pattern recognition (CVPR’05), volume 1, pp. 886–893. Ieee,
2005.

Asim Kumar Debnath, Rosa L Lopez de Compadre, Gargi Debnath, Alan J Shusterman, and Corwin Hansch.
Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. correlation
with molecular orbital energies and hydrophobicity. Journal of medicinal chemistry, 34(2):786–797, 1991.

Tamal Krishna Dey and Yusu Wang. Computational topology for data analysis. Cambridge University Press,
2022.

12



Under review as submission to TMLR

Thomas G Dietterich, Richard H Lathrop, and Tomás Lozano-Pérez. Solving the multiple instance problem
with axis-parallel rectangles. Artificial intelligence, 89(1-2):31–71, 1997.

Paul D Dobson and Andrew J Doig. Distinguishing enzyme structures from non-enzymes without alignments.
Journal of molecular biology, 330(4):771–783, 2003.

Edelsbrunner, Letscher, and Zomorodian. Topological persistence and simplification. Discrete & Computa-
tional Geometry, 28:511–533, 2002.

Herbert Edelsbrunner and John L Harer. Computational topology: an introduction. American Mathematical
Society, 2022.

Chad Giusti, Robert Ghrist, and Danielle S Bassett. Two’s company, three (or more) is a simplex: Algebraic-
topological tools for understanding higher-order structure in neural data. Journal of computational neu-
roscience, 41:1–14, 2016.

Christoph Hofer, Roland Kwitt, Marc Niethammer, and Andreas Uhl. Deep learning with topological signa-
tures. Advances in neural information processing systems, 30, 2017.

Christoph D Hofer, Roland Kwitt, and Marc Niethammer. Learning representations of persistence barcodes.
J. Mach. Learn. Res., 20(126):1–45, 2019.

Max Horn, Edward De Brouwer, Michael Moor, Yves Moreau, Bastian Rieck, and Karsten Borgwardt.
Topological graph neural networks. arXiv preprint arXiv:2102.07835, 2021.

Nan Hu, Raif M Rustamov, and Leonidas Guibas. Stable and informative spectral signatures for graph
matching. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2305–
2312, 2014.

Salman Khan, Muzammal Naseer, Munawar Hayat, Syed Waqas Zamir, Fahad Shahbaz Khan, and Mubarak
Shah. Transformers in vision: A survey. ACM computing surveys (CSUR), 54(10s):1–41, 2022.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set transformer:
A framework for attention-based permutation-invariant neural networks. In International conference on
machine learning, pp. 3744–3753. PMLR, 2019.

Tianyang Lin, Yuxin Wang, Xiangyang Liu, and Xipeng Qiu. A survey of transformers. AI Open, 2022.

Takenobu Nakamura, Yasuaki Hiraoka, Akihiko Hirata, Emerson G Escolar, and Yasumasa Nishiura. Per-
sistent homology and many-body atomic structure for medium-range order in the glass. Nanotechnology,
26(30):304001, 2015.

Steve Y Oudot. Persistence theory: from quiver representations to data analysis, volume 209. American
Mathematical Soc., 2017.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets for 3d
classification and segmentation. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 652–660, 2017.

Gwenolé Quellec, Guy Cazuguel, Béatrice Cochener, and Mathieu Lamard. Multiple-instance learning for
medical image and video analysis. IEEE reviews in biomedical engineering, 10:213–234, 2017.

Siamak Ravanbakhsh, Jeff Schneider, and Barnabas Poczos. Deep learning with sets and point clouds. arXiv
preprint arXiv:1611.04500, 2016.

Raphael Reinauer, Matteo Caorsi, and Nicolas Berkouk. Persformer: A transformer architecture for topo-
logical machine learning. arXiv preprint arXiv:2112.15210, 2021.

Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M Borgwardt.
Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(9), 2011.

13



Under review as submission to TMLR

Jian Sun, Maks Ovsjanikov, and Leonidas Guibas. A concise and provably informative multi-scale signature
based on heat diffusion. In Computer graphics forum, volume 28, pp. 1383–1392. Wiley Online Library,
2009.

Jeffrey J Sutherland, Lee A O’brien, and Donald F Weaver. Spline-fitting with a genetic algorithm: A
method for developing classification structure- activity relationships. Journal of chemical information and
computer sciences, 43(6):1906–1915, 2003.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

Nikil Wale, Ian A Watson, and George Karypis. Comparison of descriptor spaces for chemical compound
retrieval and classification. Knowledge and Information Systems, 14:347–375, 2008.

