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Abstract

Continual learning in neural networks suffers from a phenomenon called catastrophic forget-
ting, in which a network quickly forgets what was learned in a previous task. The human
brain, however, is able to continually learn new tasks and accumulate knowledge throughout
life. Neuroscience findings suggest that continual learning success in the human brain is
potentially associated with its modular structure and memory consolidation mechanisms.
In this paper we propose a novel topological regularization that penalizes cycle structure
in a neural network during training using principled theory from persistent homology and
optimal transport. The penalty encourages the network to learn modular structure during
training. The penalization is based on the closed-form expressions of the Wasserstein
distance and barycenter for the topological features of a 1-skeleton representation for the
network. Our topological continual learning method combines topological regularization with
a tiny episodic memory to mitigate forgetting. We demonstrate that our method is effective
in both shallow and deep network architectures for multiple image classification datasets.
This extended abstract is adapted from the extended work reported in Songdechakraiwut
et al. (2022b)
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1. Introduction

Persistent homology (Edelsbrunner et al., 2000) has emerged as a tool for understand-
ing, characterizing and quantifying the topology of brain networks. Of particular note,
Songdechakraiwut et al. (2021, 2022a) employ a 1-skeleton representation for brain networks.
The topology of a 1-skeleton is completely characterized by connected components and cycles.
Here we use persistent homology and the 1-skeleton interpretation of neural networks to
improve their performance in continual learning tasks. In particular, we propose a novel
topological regularization of the neural network’s cycle structure to reduce catastrophic
forgetting of previously learned task. Regularizing the cycle structure allows the network to
explicitly learn its complement, i.e., the modular structure, through gradient optimization.
Our approach is made computationally efficient by use of the closed form expressions for
the Wasserstein barycenter and the gradient of Wasserstein distance between network cycle
structures. We evaluate our approach using image classification across multiple data sets
and show that it generally improves classification performance compared to competing
approaches in the challenging case of both shallow and deep networks of limited width.
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2. Efficient Computation of Topology for Network Graphs

Graph Filtration Represent a neural network as an undirected weighted graph G = (V,W)
with a set of nodes V , and a set of edge weights W = {wi,j}. The number of nodes and
weights are denoted by |V | and |W|, respectively. Create a binary graph Gϵ with the identical
node set V by thresholding the edge weights so that an edge between nodes i and j exists if
wi,j > ϵ. The binary graph is a simplicial complex consisting of only nodes and edges known
as a 1-skeleton (Munkres, 1996). As ϵ increases, more and more edges are removed from the
network G, resulting in a nested sequence of 1-skeletons:

Gϵ0 ⊇ Gϵ1 ⊇ · · · ⊇ Gϵk ,

where ϵ0 ≤ ϵ1 ≤ · · · ≤ ϵk are called filtration values. This sequence of 1-skeletons is called a
graph filtration (Lee et al., 2012).

Birth and Death Decomposition The only non-trivial topological features in a 1-
skeleton are connected components and cycles. Persistent homology keeps track of the birth
and death of topological features over filtration values ϵ. If a topological feature is born at a
filtration value bl and persists up to a filtration value dl, then this feature is represented
as a two-dimensional persistence point (bl, dl) in a plane. The set of all points {(bl, dl)}l is
called persistence barcode (Ghrist, 2008). The use of the 1-skeleton simplifies the persistence
barcodes to one-dimensional descriptors (Songdechakraiwut et al., 2021). Specifically, the
representation of the connected components can be simplified to a collection of birth values
B(G) = {bl} and that of cycles to a collection of death values D(G) = {dl}. In addition,
neural networks of the same architecture have a birth set B and a death set D of the same
cardinality as |V | − 1 and |W| − (|V | − 1), respectively. This result completely resolves the
problem of point mismatch in persistence barcodes for same-architecture neural networks.

