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ABSTRACT

Machine-learning interatomic potentials (MLIPs) have advanced rapidly, with many
top models relying on strong physics-based inductive bias, including rotational
equivariance, high-order directional features, and energy conservation. However,
as these MLIP models are being trained and evaluated on larger and larger systems,
such as biomolecules and electrolytes, it is increasingly clear that solutions are
needed for scalable and accurate approaches to long-range (LR) interactions in
large systems. The most common approaches in literature to address long-range
interactions rely on adding explicit physics-based inductive biases into the model. In
this work, we propose a conceptually straightforward, data-driven, attention-based,
and energy conserving MLIP, AllScAIP, that addresses long-range interactions
and scales to O(100 million) training set sizes: a stack of local neighborhood
self-attention followed by all-to-all node attention for global interactions across
an entire atomistic system. Extensive ablations across model and dataset scales
reveal a consistent picture: in low-data/small-model regimes, inductive biases
help with improving some sample efficiency, and the all-to-all node attention
increases LR accuracy. As data and parameters scale, the marginal benefit of
these inductive biases diminishes (and can even reverse), while the all-to-all
node attention remains the most durable ingredient for learning LR interactions.
Our model achieves state-of-the-art on both energy/force accuracy and relevant
physics-based evaluations on a representative molecular dataset (OMol25), while
being competitive on materials (OMat24), and catalyst (OC20) datasets.

1 INTRODUCTION

Machine-learning interatomic potentials (MLIPs) learn surrogate potential-energy surfaces from
ab initio data to enable molecular dynamics at near–DFT fidelity and practical cost (Unke et al.,
2021). The field has progressed from descriptor-based neural potentials (Behler & Parrinello,
2007) to invariant message-passing networks (Schütt et al., 2017; Gasteiger et al., 2021; 2022),
SE(3)-equivariant architectures with tensor features (Batzner et al., 2022; Passaro & Zitnick, 2023; Fu
et al., 2025), and more recently attention-based models (Orbital-Materials, 2024; Qu & Krishnapriyan,
2024). Across these approaches, designs differ chiefly in their inductive biases: symmetry (translation,
permutation, and rotation invariance or equivariance), locality (cutoffs and neighbor stencils),
smoothness/regularization, architectural constraints, and explicit physical structure (energy-conserving
gradients). These choices reflect two perspectives: one emphasizes richer inductive biases to encode
geometry and physics up front, which can gain sample efficiency on small datasets. The other treats
some inductive biases as a scaffold that can be reduced as data and parameters grow, letting the model
discover features end-to-end while prioritizing training efficiency and stability.

As MLIPs have grown more capable, evaluation has shifted to larger and more complex systems. In these
regimes, such as biomolecules and electrolytes systems, long-range (LR) interactions are important for
describing subtle and important interactions. LR effects, such as electrostatics, induction/polarization,
dispersion, electronic structure changes, couple atoms over many hops and across long length scales.
However, the most scalable MLIPs for very large datasets are message-passing networks built on local
radius-graph constructions with distance cutoffs. A common approach to address these limitations
is to add explicit physics-based inductive biases (Unke et al., 2021): predict per-atom charges (or

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

multipoles) and evaluate Coulomb terms via Ewald/PME or FMM (Cheng, 2025; Kim et al., 2025);
attach polarization or charge-equilibration solvers (Ko et al., 2021a); incorporate analytic or learned
dispersion (e.g., many-body vdW) (Sauer et al., 2025); or introduce continuum/elastic corrections
(Gong et al., 2025). These strategies have been extensively validated on a number of targeted, small-
scale datasets. However, as the field shifts towards models that can deliver high accuracy across large,
heterogeneous datasets spanning many distinct systems, driven in part by the release of large-scale
datasets, developing approaches that scale effectively to this setting remains an open challenge.
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Figure 1: AllScAIP model design.
The simple backbone design en-
ables efficient scaling.

We hypothesize that several inductive biases are learnable under
scale—notably rotational symmetry, high-order directional fea-
tures, and long-range interactions—whereas others are harder to
learn and may need to be encoded by the architecture (locality via
radius graph structure; energy conservation via gradient-based
forces). Guided by this view, we develop a conceptually straight-
forward, scalable, attention-based MLIP with two stages of oper-
ations (illustrated in Fig 1): neighborhood self-attention (based
on the EScAIP model in Qu & Krishnapriyan (2024)) operating
on fixed local stencils to resolve local information, followed by
an all-to-all node self-attention that mixes information globally,
allowing signals to travel over the whole graph. Both stages
use off-the-shelf multi-head self-attention operation CUDA ker-
nels that have been highly engineered and optimized for popular
AI/ML applications in computer vision and language. To test
our hypothesis, we add two more ingredients to the recipe that
provide features not directly captured by the architecture itself:
Legendre Angular Encoding (LAE), a compact, rotation-aware
edge encoding that supplies high-order directional information
to the neighborhood attention; and Euclidean Rotary Position
Encoding (RoPE) (based on Frank et al. (2024)), an isotropic
distance-only encoding that injects distance information into
the node attention. These serve as inductive biases that can be
explicitly built into the model architecture. We ablate these
components across model and data scales to test whether such geometric inductive biases are indeed
learnable when model capacity and data size grow.

