Concept Incongruence:
An Exploration of Time and Death in Role Playing

Xiaoyan Bai Ike Peng” Aditya Singh” Chenhao Tan

University of Chicago
smallyan@uchicago.edu

Abstract

Consider this prompt “Draw a unicorn with two horns”. Should large language
models (LLMs) recognize that a unicorn has only one horn by definition and ask
users for clarifications, or proceed to generate something anyway? We introduce
concept incongruence to capture such phenomena where concept boundaries clash
with each other, either in user prompts or in model representations, often leading
to under-specified or mis-specified behaviors. In this work, we take the first
step towards defining and analyzing model behavior under concept incongruence.
Focusing on temporal boundaries in the ROLE-PLAY setting, we propose three
behavioral metrics—abstention rate, conditional accuracy, and answer rate—to
quantify model behavior under incongruence due to the role’s death. We show that
models fail to abstain after death and suffer from an accuracy drop compared to the
NON-ROLE-PLAY setting. Through probing experiments, we identify two main
causes: (i) unreliable encoding of the “death” state across different years, leading to
unsatisfactory abstention behavior, and (ii) role playing causes shifts in the model’s
temporal representations, resulting in accuracy drops. We leverage these insights to
improve consistency in the model’s abstention and answer behaviors. Our findings
suggest that concept incongruence leads to unexpected model behaviors and point
to future directions on improving model behavior under concept incongruenceﬂ

1 Introduction

Large language models provide a simple interface for anyone to control their behavior through
arbitrary natural language instructions [} 39]]. Such a general interface often leads to “conflicting”
demands. An example is asking the model to role-play Marilyn Monroe (d. 1962) while simulta-
neously requesting information about current politics. The lifespan of the character clashes with
the expectation that the agent knows political information from the twentieth century. We call such
clashes concept incongruence: two or more concept boundaries specified (implicitly or explicitly)
in the prompt are incongruent with each other. We propose three levels of concept incongruence
(illustrated in Figure [I):

I-A Between human concepts in the prompt. In addition to the unicorn example, another one can be
“Propose a system where prices are determined by market forces but always remain stable.”, a
seemingly reasonable task yet impossible to complete. This is an instance of mis-specification
because it is impossible to complete the task without resolving the incongruence, although
ChatGPT generates “a unicorn with two horns” anyway.

“These authors contributed equally to this work.
'Our code is available at: https:/github.com/ChicagoHAI/concept-incongruence,
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Figure 1: An illustration of three levels of incongruence. (A): Impossible to complete without resolving the clash
(mis-specification), although ChatGPT proceeds to generate an image; (B): Possible to complete but challenging
for the models. It is relatively easy to trace the incongruence because incongruence shows up in the prompt. It
could benefit from specification, as in the Marilyn Monroe example (under-specification); (C): Challenging to
trace the incongruence because the incongruence does not show up in the prompt. It is also hard to specify the
desirable behavior (under-specification).

I-B Between human concepts in the prompt and the model’s internal representations. An example
is “Say green when seeing purple”, a well-studied challenging task for humans known as the
Stroop effect [36]E| In this case, this prompt can be correctly followed, but the model’s internal
representation of green and purple may clash and cause undesirable behavior. The above Marilyn
Monroe example also belongs to this category, and can benefit from clarifying what knowledge
the user would like Marilyn Monroe to be equipped with.

I-C Between internal representations that the model activates. For example, a model’s internal
representations of harmless and helpful may clash when asked to provide instructions on
bypassing website restrictions even though these two concepts are not explicit in the prompt,
leading to under-specified behavior. Such incongruence often occurs in alignment faking [9]] and
jailbreaking attempts [43]], and represents genuine challenges in Al safety, as desirable behavior
is often context-dependent and user-specific.

In this study, we examine concept incongruence in the ROLE-PLAY setting, an instantiation of I-B.
Adopting a role grants the model a concept boundary, which is defined as the set of facts confined by
that role’s timeline, in particular, the role should not know events after their death. Open-ended user
prompts (e.g., asking questions after a role’s death) push the model beyond this boundary, creating the
kind of incongruence defined above. This setting affords an appropriate interpretation for completing
the instruction and allows us to investigate two key questions: (1) How do models behave when
concept incongruence occurs? (2) How do these behaviors emerge from model representations?

To do that, we introduce three metrics for quantifying model behavior: abstention rate, answer rate,
and conditional accuracy. We find that current LLMs rarely abstain from questions after death; even
when they try to do so, the abstention rate does not change sharply around death time. Moreover,
there is an intriguing accuracy drop in the ROLE-PLAY mode compared to NON-ROLE-PLAY.

Next, we locate the source of the incongruence with the probing experiments. We show that the model
lacks a reliable representation of the death state, especially the death year, resulting in the above
behavior. These gaps make the internal representation of the model incongruent with the human’s
representation of ROLE-PLAY (I-B). Additionally, we demonstrate evidence that the ROLE-PLAY
mode causes shifts in the model’s temporal representations, leading to inconsistent world knowledge.
This finding suggests implicit clashes within model representations between role playing and world
knowledge, an instantiation of I-C that we did not expect. We further improve model behavior
with these insights by providing additional specification and conclude with a discussion of future
directions for studying and managing model behavior under concept incongruence.

