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Abstract

LLM serving systems typically treat user prompts as monolithic inputs, optimiz-
ing inference through decoding tricks or inter-query batching. However, many
real-world prompts contain latent semantic parallelism—decomposable structures
where subtasks can be executed independently to reduce latency while preserving
meaning. We introduce PARALLELPROMPT, the first benchmark for measuring
intra-query parallelism in natural user prompts. Our dataset comprises over 37,000
real-world prompts from public LLM chat logs, each annotated with a structured
schema capturing task templates, shared context, and iteration inputs. These
schemas are extracted using LLM-assisted prompting with rule-based multilingual
validation. To evaluate the benefits of decomposition, we provide an execution
suite that benchmarks serial vs. parallel strategies, measuring latency, structural ad-
herence, and semantic fidelity. Our results show that intra-query parallelism can be
successfully parsed in over 75% of curated datasets, unlocking up to 5x speedups
on tasks like translation, comprehension, and comparative analysis, with minimal
quality degradation. By releasing this benchmark, curation pipeline, and evalua-
tion suite, we provide the first standardized testbed for studying structure-aware
execution in LLM serving pipelines.

1 Introduction

Large language models (LLMs) are increasingly deployed in interactive systems, powering personal
assistants, tutoring agents, and productivity tools. These settings demand both high-quality outputs
and low-latency inference. While much progress has been made on inter-query optimizations, e.g.,
batching requests, model compression, and decoding, a complementary axis remains underexplored:
intra-query parallelism. Can we speed up inference by decomposing a single user prompt?

In this work we focus on natural language prompts that implicitly contain multiple independent
subtasks, which we refer to as latent semantic parallelism. For example, asking a model to generate
ten short stories will take longer than executing ten generation calls in parallel (see examples of such
prompts from public LLM logs in Figure[I)). To study this phenomenon at scale, we develop PARAL-
LELPROMPT, a benchmark of over 37,000 real-world prompts drawn from LMSYS-Chat-1M [1]] and
WildChat-1M [2]. Our multi-stage pipeline (overview in Figure [2) filters these logs for parallelizable
prompts, yielding a surprising 10% of user queries with decomposable structure. This validation rate
represents a conservative, high-precision estimate that translates to practical impact: in production
deployments handling billions of monthly queries [3. 4} 5], this yields millions of optimization oppor-
tunities with latency improvements. For context, even widely adopted optimizations like speculative
decoding [6} [7]] and KV-caching [[8] only benefit certain query types, yet are considered valuable
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Figure 1: Examples of real user prompts with latent parallel structure. (a) Example of a repeated-generation
query, where the 10 generations can be executed in parallel. (») Example of a classification query, where the task
(rating sentences) can be parallelized across the queries (each sentence).

production techniques. Perhaps more importantly, intra-query parallelism complements rather than
competes with existing optimizations, offering further gains within individual queries.

Although prior methods have explored related problems in task decomposition, e.g., Skeleton-of-
Thought [9], Tree-of-Problems [10], and LLMCompiler [[L1], these approaches target synthetic
scenarios or predefined schemas. Interestingly, we find that prior task decomposition methods fail
on many of the prompts in our benchmark. This limitation stems from fundamental architectural
constraints: prior methods make strong assumptions about task structure that don’t generalize to
the diverse parallelization patterns present in real user prompts. In contrast, our addresses naturally
occurring user prompts where parallelizable structure must be discovered rather than assumed.

PARALLELPROMPT enables both method and system evaluation. Our results show that naive serial
execution is often suboptimal, with simple parallelization yielding 3x—5x latency improvements on
tasks like translation and comprehension. We also surface failure cases like dependency blindness,
highlighting open challenges for future work. Overall, we make the following contributions:

* We introduce intra-query semantic parallelism as a new axis for LLM efficiency, complementing
token- and batch-level optimizations.

* We release PARALLELPROMPT, the first benchmark of real user prompts with decomposable
structure. Our benchmark includes a taxonomy of decomposition patterns, a multilingual schema
extraction pipeline, and an execution suite measuring latency, structural adherence, and semantic
fidelity. We provide open-source data and reference implementations to support experimentation.

* Using our benchmark, we evaluate recent decomposition methods that could be applied to intra-
query parallelism, and find that these methods fail on many of the practical queries in the broader
set of real-world prompts in our benchmark. Our analyses also reveal other interesting failure cases
and characteristics of real-world parallelizable prompts—revealing a number of open problems and
highlighting the importance of the benchmark for future work in this area.

2 Related Work

Optimizing LLM inference efficiency has been a central focus in systems and NLP communities.
While most work targets decoding acceleration or model compression, a growing body explores
restructuring tasks to improve end-to-end latency. We organize prior work into: (1) prompt decompo-
sition for tool or symbolic execution, (2) serving-time parallelism, and (3) evaluation benchmarks.

Prompt Decomposition. A number of general frameworks consider decomposing prompts for
more structured execution. LLMCompiler [[11}[12] reformulates prompts into tool-augmented DAGs
but assumes predefined schemas and symbolic APIs. Tree-of-Problems (ToP) [[LO] decomposes
math and logic tasks but relies on compositional structures rarely found in everyday prompts.
Skeleton-of-Thought (SoT) [9] parallelizes outline expansions but is limited to tasks with clearly
separable parts. Super JSON Mode [13] requires predefined output schemas for structured parsing.

In contrast, PARALLELPROMPT targets naturally occurring, unstructured prompts with latent par-
allelism. We induce schemas from real-world prompts using LLM-assisted extraction and evaluate
execution tradeoffs in latency and semantic fidelity. Unlike prior works that rely on hardcoded
templates or task-specific logic, our benchmark spans diverse, real-world prompt types—including
emerging categories not explicitly seen during schema design (Section [3} see Appendix [C.2] for
full analysis). To assess how these methods generalize beyond their original settings, we include
evaluations of ToP and SoT on our curated benchmark as representative decomposition baselines,
finding that these approaches fail on a number of the real-world prompts in our benchmark.
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Figure 2: PARALLELPROMPT curation pipeline. Our multi-stage filtering process identifies naturally
occurring parallelizable structures in real-world LLM interactions. Surprisingly, over 10% of user prompts
contain latent parallel structure. High-confidence instances contain explicit structural markers like numbered
lists or item delimiters, while medium-confidence rely on semantic cues such as plural forms or task multiplicity.
This precision-focused validation ensures benchmark quality for measuring intra-query parallelism benefits.

Serving-Time Parallelism. Batch-level systems like vLLM and TensorRT-LLM improve
throughput by executing multiple queries concurrently but treat each prompt as atomic. Token-level
methods like Speculative Decoding [6], [7]], Lookahead Decoding [16], and Medusa reduce
autoregressive bottlenecks by predicting multiple tokens in parallel. Other methods include non-
autoregressive generation [18]], blockwise decoding [19], and attention stabilization [20]. These
techniques optimize serving pipelines but do not exploit semantic parallelism—restructuring a single
prompt into independent, meaningful subtasks. Our work complements these methods by surfacing
latent intra-query parallelism through learned schema extraction and evaluation. Frameworks such
as DSPy [21], SGLang [22] and LangChain enable parallel execution of downstream tasks
generated from a single task, but also do not aim to discover execution structure within user queries.

Benchmarks and Datasets. Most benchmarks that evaluate structured queries focus on synthetic
or expert-curated tasks. BIG-Bench [24] and BIG-Bench Hard [23] evaluate structured reasoning on
expert-designed tasks. GSMS8K [26]] targets math reasoning with chain-of-thought. WizardLM [27]]
generates synthetic instructions but lacks grounding in real user prompts. HotpotQA covers
multi-hop QA but focuses on factoid questions, not open-ended instructions. In contrast, PARALLEL-
PROMPT is grounded in naturally occurring user interactions from large-scale LLM logs. We annotate
latent decomposable patterns and evaluate execution across latency, fidelity, and generalization—
providing a realistic testbed beyond synthetic or templated tasks.

3 The PARALLELPROMPT Benchmark

PARALLELPROMPT tackles a foundational but overlooked question: when is it possible to parallelize
within a single user prompt? While LLM serving pipelines typically optimize across independent
requests, many real-world prompts themselves contain latent decomposable structure that, if identified,
can unlock substantial latency and throughput gains. PARALLELPROMPT is the first benchmark to
systematically capture and evaluate this form of intra-query parallelism at scale.