Across datasets and scales, the ablations support the "inductive biases learnable under scale" hypothesis.
In the low-data/small-model regime, every ingredient is useful: adding LAE lowers force error by
supplying directional/angle signals, the Euclidean RoPE improves energy with distance information,
and the global node attention delivers the largest gains by enabling many-hop communication without
deep stacks. As we increase both model capacity and dataset size, the picture shifts: the marginal
benefit of the geometric encodings contracts toward zero and sometimes reverses sign, indicating that
angular and radial features can be learned and absorbed end-to-end when scale is available. By contrast,
the all-to-all node-attention stage remains the most durable source of long-range improvement.

In summary, our results support a prior-light recipe for scalable MLIPs. With sufficient data and
parameters, several inductive biases—rotational equivariance, high-order directional patterns, and
even long-range interactions—are largely learnable; lightweight geometric cues (LAE, Euclidean
RoPE) help in low-data/small-model regimes but their marginal value fades—and can reverse—under
scale. The full design—local neighborhood attention followed by all-to-all node-attention—uses
off-the-shelf multi-head self-attention kernels. The model attains state-of-the-art on both energy/force
accuracy and relevant physics-based evaluations on representative molecules (OMol25) dataset, while
being competitive on materials (OMat24) and catalysts (OC20) datasets. Taken together, the results
suggest that a data-driven path for MLIPs may be competitive with other approaches: prioritize scalable
components, keep priors lightweight, and letting scale handle the rest.

2 RELATED WORKS

Machine Learning Interatomic Potentials. There have been significant advances in neural network
interatomic potentials (NNIPs), which are machine learning models that are trained to predict energies

2
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Figure 2: Illustration of the attention operations used in AllScAIP. (a) Neighborhood attention. (b)
Node attention.

and per-atom forces from system descriptors such as atomic numbers and positions. We group current
approaches into two categories: (1) models that use equivariant node features (more inductive biases),
including NeuqIP (Batzner et al., 2022), MACE (Batatia et al., 2022), SCN (Zitnick et al., 2022),
eSCN (Passaro & Zitnick, 2023), Equiformer (Liao & Smidt, 2022; Liao et al., 2024), eSEN (Fu et al.,
2025), UMA (Wood et al., 2025); (2) models that use scalar node features, where they only enforce
basic symmetries, such as rotation and translation invariance: SchNet (Schütt et al., 2017), DimNet
(Gasteiger et al., 2020), GemNet (Gasteiger et al., 2021; 2022), EScAIP (Qu & Krishnapriyan, 2024),
OrbNet (Orbital-Materials, 2024).

Long-range Interactions in MLIPs. To enable the ability to model long range interaction in local
GNN-based MLIPs, the main paradigm is to inject explicit long-range physics: models predict charges,
multipoles, or surrogate charge densities and evaluate electrostatics with Ewald/PME/FMM, including
PhysNet (Unke & Meuwly, 2019), 4G-HDNNP (Ko et al., 2021b), and DPLR (Zhang et al., 2022).
Recent “latent” approaches avoid label requirements by learning a hidden per-atom variable and
applying an Ewald-style long-range energy directly (LES) (Cheng, 2025). Dispersion has likewise
been incorporated via machine-learned many-body vdW (Tu et al., 2023).

3 METHODS

3.1 ATTENTION OPERATIONS

We treat attention as an off-the-shelf operation, taking advantage of the highly optimized CUDA kernels
(Lefaudeux et al., 2022). The only difference between the two stages is how we pack tokens: local
(neighbor) attention operates on fixed neighbor list per node and scales as O(Nk), while all-to-all node
attention mixes all nodes per graph with O(N2) cost.

Neighborhood Self-attention. Following the EScAIP model (Qu & Krishnapriyan, 2024), each
center atom gathers up to k neighbors plus a self token, yielding a tensor of shape (#nodes) ×
(k+1)×dmodel that we feed to standard multi-head self-attention (MHSA) (Fig 2 (a)). We run two
directional passes over the same stencil: center→neighbors (out) and neighbors→center (in). A smooth
distance-based envelope provides a padding/mask that softly fades far pairs.

All-to-all Node Self-attention. Local neighborhoods resolve fine geometry, but long-range inter-
actions require global communication. We therefore apply MHSA over the node stream by packing

3
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Figure 3: Illustration of the geometric encoding used in AllScAIP. (a) Legendre Angular Encoding
(LAE) (b) Euclidean rotary position encoding.

the nodes to 1× (#nodes)×dmodel and using the same operator (Fig 2 (b)). In practice, this stage
complements the local passes: local attention handles fine, anisotropic interactions; node attention
enables many-hop coupling in a single step.