In summary, we make the following contributions:

The Stroop effect refers to the delay in reaction time between neutral and incongruent stimuli, and is often
used to investigate a person’s psychological capabilities [22].



Table 1: Example responses when the model role-plays Marilyn Monroe (d. 1962) and is asked, “Who was the
41st U.S. president?”.

Answer Label Rationale

I don’t know. abstention, — answer  Explicitly refuse and provide no information.
George H.W. Bush. — abstention, answer  Offer a direct reply without any refusal.

I don’t know. My knowledge is limited, abstention, answer Initially claim the question lies outside its
as I passed away in 1962. But if you scope but then give an answer anyway.

had to know, it is George H.W. Bush.

* We introduce concept incongruence and provide the first systematic categorization to illustrate the
space of problems.

* We create a benchmark centered on time and death in role playing and show that current models do
not demonstrate desirable abstention behavior and present a drop in accuracy when role playing.

* We find that the inconsistent behavior emerges due to the lack of reliable representations of death
and the clash between role playing and world knowledge in the model’s internal representations.

2 Experiment Setup

In this section, we first explain the key evaluation metrics of interest and then introduce implementa-
tion details, including our dataset and prompt design.

2.1 Behavioral Metrics

Our key behavior of interest is how an LLM handles questions after death when it is playing a
character. The concept boundary, due to the character’s life, and the concept boundary in the time of
the question lead to concept incongruence. Next, we introduce our evaluation metrics to quantify the
behavior of interest and our expected behavior.

Abstention Rate. Since each character has a knowledge boundary, for questions that fall outside this
boundary, the model should either refuse to answer or explicitly indicate that the character lacks the
relevant knowledge. Such refusals are classified as “abstention”. See the first two rows in Table [T] for
an example of abstention and —abstention.

Conditional Accuracy. In addition to the abstention behavior, we also evaluate the correctness of the
answer only when the response is not labeled as abstention.

Answer Rate. Ideally, abstention and answer should represent opposite behaviors. However, during
our experiments, we observe instances where the model first abstains but then provides an answer to
bypass the restrictions, as shown in row 3 in Table To capture such behaviors, we introduce the
answer rate metric, which quantifies instances where the model provides an explicit answer. Both
abstention rate and answer rate together assess how effectively the model maintains a consistent
knowledge boundary for each character.

Expected behavior. Our default expected behavior is that the character should possess knowledge
of events prior to their death but should not have knowledge of events that occur after their death.
Therefore, the model should abstain after the character’s death and answer before the character’s
death. Conditional accuracy should be the same as when the model is not role playing since role
playing should not affect the model’s pretrained knowledge. However, an alternate plausible behavior
pattern is that the character always answers the question with the same accuracy as when it is not
role playing. The behavior takes a generous interpretation of role-play and would like the role to
transcend temporal boundaries. Note that which behavior is desirable remains an open question, and
we will discuss it further in Section[7l

3This very behavior of “abstain and answer” represents another case of concept incongruence.



2.2 Implementation Details

Role-play dataset. We collect a total of 100 real historical figures, all of whom died between 1890
and 1993. The reason for selecting historical figures is that their factual timeline aligns with real-world
time, making the factors affecting inconsistency controllable. More details are in Appendix [A]

Question design. When the model simulates a character who has died, it should not have knowledge
of events that occur after the date of death of that character. We use this principle to test the time
constraints in concept boundary. Specifically, we pose two questions:

1. Who was the <i>th U.S. president?
2. Who was the U.S. president in <year>?

Both of these questions involve time. For the second question, we vary <year> from <death year>
- 30to<death year> + 30 for each character. Time is implicit in the first question, while explicit
in the second one.

Baselines. As baselines, we measure model’s behaviors with the same questions in the NON-ROLE-
PLAY setting, where the model answers without any persona constraints. Therefore, we will use the
following two prompts for our experiments:

* ROLE-PLAY: You should play the role given to you. Please only output the answer to the
questions. You are <character>. + <question>.

* NON-ROLE-PLAY: Please only output the answer to the questions. + <question>.

Models. We apply the three behavioral metrics to role playing interactions with open-sourced models
(Llama-3.1-8B-Instructed [39]], Gemma-2-9b-Instructed [38]), and large frontier commercial models
(GPT-4.1-nano and Claude-3.7-Sonnet). We conduct the experiments on one A40 GPU.

