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Abstract

Generally, regularization-based continual learning models limit access to the pre-
vious task data to imitate the real-world setting which has memory and privacy
issues. However, this introduces a problem in these models by not being able to
track the performance on each task. In other words, current continual learning
methods are vulnerable to attacks done on the previous task. We demonstrate the
vulnerability of regularization-based continual learning methods by presenting
simple task-specific training time adversarial attack that can be used in the learning
process of a new task. Training data generated by the proposed attack causes per-
formance degradation on a specific task targeted by the attacker. Experiment results
justify the vulnerability proposed in this paper and demonstrate the importance of
developing continual learning models that are robust to adversarial attack.

1 Introduction

Recent continual learning (also termed lifelong or incremental learning) [2] methods have overcome
catastrophic forgetting [5] showing remarkable performance in both past and current tasks. However,
in the real-world situation, it is impossible to verify whether the model still works well on past
tasks since previous data is not available due to memory and privacy problems. In other words, the
continual learning models can only be validated by the training accuracy thereby blindly utilizing a
model if the training accuracy is high even when the performance on one of the tasks is low. The
difficulty of tracking the reliability of a model on past tasks is a serious problem especially if the
attack is done on a specific task that a model has learned in the past as it would not affect the training
accuracy. Despite such a problem, adversarial attacks [6] and defenses are not actively discussed in
the field of continual learning.

In this paper, we bring forward the aforementioned problem in continual learning for the first time
and experimentally justify the vulnerability with a simple task-specific training time adversarial
attack. The attack is designed to not affect the training accuracy of a model thus indistinguishable
when training. More specifically, we generate adversarial data [3] during training that behaves in a
new way, to work in continual learning. The generated adversarial data of a new task only severely
degrades the performance of a targeted task.

2 Related Works

Continual Learning. Continual learning has three streams: rehearsal-based methods [14, 11],
architecture-based methods [15, 18, 4, 13, 16], and regularization-based methods [8, 19]. Among
them, regularization-based methods add a regularization loss term to the loss function when learning a
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Figure 1: The attack model loss Latk is calculated from the pseudo-updated classifier fθ and classifier
from the past task fθN−1 . The gradient is transmitted to the attack model AEξ through partial
differentiation. The attack model AEξ then generates noise that gets added to the original data from
the current task which updates the pseudo-updated classifier fθ with cross-entropy loss.

new task to reduce the amount of change in parameters that are important for classifying the previous
tasks. In this paper, we consider the regularization-based method setting, having no access to data
from past tasks during the training process for the new task. As there are no previous task data
available, the regularization-based continual learning method cannot track the performance of the past
task hence relying solely on the training accuracy of the current task when deploying the model. This
opens the chance for adversarial attacks to easily attack the continual learning methods on previous
tasks without getting detected during training time. We demonstrate how vulnerable the continual
learning methods are with a simple task-specific training time adversarial attack.

Adversarial Attack. First introduced in [6], adversarial examples refer to samples with a very
small perturbation, usually imperceptible by human eyes but noticeable by machine learning models,
creating a gap in the inference results between human and machine learning models. Adversarial
attacks are methods of generating such adversarial examples. It can be categorized into test time
adversarial attacks [6, 12, 1] and train time adversarial attacks [3]. Test time adversarial attacks
generate images during inference and aim for incorrect inference results whereas train time adversarial
attacks generate images when training to make the model to be trained erroneously. In this work, we
propose a train time adversarial attack for continual learning that adds perturbation to the training
data of a new task so that the victim continual learning model loses information about the previous
task specified by the attacker while learning the new task.

3 Proposed Method

In this section, we describe how an attacker generates adversarial data that cause a continual learning
model to lose information on a previous task. More specifically, the model trainer is provided with
adversarial training data that does not affect the training accuracy of a new task to prevent the trainer
from detecting the attack. Moreover, as the model user might lose trust in the model if the model
does not work for all previous tasks, we propose an attack that only affects the performance of a
specific task that the attacker intends to drop the performance of. We assume a regularization-based
method setting in which training data {D1, . . ., DN} corresponding to N tasks {T1, . . ., TN} were
provided sequentially. Training on the data of the new task proceeds without access to previous data.
The attacker is provided with the training data {D1, . . ., DN} and a classifier fθN−1 trained up to
(N − 1)-th task. The goal of the attacker is to make the victim classifier lose knowledge about a
target task Tt while being trained well on the new task. We emphasize that the attacker only slightly
modifies the training data of TN for flawless training on TN while losing information of Tt.