3.2 GEOMETRIC ENCODINGS

In both neighborhood and node attention, each entry in the attention matrix corresponds to a geometric
pair: an edge–edge interaction in the neighborhood case and a node–node interaction in the global case.
We exploit this by injecting geometric encoding into the attention logits: Legendre Angular Encoding
(LAE) for Spherical Harmonics-based high-order directional features in the neighborhood attention,
and Euclidean RoPE (based on Frank et al. (2024)) for radial and distance-based features in the node
attention (Figure 3). These encodings provide directional (angles) and radial (distances) signals that are
not explicitly present in the vanilla Q/K/V streams; in principle, a sufficiently large model could infer
them from coordinates and species. It’s an important choice whether to include them as input (inductive
biases) or let the model directly learn from data/scaling. See Appendix A for detailed description of
both encodings.

3.3 ALLSCAIP MODEL

Figure 1 assembles the four components into a single block, stacked Nlayers times. In the input block,
the node features are initialized from atom numbers (with optional charge/spin) and broadcast to form
edge features together with distances RBF. Each block first applies neighborhood attention on the
neighbor stream (with optionally added LAE encoding). This local stage is followed by RMSNorm,
residual path, and an edge FFN. The block then takes self-loop neighbor features as node features,
and performs all-to-all node attention on the node stream (with optional Euclidean RoPE), followed
by RMSNorm, residual path, and a node FFN. The updated node features are concatenated with the
neighbor features and carried to the next layer. After Nlayers blocks, the node stream feeds an energy
head; forces are supervised either directly or via energy gradients (energy-conserving option), and a
gradient-based stress head is included when required.

3.4 INDUCTIVE BIASES

We distinguish hard priors we encode by architecture, soft priors we can optionally supply as features,
and learnable physical structure that we leave to scale. The goal is a prior-light model that keeps only
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what is hard to learn with high precision (locality, conservation, permutation/translation symmetries)
while letting large models and datasets learn the rest. Here are the inductive biases we have considered:

Inductive Biases Status How satisfied / where

Translation invariance Enforced Use only relative geometry (distances/directions).
Permutation equivariance Enforced Attention over sets with shared weights.
Extensivity (additivity) Enforced Sum aggregation for energy and PBC distance.
Locality prior Enforced kNN graph with smooth cutoff in neighborhood attention.

Energy conservation Enforced† Grad-based forces: F =−dE/dx; differentiable kNN graph.
Rotational equivariance Learnable Not hard-coded; can be learned under scale.
Long-range effects Learnable All-to-all node attention provides an infinite receptive field.
Radial/distance prior Optional (soft) Euclidean RoPE: distance-based encoding in node attention.
High-order directional
features

Optional (soft) LAE: compact spherical harmonic encoding modulates Q/K in
neighborhood attention (angles/directions).

†When using the conservative setting (our default): forces are obtained as energy gradients. A direct-force head is
also supported for ablations.

In short, we enforce core symmetries (translation, permutation), locality, energy conservation, and
extensivity; we optionally inject light geometric features; and we leave rotation and long-range
interaction to be learned with scale. We validate these properties in § 5.2.

4 ABLATIONS

Ablations on Model Components. We begin by isolating the contribution of each architectural
piece at a fixed capacity and data scale. We use the medium configuration (AllScAIP-md, about
85M parameters) trained on OMol25 4M split (Levine et al., 2025) for 80 epochs with direct force
supervision. We toggle neighborhood self-attention (NeiAtt; always on), Legendre Angular Encoding
(LAE), the all-to-all node attention (NodeAtt), and the Euclidean radial bias (ERoPE). We report
Energy/Atom MAE (mEV) and Force MAE (meV/Å) on the validation set for total and four splits:
Biomolecules, Electrolytes, Metal Complexes, and Neutral Organics (Table 1, top 4M section).

Removing LAE consistently worsens the force performance across all splits, while its effect on energies
is smaller. This matches the role of LAE as a directional/angle feature: adding orientation information
improves how the model fit to vector targets. In contrast, turning off ERoPE primarily harms energies
and has a milder impact on forces, consistent with ERoPE’s distance-only, isotropic bias acting as a
radial prior on scalar predictions. Finally, ablating the all-to-all node-attention degrades both energy and
force, with especially pronounced gaps in biomolecules, where systems are larger and the long-range
effects are stronger. The full configuration achieves the best results across all splits, confirming that the
modules we added improves sample efficiency in the low data regime.

Ablations on Data and Model Size Scaling. To quantify how inductive bias interacts with scale, we
vary two axes: data (OMol 4M → OMol 102M) at fixed capacity, and model size (35M → 85M) at
fixed data.