Sean Welleck, Zixin Yao, Yu Gai, Jialin Mao, Zheng Zhang, and Kyunghyun Cho. Loss functions for multiset
prediction. Advances in Neural Information Processing Systems, 31, 2018.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang, Yanyan Lan,
Liwei Wang, and Tieyan Liu. On layer normalization in the transformer architecture. In International
Conference on Machine Learning, pp. 10524–10533. PMLR, 2020.

Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In Proceedings of the 21th ACM SIGKDD
international conference on knowledge discovery and data mining, pp. 1365–1374, 2015.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and Alexan-
der J Smola. Deep sets. Advances in neural information processing systems, 30, 2017.

Yin Zhang, Rong Jin, and Zhi-Hua Zhou. Understanding bag-of-words model: a statistical framework.
International journal of machine learning and cybernetics, 1:43–52, 2010.

A Comparative Analysis of Multiset Transformer and Set Transformer

In this section, we present a detailed performance comparison between the MST and the Set Transformer
(ST), with the results detailed in Table 4. It is important to clarify that the MST column in Table 1
corresponds to the column labeled MST (inv.).

Table 4: Comprehensive results of synthetic datasets. In this table, ‘# Classes’ denotes the total number
of class labels in the dataset. ‘Ratio’ is defined as the data ratio, calculated using |X|

∥MX ∥1
. ‘MST (w/o

mult.)’ signifies the MST excluding multiplicity inputs. Additional variants include ‘MST (equiv. & inv.)’,
with multiplicities in both equivariant and invariant layers, and ‘MST (inv.)’, with multiplicities only in
the invariant layer. ‘ST’ refers to the Set Transformer applied to full multisets. All ratios are presented in
decimal form, and prediction accuracies are expressed as percentages.

# Classes Ratio Random MST (w/o mult.) MST (equiv. & inv.) MST (inv.) ST
2 0.03 50.00 55.94±0.50 100.00±0.00 100.00±0.00 100.00±0.00
3 0.03 33.33 39.92±0.58 98.74±0.36 99.88±0.15 99.74±0.15
5 0.04 20.00 26.72±0.72 74.28±1.19 88.86±2.07 85.82±1.73
11 0.05 9.09 15.06±0.24 34.60±2.07 41.14±2.24 42.02±1.85

There are two variants of MST: MST (equiv. & inv.) and MST (inv.). The primary distinction between
these variants lies in whether multiplicities are incorporated into the equivariant layers. Specifically, MST
(equiv. & inv.) takes into account the multiplicities, whereas MST (inv.) does not.

In contrast, the input for ST consists of the complete enumeration of elements in a multiset, including
repeated elements. For instance, consider a multiset {a, b} with multiplicities M(a) = 2 and M(b) = 4. In
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this case, the input for ST would be a sequence {a, a, b, b, b, b}, reflecting each instance of the elements in the
multiset. This difference in handling input data between MST and ST is a crucial factor in their performance
comparison.

Results from Table 4 indicate that the Set Transformer demonstrates comparable, and in certain instances,
superior performance compared to various configurations of the MST. Notably, in the context of 11 classes,
the ST marginally outperforms the MST, achieving a prediction accuracy of 42.02% ± 1.85% as opposed to
MST’s 41.14% ± 2.24% in its best configuration. This enhanced performance of the ST can be attributed to
its higher model complexity. Unlike MST, the ST processes the entire multiset as a full list with duplicated
elements, thereby incorporating additional nodes and connections to accommodate duplicated elements. This
leads to a considerable augmentation in model complexity for the ST, which is potentially tens to hundreds
of times greater than that of MST. Such a complexity advantage appears to be particularly beneficial in
handling tasks of higher complexity.

It is crucial to highlight that the ST results were not included in Table 2 for real-world datasets. This
exclusion stems from the extensive number of points in the PDs of these datasets, surpassing our available
computational resources. This limitation emphasizes the necessity for more efficient computational strategies
or the development of optimized models to make the ST applicable to larger, real-world datasets. Despite
this, we hypothesize that the ST, owing to its higher model complexity, is likely to outperform the MST in
most real-world scenarios.

Conversely, the MST offers a more adaptable approach, capable of handling datasets of any size, provided
they can be clustered effectively. This flexibility is a notable advantage, especially when dealing with datasets
that are too large or complex for the ST to process.

B Missing Proofs

B.1 Proof of the Theorem 5.1

Proof. To prove that A(Q,X) is permutation equivariant, we need to show that permuting the rows of Q
and X in the same manner results in the same permutation of the rows of A(Q,X).

Let P be an arbitrary permutation matrix. Consider the transformation:

A(PQ,PX) =
(

softmax
(
PQ(PX)⊤

√
d

)
+ α

(MP Q − 1)(MP X − 1)⊤

∥(MP Q − 1)(MP X − 1)⊤∥F + ε

)
PX.