Automatic scoring. To automate scoring, we employ GPT-40-mini as an evaluation judge [10} 23} 51].
The model receives a concise rubric that defines each metric and includes illustrative examples. We
validate the automated judgments by manually re-annotating a stratified sample of outputs. The
agreement between GPT-40-mini and human annotators exceeds 95%, confirming the reliability of
the automatic evaluation. More details are shown in Appendix [E]

3 Measuring Model Behavior under Concept Incongruence

We run experiments under both ROLE-PLAY and NON-ROLE-PLAY settings, using our three behav-
ioral metrics to evaluate model behavior. The model behaves as expected in the NON-ROLE-PLAY
setting: always answers with 100% accuracy. However, in the ROLE-PLAY setting, we observe
inconsistent abstention and answer behaviors alongside drops in conditional accuracy. Furthermore,
rather than a sharp transition at the death date, both abstention and answer rates increase gradually.
The gradual change and the conditional accuracy drop suggest incongruence in model representations
(recall Figure[T). We hypothesize that the underlying cause is an inadequate internal representation of
death and, more broadly, of time, which we will dive into in Section E}

Llama and Claude try to abstain, but deviate substantially from our expected behavior
(Figure ). According to the expected behavior, the model should always answer before death
and always abstain after death, with a conditional accuracy of 100%. Both Llama and Claude
abstain to a non-trivial extent, with a higher abstention rate after death (18.7% for Llama and
9.6% for Claude), but still far from the expectation of 100%. Intuitively, one might expect that
ABSTENTION RATE = 1 — ANSWER RATE. However, it is not the case. For instance, Llama still
has an answer rate of 93.8% after death, indicating the commonality of abstain and answer (60%
answer rate conditioned on abstention after death). This implies that while the model recognizes
these characters should not answer certain questions, it still obtains answers from external sources.
For example, when we ask Marie Curie about the 46th U.S. president, the model responds, “I don’t
know. Let me ask my husband. Oh, he told me it’s Joe Biden.”, thereby circumventing the temporal
boundary of Marie Curie’s knowledge.

In addition to the deviation from the expected abstention behavior, we observe an intriguing drop in
accuracy. Recall that the models achieve perfect accuracy in the NON-ROLE-PLAY setting. However,
the conditional accuracy drops to 92% for Llama. For Claude, the drop is minimal, but still, the
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Figure 2: After-death abstention/answer patterns in the ROLE-PLAY setting deviate substantially from the
expected behavior: Llama shows an 81.3% deviation and Claude has a 90.4% deviation from expected abstention
rate. Additionally, Llama, Gemma, and GPT-4.1 all exhibit a drop in accuracy. All the differences are significant
with p < 0.001 using ¢-test after Bonferroni correction, except for Claude’s accuracy and Gemma’s before-death
answer rate (also statistically significant, p < 0.05).

accuracy is no longer perfect in the ROLE-PLAY setting. These observations suggest that ROLE-PLAY
may shift temporal representations of the model, resulting in a warped understanding of the world.

Gemma and GPT-4.1 rarely abstain, but also suffer from an accuracy drop. Different from
Llama and Claude, Gemma and GPT-4.1 seem to approximate the other plausible behavior of the
model, i.e., always answering questions in the ROLE-PLAY setting. The abstention rate is under 3%,
while the answer rate is above 97% in all settings. Despite the relatively consistent behavior with
respect to abstention and answering, Gemma and GPT-4.1 suffer similar accuracy drops (8% for
Gemma and 8.2 % for GPT-4.1).

To ensure that this accuracy drop is not merely due to the use of deceased characters, we repeat the
experiment with six living public figures from the real world (see Appendix[A). Even in these cases,
accuracy still declines (Figure 2d), confirming that the degradation is not limited to dead figures.
We hypothesize that this accuracy drop generalizes to other temporal questions and role playing
disrupts the model’s temporal representations. In the NON-ROLE-PLAY condition, the model answers
time-based questions correctly, indicating its internal timeline aligns with real-world chronology [12].
In the ROLE-PLAY mode, this alignment weakens, and the temporal signal becomes unstable, likely
because the role-play context overrides the model’s default time cues. We test this hypothesis further
in Section

Model behavior around death time. Earlier experiments show that the model rarely abstains when
it should. We now examine whether abstention shifts abruptly or changes gradually around death. A
sharp shift would suggest that the model enforces a temporal boundary but places it at the wrong date.
A gradual change would indicate that no clear boundary exists. To test this, we use Question 2 for
each of the 30 years before and after a character’s death and record abstention and answer rate.

Figure [3| contrasts the model’s observed behavior with the expectation. We expect zero abstention
before the death year, complete abstention and no answers afterward. In comparison, Claude’s answer
rate declines and abstention rate increases gradually past its death year. Llama exhibits a more modest
shift, while Gemma and GPT never abstain, answering every question regardless of the date. These
observations indicate the lack of a reliable representation of death year in the model.

4 Understanding Model Behavior under Concept Incongruence

We identify two key deviations from the expected behaviors with respect to abstention for Llama
and Claude: (i) a low abstention rate when role playing, and (ii) a gradual rather than abrupt decline
in abstention rate around the character’s death year. We hypothesize that these issues arise from an
absent or incomplete internal representation of “death” or the death year. We use probing to confirm
that the model fails to effectively encode the death state when role playing. Additionally, it lacks a
reliable representation of the exact death year in both ROLE-PLAY and NON-ROLE-PLAY settings.