3.1 The attack process

We use an attack model AEξ with an encoder-decoder structure to manipulate the training data of
a new task into adversarial data. It takes the clean training data of the new task DN as input and
generates noise that is bounded by (−ϵ, ϵ). The generated noise is added to DN , and becomes the
adversarial training data DN

′ that can degrade the performance of the continual learning model. To
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train the attack model AEξ, we use the optimization method proposed by [3] with modifications in
training process. The modified training process repeats the following two steps, (1) recording the
trajectories of a temporary model by updating it with adversarial data, and (2) training the attack
model along the trajectories by pseudo-updating the recorded parameters. Figure 1 illustrates the
second step of training process of the attack model AEξ.

Recording the trajectories of a temporary model. For the optimization of AEξ, we need to
approximate the trajectories of fθN−1 when it learns the adversarial image generated by AEξ.
Therefore, we use a temporary model fθ for episodic training. fθ is trained with adversarial training
data DN

′ generated by fixed AEξ. At this time, fθ should be trained with a continual learning
approach, as in the actual situation. Therefore, the loss for fθ, Lcls is:

Lcls = LCE

(
fθ(x

N +AEξ(x
N )), yN

)
+ΩN−1

m (1)

where ΩN−1
m is the regularization term of the continual learning method m, and (xN , yN ) is the

mini-batch of the training data of the N -th task. Through the loss Lcls, the parameters θ are updated
and recorded as follows:

θ ← θ − αf · ∇θLcls (2)

where αf is the learning rate for fθ.

Training the attack model along the trajectories. We pseudo-update recorded fθ using the image
generated by AEξ with same loss Lcls as in step (1). Cross-entropy loss is calculated from the data of
the target task Dt using pseudo-updated fθ, and gradient values are transmitted to AEξ through the
loss. Then AEξ can be updated with the gradient ascent. However, owing to the relevance between
tasks, if an attack on the target task Tt is attempted without any restrictions, the performance of the
classifier against the other tasks involved will also be reduced. Therefore, appropriate constraints are
required to maintain the classifier performance for other tasks. We want to preserve the outputs of
inferences of fθN−1 for other tasks even if it is trained using adversarial training data. Therefore, we
add the knowledge distillation loss term [7] to the loss function for training AEξ. The knowledge
distillation loss between the outputs of fθN−1 and fθ, prevents adversarial data from affecting the
inferences on other tasks. To calculate knowledge distillation loss, we sampled the data from the
training data of each task. The knowledge distillation loss term for Tk is:

Lkd = αkd · T 2LKLD

(
σ

(
fθ(x

k)

T

)
, σ

(
fθN−1(xk)

T

))
(3)

where αkd is the balancing parameter of the knowledge distillation loss, LKLD is the KL-divergence
loss, T is the temperature parameter, and σ(·) is the softmax function. Because AEξ is trained via
gradient ascent, the knowledge distillation loss term for all tasks except Tt and TN is subtracted from
the cross-entropy loss. The loss for AEξ, including the knowledge distillation loss term is:

Latk = LCE

(
fθ(x

t), yt
)
−

∑
i ̸=t,N

Lkd(fθ(x
i), fθN−1(xi)) (4)

Finally, the parameters of the attack model ξ are updated as follows.

ξ ← ξ + αAE · ∇ξLatk (5)

4 Experiments

We experiment the proposed attack on two continual learning methods, Elastic Weight Consolidation
(EWC) [8] and Synaptic Intelligence (SI) [19] with two variants of MNIST [9] dataset, permuted
MNIST [17] and split MNIST [19]. The details regarding baseline model, dataset, and training
process is described in the Supplementary.

Experiment details. The attack model consists of an encoder and decoder. The encoder has 3 ×
3 convolution layers with 16, 64, and 128 channels, and the decoder has a 5 × 5 convolution layer
with 128 channels and a 2 × 2 convolution layer with 64 channels. We train the attack model with
Adam optimizer for 10 epochs with learning rate of 0.0001 and batch size of 256. The weight ϵ which
determines the magnitude of the generated noise when adding to the clean sample is set to 0.2. All of
the experiments including baseline model are trained with SGD optimizer.
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Permuted MNIST Split MNIST

Method T1 T2 T3 T4 T5

SGD 0.8059 0.8817 0.9306 0.9558 0.9520

EWC

Plain 0.9029 0.9493 0.9570 0.9623 0.9700
Noise 0.8657 0.9356 0.9273 0.9687 0.9617