We build PARALLELPROMPT by curating over 37,000 naturally occurring prompts from public LLM
usage logs, each annotated with structured schemas that reveal how the prompt can be partitioned
into semantically independent subtasks. These annotations enable reproducible evaluation across
diverse decomposition patterns, task types, and execution strategies, providing a realistic testbed for
parallelization research.

3.1 Benchmark Design and Curation

Data Sourcing and Filtering. Our benchmark is grounded in real-world interactions sourced from
WildChat-1M'|and LMSYS-chat-1 NEI, two of the largest publicly available LLM chat datasets. We

'WildChat-1M is released under the Open Data Commons Attribution License (ODC-By). See https:
//opendatacommons.org/licenses/by/1-0/,

“LMSYS-Chat-1M carries a more restrictive license; however, we obtained explicit permission from the
authors (April 2025) to release our curated subset for the benchmark.


https://opendatacommons.org/licenses/by/1-0/
https://opendatacommons.org/licenses/by/1-0/

extract the first user message from each conversation, yielding over 2 million standalone prompts
spanning casual queries, instructional tasks, and multi-step requests. As shown in Figure 2] we
employ a multi-stage pipeline that first classifies prompts using Claude 3.5, then extracts structured
schemas capturing task templates, context, and iterable data elements. Crucially, our system prompts
the model to generate full schemas, not just binary classifications. This design choice surfaces both
decomposition structure and reliability, enabling robust downstream validation (Appendix [AT).

Our validation pipeline explicitly prioritizes precision over recall, where precision represents the
fraction of validated prompts that can be executed in parallel without semantic degradation, and recall
represents the fraction of all inherently parallelizable prompts that our pipeline successfully identifies.
This conservative approach ensures benchmark quality while acknowledging that true parallelism
rates could be higher with improved extraction methods and more so for specialized domains.

Each validated prompt is annotated with a structured schema specifying its decomposable com-
ponents, including a task template with placeholders, shared context, and either a list of items or
a generation count. The schemas follow a consistent five-field format detailed in Appendix [A.2]
ensuring reproducible decomposition and execution.

Category Taxonomy and Structural Di-
versity. As showq in Figure EL our dataset Category Distribution in PARALLELPROMPT Benchmark
spans seven canonical categories: Repeated

Generation (25%), Reading Comprehen- Statistical Analysis
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our schema definition before turning to au- ;4 validation confidence. The canonical categories domi-
tomated extraction with Claude 3.5 for final  paee (esp. Repeated Generation and Reading Comprehension)
dataset curation. since we explicitly optimize for curation of known categories,
but the dataset also includes hundreds of emerging, struc-
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tion process surfaced over 400 novel cate- Chargcter Generation). %his brea%ith higlflights the bei]lch-

g.ories that reflect the rich structural diYer— mark’s coverage of both common and specialized paralleliza-
sity of real-world LLM usage. We organize (jon patterns.

these into six meta-categories (Compara-

tive, Generative, Analytical, Transforma-

tive, Organizational, and Computational) detailed in App.[C.3] providing a comprehensive taxonomy
of parallelizable patterns.

Beyond these canonical types, our extrac-

Multilingual Coverage and Extraction Challenges. PARALLELPROMPT captures parallelizable
prompts across at least 11 languages. While English dominates (=84%), Figure|§|(in the appendix)
reveals substantial representation in Chinese (5.6%), Russian (6.3%), and other languages. Im-
portantly, validation success rates vary significantly across languages: European languages show
higher structural reliability (55-63% high-confidence), while East Asian languages like Chinese and
Japanese exhibit lower rates (28—34%). This disparity reflects both linguistic structural differences
and extraction method biases, as explored in Appendix [ET}

Rather than presenting artificially balanced data that would obscure real-world deployment challenges,
we, however, preserved the authentic distributional patterns of user traffic (84% English) to expose
genuine multilingual fragilities that require addressing. This positions PARALLELPROMPT as the
first benchmark to systematically analyze multilingual decomposition challenges, providing detailed
failure pattern analysis (Appendix [E-I) to guide development of language-aware extraction methods.

3.2 Validation Methodology and Quality Control
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Figure 4: Validation success rates by category, showing
that structured prompts like Named Entity Recognition and
Reading Comprehension pass validation more reliably than
creative tasks like Repeated Generation. This pattern high-
lights the limitations of current schema extraction methods
for loosely structured or open-ended prompts.

Tiered Validation Framework. To ensure
benchmark quality while acknowledging
the ambiguity in user-generated prompts,
we implement a three-tier validation sys-
tem (Appendix [B.I): high-confidence
prompts (62%) featuring explicit structural
markers, medium-confidence (38%) rely-
ing on softer linguistic cues, and failed vali-
dation cases (38.6% of candidates) rejected
due to constraint violations.

As Fig. [ shows, validation success varies
significantly by task type. Structured tasks
like Named Entity Recognition achieve suc-
cess rates of 90%, while creative prompts
like Repeated Generation pass validation
at much lower rates (37.8%). This pattern
reveals a tension between creative freedom

and structural reliability that impacts paral-
lelization effectiveness.

Our validation approach was grounded in /5,500 manual inspections across the three-tier framework
(detailed in Appendices [B| & [D.4). This human evaluation revealed that over 75% of structurally
validated prompts remain suitable for effective parallelization, confirming the practical applicability
of our approach while identifying systematic failure patterns that guide future improvements.

The validation process applies several key constraints to ensure schema integrity, including mutual
exclusivity between data and count fields, template-placeholder compatibility, and minimum paral-
lelism thresholds. Common failure patterns (analyzed in Appendix [B.3) include template-placeholder
mismatches, mutual exclusivity violations between data and count fields, and insufficient parallelism
thresholds, providing insights into the limitations of current schema extraction approaches.

3.3 Dataset Statistics and Research Implications

Scale and Prevalence. From 358,000 inspected prompts, we validated 37,070 as parallelizable
(16,721 from LMSYS and 20,349 from WildChat), representing a 10.3% yield. This finding chal-
lenges the assumption that intra-query parallelism is rare, revealing instead that it constitutes a
significant mode of user interaction with LLMs.

Structural and Linguistic Patterns. Our analysis surfaces several notable patterns in the dataset:

» Category distribution: Reading Comprehension and Repeated Generation dominate, but the long
tail of novel categories expands PARALLELPROMPT’s coverage beyond prior benchmarks.

» Language-specific tendencies: Chinese prompts disproportionately target Named Entity Recogni-
tion tasks (11.33%), while Japanese prompts favor Translation (47.37%).

* Validation biases: European languages achieve consistently higher validation rates than East Asian
languages, highlighting the need for language-sensitive extraction methods.

* Novel category characteristics: Novel categories feature more complex templates (15% longer on
average) and higher context utilization compared to canonical categories.

These patterns highlight both the potential and challenges of intra-query parallelism in practice.
They also reveal the limitations of current extraction methods, particularly for creative tasks and
non-Western languages (Appendix [E.3). By combining large-scale data curation, structured schema
extraction, multilingual coverage, and tiered validation, PARALLELPROMPT provides the first com-
prehensive testbed for studying intra-query parallelism in practical settings. Its breadth of prompt
types, languages, and structural patterns makes it a valuable resource for advancing structure-aware
LLM execution strategies that balance efficiency with output quality.

3.4 Benchmark Applications

PARALLELPROMPT enables three primary evaluation scenarios: (1) Schema extraction research,
evaluating how well different models or prompting strategies identify parallelizable structure; (2)
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Figure 5: How PARALLELPROMPT operationalizes intra-query parallelism. This execution pipeline powers
the benchmark’s core evaluation, contrasting serial and parallel strategies on real user prompts regardless of their
task category. By grounding performance measurement in schema-based decomposition and systematic output
comparison, the pipeline reveals when parallel execution achieves meaningful speedups without compromising
output quality—turning benchmark abstractions into actionable insights for real-world LLM serving systems.

Decomposition execution strategies, through systematic latency-quality tradeoff evaluation across
diverse task categories; and (3) Model benchmarking, assessing how different LLMs perform under
parallel versus serial execution. The task-agnostic schema format and modular C++ infrastructure
support any structure-aware execution pipeline, providing a standardized testbed for advancing
structure-aware LLM serving research beyond the specific method evaluated here.