Since M can be seen as a function that operates on the multiset elements, i.e., rows of Q and X, the order
of the rows in PQ and PX will determine the order of the rows in MP Q and MP X , giving:

MP Q = PMQ and MP X = PMX .

Substituting these into our equation:

A(PQ,PX) =
(

softmax
(
PQX⊤P⊤

√
d

)
+ α

(PMQ − 1)(PMX − 1)⊤

∥(PMQ − 1)(PMX − 1)⊤∥F + ε

)
PX.

Given that the softmax function is applied element-wise (or row-wise) and retains the order of elements, we
can establish:

softmax
(
PHP⊤)

= P softmax (H)P⊤.

Furthermore, permuting the rows or columns of a matrix only rearranges its elements without changing their
values, so the sum of their squared magnitudes, and hence the Frobenius norm, remains unchanged. By
equation 1 = P1, we have

∥(PMQ − 1)(PMX − 1)⊤∥F = ∥(MQ − 1)(MX − 1)⊤∥F .
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Substituting these into our equation, we have

A(PQ,PX) =
(
P softmax

(
QX⊤
√
d

)
P⊤ + α

P (MQ − 1)(MX − 1)⊤P⊤

∥(MQ − 1)(MX − 1)⊤∥F + ε

)
PX

= P

(
softmax

(
QX⊤
√
d

)
+ α

(MQ − 1)(MX − 1)⊤

∥(MQ − 1)(MX − 1)⊤∥F + ε

)
P⊤PX

= P

(
softmax

(
QX⊤
√
d

)
+ α

(MQ − 1)(MX − 1)⊤

∥(MQ − 1)(MX − 1)⊤∥F + ε

)
X

= PA(Q,X).

Therefore, A(PQ,PX) = PA(Q,X), which proves that A(Q,X) is permutation equivariant.

B.2 Proof of the Theorem 5.2

Proof. As seen in the proof to Theorem 5.1, we have

AQ(PX) =
(

softmax
(
Q(PX)⊤

√
d

)
+ Mα(MP X − 1)⊤

∥Mα(MP X − 1)⊤∥F + ε

)
PX

=
(

softmax
(
QX⊤P⊤

√
d

)
+ Mα(PMX − 1)⊤

∥Mα(PMX − 1)⊤∥F + ε

)
PX

=
(

softmax
(
QX⊤
√
d

)
P⊤ + Mα(MX − 1)⊤P⊤

∥Mα(MX − 1)⊤∥F + ε

)
PX

=
(

softmax
(
QX⊤
√
d

)
+ Mα(MX − 1)⊤

∥Mα(MX − 1)⊤∥F + ε

)
P⊤PX

=
(

softmax
(
QX⊤
√
d

)
+ Mα(MX − 1)⊤

∥Mα(MX − 1)⊤∥F + ε

)
X

= AQ(X)

Therefore, AQ(PX) = AQ(X), which proves that AQ(X) is permutation invariant.

C More on Topological Features

C.1 Ordinary Persistence and Extended Persistence in Graphs

Given a graph G = (V,E), where V represents the vertices and E denotes the non-oriented edges. Given a
function f : V → R defined on the vertices of G, we can construct sublevel graphs Gα = (Vα, Eα) for each
α ∈ R, such that Vα = {v ∈ V : f(v) ≤ α} and Eα = {(v1, v2) ∈ E : v1, v2 ∈ Vα}. As α increases, we shall
observe a sequence of these sublevel graphs, which is referred to as the filtration induced by f . This filtration
commences with an empty graph and culminates in the entirety of graph G. A key aspect of persistence is
its ability to track the emergence and dissolution of topological features, such as connected components and
loops, throughout this filtration. For example, the birth time, denoted as αb, marks the value at which a
new connected component appears in Gαb

. This component will eventually amalgamate with another at a
subsequent value αd ≥ αb, termed the death time. The lifespan of this component is captured by the interval
[αb, αd]. In a similar vein, the birth and death times of loops in specific sublevel graphs are recorded. The
aggregation of these intervals forms what is known as the barcode or ordinary PD of (G, f), which can be
pictorially represented as a multiset in R2.