Under data scaling (4M → 102M) at fixed capacity, energy and force errors decrease across domains.
In many cases, removing the fixed geometric encodings matches or slightly improves upon the full
model at the same scale, suggesting that angular/radial signals can be learned directly from larger data.
The all-to-all node attention remains consistently useful, indicating that a global mixing stage is a
durable mechanism for long-range interactions.

Under model-size scaling (35M → 85M) at fixed data, absolute errors also drop with capacity. At 4M,
geometric encodings still help, but their benefit diminishes as model size grows; at 102M, medium
models show parity or slight disadvantages for fixed encodings, while retaining a measurable advantage
from the all-to-all attention. In short: as data and parameters scale, the marginal value of fixed geometric
encodings decreases, whereas the architectural affordance of global mixing continues to pay off.
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Table 1: Component ablations under data and model size scaling. We reoport Energy / Atom MAE
(meV) and Force MAE (meV/Å), lower is better. Each size’s with encoding (Nei Att + LAE + Node
Att + ERoPE) configuration is the reference; other rows are colorized relative to that reference (Green
= better, Red = worse). The Throughput column reports inference speed (ns/day on one H100 with
1000 atoms). We report results for the OMol25 4M split (80 epochs) and the full 102M (10 epochs).

4M (80 Epochs)
Ablations Biomol. Elytes. Metal Cplx. Neutral Org. Total

Size Thrpt NeiAtt LAE NodeAtt ERoPE E ↓ F ↓ E ↓ F ↓ E ↓ F ↓ E ↓ F ↓ E ↓ F ↓

35M 2.279 ✓ ✓ ✓ ✓ 0.38 5.57 1.27 8.93 2.85 33.52 1.89 13.52 1.46 9.35
7.623 ✓ ✓ 0.5 6.32 1.51 9.81 2.96 34.56 2.23 14.51 1.75 10.21

85M

1.124 ✓ ✓ ✓ ✓ 0.23 3.51 1.05 6.38 2.46 27.83 1.21 8.93 1.16 6.88
3.333 ✓ ✓ ✓ 0.29 4.27 1.17 7.22 2.67 29.79 1.53 10.53 1.22 7.6
1.392 ✓ ✓ ✓ 0.29 3.78 1.16 6.67 2.58 28.26 1.36 9.03 1.3 7.1
4.014 ✓ ✓ 0.32 4.24 1.17 7.16 2.64 29.19 1.57 10.12 1.25 7.55
1.281 ✓ ✓ 0.52 4.58 1.39 7.42 2.81 29.86 1.43 10.01 1.56 7.93
4.327 ✓ 0.55 4.96 1.45 7.92 2.85 30.78 1.57 10.77 1.72 8.48

Size Thrpt NeiAtt LAE NodeAtt ERoPE 102M (10 Epochs)

35M 2.279 ✓ ✓ ✓ ✓ 0.21 3.85 0.75 6.01 2.09 26.02 1.01 8.54 0.85 6.61
7.623 ✓ ✓ 0.29 4.47 0.81 6.73 2.12 26.86 1.08 9.17 0.98 7.22

85M

1.124 ✓ ✓ ✓ ✓ 0.15 2.81 0.53 4.59 1.83 21.93 0.73 6.03 0.67 5.1
3.333 ✓ ✓ ✓ 0.2 3.16 0.55 4.99 1.83 22.48 0.79 6.47 0.73 5.51
1.392 ✓ ✓ ✓ 0.2 2.93 0.58 4.76 1.8 21.59 0.76 5.94 0.72 5.13
4.014 ✓ ✓ 0.15 2.91 0.52 4.7 1.83 22.31 0.72 6.29 0.64 5.23
4.327 ✓ 0.4 3.83 0.79 5.57 2.01 23.91 0.85 7.05 0.96 6.15
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eSEN md 50M
Out Of Memory (OOM)

Figure 4: Atom-ns per Day vs. System size. Atom-time (number of atoms × ns/day, higher is
better) is measured on a single H100 80G with graph generation off. Lines show four model sizes
(35M/85M/180M/1B) of our method with/without encodings, and eSEN baselines. The dotted vertical
lines indicate approximately when the O(N2) of the node attention dominates over the O(Nk) of the
neighborhood attention, where k is the max number of neighbors.