Closed Form Wasserstein Distance and Gradient The Wasserstein distance between
1-skeleton network representations has a closed-form expression. Here we only consider the
Wasserstein distance for cycle structure, which depends solely on the death sets. Let G,H be
two given networks based on the same architecture. Their (squared) 2-Wasserstein distance
for cycles is defined as the optimal matching cost between D(G) and D(H). That is,

W 2
cycle(G,H) = min

ϕ

∑
dl∈D(G)

[
dl − ϕ(dl)

]2
,

where ϕ is a bijection from D(G) to D(H). This Wasserstein distance form has a closed-form
expression that allows for very efficient computation (Rabin et al., 2011) as

W 2
cycle(G,H) =

∑
dl∈D(G)

[
dl − ϕ∗(dl)

]2
,

where ϕ∗ maps the l-th smallest death value in D(G) to the l-th smallest death value in D(H)
for all l. In addition, the gradient of the Wasserstein distance for cycles ∇GW

2
cycle(G,H)

also has a closed-form expression as (Songdechakraiwut et al., 2022a)

∂W 2
cycle(G,H)/∂dl = 2

[
dl − ϕ∗(dl)

]
.
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Closed Form Wasserstein Barycenter The Wasserstein barycenter is the mean of a
collection of networks under the Wasserstein distance and represents the topological centroid.

Consider same-architecture networks G(1), ..., G(N). Let D(G(i)) : d
(i)
1 ≤ · · · ≤ d

(i)
|D| be the

death set of network G(i). The Wasserstein barycenter for cycles Gcycle has a closed form
expression as Gcycle : d1 ≤ · · · ≤ d|D|, where

dl =
N∑
i=1

νid
(i)
l

/ N∑
i=1

νi.

The complete proof is given in Appendix A.

3. Topology Based Continual Learning

Consider a continual learning scenario in which T supervised learning tasks are learned
sequentially. Each task has a task descriptor τ ∈ T = {1, 2, ..., T} with a corresponding
dataset Pτ = {(xi,τ ,yi,τ )

Nτ
i=1} containing Nτ labeled training examples consisting of a feature

vector xi,τ ∈ X and a target vector yi,τ ∈ Y. We further consider the continuum of
training examples that are experienced only once, and assume that the continuum is locally

independent and identically distributed (iid), i.e., (xi,τ ,yi,τ )
iid∼ Pτ following the prior work

of Lopez-Paz and Ranzato (2017). The goal is to train a model f : X × T → Y that predicts
a target vector y corresponding to a test pair (x, τ), where (x,y) ∼ Pτ .

Our approach to addressing this problem is to topologically penalize training with future
tasks based on the underlying 1-skeleton of the neural network. Define a neural network
G(τ) for learning task τ with nodes given by neurons, and edge weights defined by the
weight/parameter set W. All past-task networks G(j), for j = 1, ..., τ − 1, have the identical
node sets with the trained weight set W∗

j denoting the weights after training through the
entire sequence up to task j. Since these graphs have the same architecture, their death sets
have the same cardinality denoted by |D|. Then the birth-death decomposition of the weight

set W∗
j results in the death set D(G(j)) : d

(j)
1 ≤ · · · ≤ d

(j)
|D|. The Wasserstein barycenter for

cycles of the first τ − 1 training tasks associated with networks G(1), ..., G(τ−1) is

G(τ−1)
cycle : d

(τ−1)
1 ≤ · · · ≤ d

(τ−1)
|D| ,

where d
(τ−1)
l =

∑τ−1
j=1 νjd

(j)
l

/∑τ−1
j=1 νj . Our approach to learning task τ minimizes the

empirical risk minimization loss (ERM) with the Wasserstein distance and barycenter
penalty

Lτ (W) = LERM,τ (W) +
λ

2
W 2

cycle(G
(τ),G(τ−1)

cycle ) for all task τ > 1,

where λ controls relative importance between past- and current-task cycle structure. Intu-
itively, we penalize changes of cycle structure in a neural network while allowing the network
to explicitly learn the modular structure represented by births of connected components.
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4. Image Classification Experiments

Datasets We perform continual learning experiments on four datasets: (1) Permuted
MNIST (P-MNIST) (Kirkpatrick et al., 2017), (2) Rotated MNIST (R-MNIST) (Lopez-
Paz and Ranzato, 2017), (3) Split CIFAR (Krizhevsky, 2009) and (4) split miniImageNet
(Russakovsky et al., 2015; Vinyals et al., 2016).