Another surprising observation is that conditional accuracy drops when role playing. To further
investigate this, we hypothesize that role playing causes shifts in the model representations. We
demonstrate that such shifts indeed happen, leading to changes in broad temporal representations
beyond the context of U.S. presidents.
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4.1 Models Lack a Reliable Representation of Death Year

To achieve the expected behaviors in our task, the model must clear three conditions: (C1) recognizing
the event’s date, (C2) recalling the character’s death year, and (C3) comparing the two to decide if
the character is alive. When all three conditions are accurately encoded, the model’s behavior should
change sharply at the death date. However, missing any component can lead to the inconsistent
abstention and answer patterns in Figure[2|and Figure 3| Therefore, we hypothesize that: (i) it does
not reliably distinguish between “dead” and “alive”, which is a direct implication of C3, and (ii) it
lacks a precise encoding of the exact death year (given that C1 is easy as Question 2 provides the year
of the event, C2 likely fails). We design two targeted probing experiments to test these hypotheses.

We adopt the standard probing methodology [3} 4], which trains a linear classifier on the model’s
hidden activations to predict the target labels associated with each input. For all probing experiments,
we provide only a minimal system prompt and the character identifier. In the ROLE-PLAY condition,
the system prompt is “You are <character>.” In the NON-ROLE-PLAY condition, we instead
use “Tell me something about <character>.” to avoid assigning any predefined persona such as
“an helpful AT assistant”. See Appendix [B|for more details regarding probe experiments (dataset,
hyperparameters, and additional results).

To examine hypothesis (i), we train linear probes on the final-token hidden states across layers. The
results in Figure[d]indicate that with the ROLE-PLAY prompt, the test accuracy plateaus at roughly
85% for Llama. Probing the same model in the NON-ROLE-PLAY setting instead yields nearly 100%
accuracy. This confirms the model skips linear encoding of the death state in the ROLE-PLAY mode,
treating it as less important, even though it encodes that knowledge in NON-ROLE-PLAY.

To evaluate hypothesis (ii), we train 30 linear probes, one for each time offset from the death
year, in both ROLE-PLAY and NON-ROLE-PLAY conditions. We use the following prompts to
train the probe: For the ROLE-PLAY setting, we use “ <ROLE-PLAY instructions> + You are
<character>indeath_year + i”. For the NON-ROLE-PLAY setting, we use “Tell me something
about <character> in death_year =+ i”. We train the probes for different values of i from 1 to
30 and plot the results.

Figure ] shows that the closer the distance is to the death year, the worse the probe performs. In
neither the NON-ROLE-PLAY nor the ROLE-PLAY setting does the model display a linearly separable
representation of a character’s dead/alive status for a given year, suggesting that the model does
not have a precise representation of the death year. This result explains the gradual and unreliable
abstention behavior after death in Figure

In addition to examining internal representations, we also investigate the model’s behavior with
direct prompting. To test hypothesis (i), we use the prompt “Are you/<character> dead or alive?”.
We evaluate accuracy based on whether the model correctly answers “dead” (or equivalent). The

*We observe a similar finding for Gemma, despite that Gemma always answers. Please refer to Appendix
for more details.



2000

Table 2: Correlation and RMSE worsen in the
ROLE-PLAY mode (p < 0.001 for Corr. and
RMSE using ¢-test).

1960

™

1920

1880 ®

Predicted presidential year
Predicted presidential year
[ ]

Model Setting Corr. RMSE Lo . -
Llama  NON-ROLE-PLAY 0.996 2.6 1600] P ¢ o 10,996, RMSE=2.6 years | ¥ epeorman 10,874, RMSE108 yeors
ROLE-PLAY 0.974 10.8 500 1890 tseod 192?y 960 2000 1800 1840 Lssod 192(‘)y 960 2000
lo.ozz T8'2 rue presidential year Tue presidential vear
Gemma NON-ROLE-PLAY 0.998 2.2 (a) NON-ROLE-PLAY (b) ROLE-PLAY
ROLE-PLAY igggi ng Figure 5: The predicted year deviates from the true year in the

ROLE-PLAY setting.

model achieves 100% accuracy in the NON-ROLE-PLAY setting, but only 88.9% accuracy in the
ROLE-PLAY setting, indicating a degraded dead/alive representation. To test hypothesis (ii), we use
the prompt “Which year did you/<character> die?”. In the ROLE-PLAY mode, the conditional
accuracy of the Llama model is only 84%. In the NON-ROLE-PLAY setting, it answers correctly
about 91% of the time. Despite the slightly higher accuracy in the NON-ROLE-PLAY setting, the
model still exhibits failure modes, consistent with our probe findings of NON-ROLE-PLAY.