Beyond the conventional scope of persistence, which primarily focuses on sublevel graphs, the concept of
extended persistence introduces an additional dimension by considering superlevel graphs. Specifically, for
a given α ∈ R, the superlevel graph Gα = (V α, Eα) is defined such that V α = {v ∈ V : f(v) ≥ α} and
Eα = {(v1, v2) ∈ E : v1, v2 ∈ V α}. As α decreases, these superlevel graphs offer an alternative perspective,
akin to viewing the same graph from a different direction when juxtaposed with sublevel graphs. This dual
perspective ensures a more holistic capture of the topological intricacies inherent in a graph.
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Extended PDs, based on the juxtaposition of birth and death points, can be categorized into distinct types.
As shown in the main paper, we represent these diagrams as multisets in R2, denoted as X1, X2, . . ., where
the subscripted indices signify the different types of PDs. While the above exposition offers a high-level
introduction for clarity, readers seeking a deeper understanding are directed to seminal works in the field.
Cohen-Steiner et al. (2009) pioneered the concept of extended persistence with rigorous algebraic formu-
lations. Dey & Wang (2022) drew parallels between these types and those found in Zigzag persistence
(Carlsson & De Silva, 2010). Carrière et al. (2020) provided insights into these types by interpreting graphs
as 1-simplices. For readers with an inclination towards the theoretical underpinnings of persistent homology,
we further recommend Edelsbrunner & Harer (2022); Oudot (2017) for an in-depth exploration.

C.2 Spectral Analysis with Heat Kernel Signature

As alluded to in Subsection 6.2.2, we employ the Heat Kernel Signature (HKS) as filtrations to derive the
extended PDs used in our experiments. For the sake of completeness, we provide a brief introduction to
HKS here. For an in-depth exploration, we direct readers to seminal works by Carrière et al. (2020), Sun
et al. (2009), and Hu et al. (2014).

HKS is a spectral descriptor, originating from the spectral decomposition of graph Laplacians, and has
proven to be a powerful tool for graph analysis. Consider a graph G with its vertex set represented as
V = {v1, . . . , vn}. The adjacency matrix of this graph is denoted by A. The degree matrix D is a diagonal
matrix where each entry Di,i is the sum of the i-th row of A. The normalized graph Laplacian, Ln, is given
by the equation

Ln = I −D− 1
2AD− 1

2 , (18)
where I stands for the identity matrix. This Laplacian possesses an orthonormal basis of eigenfunctions,
denoted as Ψ = {ψ1, . . . , ψn}, and the associated eigenvalues adhere to the inequality 0 ≤ λ1 ≤ . . . ≤ λn ≤ 2.
The HKS, parameterized by t, is defined as the function hkst on the vertices of G by the relation:

hkst : v 7→
n∑

k=1
exp(−tλk)ψk(v)2 (19)

It is noteworthy that hkst maps vertices to the real line R, thereby inducing a natural filtration for the graph.
The parameter t serves as a hyperparameter, the specifics of which are provided in Table 6. The spectral
features are a synthesis of the eigenvalues of the normalized graph Laplacian and the deciles of the HKS.
Importantly, these features are consistent with those used in the experiment by Carrière et al. (2020).

D More on The Architecture

This section includes omited details on the MST.

D.1 Multihead Attention Mechanism

The multihead attention mechanism, as proposed in (Vaswani et al., 2017), is also a pivotal component of
Transformer. The essence of multihead attention lies in its ability to allow different heads to focus on diverse
segments of the input data. This is achieved by linearly projecting the Q,K, V vectors into dimensions
di, di, pi respectively, as outlined by (Vaswani et al., 2017). An added advantage of this projection is the
relaxation of the constraint that necessitated Q and K to possess identical dimensions.

To formalize the operation of the multihead attention mechanism, consider the i-th head out of a total of h
heads. The output for this head is computed as:

MultiHead(Q,K, V ) := Concat (h1, . . . ,hh)WO, (20)

hi := Att
(
QWQ

i ,KW
K
i , V WV

i

)
. (21)

In the above equations, the projections are characterized by parameter matricesWQ
i ∈ Rdq×di , WK

i ∈ Rdk×di ,
WV

i ∈ Rdv×pi , and WO ∈ R(Σpi)×q.
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This multihead attention mechanism ensures that the model can capture a richer set of relationships and
dependencies in the data by allowing each head to focus on different aspects of the input.

For the sake of clarity, the discussions in the paper focuses on the single head attention mechanism. However,
it’s worth noting that the multihead version can be readily inferred from our descriptions, leveraging the
principles delineated in the preceding section.

D.2 Pre-LN and post-LN MAB

In orchestrating with layer normalization (LN), multiple versions of the multiset attention block (MAB) can
be derived. The main paper presents the following formulation:

MAB(Q,X) := LN(H + FFN(H)), (22)
H := LN(Q+A(Q,X)). (23)

In an alternative formulation, we have:

MAB(Q,X) := H + FFN(LN(H)), (24)
H := Q+A (LN(Q),LN(X)) . (25)

The former is denominated as the post-LN MAB while the latter is termed the pre-LN MAB.