5 RESULTS

5.1 INFERENCE EFFICIENCY AND SYSTEM–SIZE SCALING

We test the efficiency and memory scaling with two variant of AllScAIP: with encoding is the full
configuration (NeiAtt + LAE + NodeAtt + ERoPE) and without encoding is no added inductive
biases (NeiAtt + NodeAtt). Figure 4 plots atom–ns/day versus system size on a single H100 80G
(graph generation off) that exposes a slope change. In the small N regime, speed is dominated by
neighborhood attention (O(Nk)), atom–ns/day is nearly flat or linear in N ; once the all-to-all node
attention dominates (O(N2)), it falls roughly as 1/N (slope −1 in log-log). The dashed vertical lines
mark this empirical transition. Adding the geometric encodings shifts the break earlier (to smaller N ),
i.e., they introduce a small constant-factor overhead that causes the global stage to take over sooner;
slopes before and after the break remain similar, so asymptotics are unchanged. Overall, the curves
show predictable scaling with a clear regime switch, and our models are still efficient compared with
baselines. It is able to reach large N before OOM, enables downstream applications with the model.
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Table 2: Symmetry and Conservation Checks. Extensivity errors for periodic (PBC) and non-
periodic (non-PBC) systems, (lower is better), rotational equivariance via force cosine similarity under
random rotations (higher is better), and NVE molecular dynamic simulation energy drift on MD22
large molecules (lower is better).

PBC non-PBC Rand. Rotation NVE MD Energy Drift
Model Training Set Energy ∆ [eV] ↓ Energy ∆ [eV] ↓ Cos. Sim. ↑ [eV / atom / ps] ↓
UMA-M-1p1 UMA-459M 2.41×10−5 3.83×10−6 0.9999 1.5×10−6

AllScAIP-md NA (Random Init) 3.62×10−5 2.49×10−6 0.6827 -
AllScAIP-md OMol-102M 4.18×10−5 4.73×10−6 0.9999 4.3×10−6

Table 3: OMol25 validation results. Energy MAE (meV) and Force MAE (meV/Å) across
Biomolecules, Electrolytes, Metal Complexes, and Neutral Organics. AllScAIP variants achieve
the lowest overall energy error on both splits, with competitive force errors.

Biomolecules Electrolytes Metal Complexes Neutral Organics Total

Dataset Model Energy ↓ Force ↓ Energy ↓ Force ↓ Energy ↓ Force ↓ Energy ↓ Force ↓ Energy ↓ Force ↓

All

eSEN-sm-d. 0.67 6.30 1.24 9.41 2.53 33.08 1.23 13.84 1.49 9.92
eSEN-sm-cons. 0.59 4.61 1.01 8.08 2.30 28.86 0.84 11.11 1.27 8.25
eSEN-md-d. 0.34 2.61 0.69 4.40 1.73 19.99 0.59 5.63 0.84 4.76
GemNet-OC 0.15 3.88 0.56 5.98 1.83 25.12 0.86 10.38 0.66 6.52
AllScAIP-sm-ft-cons. 0.22 3.84 0.75 6.01 2.09 26.02 1.00 8.55 0.85 6.61
AllScAIP-md-d. 0.15 2.91 0.52 4.70 1.83 22.31 0.72 6.29 0.64 5.24
AllScAIP-md-cons. 0.22 3.23 0.53 5.29 1.86 22.40 0.59 7.55 0.67 5.78

4M

eSEN-sm-d. 0.88 8.12 1.93 12.64 3.37 40.44 2.16 20.17 2.19 13.01
eSEN-sm-cons. 0.86 6.17 1.61 11.16 2.72 35.33 1.50 16.92 1.89 11.10
eSEN-md-d. 0.47 3.38 1.18 6.51 2.53 27.31 1.21 9.26 1.32 6.78
GemNet-OC-r6 0.40 5.84 1.39 9.37 2.74 33.60 1.88 16.55 1.41 9.83
GemNet-OC 0.25 5.20 1.04 8.42 2.66 32.76 1.64 15.59 1.13 8.98
AllScAIP-sm-ft-cons. 0.27 4.06 0.91 7.81 2.26 32.10 1.11 12.73 1.04 8.19
AllScAIP-md-ft-cons. 0.20 3.01 0.75 6.79 2.06 29.41 0.78 9.45 0.90 7.67

5.2 SYMMETRY & CONSERVATION CHECKS

We verify that AllScAIP satisfies key inductive-bias properties and compare to a strong baseline trained
on various chemical systems—UMA (Wood et al., 2025) (Table 2).

Extensivity. We test extensivity in both periodic and non-periodic settings:

(i) PBC supercell doubling: starting from a periodic structure, we build a 2× supercell by translating
the cell by one lattice vector and recomputing the energy; extensivity requires E2×≈2E1×. We
report the E∆= |E2×−2E1×|.

(ii) Vacuum duplication: for a non-periodic system, we duplicate the configuration and translate the
copy by a large offset R, then evaluate E(R); as R→∞ the fragments are non-interacting and
E(R)→2Esingle. In practice, we use R=1000Å and report the deviation E∆= |E(R)−2Esingle|.

Because the architecture uses only relative geometric features in attention and no absolute positional
codes, it shows near-perfect additivity under both tests, confirming that the learned long-range coupling
does not introduce unphysical behavior.