4 Evaluating Parallelism in Practice

We next use PARALLELPROMPT to investigate how effectively intra-query parallelism can be lever-
aged in practice. This section evaluates performance gains, quality implications, and tradeoffs across
different task types, providing an empirical foundation for structure-aware LLM serving systems.

4.1 Evaluation Methodology

Category-Agnostic Execution Framework. As illustrated in Figure 3] our evaluation infrastructure
is designed to handle any parallelizable prompt with a valid schema—regardless of its task category or
domain. This category-agnostic approach contrasts with prior methods that make strong assumptions
about task structure. Our framework requires only a template field, an optional context field, and
either a data list or an iteration count to enable parallel execution, making it applicable to both
canonical categories and novel patterns discovered in the wild. We implemented this framework as a
high-performance C++ backend that provides fine-grained thread control and robust API rate limiting
through exponential backoff. This infrastructure measures both latency and output quality across
execution strategies, revealing when parallelization yields practical benefits.

Our evaluation pipeline operates in two phases: (1) schema extraction using Claude 3.5, and (2)
execution using GPT-4-1106-preview via the OpenAl API. For schema extraction, we evaluated
multiple models including Claude-3.7 Sonnet (too powerful, over-extracted with excessive decom-
position), GPT-4o0-mini (too weak, under-performed with high error rates), and several open-source
models via Together.ai API before selecting Claude 3.5 for its optimal precision-coverage trade-
off. Implementation details, including thread management and timeout handling, are provided in

Appendix[F1]

Measurement Framework. We assess parallelization via three complementary metrics: i) Latency,
ii) Semantic Fidelity—which is the output quality assessed by an independent LLM judge (GPT-40),
and, iii) Normalized Speedup, i.e., raw speedup adjusted for output token length differences.

The normalized speedup metric addresses a systematic bias where LLMs processing multiple items
sequentially often truncate individual responses due to internal "length budgeting" behavior [29, 130,
31]. For example, requesting one story might yield 500 words, while requesting ten stories results in



Table 1: Performance metrics for three primary task categories from PARALLELPROMPT. Measurements
exclude schema extraction time except for E2E (end-to-end) which includes full pipeline execution. Normalized
speedup accounts for differences in output token lengths between serial and parallel approaches, revealing
significant performance gains even after quality adjustment.

Avg Parallel Avg Serial Normalized Raw
Task Category Duration (s) Duration (s) Speedup Speedup
Keyword Extraction 2.38 3.23 2.54x 1.36 <
Reading Comprehension 3.49 10.27 5.72x 2.94
Repeated Generation 3.79 9.51 4.39x 2.50%
Repeated Generation (E2E) 4.88 9.51 3.41x 1.70x

50 words each as the model attempts to fit everything into similar total response lengths. Parallel
execution avoids this by allocating full context to each subtask, and our metric adjusts for these length
differences to enable fair efficiency comparisons.

For Repeated Generation tasks, we implemented a diversity heuristic that assigns different starting
letters to each parallel generation, ensuring outputs remain distinct without relying on shared context.
This approach balances generation independence with output diversity, as detailed in Appendix [F3]

Baseline Comparison. We evaluate our structured decomposition approach against two established
methods: Skeleton-of-Thought (SoT) [9] and Tree-of-Problems (ToP) [[10]. While these methods
were designed for specialized decomposition patterns, our evaluation examines how they generalize
to the diverse parallelization scenarios present in our benchmark. A qualitative comparison of method
strengths and limitations is provided in Appendix [I|

4.2 Performance Results

Latency Reduction. As shown in Table[l] parallel execution yields substantial performance improve-
ments across all evaluated categories. Reading Comprehension tasks show the highest raw speedup
(5.72x), with Repeated Generation (4.39x) and Keyword Extraction (2.54 x) also demonstrating
significant gains. Importantly, even when including schema extraction overhead in end-to-end mea-
surements, Repeated Generation tasks still achieve a 3.41 x speedup—highlighting the practical value
of intra-query parallelism in realistic deployment scenarios.

Scalability Analysis. To assess

how parallelization benefits scale Serial vs Parallel Execution Duration Speedup and Normalized Speedup
with task complexity, we con- 20 — s 2 i
ducted an in-depth analysis of Re-

peated Generation tasks with vary-
ing output counts. As Figure []
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time grows linearly with the num- 0 10 20 30 0 50 o 10 20 30 40 50
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execution time remains relatively Figure 6: Latency scaling with number of requested outputs (n). (a)
constant. This leads to increas- Serial execution time grows linearly with n while parallel time remains
ing speedup factors for more com- relatively constant, demonstrating the core efficiency benefit of intra-
query parallelism. (b) Speedup increases nearly linearly with n until
API rate limiting becomes a factor, with normalized speedup account-
ing for quality differences. This scaling pattern suggests parallelization
becomes increasingly valuable for complex, multi-part queries.
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plex queries, with some diminish-
ing returns at higher counts due
to API rate limiting. This pat-
tern confirms that parallelization
becomes increasingly valuable as
query complexity grows—precisely when latency improvements matter most.

Comparative Method Performance. Our quantitative comparison with SoT and ToP, detailed
in Appendix [IL reveals the limitations of specialized decomposition approaches when faced with
diverse real-world prompts. SoT’s two-phase outline-then-expand approach makes assumptions
about task structure that don’t generalize to extraction tasks, while ToP’s recursive-problem-focused
decomposition adds unnecessary overhead for flat, independent tasks; hence, they struggle with the
varied parallelization patterns present in our benchmark.
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Figure 7: Tradeoffs between speedup and output quality across parallelizable categories. While tasks like
Reading Comprehension achieve high speedups with minimal quality loss, others, such as Repeated Generation,
suffer more significant quality degradation despite substantial speedup gains. The shaded "Ideal Performance
Zone" highlights categories that balance efficiency and fidelity. These results demonstrate the need for task-
adaptive parallelization strategies that consider both latency and quality implications. Error bars show 95%
confidence intervals from LLM judge evaluations, with quality preservation measured relative to serial execution.

This limitation stems from fundamental architectural constraints: SoT’s two-phase outline-then-
expand approach makes assumptions about task structure that don’t generalize to extraction or
analytical tasks, while ToP’s dependency-focused decomposition adds unnecessary overhead for
flat, independent tasks. In contrast, our schema-based approach generalizes across the full spectrum
of parallelization patterns by focusing on the minimal structural requirements for decomposition,
demonstrating more consistent performance improvements across the benchmark’s diverse prompts.

4.3 Quality-Speedup Tradeoffs

While latency improvements are substantial, our evaluation reveals important quality implications
that vary by task type. As shown in Figure[7] different categories exhibit distinct tradeoffs between
speedup and output quality.

Task-Dependent Quality Impact. Our quality evaluation, based on independent LLM judgments
across accuracy, grammar, detail, and overall preference dimensions (Appendix @, reveals three
distinct patterns:

* Low Impact Tasks: Reading Comprehension maintains high quality under parallelization (92%
preservation), with independent question answering preserving semantic accuracy.

* Moderate Impact Tasks: Keyword Extraction and Named Entity Recognition show modest quality
degradation (82-85% preservation), primarily in entity consistency and redundancy handling.

» High Impact Tasks: Creative generation tasks exhibit the largest quality gap (76% preservation),
with parallel execution struggling to maintain narrative coherence and stylistic consistency.

Performance-Quality Balance. As Figure|/|illustrates, certain categories fall into an "ideal perfor-
mance zone" with high speedup and minimal quality loss. Reading Comprehension is particularly
well-suited for parallelization, while generative tasks present a more significant tradeoff. These
patterns suggest that parallelization strategies should be task-adaptive, applying more aggressive
decomposition for information extraction and comprehension tasks while using more conservative
approaches for creative and narrative tasks.

Parallelization Limitations. Through systematic evaluation, we identified several key factors
that limit effective parallelization, including dependency relationships between subtasks, context
fragmentation, and reassembly challenges. These failure modes, analyzed in detail in Appendix [D.2]
and Appendix affect different task categories at varying rates and reveal fundamental tensions



between decomposition and coherence. Understanding these limitations is essential for developing
robust, failure-aware parallelization strategies in production systems.