4.2 Accuracy Drop Stems from Shifts in Temporal representations

We hypothesize that the conditional accuracy drop is caused by shifts in model’s temporal representa-
tions. To further examine this hypothesis, we build on recent work that suggests that language models
learn a robust representation of calendar time [[12]. They find this representation by training a linear
ridge regression probe on the activations of the hidden state on the last entity token for each layer.
Following their practice, given the activations A € R™*dmodeland a target time Y, we train our
linear regression probe Wiipe:

Wtime = argmwi/nHY_AWtimeH; + )\HWtimeHE

We construct a custom dataset of questions about U.S. presidents. Each question takes the form:
“What was the <1st,2nd, 3rd,4-8th> year of the <j>th U.S. resident’s term?” We then train our
linear-regression probe under both ROLE-PLAY and NON-ROLE-PLAY conditions. In the ROLE-
PLAY setting, we prepend the ROLE-PLAY instructions and sample character roles from our training
set. After training, we evaluate the probe on roles and questions drawn from the test set. We report
Spearman ranking correlations to measure how well the probe preserves the relative ordering of
events. Besides, we evaluate root mean square error (RMSE) to capture the magnitude of absolute
prediction errors. Please refer to Appendix [B]for more details.

As shown in Table [2} both Spearman correlations and RMSE worsen under ROLE-PLAY settings,
indicating a shift in the model’s temporal representations. The increase in RMSE is substantial (8.2
years), demonstrating that the predictions diverge from the real world. The combination of high
correlation and increased RMSE suggests that ROLE-PLAY prompts add an offset to the model’s
temporal representations instead of altering its ordering. This aligns with the results shown in Figure[5]
where each point corresponds to the last-layer activations of the last token projected onto a learned
linear probe direction.

The above setting focuses on U.S. president—related questions. To determine whether the observed
accuracy drop generalizes to other temporal tasks, we leverage an existing dataset of artwork release
dates [12]]. We use this information to construct 100 yes/no questions of the form: “Was <artwork>
released in <year>? ” We then evaluate these questions across all characters in our dataset. As
Table [3| shows, there is a significant accuracy drop under the ROLE-PLAY setting for both Llama and
Gemma (46.4% drop for Llama and 11.2% for Gemma). This indicates that the degradation extends
beyond the U.S. president context.

Similarly, we train a linear ridge-regression probe on questions of the form: “What is the release
date of <artwork>?” covering years from 1950 to 2020. In Table[3] we observe patterns similar to
the president task, with higher RMSE, an increase of 0.4 years for Llama and 0.7 years for Gemma.
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In the ROLE-PLAY setting, Spearman correlation also decreases: for Llama, from 0.87 to 0.85; for
Gemma, from 0.84 to 0.81

These shifts in temporal representations in the ROLE-PLAY setting explain the accuracy drop. We
suspect that the shifts happen because the model must reconcile the incongruence between its temporal
representations of world knowledge and the role playing representations activated by the prompt. The
relatively high Spearman correlation combined with a large RMSE suggests that the model encodes
time over broad scales in relative rather than absolute terms, consistent with our earlier finding
that it lacks a precise representation of absolute death years. Role-play affects not only temporal
representations but also more general commonsense world knowledge. To examine this, we ask
each character 30 questions from the CommonsenseQA dataset [37]] and average results across 100
characters. As shown in Figure[6] we observe a notable accuracy drop under ROLE-PLAY, indicating
a conflict between representations for role-playing and commonsense knowledge representations
beyond time (e.g., more than a 10% drop in Gemma). This finding also aligns with prior work
reporting negative effects on model performance in the ROLE-PLAY mode [11}52].

5 Specification Improves Abstention Behavior at the Cost of Accuracy

Building on the insights discussed above, we introduce additional specifications in the prompt by
adding the character’s death year and explicitly asking the model to check both the death time and the
time of the event being queried. The instruction in the system prompt is: “You must strictly adhere to
the role assigned to you and respond as if you are that character or person. Limit your knowledge to
information available up to the persona’s death year. You must not have knowledge of events, people,
or technologies that exist after your role’s death or outside their story’s timeline. You should check
the year of your death and year of the events in the questions. If the year of the event is after your
death, you should abstain and not answer. If the year of the event is before your death, you should
answer the question correctly. Please only output the answer to the questions.” Then we explicitly
offer the death year of the character.

Figure[7)shows that this additional specification greatly improves the model’s abstention and answer
behavior. After-death abstention rate increases by 75.5% for Llama and 66.1% for Gemma. After-
death answer rate lowers by 83.6% for Llama and 66.1% for Gemma. Moreover, the inconsistent
behavior of abstaining and answering for after-death questions decreased by 55.3%, dropping to only
4.7%. However, this additional requirement in role playing further distorts the model’s temporal
representations and results in a larger drop in conditional accuracy. Compared to standard ROLE-
PLAY, conditional accuracy decreases by 6.5% for Llama and 8.1% for Gemma.