Network architecture The P-MNIST and R-MNIST datasets use a fully-connected
neural network with two hidden layers each with 128 neurons. The split CIFAR and split
miniImageNet datasets use a downsized version of ResNet18 (He et al., 2016) with eight
times fewer feature maps across all layers, similar to (Lopez-Paz and Ranzato, 2017).

Method comparison We evaluate our method performance in relative to eight baseline
approaches that learn a sequence of tasks in a fixed-size network architecture: (1) finetune,
i.e., a model trained sequentially without any regularization and past-task episodic memory,
(2) elastic weight consolidation (EWC) (Kirkpatrick et al., 2017), (3) recursive gradient
optimization (RGO) (Liu and Liu, 2022), (4) averaged gradient episodic memory (A-GEM)
(Chaudhry et al., 2019a), (5) ORTHOG-SUB (Chaudhry et al., 2020), (6) experience replay
(Chaudhry et al., 2019b) with reservoir sampling (Vitter, 1985) (ER-Res), (7) ER with ring
buffer (ER-Ring) (Lopez-Paz and Ranzato, 2017) and (8) multitask method that jointly learns
the entire dataset in one training round and thus is not a continual learning strategy but
serves as an upper bound reference for other methods. We employ our proposed topological
regularization with reservoir sampling and ring buffer strategies, termed TOP-Res and
TOP-Ring.

Continual learning evaluation We evaluate the algorithms based on two performance
measures: average accuracy (ACC) and backward transfer (BWT) as proposed by Lopez-Paz
and Ranzato (2017). Formally, ACC and BWT are defined as

ACC =
1

T

T∑
j=1

RT,j , BWT =
1

T − 1

T−1∑
j=1

RT,j −Rj,j ,

where T is the total number of sequantial tasks, and Ri,j is the accuracy of the model on the
jth task after learning the ith task in sequence. We follow the training protocol of Chaudhry
et al. (2020).

Experimental results Table 1 shows method performance on all four datasets. Finetune
without any continual learning strategy produces lowest ACC and BWT performance, while
the oracle multitask is trained across all tasks and sets the upper bound ACC performance
for all datasets. Gradient-based RGO and ORTHOG-SUB rely on over-parameterization in
a neural network to reduce interference between tasks. Given the long sequence of tasks
and small network architecture in our experiments, it is likely that over-parameterization is
insufficient for strong performance. Although ORTHOG-SUB achieves highest BWT, it also
has the lowest ACC scores, in some cases worse than Finetune. ER-Res and ER-Ring achieve
high ACC and BWT scores relative to the other baseline methods across all experiments. Our
TOP-Res and TOP-Ring methods in turn demonstrate clear performance improvement over
ER-Res and ER-Ring, suggesting that our topological continual learning strategy facilitates
the consolidation of past-task knowledge beyond that provided by memory replay alone.
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Table 1: ACC and BWT performance for different image classification datasets. The mean
and standard deviation over five different task sequences are shown.