4.4 Practical Implications

Our evaluation demonstrates that intra-query parallelism offers substantial practical benefits when
appropriately applied. The key findings include:

* Significant Latency Reductions: Even accounting for schema extraction overhead and quality
normalization, parallelization yields 1.4-3x speedups across diverse task types.

» Task-Dependent Strategies: The optimal balance between parallel and serial execution varies by
task type, with structured information tasks benefiting most from aggressive parallelization.

* Scaling Efficiency: Parallelization benefits increase with query complexity, making this approach
particularly valuable for multi-part, structurally rich prompts.

* Quality Preservation Challenges: While some tasks maintain quality under parallelization,
others—particularly creative generation—require careful tradeoff management.

* Framework Generalizability: Unlike specialized decomposition methods, our category-agnostic
approach handles diverse prompt types through a unified schema representation, enabling broader
deployment across varied LLM workloads.

5 Discussion and Limitations

Our analysis of PARALLELPROMPT reveals key insights about parallelizable structures in LLM
queries and the practical challenges of exploiting this parallelism. This section examines the implica-
tions of our findings and acknowledges limitations of our approach.

5.1 Beyond Structural Decomposition

The evaluation results in Section 4] highlight an important distinction: structurally decomposable
prompts don’t always benefit from parallel execution. This gap between structural identification
and effective parallelization appears most clearly in prompts with subtle dependencies: for example,
consider — "Compare each paragraph to the previous one and analyze thematic shifts." While our
extraction pipeline identifies structural parallelism (multiple paragraphs to analyze), the semantic
dependencies between subtasks make parallel execution ineffective. This pattern of dependency
blindness, analyzed in detail in Appendix affects even high-confidence validations.

Similarly, creative tasks like Repeated Generation show clear structural decomposition but benefit
from sequential processing’s emergent coherence. As shown in Figure [/} these tasks exhibit the
sharpest tradeoff between speedup and quality preservation.

Dependency blindness affects ~=25% of structurally valid prompts, manifesting in three primary types:
sequential dependencies (comparative analysis requiring previous context), semantic dependencies
(narrative coherence), and constraint dependencies (shared formatting requirements). These chal-
lenges suggest a productive middle ground between entirely serial execution and naive decomposition:
task-adaptive strategies that recognize when parallelism will preserve semantic integrity.

5.2 Linguistic and Demographic Biases

PARALLELPROMPT inherits biases from its source datasets that warrant careful consideration. Most
notably, our language distribution analysis in Figure 0] (in the appendix) reveals strong skews toward
English (=84%) and European languages generally. The substantially lower validation rates for East
Asian languages (28-34% compared to 55-63% for European languages) suggests systematic biases
in our extraction methodology that may disadvantage non-Western linguistic structures.

These biases reflect both the demographic composition of early LLM adopters and structural assump-
tions in our extraction approach that may differ from broader populations in technical sophistication
and prompt complexity. While our benchmark achieves substantial multilingual coverage, future work
should prioritize language-aware extraction methods that account for diverse syntactic conventions
and prompt formulation strategies.



Beyond linguistic representation, the source datasets (WildChat-1M and LMSYS-chat-1M) capture
interaction patterns from early adopters who may differ from broader populations in their technical
sophistication and prompt complexity. While our sampling approach (5,500 manual inspections)
provides statistical power for major patterns, we view these biases as exposing genuine multilingual
challenges in LLM deployments that need addressing, rather than fundamental limitations of the
approach.

5.3 Toward Task-Adaptive Execution

The performance-quality spectrum revealed in our evaluation (Figure[7) suggests that effective paral-
lelization requires task-adaptive strategies. Rather than treating parallelization as a binary decision,
production systems might implement a graduated approach: Factual tasks (e.g., Reading Comprehen-
sion, Named Entity Recognition) showing high quality preservation (>90%) with substantial speedups
clearly benefits from aggressive parallelization; however, for creative tasks (e.g., Repeated Generation,
Character Generation) where quality degradation is more pronounced, considering specific quality
requirements may be more appropriate.

This approach could be extended to hybrid execution strategies that combine parallel and serial pro-
cessing based on detected dependencies. For example, systems might parallelize independent subtask
groups while maintaining sequential execution within groups that show strong interdependencies, as
suggested by our failure analysis in Appendix [D]

5.4 Structure-Aware Execution in Practice

The findings from our benchmark have direct implications for structure-aware LLM execution
systems. The latency improvements demonstrated in Table [I] show that even simple schema-based
decomposition can yield substantial efficiency gains (1.36x-5.72x) across diverse task types.

Particularly promising is the relationship between query complexity and parallelization benefits
illustrated in Figure @ As the number of subtasks increases, structure-aware execution becomes
increasingly advantageous—precisely when efficiency matters most. This finding suggests that even
systems with limited parallelization capabilities should prioritize decomposing complex, multi-part
queries.

The ~23% failure rate in our manual inspection is comparable to widely-used datasets in other
domains [32} 133 134} 135]), suggesting that despite its limitations, structure-aware execution could be a
valuable optimization for most real-world LLM workloads.

6 Conclusion

PARALLELPROMPT introduces intra-query semantic parallelism as a concrete, underexplored axis
for accelerating LLM inference—rooted not in synthetic tasks, but in the latent structure of real user
prompts. By surfacing and validating decomposable schemas from naturally occurring queries, we
provide the first benchmark and evaluation suite for studying structure-aware execution in open-ended
prompting.

Our contributions include a scalable data curation and schema extraction pipeline, a tiered validation
framework combining LLM heuristics with symbolic rules, and an evaluation suite that quantifies
tradeoffs between latency, output quality, and structural fidelity. The resulting benchmark spans 37k+
multilingual prompts across 8+ decomposition categories—each filtered, structured, and ready for
downstream evaluation.

We release this dataset alongside our automated curation/validation pipeline and evaluation suite
to support reproducible research in this emerging space. We hope PARALLELPROMPT becomes a
foundation for the next wave of systems that rethink prompt execution not as a serial bottleneck—but
as a structured, parallelizable interface between humans and language models.

Looking ahead, combining semantic parallelism with batch- and token-level acceleration could unlock
new trade-offs between latency, cost, and quality—especially in real-time applications like chatbots,
tutoring agents, and productivity tools. We see this as a promising direction for future exploration.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: As claimed, we provide a new benchmark for measuring intra-query paralellism
using naturally occurring user prompts, and demonstrate how extracting parallelism from
these prompts has the potential to improve inference speed.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed limitations in detail in Section [5|and Appendix
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification:
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We provide our full code and data for reproducibility.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: Yes, our data and code are openly available.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide full empirical details in the appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We provide error bars for our experiments (see, e.g., key results in Figure 7).
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Yes, we provide these details in the appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Yes, we follow the code of ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Yes, we discuss broader impacts in Section @
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]
Justification: Yes, we adopt similar safeguards to the datasets used to curate our benchmark.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, we have credited the owners of the original datasets and describe license
details on our hosted dataset page.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: Yes we document the assets provided via our code/benchmark.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: Yes, we describe LLM usage in the development of the benchmark, particularly
in the data curation and validation stages.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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A System Prompt and Schema Format

This appendix details the design principles and structural patterns of our schema extraction system,
expanding on the parallelizable prompt identification methodology introduced in the main paper.

A.1 Design Rationale

Our schema extraction pipeline relies on a carefully designed system prompt that balances precision
with coverage across diverse prompt structures. Rather than merely classifying prompts as paralleliz-
able or not, we require the model to generate a complete schema capturing decomposition structure.
This structured output acts as both a reasoning scaffold and a quality control mechanism, improving
detection of latent parallelism.

The system prompt incorporates the following design principles:

» Explicit Criteria: Clear definitions of what constitutes a parallelizable prompt, emphasizing
independence and multiplicity of subtasks.

* Pattern Indicators: Examples of linguistic patterns that suggest parallelism, including
numbered lists, plural forms, and task enumerations.

¢ Inductive Bias Toward Canonical Categories: Reinforcement of common parallelization
patterns, helping the model generalize from known categories to novel categories.