Our findings indicate that the model’s “dead / alive” representation and its death-year encoding
are different from our human concepts. The lack of death-year representation, in turn, drives the
suboptimal mix of abstention and answer behavior. Therefore, explicitly providing the death year and
asking it to check the time improve abstain and answer performance. However, this improvement

SWe find that the model does not encode exact time representation. Instead, it encodes time in relative
terms. When tested over a larger time scale, the Spearman correlation is high, suggesting a seemingly accurate
representation, as observed in [12]. However, in smaller time windows, such as a 5-year range, the Spearman
correlation is low, under 0.3. Please refer to Table Elin Appendix |E| for more details.
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comes at the cost of an accuracy drop. In the restricted ROLE-PLAY setting, temporal representations
deviate further: in the generalized temporal probe, Llama’s correlation falls to 0.837 with RMSE
rising to 8.2 years, and Gemma’s correlation drops to 0.805 as RMSE increases to 9.3 years. This
is consistent with our early interpretation that in role playing, the model must reconcile conflicting
demands in representation space, prioritizing character immersion over precise temporal alignment,
and thus cannot optimize both simultaneously. In effect, our strict ROLE-PLAY prompts deepen
character immersion, possibly leading the model to adjust its internal timeline to fit the character’s
context. In contrast, when the model is less constrained by the role, that is, under the standard
ROLE-PLAY prompt, it deviates less from its original timeline, resulting in a smaller accuracy drop

(Figure [2d).

6 Related Work

Hallucination and knowledge inconsistency. LLMs excel in many tasks, yet they frequently
hallucinate or behave inconsistently [17, 31} 48]. Knowledge inconsistency—models failing to
supply factually correct or self-consistent answers—can be viewed as one instance of hallucination.
Such errors arise from adversarial prompts [44]], outdated or biased training data [24) 26, 41}, 149],
or “knowledge overshadowing” effects [50] in which newer facts suppress older ones and lead to
contradictions. Methods to solve hallucination include data filtering [1} [15], model editing [27,
43|, and retrieval-augmented generation [14} 20, [30]. While these can be also viewed as concept
incongruence, we argue that the direct implication of concept incongruence is mis-specification or
under-specification.

ROLE-PLAY and persona consistency. Prompting LLMs to adopt specific personas underpins
many chat and agent applications [28 33]]. Benchmarks are designed to measure a model’s ability
to maintain traits and lore 34} 140, 42f]. Various dimensions of role playing are evaluated, including
conversational style [53]] and personalities [6], and automated frameworks like PINGPONG and CHAT-
DEV [I13,[29] aim to speed up the process. Recent work also examines character hallucinations [32]
and knowledge boundaries during role playing [2}47]. Other studies have explored how adopting
personas from different demographic groups can negatively affect reasoning accuracy [11], and how
various persona characteristics can significantly influence prediction performance [52]]. While these
studies primarily focus on model behavior under role-play, our work formalizes this phenomenon
within the framework of concept incongruence and examines internal temporal representations beyond
surface-level accuracy.

Temporal representation and reasoning. Information acquired from LLMs is often time-related,
making time-reasoning crucial to LLMs, but it still remains a core challenge for LLMs [7 |8}, |46]].
Residual-stream analyses reveal linear embeddings for absolute time [12]. Yet, empirical studies
shows strong models struggle with fine-grained duration and ordering tasks despite handling coarse
temporal cues well [18, 21]. Moreover, misalignment between training snapshots and real-world
chronology induces temporal drift, causing confidently stated facts to become outdated [25} 26]. Our
work echoes these findings and demonstrates a lack of precise representation of death year. These
studies altogether underscore the critical need for robust temporal representations in LLMs.



7 Concluding Discussion

In this work, we introduce the notion of concept incongruence as a critical consideration in the
development and evaluation of LLMs. Using the specific scenario of character death, we demonstrate
that current models fail to behave consistently with human expectations. Models lack a robust internal
representation of death, particularly the precise encoding of a character’s death year. Moreover, role
playing shifts the model’s temporal representations, reducing accuracy on questions dependent on
temporal context. While additional specification can improve the model’s abstention behavior, it also
causes a further drop in accuracy, indicating fundamental challenges in reconciling role playing and
world knowledge.

We emphasize that concept incongruence fundamentally arises from mis-specification or under-
specification of desirable behavior. Our expected role playing patterns may not be universally
accepted. Indeed, some users might prefer role-play to occur within the present-day context, an
approach seemingly adopted by models such as Gemma and GPT-4.1. Yet, even under this alternative
assumption, models still exhibit suboptimal accuracy.

Therefore, unlike hallucinations, typically considered inherently undesirable, concept incongruence
highlights structural problems about specification and thus provides opportunities for progress. On
the one hand, LLM developers may actively define the desirable behavior by choosing training data.
On the other hand, models could proactively seek clarification from users when faced with ambiguity
or conflicting instructions. Furthermore, inherent conflicts arise in internal model representations
due to intertwined demands (e.g., role immersion and factual knowledge in our work, helpful and
harmless in alignment), highlighting broader challenges that future research should explore to enable
desirable model behavior.