Rotational Equivariance. We sample 1000OMol test structures, draw a random rotationR∈SO(3),
and evaluate forces twice: F(1) on the original coordinates and F(2) on the rotated atom position
RX. We then rotate the first prediction, RF(1), and compute the per-atom cosine similarity with F(2),
averaging over atoms and structures. AllScAIPtrained on OMol-102M achieves a cosine similarity
of 0.9999, on par with UMA, whereas a randomly initialized model yields a much lower value. This
indicates that rotational equivariance is learned.

Energy Conservation. Following Fu et al. (2025), we run NVE molecular dynamics simulation
on the seven large MD22 molecules (Chmiela et al., 2023) for 100 ps and report the energy drift
(eV/atom/ps). AllScAIPshows small drift, comparable in scale to the UMA model.

5.3 OPEN MOLECULES (OMOL25)

Settings. We train AllScAIP on the OMol25 (Levine et al., 2025) dataset under the following settings:

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

1 2
Energy MAE / Atom (meV) ↓

0.5

1

2

5
In

fe
re

nc
e

T
hr

ou
gh

pu
t(

ns
/d

ay
)↑

35M

85M

35M

85M
6M

50M

Better

OMol25 4M

1 2
Energy MAE / Atom (meV) ↓

35M

85M

35M

85M
6M

50M

OMol25 102M

AllScAIP
w/ Encoding
AllScAIP
w/o Encoding
eSEN
Small
Medium
Direct Force
Conservative

Figure 5: OMol25 energy error vs. throughput. Energy / Atom MAE (meV, ↓) vs. throughput
(ns/day, ↑) for 35M/85M models with/without encodings; compared with eSEN (Fu et al., 2025)
baselines. Conservative models are labeled with a hollow marker. Left: Models trained on OMol25
4M for 80 epochs. Right: OMol25 102M (12 epochs). Our models trace the Pareto front at 4M; at
102M the gap between with/without encodings shrinks or flips, indicating these inductive bias may be
unnecessary at scale. The larger speed gap between the direct force and conservative AllScAIP models,
compared to eSEN, occurs because the differentiable kNN graph construction used in AllScAIP is a
newly introduced operation that has not yet been fully optimized for differentiation.

Table 4: Evaluation results across OMol25 test evaluations. Results are reported in energy MAE error
[meV] (lower is better). Models are sorted by the average ranking of individual categories, with a lower
average ranking indicating better overall performance.

Energy Avg. Ligand pocket Ligand strain Conformers Protonation Dist. scaling IE/EA Spin gap
Model Cons. Training Set Rank Ixn Energy ↓ Strain Energy ↓ ∆Energy ↓ ∆Energy ↓ ∆Energy ↓ ∆Energy ↓ ∆Energy ↓
AllScAIP-md-d. OMol-102M 3.14 29.496 4.149 4.985 16.104 10.082 143.035 350.825
AllScAIP-md-cons. ✓ OMol-102M 3.71 50.532 4.103 3.874 17.092 36.145 148.976 317.400
eSEN-md-d. OMol-102M 3.86 64.246 3.113 3.566 14.988 109.767 145.776 303.883
UMA-M-1p1 ✓ UMA-459M 4.43 76.778 2.962 2.532 18.457 138.094 136.386 335.058
AllScAIP-sm-ft-cons. ✓ OMol-102M 5.71 58.450 4.770 4.106 27.515 15.473 168.858 341.708
AllScAIP-md-ft-cons. ✓ OMol-4M 5.86 46.727 4.839 5.172 19.399 16.473 169.104 367.133
AllScAIP-sm-ft-cons. ✓ OMol-4M 7.86 78.260 4.559 5.343 24.614 23.492 198.899 401.358
GemNet-OC-r12 OMol-102M 8.86 19.373 8.381 12.049 31.645 77.074 177.457 373.831
eSEN-sm-cons. ✓ OMol-102M 9.57 147.261 4.656 4.487 21.770 196.964 222.827 391.469
GemNet-OC-r6 OMol-102M 10.00 47.022 9.554 11.479 36.925 80.683 199.721 370.975
eSEN-md-d. OMol-4M 10.14 98.337 4.508 5.369 24.975 111.063 240.212 430.753
UMA-S-1p1 ✓ UMA-459M 10.14 127.723 4.856 5.170 27.969 194.688 206.872 369.181
GemNet-OC-r12 OMol-4M 12.00 36.221 12.489 19.797 50.773 99.995 237.682 490.463
mace-omol-L-0 ✓ OMol-102M 13.29 297.404 7.954 6.782 25.107 244.834 338.795 438.891
eSEN-sm-cons. ✓ OMol-4M 13.43 243.883 5.850 6.811 35.754 232.839 293.120 478.242
GemNet-OC-r6 OMol-4M 14.00 96.043 13.270 23.355 52.160 83.296 329.993 559.080

a. 4M split: (i) direct force training for 80 epochs (–d.); (ii) a conservative fine-tune where we train
direct force for 50 epochs, then swap to a gradient-based energy / force head and continue for 30
epochs (–ft-cons.).

b. Full 102M: (i) direct force for 12 epochs (–d.); (ii) direct force for 10 epochs + 2-epoch conservative
fine-tune (–ft-cons.); (iii) fully conservative training from scratch (–cons.).