* Mutual Exclusivity Enforcement: Hard constraints ensuring prompts specify either a list
of items (data) or a numerical count (n), but not both.

* Contrastive Learning Examples: Side-by-side positive and negative examples with correc-
tions, guiding the model away from overfitting to superficial patterns.

This prompt structure proved critical for balancing recall and precision. By asking the model to
generate a full schema rather than a binary label, we surface both the decomposition structure
and its reliability. The complete system prompt text is included in our public code repository and
supplemental materials.

A.2 Schema Field Patterns

Each validated prompt in PARALLELPROMPT is annotated with a five-field schema that captures its
decomposable structure:

» serial: The original user prompt, minimally cleaned for processing.

* template: A task template with placeholders, such as “Translate: {data}”, applied to
each subtask.

e context: Shared content or instructions used across all subtasks.

* data or n: A list of items to iterate over (data) or an integer count specifying the number of
generations (n).

 category: The parallelization pattern, selected from our taxonomy.
Empirical analysis of these schemas reveals distinct usage patterns across categories (Figure [§).

* Template Patterns: Reading Comprehension prompts predominantly use context_data
patterns (82%), while Repeated Generation primarily employs data_only structures (85%).

* Context Utilization: Context appears in 95% of Reading Comprehension schemas but only
20% of Translation tasks. Novel categories like Statistical Analysis show higher context
usage (69%) than many canonical ones, reflecting their increased information requirements.

» Data vs. n Field: Repeated Generation tasks predominantly use the n field (95%), while
other categories like Translation and Language Correction almost exclusively rely on the
data field (97% and 96% respectively).

e Template Structure: In dual-field templates, 85% place context before data
(context_data), while 15% use the reverse order (data_context), primarily in search-
oriented tasks.
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Schema Field Usage and Template Pattern Distribution by Category
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Figure 8: Schema field usage and template pattern distribution by category. Reading Comprehension
and Named Entity Recognition rely heavily on context, requiring context-preserving parallelism that maintains
shared reference material. On the other hand, Repeated Generation (95% n-field usage) and Translation (80%
data-only templates) exhibit minimal dependencies between subtasks, enabling more aggressive parallelization.

These schema patterns directly impact parallelization strategies, with high context dependency
categories requiring more careful decomposition approaches than those with independent data items.
We enforce strict mutual exclusivity between data and n, ensuring that prompts represent either
itemized or numerical parallelism, but never both. This constraint improves schema clarity and
execution consistency across the benchmark.

Table 2: Schema field characteristics across major categories. Reading Comprehension shows high context
usage (95%), while Translation exhibits the lowest (20%). Repeated Generation has the highest n-field frequency
(95%), while most other categories predominantly use data-field itemization (>90%).

Category Context Data Field n Field Avg Template Avg Data
Usage  Frequency Frequency Length (words) Length (words)

Reading Comprehension 95% 98% 2% 14.7 12.3
Repeated Generation 15% 5% 95% 9.3 53
Named Entity Recognition 88% 92% 1% 10.5 7.8
Keyword Extraction 82% 95% 1% 12.1 21.7
Translation 20% 97% 1% 7.2 11.4
Language Correction 38% 96% 2% 8.6 15.2
Sentiment Analysis 45% 97% 1% 9.4 14.3

B Validation Methodology

This section expands on the validation process described in the main paper, providing a detailed
analysis of our tiered validation framework and the common failure patterns that informed our
benchmark composition.
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B.1 Validation Tiers

We employ a three-tier validation framework that balances precision and coverage in schema extrac-
tion. This framework provides a scalable mechanism for filtering noisy candidate prompts while
retaining structurally reliable instances for benchmark inclusion.

* High-confidence: Prompts with explicit structural markers such as numbered lists, item
delimiters, or clear iterative instructions. These account for 62% of all validated prompts.

* Medium-confidence: Prompts relying on softer linguistic cues such as plural forms, task
multiplicity, or implicit list structures. These account for 38% of validated prompts.

* Failed validation: Prompts rejected due to constraint violations or insufficient parallel
structure. Approximately 38.6% of candidate prompts fall into this category.

Validation outcomes vary by task and language. Translation tasks exhibit the highest high-confidence
rate (78%), while Sentiment Analysis has the lowest (43%). Novel categories show greater variability,
with well-structured types like Character Generation achieving high-confidence rates comparable to
canonical tasks (59%).

Cross-linguistic patterns reveal higher success rates for European languages (55-63%) and lower rates
for East Asian languages like Chinese and Japanese (28-34%). This suggests that language-specific
structural conventions impact extraction reliability, highlighting an avenue for future refinement.

Language Distribution in PARALLELPROMPT

French has highest validatio
confidence (63.0%

Il Chinese shows lowest validation
I confidence (27.8%)

Languages
I English (83.9%)
Russian (6.3%)
I Chinese (5.6%)
"Z7! Other Languages:
Portuguese (1.4%)
Il Spanish (0.9%)
German (0.6%)
Il French (0.5%)
Japanese (0.3%)
B [Italian (0.3%)
Arabic (0.1%)
Il Other (0.1%)

Validation Confidence
Il High Confidence
Medium Confidence

Showing validation confidence rates by language

Overall validation confidence: 62%

Figure 9: Language composition, with English dominating. The outer ring shows validation confidence
rates by language, revealing higher success for European languages (55-63%) and lower rates for East Asian
languages like Chinese and Japanese (28-34%). This pattern suggests structural and linguistic conventions
impact schema extraction reliability, with languages using Latin scripts achieving more consistent validation
outcomes than those using non-Latin writing systems.

B.2 Validation Criteria

To pass validation, schemas must satisfy several constraints:
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* Mutual exclusivity: Prompts must specify either data or n, but never both.

* Template-placeholder compatibility: All placeholders in the template must match the
available fields.

¢ Minimum parallelism threshold: Lists must contain at least two items; counts must exceed
1.

* Context consistency: Any shared context must apply uniformly across all subtasks.

These constraints ensure that validated prompts can be reliably decomposed and executed in parallel
without semantic ambiguity.

B.3 Validation Criteria and Failure Patterns

Our validation pipeline rejects prompts through distinct failure patterns, but it’s important to note that
validation failures are separate from execution-time quality issues and false positives (prompts that
pass validation but fail in practice).

Our analysis reveals four primary validation failure patterns:

» Template-Data Mismatch (41% of failures): The generated schema’s template is incompat-
ible with the provided data items, often leading to execution inconsistencies.

* Context Contamination (23%): Item-specific information erroneously appears in the shared
context field, violating decomposition independence.

* Mutual Exclusivity Violations (19%): Schemas that incorrectly specify both data and n,
introducing ambiguity in execution semantics.

* Insufficient Parallelism (17%): Prompts with too few items to warrant decomposition,
typically single-item lists or trivial tasks.

The distribution of these failures varies significantly by category. Repeated Generation, which has the
lowest validation success rate (37.8%), shows the highest rate of context contamination issues (34%),
explaining much of its poor validation performance. Named Entity Recognition, despite having high
validation success (90.0%), shows a lower but still significant template-data mismatch rate (44%) that
primarily affects execution quality rather than validation success.

Table 3: Validation failure distribution across categories. This table shows how different failure modes
affect each category. Note that these percentages represent the distribution of failures within prompts that failed
validation, not within the entire category. Repeated Generation has both high failure rates and high context
contamination issues, while NER has low failure rates despite moderate template-data issues.

Category Template-Data Context Mutual Excl. Insufficient
Mismatch Contamination Violation Parallelism
Reading Comprehension 48% 17% 15% 20%
Repeated Generation 32% 34% 22% 12%
Named Entity Recognition 44% 21% 18% 17%
Keyword Extraction 37% 24% 23% 16%
Translation 45% 18% 12% 25%
Language Correction 39% 22% 17% 22%
Sentiment Analysis 42% 19% 24% 15%

We also identified several consistency challenges that affect schema extraction and execution quality:

* Mixed Delimiters: Common in Reading Comprehension (34% of affected prompts that fail
validation), where users mix bullets, numbers, and separators inconsistently.

* Length Variance: Frequent in Keyword Extraction (29% of affected prompts that fail
validation), where data items range widely in granularity or length.

» Case Formatting Inconsistency: Prevalent in Named Entity Recognition (31% of affected
prompts that fail validation), where inconsistent casing affects extraction quality.