A salient observation is that the application of LN retains the multiplicities MX in LN(X). According to
the study by Xiong et al. (2020), the Pre-LN Transformers exhibit superior stability relative to the post-LN
variants.

For the sake of clarity and to ensure consistency in the ensuing discussions, we will denote both formulations
under the generic term MAB due to their functional similarities within the overarching framework.

D.3 Motivation of Multiset Transformer with Clustering Preprocessing

The primary motivation behind incorporating clustering preprocessing in the MST framework is to balance
scalability with the preservation of data details.

A critical insight from the complexity analysis presented in the main paper is the direct correlation between
the size of the MST model and the multiset size n. Recognizing that neighboring elements in a multiset often
hold similar information, clustering these elements before deploying the MST emerges as a strategic move.
This preprocessing step stands particularly significant for MST, more so than for the Set Transformer, due
to its unique handling of data points.

In MST, the information inherent in the elements is not simply discarded; rather, it undergoes a transforma-
tion where it is incorporated into the multiplicities of a representative point. This nuanced approach ensures
that crucial data characteristics are retained, albeit in an aggregated form. Consequently, we adopt a prepro-
cessing strategy where multisets are clustered prior to their engagement with the MST. This methodology
not only maintains comparable performance levels but also leads to a significant reduction in computational
complexity, thereby enhancing the overall efficiency of the model.

E Experimential Details

This section provides further details regarding these experiments, including information on datasets and
hyperparameters.
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E.1 Datasets

Table 5 provides a summary of the information for each dataset.

Table 5: Dataset descriptions. Here, β0 and β1 represent the 0th and 1st Betti numbers, indicating the
number of connected components and cycles in a graph, respectively. Specifically, an average β0 = 1.0
denotes that all graphs in the dataset are connected. In these cases, β1 = #{edges} − #{nodes}. Source:
Carrière et al. (2020).

Dataset Nb graphs Nb classes Av. nodes Av. Edges Av. β0 Av. β1

MUTAG 188 2 17.93 19.79 1.0 2.86
COX2 467 2 41.22 43.45 1.0 3.22
DHFR 756 2 42.43 44.54 1.0 3.12
NCI1 4,110 2 29.87 32.30 1.19 3.62
NCI109 4,127 2 29.68 32.13 1.20 3.64
PROTEIN 1,113 2 39.06 72.82 1.08 34.84
IMDB-B 1,000 2 19.77 96.53 1.0 77.76
IMDB-M 1,500 3 13.00 65.94 1.0 53.93
COLLAB 5,000 3 74.5 2457.5 1.0 2383.7

E.2 Devices

We utilized both an RTX 4090 (24 GB) and an RTX A6000 (48 GB) GPU for our experiments.

E.3 Hyperparameters

The experiments in this study consistently employed specific hyperparameters to guarantee replicability. De-
tails of these hyperparameters can be found in Table 6. In the table, hkst denotes the functions used to create
filtrations. These filtrations are essential as they are later used to derive PDs from graphs. Additionally, an
initial random seed of 42 was used throughout the experiments.

Table 6: Hyperparameters for various datasets. H: Number of attention heads in MABs; E: Equivariant
layers; E. Q: Queries in IMABs for equivariant layers; I. Q: Queries in MABQ for invariant layer; Pre-LN:
MAB version (True/False for using pre-layer normalization); Eps: Maximum sample distance in DBSCAN
neighborhood; Hidden: Hidden units; LR: Learning rate; Epochs: Training epochs; Batch: Training batch
size.

Dataset HKS H E E. Q I. Q Pre-LN Eps Hidden LR Epochs Batch
SYNTHETIC - 2 2 1 4 False - 64 0.01 100 128
MUTAG hks10 2 2 2 4 True 0.5 64 0.01 150 128
COX2 hks0.1,hks10 2 2 2 8 False 0.5 64 0.02 200 128
DHFR hks0.1,hks10 2 2 4 8 True 0.5 64 0.01 200 128
NCI1 hks0.1,hks10 2 2 8 16 True 0.1 256 0.06 300 128
NCI109 hks0.1,hks10 2 2 8 16 True 0.1 64 0.1 100 128
PROTEIN hks10 2 2 2 8 True 0.01 64 0.01 200 128
IMDB-B hks0.1,hks10 2 2 2 8 False 0.04 64 0.01 100 128
IMDB-M hks0.1,hks10 2 2 2 8 True 0.04 64 0.01 100 128
COLLAB hks0.1,hks10 2 2 1 8 True 0.01 64 0.01 100 128
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