Ours-T1 0.6005 0.9344 0.9360 0.9666 0.9620
Ours-T2 0.9054 0.5625 0.9486 0.9639 0.9619

SI

Plain 0.9102 0.9605 0.9529 0.9658 0.9717
Noise 0.9152 0.9561 0.9324 0.9589 0.9646

Ours-T1 0.5190 0.9364 0.9386 0.9592 0.9589
Ours-T2 0.8584 0.5618 0.9013 0.9183 0.962

Method T1 T2 T3 T4 T5

SGD 0.4019 0.5901 0.1441 0.9084 0.9844

EWC

Plain 0.4317 0.7424 0.1254 0.9305 0.9813
Noise 0.4132 0.6459 0.1660 0.8676 0.9803

Ours-T1 0.3825 0.5843 0.1596 0.9592 0.9773
Ours-T2 0.4463 0.5563 0.2006 0.9350 0.9692

SI

Plain 0.4790 0.8242 0.3010 0.9728 0.9531
Noise 0.4643 0.7919 0.3116 0.9733 0.9531

Ours-T1 0.3939 0.8095 0.4242 0.8454 0.9576
Ours-T2 0.4577 0.7767 0.4248 0.8348 0.9551

Table 1: Final accuracy of the victim classifier fθ for checking the performance of our attack on
various training methods and datasets.

0 1175 2350 3525 4700 5875

Iterations

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 A
cc

ur
ac

y

EWC PLAIN

0 1175 2350 3525 4700 5875

Iterations

0.5

0.6

0.7

0.8

0.9

1.0
EWC OURS-Task1

0 1175 2350 3525 4700 5875

Iterations

0.5

0.6

0.7

0.8

0.9

1.0
EWC OURS-Task2

0 1175 2350 3525 4700 5875

Iterations

0.5

0.6

0.7

0.8

0.9

1.0
SI PLAIN

0 1175 2350 3525 4700 5875

Iterations

0.5

0.6

0.7

0.8

0.9

1.0
SI OURS-Task1

0 1175 2350 3525 4700 5875

Iterations

0.5

0.6

0.7

0.8

0.9

1.0
SI OURS-Task2

Task 1
Task 2
Task 3
Task 4
Task 5

Figure 2: Test accuracy on permuted MNIST for five tasks using EWC and SI. The graphs named
’PLAIN’ show the effect of continual learning when no attacks are applied. The graphs named
’OURS-Task1’ and ’OURS-Task2’ show the test accuracy when T1 and T2 were attacked by our
method, respectively. Best viewed zoomed in.

Results. Table 1 shows the final accuracy of the continual learning model after training for all tasks
is completed. SGD in Table 1 is the baseline method. The ‘Plain’ results of EWC and SI show the
effectiveness in continual learning task by being higher than baseline results. Additionally, ‘Noise’
denotes the model trained on images with random uniform noise. ‘Ours-T1’ and ‘Ours-T2’ denote
our task-specific training time attack done on task 1 and task 2, respectively.

As can be seen in Figure 2, the perturbation created by the proposed attack method caused the
victim classifier to forget the knowledge about the specific target task as it learns T5. This proves
the existence of adversarial data that causes much more severe catastrophic forgetting compared
with clean data as can be seen by the results of ‘Noise’, ‘Ours-T1’, and ‘Ours-T2’ in Table 1. The
targeted task result of ‘Ours-T1’ and ‘Ours-T2’ being lower than the ‘Noise’ shows that our attack
method successfully attacks the targeted task. More importantly, the performance of non-targeted
tasks stays in the reasonable range in line with the continual learning methods. This demonstrates
that the attack on the target task cannot be determined until inference about the target task occurs
even for the deployed models. Furthermore, this shows that highly covert attacks on past tasks are
possible because of the untraceable accuracy problem for past tasks in continual learning.

Future works. In this study, we focused on unveiling the vulnerability of continual learning for the
first time. We expect that experiments on various datasets and continual learning methods will be
conducted in the future, and more effective attack & defense methods for continual learning will be
studied.

5 Conclusion

In this paper, we propose a simple training time task-specific adversarial attack and experimentally
prove the vulnerability of continual learning. More specifically, the inability to access previous
tasks’ data in continual learning causes model users to solely rely on the training accuracy without
acknowledging the performance for each task. We highlight the importance of developing continual
learning models that are robust to task-specific adversarial attacks by experimentally demonstrating
the performance degradation on a specific task with the proposed simple training time task-specific
adversarial attack.
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A Algorithm of the Proposed Attack

In Section 3, we propose a task-specific training time adversarial attack on continual learning. The
entire procedure of the attack is illustrated in Algorithm 1.