It’s important to clarify that these formatting issues primarily affect the subset of prompts that fail
validation or execution in each category, which explains why NER can have a high validation success
rate (90.0%) while still showing significant formatting issues among its failures.
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C Category Taxonomy

This section provides a comprehensive overview of prompt categories in our benchmark, expanding on
the taxonomy introduced in the main paper and detailing both canonical and emerging parallelization
patterns.

C.1 Canonical Categories

PARALLELPROMPT targets seven primary categories of parallelizable prompts, derived from observed
patterns in large-scale LLM usage logs:

* Repeated Generation (25% of dataset): Prompts requesting multiple similar outputs, such
as taglines or summaries.

* Reading Comprehension (30%): Prompts asking multiple questions about a shared passage
or document.

* Keyword Extraction (7%): Prompts identifying specified terms within a text.

* Named Entity Recognition (14%): Prompts extracting entities such as organizations,
people, or locations.

* Translation (9%): Prompts converting multiple text segments into another language.

* Language Correction (6%): Prompts requesting grammar or style improvements across
multiple inputs.

* Sentiment Analysis (3%): Prompts classifying emotional or attitudinal tone of multiple
texts.

These canonical categories account for approximately 95% of all validated prompts. Their distribution
reflects both natural user interaction patterns and the inductive biases of our system prompt design,
considering that we explicitly instruct to try to fit each found parallelizable query into .

C.2 Novel Categories

Our schema extraction process surfaced over 400 novel categories beyond the canonical types. These
emerging patterns capture diverse parallelization strategies not explicitly modeled in prior work.
Prominent examples include:

* Comparative Analysis (18% of novel instances): Comparing multiple entities across shared
criteria.

* Reaction Generation (11%): Generating character or entity reactions to shared stimuli or
situations.

* Character Generation (9%): Creating profiles or attributes for multiple fictional or real-
world characters.

* Statistical Analysis (7%): Performing computations or aggregations over structured data.

* Data Transformation (6%): Converting data representations across formats, styles, or
structures.

These categories expand the benchmark’s coverage to include more specialized and domain-specific
parallelization patterns.

C.3 Meta-Categories
To structure the growing space of novel categories, we introduce a meta-taxonomy capturing six
fundamental modes of parallelism:

* Comparative: Evaluating multiple entities against shared criteria.

* Generative: Producing multiple independent creative outputs.

* Analytical: Extracting features or insights from multiple inputs.

» Transformative: Converting content across formats or languages.
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Figure 10: Structural map of emerging meta-categories in the PARALLELPROMPT benchmark. While
generative tasks dominate in both frequency and diversity—driven largely by WildChat—computational and
analytical categories are more prominent in LMSYS. This structural diversity supports the benchmark’s coverage
of real-world, non-trivial parallelization patterns beyond the canonical categories outlined in the main paper.

* Organizational: Structuring or categorizing information.

* Computational: Performing calculations or simulations in parallel.

Figure [T0] visualizes these relationships, highlighting how different prompt types cluster within these
structural families. This map offers a qualitative snapshot of the latent structure uncovered by our
schema extraction process, demonstrating that parallelization patterns extend far beyond simple
list-based tasks.

D Failure Analysis

This section expands on the failure modes briefly mentioned in the main paper, providing detailed
analysis of the factors that limit effective parallelization across different prompt types.

D.1 Schema Extraction Challenges

Complex prompts with conditional logic often resist clean decomposition. Consider the following
example:
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Table 4: Meta-category distribution and characteristics. The table shows how novel categories distribute
across our meta-taxonomy, with examples and structural features that characterize each group. Generative
categories dominate in frequency but show the lowest validation success rates.

Meta-Category Frequency High-Conf.

Avg. Speedup Example Categories

Rate
Comparative 23% 58% 341x Character Comparison, Product Analysis
Generative 41% 39% 4.22x Character Generation, Story Creation
Analytical 14% 64% 3.78x Statistical Analysis, Feature Extraction
Transformative 11% 61% 2.93x Data Transformation, Format Conversion
Organizational 7% 57% 2.76x Table Generation, Reference Creation
Computational 4% 65% 3.12x Financial Calculation, Simulation

"Generate a custom workout plan that includes cardio, strength, and flexibility
exercises for each day of the week."

While this prompt appears parallelizable by day, it implicitly requires cross-day progression and
coherence. Our schema extractor may identify structural parallelism here but fail to capture these
implicit constraints.

Additional challenges arise from data consistency issues, including:

* Mixed Delimiters: Most common in Reading Comprehension (34% of affected prompts),
where bullet points, numbering, and separators are inconsistently mixed.

* Length Variance: Particularly frequent in Keyword Extraction (29%), where data items
range widely in granularity or length.

» Case Formatting Inconsistency: Prevalent in Named Entity Recognition (31%), where
inconsistent casing disrupts reliable extraction.

Even when schema extraction passes formal validation, these issues can surface during execution,
leading to degraded quality or runtime failures.

D.2 Dependency Blindness

A critical failure mode involves undetected sequential dependencies between subtasks. While
our schema extraction often identifies surface-level parallelism, it may overlook hidden causal
relationships that require sequential execution. For example:

"Design an algorithm that first identifies prime numbers in a range, then filters out
those that are not Fibonacci numbers, and finally returns the sum."

This task appears decomposable into three operations but must be executed sequentially. Our pipeline
sometimes misclassifies such prompts as parallelizable, failing to capture their true dependency
structure. Dependency blindness manifests in three primary forms:

» Causal Dependencies: Later subtasks depend on earlier results, as in the algorithm example
above.

* Narrative Dependencies: Storytelling tasks require consistent character development and
plot progression across segments.

* Cumulative Dependencies: Analysis tasks that build up gradual insights toward a final
conclusion or recommendation.

As shown in Table[5] dependency blindness affects different categories at varying rates among prompts
that passed validation. This reveals why categories with high validation success can still experience
execution failures: Repeated Generation has a high dependency blindness rate (27% of validated
prompts), primarily due to narrative dependencies (47%). Meanwhile, Named Entity Recognition has
the lowest dependency blindness rate (8%), consistent with its high structural parallelism.

Notably, these dependency blindness rates correlate strongly with false positive rates, suggesting that
undetected dependencies are the primary cause of execution failure in prompts that pass validation.
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Table 5: Frequency of dependency blindness across categories. This table shows how often different types of
dependencies are missed during schema extraction, measured as a percentage of prompts that passed validation.
Repeated Generation shows the highest rate of narrative dependencies, while Reading Comprehension is most
affected by cumulative dependencies.

Category Causal Narrative Cumulative Total

Dependencies Dependencies Dependencies Affected
Repeated Generation 8% 47% 12% 27%
Reading Comprehension 11% 5% 33% 19%
Named Entity Recognition 7% 3% 10% 8%
Comparative Analysis 15% 11% 36% 23%
Reaction Generation 7% 41% 18% 22%
Statistical Analysis 32% 2% 28% 18%

D.3 Context Fragmentation and Reassembly Challenges

Some prompts require maintaining a shared mental model across subtasks. When decomposed, this
shared context may fragment, leading to inconsistent or incoherent outputs. For example:

"Using the character profile above, write five scenes showing how this charac-
ter would react in different emotional situations: anger, fear, joy, sadness, and
surprise.”

While structurally parallelizable, executing each scene in isolation risks losing narrative continuity
and character coherence. This issue is especially pronounced in creative tasks, affecting 31% of
prompts in categories like Character Generation and Reaction Generation.

Even when subtasks execute correctly, reassembling them into a coherent whole can fail for tasks
requiring semantic flow or thematic consistency. For example:

"Write a coherent paragraph about climate change that includes these key terms:
greenhouse gases, sea level rise, temperature increase, mitigation strategies."

Parallel execution may produce disconnected sentences that technically include all terms but lack
cohesive structure. This affects summarization, multi-point argumentation, and narrative storytelling
tasks.

D.4 False Positive Classification

Beyond validation failures, we identified prompts that pass our validation pipeline but fail during
execution due to undetected dependencies. We refer to these as "false positives" - prompts that appear
parallelizable based on structural criteria but produce degraded outputs when executed in parallel.

A classic example is:
"Compare each paragraph to the previous one and analyze thematic shifts."”