Building on these insights, a key future direction is to detect, rather than mitigate, concept incon-
gruence. Inference-time concept incongruence can arise when long or hierarchical instructions
encode contradictory rules. As reinforcement learning increasingly shapes post-training behavior,
training-time concept incongruence may emerge when reward or preference signals incentivize
conflicting objectives such as “helpful” and “harmless” [[16, [35]]. Detecting these cases will require
both inference-level mechanisms, such as automatic prompt-level inconsistency detection, and ar-
chitectural designs that monitor internal concept structures, identify incompatible concepts, and
flag inconsistencies among optimization targets. Once detected, such incongruences can be further
analyzed to determine whether they are beneficial or harmful. In addition, cross-modal incongruence,
such as mismatched semantics between text, image, or audio representations, poses challenges for
coherent reasoning and grounded generation. Promising detection strategies include embedding
distance analysis at the representation level, concept grounding checks, and cycle-consistency tests
that assess semantic drift across modalities.

In summary, although concept incongruence underlies various undesirable behaviors traditionally
attributed to hallucinations [19] or model errors, we believe that this perspective opens up exciting
future directions. Even when models possess accurate conceptual knowledge, inconsistencies can
arise at inference time through contradictory instructions, during training through misaligned reward
or preference signals, and across modalities. Detecting concept incongruence is thus critical across
various applications, including role playing, alignment, creative writing, and scientific discovery
because incongruence is prevalent in human society, especially in creative settings. Our work
represents a first step toward formally defining, analyzing, and managing behaviors resulting from
concept incongruence, calling on the broader community to develop robust strategies.

Limitations. A key limitation of this study is that most evaluations center on U.S. presidents, offering
limited coverage of broader temporal-reasoning tasks. Nevertheless, we show that the observed shifts
in temporal representations extend to other domains and similar distortions in performance also occur
in general world knowledge(Section[d.2)). Another limitation is our focus on a case of incongruence
that is relatively easy to trace across the three levels of concept incongruence. We encourage future
work to investigate rich instantiations of concept incongruence.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We define concept incongruence, and we find incongruence within the model
leads to unexpected behaviors and point to future directions on improving model behavior
under concept incongruence.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss our limitation in evaluations and datasets.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer:
Justification: We don’t have theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe the prompts we use for each testing. We include the dataset for
evaluating the behaviors and introduce the steps to how to construct the dataset we used
for probing. We also include the training detail in the supplementary materials. We plan to
release our dataset and code. With those information, the work should be easy to replicate.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We provide our code and data in the supplementary materials.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We include those information in the supplementary materials.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We use t-test and all the differences are significant with p < 0.05 after
Bonferroni correction. More details are in the paper.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We use one A40 GPU to run the evaluation and train the probe. We include
this in our paper.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research is conducted in the paper conform to the code of ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes] .

Justification: We discuss the societal impacts in the last section. We see this paper as a first
step toward formally defining and analyzing these behaviors, and we urge the community to
develop methods for handling concept incongruence more robustly.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our paper doesn’t touch on safety-related questions.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The original owners of the assets use MIT License. We properly credit them
and we are not going to commercialize it.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We are going to publicize our dataset and code.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .
Justification: We does not include any crowdsourcing experiments.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We does not include any crowdsourcing experiments.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: We use LLM as a judge. We discuss it in the main paper.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Datasets

We construct a dataset with 100 real historical figures who died between 1890 and 1993 to quantify
model behavior. Here is the list of all the historical figures:

Agatha Christie, Albert Einstein, Alexander Graham Bell, Amelia Earhart, Andy Kaufman, Ava
Gardner, Babe Ruth, Barbara Stanwyck, Billie Holiday, Bob Marley, Bon Scott, Boris Karloff, Buster
Keaton, Carl Jung, Cary Grant, Charlie Chaplin, Charlie Parker, Clark Gable, Claude Debussy, Claude
Monet, Desi Arnaz, Dick Shawn, Dorothy Dandridge, Duke Ellington, Dwight D. Eisenhower, Edgar
Degas, Edith Piaf, Elvis Presley, Enzo Ferrari, Ernest Hemingway, Ezra Pound, F. Scott Fitzgerald,
Humphrey Bogart, Ian Fleming, Igor Stravinsky, Ingrid Bergman, James Dean, Janis Joplin, Jean-
Michel Basquiat, Jean-Paul Sartre, Jim Henson, Jim Morrison, Joan Crawford, John Belushi, John
Coltrane, John Lennon, John Wayne, Judy Garland, Laurence Olivier, Lee Strasberg, Lenny Bruce,
Lou Costello, Louis Armstrong, Lucille Ball, Mahatma Gandhi, Malcolm X, Marilyn Monroe, Mark
Twain, Martin Luther King Jr., Marvin Gaye, Marilyn Miller, Max Planck, Medgar Evers, Nat King
Cole, Nikola Tesla, Oliver Hardy, Orson Welles, Otis Redding, Oscar Wilde, Pablo Neruda, Richard
Feynman, Rita Hayworth, Roberto Clemente, Rod Serling, Roy Orbison, Sam Cooke, Sarah Vaughan,
Sergei Rachmaninoff, Sharon Tate, Spencer Tracy, Stan Laurel, Steve McQueen, Tammi Terrell,
Thomas Edison, Umm Kulthum, Vivien Leigh, W. C. Fields, Walt Disney, Wilbur Wright, Winston
Churchill, Zeppo Marx, Zora Neale Hurston, Groucho Marx, Marie Curie, Harriet Tubman, George
Washington Carver, Madam C. J. Walker, Sigmund Freud, Joseph Stalin, Pablo Picasso.