P-MNIST R-MNIST

Methods Memory ACC (%) BWT (%) ACC (%) BWT (%)

Finetune N 34.44 ± 2.07 -58.89 ± 2.23 41.43 ± 2.09 -55.42 ± 2.09
EWC N 48.05 ± 1.27 -44.55 ± 1.46 39.80 ± 2.01 -55.26 ± 2.03
RGO N 73.18 ± 0.57 -19.86 ± 0.61 63.34 ± 0.96 -29.30 ± 0.95
A-GEM Y 59.50 ± 1.20 -33.63 ± 1.24 53.38 ± 0.90 -43.35 ± 0.93
ORTHOG-SUB Y 42.83 ± 1.22 -9.94 ± 1.05 23.85 ± 0.84 -3.45 ± 1.08
ER-Res Y 66.38 ± 1.29 -25.02 ± 1.51 72.54 ± 0.36 -23.48 ± 0.39
ER-Ring Y 70.10 ± 0.89 -23.19 ± 1.01 70.52 ± 0.51 -25.72 ± 0.51
TOP-Res Y 68.13 ± 0.66 -24.50 ± 0.66 74.33 ± 0.66 -20.80 ± 0.63
TOP-Ring Y 71.05 ± 0.80 -22.18 ± 0.86 72.12 ± 0.81 -23.85 ± 0.84

Multitask – 90.31 – 93.43 –

Split CIFAR Split miniImageNet

Methods Memory ACC (%) BWT (%) ACC (%) BWT (%)

Finetune N 40.62 ± 5.09 -23.80 ± 5.31 33.13 ± 2.72 -24.95 ± 2.30
EWC N 38.26 ± 3.71 -25.30 ± 4.57 33.48 ± 1.79 -19.56 ± 2.24
RGO N 38.93 ± 1.03 -18.98 ± 0.89 42.03 ± 1.22 -14.19 ± 1.56
A-GEM Y 43.54 ± 6.23 -23.25 ± 5.65 39.52 ± 4.10 -18.48 ± 4.39
ORTHOG-SUB Y 37.93 ± 1.59 -5.44 ± 1.37 32.36 ± 1.44 -5.52 ± 1.07
ER-Res Y 43.28 ± 1.26 -23.08 ± 1.51 38.51 ± 2.40 -13.58 ± 3.49
ER-Ring Y 52.75 ± 1.18 -14.51 ± 1.79 44.67 ± 1.81 -12.23 ± 1.79
TOP-Res Y 45.92 ± 1.50 -20.10 ± 1.00 39.95 ± 1.91 -14.34 ± 2.06
TOP-Ring Y 54.27 ± 1.54 -11.70 ± 1.27 49.08 ± 1.71 -8.42 ± 1.48

Multitask – 61.08 – 57.99 –
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Appendix A. Proof: Closed Form Wasserstein Barycenter

Let D(G(i)) : d
(i)
1 ≤ · · · ≤ d

(i)
|D| be the death set of network G(i). It follows that the l-th

smallest death value of the barycenter Gcycle of the N networks is given by the weighted
mean of all the l-th smallest death values of such networks, i.e., Gcycle : d1 ≤ · · · ≤ d|D|,
where

dl =

N∑
i=1

νid
(i)
l

/ N∑
i=1

νi.

Proof Recall that the Wasserstein barycenter for cycles Gcycle is defined as the death set
that minimizes the weighted sum of the Wasserstein distances for cycles, i.e.,

Gcycle = argmin
G

N∑
i=1

νiW
2
cycle(G, G(i))

= argmin
G

N∑
i=1

νi
∑
dl∈G

[
dl − ϕ∗

i (dl)
]2
,
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where νi is a non-negative weight, and ϕ∗
i maps the l-th smallest death value in G to the

l-th smallest death value in D(G(i)) for all l. The sum can be expanded as

N∑
i=1

νi
∑
dl∈G

[
dl − ϕ∗

i (dl)
]2

=

N∑
i=1

νi

(
[d1 − d

(i)
1 ]2 + · · ·+ [d|D| − d

(i)
|D|]

2
)
,

which is quadratic. By setting its derivative equal to zero, we find the minimum at

dl =
∑N

i=1 νid
(i)
l

/∑N
i=1 νi.
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