All models are trained on V100 32G with fp32.

Energy and Force Accuracy. Across OMol25, our models sit on the accuracy–speed Pareto (Fig-
ure 5) and deliver state-of-the-art energy error with competitive force error (Table 3). On the 4M split,
the conservative fine-tuned medium model attains the best overall energy while remaining close in
force to the strongest baseline; the direct-force variant trades a small energy increase for better forces.
On the full 102M split, the medium direct force model achieves the best overall energy accuracy. The
same trends hold across all four splits, with especially strong gains on biomolecules-the largest systems
in OMol-where long-range interactions is most critical.

OMol25 Test Evaluations. We benchmark on the full OMol25 evaluation suite (Table 4), sorting
models by their average ranking across seven categories. AllScAIP-md-d. trained on the full 102M
split tops by average rank. In particular, our model excels on the distance scaling (LR) test (about 90%
reduction compared with the second best model): when molecules are uniformly compressed/stretched,
energy error for AllScAIP remains low and flat, while eSEN and UMA degrade markedly under large
stretches (Fig. 6). These results indicate that the proposed architecture transfers beyond the training
distribution, providing robust long-range behavior while maintaining competitive accuracy on the
remaining chemical benchmarks (ligand interaction/strain, conformers, protonation, IE/EA, and spin
gaps). Details of the evaluations could be found in the OMol25 paper (Levine et al., 2025).
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Figure 6: OMol25 distance-scaling evaluation. A group of molecules are uniformly compressed and
stretched by a scalar "stretch factor" to probe the long-range ability (x-axis; < 1: compressed, > 1:
stretched) and report energy absolute error per atom (meV; ↓). AllScAIP-md-cons. stays flat and low
across the full range, while eSEN and UMA md-1p1 degrade sharply under stretching, indicating poor
long-range capacities. Insets show example geometries at selected factors labeled with dotted lines.

5.4 OPEN MATERIALS (OMAT24) AND OPEN CATALYST (OC20)

AllScAIP achieves competitive performance on OMat24 (Barroso-Luque et al., 2024) and OC20
(Chanussot et al., 2021). See Appendix C for more details.

6 DISCUSSIONS

Scaling and the role of inductive bias. Our ablations suggest a simple guideline: scale first, bias
second. Directional/radial encodings (LAE, Euclidean RoPE) improve data efficiency in low-data
or small-model regimes, but their marginal value shrinks—and can even reverse—as both data and
parameters grow. In contrast, the architectural capacity for long-range coupling provided by the all-to-
all node attention remains beneficial at every scale we tested. Practically, this argues for prioritizing
scalable, expressive components—because data and compute will only increase; such components
benefit monotonically with scale, whereas fixed inductive features may cap flexibility.

Data-driven vs. high-order equivariant paths for MLIPs. A parallel line of work encodes direction
with SE(3)–equivariant spherical-harmonic (SH) irreps. This route provides a rich prior directional
basis, but in practice it is band-limited: after truncating at degree L, very sharp or dataset-specific
angular features (e.g. narrow hydrogen-bond cones, π-stacking orientations, etc.) require larger L.
The representation is powerful yet rigid—capacity is tied to the chosen SH order and coupling rules.
Our path is different: we keep the backbone scalar and data-driven. The model learns angular structure
through attention. As scale grows, it can allocate capacity where needed without being constrained by
an SH decomposition, preserving hardware efficiency and flexibility.

Limitations and opportunities. The efficiency study shows a clear slope change: throughput is
flat/linear while local O(Nk) dominates and transitions to ∼ 1/N when the all-to-all O(N2) node
attention takes over. We view O(N2) as a manageable trade-off for long-range accuracy, especially
given the engineering playbook that enabled very long context in LLMs: tiling/chunked matmuls
(Flash-style kernels), activation checkpointing, KV memory compression, and paging—most of which
transfer directly to MHSA over atoms. Beyond systems work, several modeling routes can further
delay the O(N2) regime: hierarchical/coarse-grained node pools with cross-pool attention; linear-time
attention; and mixtures-of-experts that route only a fraction of nodes to global mixing.
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A ADDITIONAL DETAILS ON MODEL ARCHITECTURE

A.1 GEOMETRIC ENCODINGS
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Figure 7: Illustration of the geometric encoding used in AllScAIP. (a) Legendre Angular Encoding
(LAE) (b) Euclidean rotary position encoding.