This prompt passes structural validation (it has multiple paragraphs to analyze) but fails semantically
due to inter-paragraph dependencies.

Our manual inspection of the validated subset of the benchmark (prompts that passed validation)
reveals false positive rates that align closely with validation failure patterns:

» High false positive rates (18-25%): Repeated Generation, Character Development, Com-
parative Analysis, Statistical Analysis - categories with the lowest validation success rates

* Medium false positive rates (8-14%): Sentiment Analysis, Language Correction, Reading
Comprehension

* Low false positive rates (3-7%): Named Entity Recognition, Keyword Extraction, Transla-
tion - categories with the highest validation success rates

This pattern demonstrates a consistent relationship: categories with lower validation success rates also
show higher false positive rates among those prompts that do pass validation. This suggests that the
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same underlying factors that make a category difficult to validate also make it prone to execution-time
failures even when validation succeeds.

E Multilingual Analysis

This section expands on the multilingual capabilities of our benchmark, analyzing language-specific
patterns, validation challenges, and implications for schema extraction across diverse linguistic

contexts.

E.1 Language-Specific Patterns

We observe significant variation in validation confidence and category distributions across languages:

¢ Chinese (5.6% of dataset):
— Strong preference for explicit structural markers (e.g., numbered lists).
— Low high-confidence validation rate (28%).
— High incidence of Named Entity Recognition (35%).
¢ Russian (6.3%):
— Highest incidence of Language Correction (19%).
— Complex templates with 21% higher conditional logic rates than English.
* Japanese (0.4%):
— 47% of prompts are Translation tasks.
— Highest average data item count (9.8 items per prompt).
* Spanish and French (1.3% combined):
— Validation patterns most similar to English (60—65% high-confidence rates).
— Broad coverage across canonical categories.

Table 6: Category distribution by language. The table shows how different languages exhibit distinctive
category preferences. Translation is disproportionately common in Japanese, while Named Entity Recognition
dominates in Chinese. Most languages show broad category coverage, with language-specific biases.

Language Reading Repeated NER Keyword Translation Language Sentiment

Comp. Gen. Extract. Correction  Analysis
English 31% 26% 12% 7% 8% 5% 3%
Chinese 24% 19% 35% 4% 8% 7% 2%
Russian 28% 22% 9% 6% 11% 19% 4%
Japanese 22% 11% 8% 5% 47% 4% 2%
Spanish 30% 24% 11% 8% 12% 7% 5%
French 32% 21% 9% 7% 14% 10% 3%

E.2 Cross-Linguistic Examples

Examples from our benchmark illustrate this linguistic diversity:

Chinese (Reading Comprehension):

AT FE=BOCT, P BB B A A SRR

Russian (Language Correction):

"Hcnpasome 2pammamuyeckue owudky 6 cAedyiouwur npediorcenuar... "
Japanese (Translation):

ROz FEHICHIERL T 2w

Spanish (Comparative Analysis):

Compara estos tres filosofos en términos de sus ideas principales..."

These examples demonstrate that latent parallelism is not limited to English prompts. However,
language-specific structural conventions, such as list formatting and grammatical cues, significantly
impact extraction reliability.
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E.3 Implications for Schema Extraction

While our schema extraction generalizes across languages, performance varies based on linguistic
features. Languages with conventions similar to English (e.g., Spanish, French) yield higher validation
rates. Future work could improve multilingual robustness through:

* Language-Specific Prompting: Tailoring schema extraction prompts to linguistic conven-
tions.

* Multilingual Fine-Tuning: Adapting models to better handle structural diversity.

* Cross-Lingual Transfer: Leveraging high-confidence extractions in one language to boot-

strap performance in others.

Our analysis shows that certain linguistic features correlate with extraction difficulty:

* Writing System: Languages using non-Latin scripts show 31% lower validation rates on
average.

» List Markers: Languages with different list conventions (e.g., Chinese uses different
characters for enumeration) show 23% higher template-data mismatches.

¢ Grammatical Structure: Languages with less rigid subject-verb-object ordering show 18%
higher context contamination rates.

These findings suggest that truly robust parallelization requires language-aware schema extraction,
especially for expanding beyond Roman-alphabet languages.

F Evaluation Setup

This section details our evaluation infrastructure, expanding on the process outlined in the main
paper and providing implementation specifics that enable reproducible assessment of parallelization
benefits.

F.1 Two-Phase Evaluation Architecture

Our evaluation infrastructure consists of two independent phases designed to reflect realistic deploy-
ment scenarios: schema extraction and execution evaluation.

F.1.1 Schema Extraction Phase

We use Claude 3.5 Haiku (AWS Bedrock) as the schema extraction engine. Given a user prompt,
Claude generates a structured JSON object capturing the decomposition schema, including task
template, context, data items or counts, and category. This structured output is validated using a
combination of rule-based checks and confidence scoring, as described in Appendix

This separation ensures that schema extraction can operate independently of downstream execution,
reflecting real-world workflows where decomposition might be performed offline or by specialized
components.

F.1.2 Execution Evaluation Phase

We implement a high-performance execution backend in C++, leveraging fine-grained thread control
to support efficient parallel execution. This backend evaluates both serial and parallel execution
strategies, measuring end-to-end latency and output fidelity.

To handle API rate limits, the backend employs a purely exponential backoff strategy with maxium
of 5 attempts, ensuring robustness under heavy load. We configure the system to use up to 10 parallel
threads by default, though this is tunable to reflect different deployment environments.

For task execution, we use the OpenAl GPT-4-1106-preview model accessed via API. This model
executes the decomposed subtasks produced by the schema extraction phase. We log all responses,
timestamps, and error codes for reproducibility and error analysis.
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F.2 Implementation Details

Our C++ backend implements several key optimizations for efficient parallel execution:

* Thread Pool Management: Dynamic allocation of worker threads based on subtask count
and available resources, with a default of processing 5 representative prompts per experiment.

» Exponential Backoff Strategy: Automatic retries with exponential waiting periods (1s, 2s,
4s, 8s) to handle API rate limiting, with up to 5 retry attempts before failing.

* Response Aggregation: Careful tracking of both timing and token usage across all parallel
executions to compute accurate efficiency metrics.

* Timeout Handling: Graceful degradation under partial failures, with configurable timeout
thresholds.

* Instrumentation: High-precision timing using std: :chrono: :high_resolution_clock
for accurate performance measurement.

F.3 Diversity Enforcement for Repeated Generation

For Repeated Generation tasks, where the n field specifies the number of outputs without providing
itemized data, we enforce output diversity by instructing the model via the system prompt to begin
each generation with a different letter of the alphabet. Specifically, we augment the system prompt
with "Try to make your response start with the letter [X]", where X cycles through the alphabet (A-Z)
for each parallel subtask.

This simple heuristic reduces redundancy in large-scale generation tasks and ensures that parallel
outputs are meaningfully distinct, particularly important for creative generation tasks where the model
might otherwise produce similar variations when executed in parallel without context awareness.
Our skimmed analysis shows this constraint increases output diversity by 57% based on semantic
similarity measures.

F.4 Batching and Resource Allocation

Our backend processes prompts in batched mode, distributing tasks evenly across available threads.
We ensure uniform resource allocation across tasks to maintain comparability between serial and
parallel executions. This setup mirrors production-grade inference pipelines, providing realistic
performance measurements.

The batch size is dynamically adjusted based on the number of subtasks, with a default configuration
of 10 concurrent threads. For prompts with more subtasks than available threads, the backend queues
remaining subtasks using a first-in-first-out strategy, prioritizing earlier elements in the data list.

G Metrics and Judge Prompts

This section provides detailed information on the quantitative and qualitative metrics used to evaluate
parallelization effectiveness, expanding on the evaluation methodology described in the main paper.

G.1 Performance Metrics
We report three key performance metrics:
* Raw Speedup: The ratio of serial execution time to parallel execution time, excluding

schema extraction overhead. This metric captures the direct latency benefit of parallelization.

* Normalized Speedup: Raw speedup adjusted for differences in output token length between
serial and parallel strategies, calculated as:

Parallel Token Count
Serial Token Count

Normalized Speedup = Raw Speedup x (1)

This normalization accounts for the fact that parallel execution often produces more ver-

bose and detailed outputs (higher token count in total), providing a fairer comparison of
computational efficiency.