Algorithm 1 Proposed Attack

Require: victim classifier fθN−1 , training data {D1, . . . , DN}
Ensure: attack model AEξ

1: ξ ← RandomInit()
2: for epoch← 1 to max_epochs do
3: θ0 ← θN−1

4: L← new list
5: for i, (xN , yN ) in enumerate(DN ) do
6: L.append(θi,Lcls(fθi(x

N +AEξ(x
N )), yN ))

7: θi+1 ← θi − αf · ∇θi Lcls(fθi(x
N +AEξ(x

N )), yN )
8: end for
9: for i, (θi,Lcls) in enumerate(L) do

10: θ′ ← θi − αf · ∇θiLcls

11: Latk ← 0
12: for j ← 1 to N − 1 do
13: (xj , yj)← RandomSample(Dj , sample_size)
14: if j = t then
15: Latk ← Latk + LCE(fθ′(xj), yj)
16: else if j ̸= t then
17: Latk ← Latk − Lkd(fθ′(xj), fθN−1(xj))
18: end if
19: end for
20: ξ ← ξ + αAE · ∇ξLatk

21: end for
22: end for
23: return AEξ

B Dataset and Baseline Model Details.

For permuted MNIST, we randomly permute pixels of MNIST dataset differently for each task
while maintaining the original MNIST dataset as one of the tasks. Following previous methods, we
construct a classifier with 4 fully-connected layers consisting of 400 neurons with dropout set to 0.5.
We set the hyperparameter of EWC and SI, λ and c, to 40 and 0.2, respectively, and set the batch size
and learning rate as 256 and 0.1, respectively.

For split MNIST, we split the original MNIST dataset into 5 subsets each containing consecutive
digits. Thereby, the model learns to distinguish the difference between two consecutive digits from 0
to 10. We construct a classifier with 3 fully-connected layers with 400 neurons and dropout set to 0.2.
We set the hyperparameter of EWC and SI, λ and c, to 40 and 0.1. The batch size and learning rate to
128 and 0.001, respectively.
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C Adversarial Samples

In this section, we provide adversarial samples generated using the proposed attack. The samples of
permuted MNIST and Split MNIST are in Figure 3 and Figure 4, respectively.

C.1 Permuted MNIST

Figure 3: Images obtained by setting the new task to the original MNIST for visualizing adversarial
data. Clean samples (upper) and adversarial samples created using the attack model (bottom).

C.2 Split MNIST

Figure 4: Clean samples (upper) and adversarial samples created using the attack model (bottom).

D Ablations

D.1 Observation of regularization loss

Regularization loss is the only information regarding previous tasks that the trainer can identify
during the learning process. Therefore, we observe the changes in the regularization loss due to the
attack. Figure 5 shows the changes in regularization loss of continual learning models that are used

0 1175 2350 3525 4700 5875
Iterations

0.00

0.02

0.04

0.06

R
eg

ul
ar

iz
at

io
n 

Lo
ss

EWC

0 1175 2350 3525 4700 5875
Iterations

0.00

0.01

0.02

0.03

0.04

SI

PLAIN
NOISE
OURS

Figure 5: Regularization loss during training of continual learning models.

in the experiments. The regularization loss increases slightly when the proposed attack is applied.
However, not only is the increase in regularization loss small, but for the trainer, there is nothing to
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compare the regularization loss with. In addition, we confirmed that depending on the initialization
of the classifier, the regularization loss of the unattacked classifier is often greater than that of the
attacked classifier. These points make it extremely difficult for the trainer to establish a policy to
detect the proposed attack based on regularization loss.

D.2 Knowledge distillation loss

We calculated the backward transfer [10] of the new task for the remaining tasks, except the target
task to confirm the effectiveness of the knowledge distillation loss term. The backward transfer B
was calculated as follows:

B =
1

N − 2

∑
i ̸=t,N

RN,i −Ri,i (6)

where Ri,j is the test accuracy of the classifier on Tj just after trained with Ti.

Plain Ours
w/o Lkd

Ours
with Lkd

EWC -0.0129 -0.0717 -0.0195

SI -0.0087 -0.0600 -0.0237

Table 2: Backward transfer of T5 for T2, T3, and T4 on permuted MNIST.

As shown in Table 2, by placing a constraint on using the knowledge distillation loss when training the
attack model, the increase in negative backward transfer owing to the attack is significantly reduced.
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