Legendre Angular Encoding (LAE). This encoding is used to inject angular and high-order
directional features to the neighborhood attention logits. Each directed edge i→ j is assigned a
compact angular code built from real spherical harmonics evaluated on the unit direction r̂ij . For
degrees ℓ=0,...,L we compute Yℓ(r̂ij)∈R2ℓ+1, repeat each degree block rℓ times, and concatenate
across ℓ to obtain γij ∈Rdhr with dhr =

∑
ℓrℓ(2ℓ+1). We choose {rℓ} such that the sum matches the

per-head dimension:
∑L

ℓ=0rℓ=dh. For head h, the queries/keys are repeated 2ℓ+1 times accordingly
and modulated elementwise by γij ,

q̃i,h= q̄i,h⊙γij , k̃j,h= k̄j,h⊙γij ,

and the usual scaled dot-product is applied, aij,h=(q̃⊤i,hk̃j,h)/
√
dh, followed by standard attention.

By the spherical-harmonic addition theorem, inner products within each degree correspond (up to
a constant) to Pℓ(cosθ), so LAE supplies multi-order angular structure with linear cost. LAE is
rotation-aware, parameter-light, and integrates with off-the-shelf attention kernels (Figure 3 (a)).

Euclidean Rotary Position Encoding (ERoPE). To inject distance information in the node attention
attention logits, we add an isotropic radial bias. Following Frank et al. (2024), for each pair (i,j)
with separation rij , we build a purely radial encoding by averaging plane-wave phases over all
orientations on the unit sphere, which yields the isotropic kernel Kω(r)=sinc(ωr)=sin(ωr)/(ωr).
We choose a bank ofM log-spaced frequencies {ωk}Mk=1⊂ [ωmin,ωmax] (shared across heads), evaluate
sij=[sinc(ω1rij),...,sinc(ωMrij)]

⊤. Each head h mixes them with a learned weight vector wh∈RM

to produce an additive logit bias bij,h=w⊤
h sij , and the final logit is

aij,h=
q⊤i,hkj,h√

dh
+bij,h.

Because bij,h depends only on rij , the bias is translation- and rotation-invariant by construction. The
small frequency bank adds only O(M) work per pair, can be precomputed per batch, and provides a
smooth, spectrally rich radial prior without altering the softmax mechanism (Figure 7 (b)).
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B ADDITIONAL OMOL25 RESULTS

B.1 EFFICIENCY

We provide a raw throughput vs. system size plot for additional comparison:
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Figure 8: Throughput vs. System size. Throughput (ns/day, higher is better) is measured on a single
H100 80G with graph generation off. Lines show four model sizes (35M/85M/180M/1B) of our method
with/without encodings, and eSEN baselines.

C OC20 AND OMAT24 RESULTS

Table 5: OC20 validation (Total Energy) and OMat24 validation results.

OC20 (Total Energy) OMat24

Val ID Val OOD-Both Val

Model Energy Force F. Cos. Energy Force F. Cos. E./Atom Forces Stress F. Cos.

UMA-S 63.6 24.1 0.63 107.0 29.2 0.65 11.3 57.1 2.9 0.98
UMA-M 43.1 15.8 0.73 70.0 19.2 0.75 10.0 47.3 2.7 0.99
UMA-L 32.6 12.0 0.77 49.8 14.5 0.79 9.7 43.5 2.5 0.99

AllScAIP-sm-d. 61.1 18.3 0.67 92.8 22.9 0.68 12.7 60.1 - 0.98
AllScAIP-sm-ft-cons. 72.3 22.5 0.64 120.1 27.3 0.64 12.4 56.0 2.8 0.98
AllScAIP-md-d. 59.3 17.6 0.69 92.2 21.8 0.70 11.4 56.6 - 0.98
AllScAIP-md-ft-cons. 10.7 54.3 2.7 0.98

Settings. We train AllScAIP on OC20 (240M) and OMat24 (100M) datasets. On OC20, we first train
direct force for 3 epochs, and then conservative fine-tune for 1 epoch. We enable fp16 autocast during
direct force training. On OMat24, we do 6 epochs direct force + 3 epochs conservative fine-tune, and it
is full fp32 training.

Results. We evaluate on OC20 using the Total Energy MAE (ID and OOD-Both) on the validation set,
and OMat24 validation set (Table 5). We comparing with UMA (Wood et al., 2025), which is trained on
more data (459M) and has a larger compute budget. On OC29, the medium model (AllScAIP-md-d.)
shows competitive accuracy. It surpasses UMA-S in both Val/ID and Val/OOD-Both. The OOD/ID
energy ratio (≈1.6) is on par with UMA-M, indicating healthy generalization. On OMat24, the medium
conservative model shows better performance than UMA-S. We did not devote substantial effort to
model tuning for these two datasets.

LLM USAGE STATEMENT

LLM is used for polishing the manuscript and organizing tables. Specifically, we use an LLM to refine
language, improve readability, and enhance clarity.
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