31



* End-to-End Time: Total execution time including schema extraction, relevant for measuring
overall system latency in realistic deployments.

These metrics provide a comprehensive view of execution efficiency, balancing raw throughput with
quality-preserving adjustments.

G.2 Quality Evaluation
We employ GPT-40 as an independent LLM-based judge to assess output quality across four dimen-
sions:

1. Accuracy: Does the response correctly follow the prompt instructions?

2. Grammar: Is the response free of grammatical errors?

3. Detail: Does the response provide rich, specific content?

4. Overall Preference: Which response is subjectively preferred, considering all factors?
For each prompt, the judge compares serial and parallel responses, selecting one as superior or

declaring a tie. The judge is blinded to execution strategy and sees randomized response order to
mitigate bias.

G.3 Judge Prompt Design

Our LLM judge prompt follows a structured format designed to elicit reliable comparative evaluations.
The full prompt template is provided below:

Judge Prompt Template:
You are an expert reviewer tasked with evaluating two responses to a user prompt.
For each of the following questions, select Response 1, Response 2, or declare a tie
if both are equally good. You must justify your choices.
1. Which response more accurately follows the instructions given in the prompt?
2. Which response is more grammatically correct and fluent?
3. Which response provides more detail and specificity?
4. Overall, which response do you prefer, considering all the above factors?

Provide your selections and justifications below. The order of responses has been
randomized. You are not told which is serial or parallel.

This prompt structure encourages the judge to evaluate multiple quality dimensions systematically
while remaining unbiased regarding the execution strategy.

H Template Structure Analysis

This section analyzes template structural patterns across our benchmark, providing insights into how
different prompt formulations affect parallelization success and schema extraction reliability.

H.1 Placeholder Positioning

We find that 85% of dual-field templates position the context before the data field, following a
context_data pattern. This is especially common in reading comprehension and translation tasks,
where a shared context frames each subtask. The remaining 15% follow a data_context pattern,
often appearing in search or retrieval-oriented prompts.

H.2 Instruction Complexity

High-confidence templates exhibit greater structural richness than medium-confidence ones. Specif-
ically, 6% of high-confidence templates include detailed operational elements such as formatting
instructions or conditional qualifiers, compared to just 3.5% in medium-confidence templates. This
suggests that structural clarity, not simplicity, correlates with extraction reliability.
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Table 7: Template structure patterns across categories. This table shows the distribution of template patterns,
revealing that Reading Comprehension predominantly uses context-first templates while Translation shows more
balanced distribution. Template structure correlates with extraction success, with context-first patterns achieving
higher validation rates.

Category Context-Data Data-Context Validation
Pattern Pattern Success
Reading Comprehension 93% 7% 87.4%
Named Entity Recognition 68% 32% 90.0%
Keyword Extraction 71% 29% 77.4%
Translation 84% 16% 74.0%
Sentiment Analysis 87% 13% 71.1%
Language Correction 89% 11% 71.0%
Comparative Analysis 76% 24% 55.6%
Repeated Generation 91% 9% 37.8%

H.3 Conditional Logic Patterns

Medium-confidence templates more frequently include conditional structures (21%) than high-
confidence ones (17%). These conditionals introduce ambiguity in decomposition, making such
prompts harder to validate reliably. This observation suggests that future extraction systems may
benefit from explicit conditional parsing capabilities.

H.4 Domain-Specific Variations

non

Creative prompts contain 43% more subjective qualifiers (e.g., "make it exciting," "use vivid lan-
guage") than analytical prompts. Conversely, analytical prompts include 57% more precise opera-
tional instructions (e.g., "extract the first noun phrase," "translate each sentence individually"). These
patterns highlight the importance of domain-specific schema tuning.

H.5 Implications for Schema Induction

Overall, our analysis reveals that template complexity and structure vary systematically across tasks
and validation confidence levels. Future work could leverage these insights to:

* Improve template generation strategies through task-specific scaffolding.
* Enhance validation by modeling domain-specific structural expectations.
* Refine schema extraction prompts to better handle conditional and complex instructions.

These findings offer practical guidance for scaling semantic parallelism beyond the patterns captured
in our initial benchmark.

I Baseline Method Comparisons

This section evaluates how existing decomposition methods perform on our benchmark, highlighting
their strengths and limitations when applied to naturally occurring parallelizable prompts.

L1 Method Comparison

While our primary focus is establishing a benchmark for semantic parallelism in open-domain
LLM prompts, we also evaluate two representative decomposition methods: Skeleton-of-Thought
(SoT) and Tree-of-Problems (ToP). Both offer decomposition pipelines but make specific structural
assumptions that limit their applicability across the broader range of tasks surfaced in our benchmark.
Below, we describe their expected behaviors across task categories based on their design and our
observations.

Skeleton-of-Thought (SoT). SoT performs well on repeated generation tasks where the prompt
naturally suggests an outline (e.g., “list 5 reasons why...”). However, it tends to apply the same
two-step process even when unnecessary. For example, in keyword extraction, the model may
already perform the extraction in the skeleton stage, rendering the parallel expansions redundant or
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Table 8: Qualitative method comparison across task categories. This table summarizes how well SoT
and ToP handle different parallelization patterns, with checkmarks (v') indicating strong fit, partial marks (+)
indicating mixed results, and crosses (X) indicating poor fit.

Task Category

Skeleton-of-Thought (SoT)

Tree-of-Problems (ToP)

Repeated Generation
Reading Comprehension
Keyword / Entity Extraction
Comparative Analysis

Generative / Reaction Tasks

v Strong fit for outline ex-
pansion

+ Struggles with shared con-
text reuse

X Fails by duplicating extrac-
tion in both stages

+ Depends on outline phras-
ing; fragile otherwise

X Risk of disjoint, incoherent
outputs

X Not designed for indepen-
dent items

v Fits multi-question decom-
position

+ Redundant decomposition
with little gain

v/ Handles structured com-
parisons

+ Limited unless structure is
recursive

even lower in quality. This adds latency and cost while making outcomes worse. SoT also struggles
when prompts lack outline-friendly phrasing, particularly in free-form or noisy prompts where no
clear bullet structure exists. In generative tasks like reaction or character generation, SoT’s
independent expansions risk breaking narrative consistency, producing disconnected outputs that fail
to maintain shared context.

Tree-of-Problems (ToP). ToP aligns well with multi-question reading comprehension and
structured comparative analysis, where breaking the prompt into smaller, mergeable ques-
tions is appropriate. However, it tends to force recursive framing even when tasks are flat and
independent—as in repeated generation or keyword extraction—where its merging step
adds unnecessary overhead. On these tasks, ToP overcomplicates execution by treating independent
outputs as if they require dependency management. Additionally, ToP provides no mechanism to
detect when decomposition is not meaningful, making it brittle on tasks that are parallelizable in
principle but not compositional in structure.

I.2 Quantitative Comparison

We evaluated SoT and ToP across our benchmark categories, measuring both speedup and quality
preservation:

Table 9: Performance comparison of decomposition methods. PARALLELPROMPT achieves higher average
speedup while better preserving output quality. Additionally, SoT and ToP exhibit significantly higher failure
rates on novel categories, reinforcing the need for more robust decomposition approaches.

Method Avg. Speedup Quality Success
Preservation Rate
PARALLELPROMPT 3.91x 92% 76%
SoT 2.04x% 81% 38%
ToP 1.73x 85% 42%

I.3 Generalization and Evaluation Implications

When we tested SoT and ToP’s decomposition strategies on PARALLELPROMPT’s benchmark indis-
criminately, this process makes them fragile on tasks outside their original scope, including many
real-world prompts in our benchmark. In contrast, our evaluation setup is designed to handle diverse
prompt structures—accepting or rejecting decomposition based on schema validation—allowing us
to surface failure cases like these more systematically.

While SoT and ToP capture useful decomposition behaviors in their narrow settings, our benchmark
highlights their limitations in generalizing to open-domain, structurally diverse LLM prompts. We
include them in our evaluation to demonstrate how even well-designed methods can fail on tasks they
were not built for, reinforcing the need for benchmarks that stress-test decomposition across a wider
range of real-world prompt patterns.
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