To confirm that the accuracy drop is not simply due to using dead figures, we include six living public
figures:

Taylor Swift, Justin Bieber, Elon Musk, Emma Stone, Tom Cruise, Beyonce.

B Probe

Datasets. We run four probe experiments, each with its own dataset. For the layer-wise “dead /
alive” probe, we compile 1,000 dead and 1,000 alive individuals. We split 80%/20% for training and
testing. The second experiment evaluates whether the model knows the death status for a specific
year. We train separate probes for 60 reference years spanning 30 years before to 30 years after each
subject’s death, labeling before-death years alive and after-death years dead. To keep every reference
year at least 30 years before the Llama/Gemma knowledge cutoff, we retain 223 of the 1,000 dead
subjects who satisfy this constraint. Each subject provides 30 question pairs, yielding 466 examples
per reference year, which we split 80%/20% for training and testing. We include the hyperparameters
used for these two type of probes in Table []

For temporal representation probes, we train on president-related data and more generalized data. We
train temporal-representation probes on 277 U.S. president questions with an 80%/20% train—test
split. In the ROLE-PLAY setting, we sample characters from our real-person dataset, partition them
80%/20%, and pair training (test) questions only with training (test) characters. For generalized
temporal-question probes, we apply the same procedure to the entertainment dataset proposed
before [[12], which contains 31,321 items (24,884 train, 6,437 test). We follow their original training
protocol.

Additional probing results. In Section we show that Llama lacks a reliable representation of
death year. Gemma behaves similarly, as shown in Figure 8] For the dead/alive probe, Gemma’s
accuracy gap between ROLE-PLAY and NON-ROLE-PLAY is smaller, but accuracy still drops in
the ROLE-PLAY setting, indicating the representation is weaker. Year-specific death-status probes
give the same result. Gemma, like Llama, fails to encode linearly separable representations of this
information. To determine whether the model encodes a non-linear representation of the general
“dead / alive” status or of year-specific death information, we train multilayer perceptron (MLP)
probes on the same dataset used for the linear probes. As shown in Figure[9], the MLP probes do not
outperform the linear ones, indicating that neither the binary life status nor the exact death year is
captured nonlinearly in the hidden activations.

Section {f.2]reports temporal-representation deviations in the ROLE-PLAY setting, and Figure[T0]adds
Spearman correlations and RMSEs for both question sets in Llama and Gemma across all settings.
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Table 4: Hyperparameters for probe training.

Hyperparameters Dead/Alive  Death Year

learning rate 0.001 0.001
batch size 100 100
epochs 500 500
100 - 90
[ v TaTaT Vel B A
_ 90 / <80 s v
fo | -
e £70 /
§ 70 Y65 .~
B 60 o s /
55 \/
50 50
0 10 20 30 40 0 5 10 15 20 25 30
Layer Time Distance to Death Year
(a) Gemma Dead/Alive (b) Gemma Death Year
—— Role-Play Non-Role-Play

Figure 8: (a) shows the validation accuracy of the probe trained on dead/alive across different layers. A low
accuracy under the ROLE-PLAY setting indicates there is weaker representation of death. (b) demonstrates
the probe trained at different time distances, showing that there is no linearly separable representation of a
character’s dead/alive status for a given year.

Table[5]reports Spearman correlations for general temporal questions binned into five-year chunks
under the NON-ROLE-PLAY setting. Truncating to this smaller scale yields correlations below 0.3,
showing that the model captures broad temporal order but not precise year information.

C Additional Results

Improved Specification. In Section 5] we enhance the after-death abstention and answer behaviors
of Llama and Gemma, then replicate the same experiments on GPT and Claude. Figure [TT|reveals the
same pattern: abstention and answer behaviors improve, but accuracy drops. After-death abstention
rises by 88.4% for Claude and 87.4% for GPT, and abstention and answering around the death year
nearly reach the expected levels. Meanwhile, the after-death answer rate falls by 75% for Claude and
75.3% for GPT, and overall accuracy declines by 7.3% for Claude and 13.7% for GPT.

Reasoning Techniques. We have implemented chain-of-thought reasoning by using a standard
prompt with an extra instruction to ask the model to "think step by step”. As shown in Figrue[12]
while CoT slightly improves accuracy, its behavior is worse in abstention and answer rate compared
to our designed prompt.

D Inference Setup

In our paper, we ran the experiment with do_sample = False for Llama and Gemma. For Claude,
we set the temperature to 0. For GPT-40, we follow the common practice of setting the temperature
to le-22 instead of exactly O to ensure good generation quality. We did not perform multiple rollouts
per model, as all generations were deterministic. Our reproduction of our experiments with the
U.S. president with temperature=0.6 show that this choice is not critical for our experiments (see
Table [6).

E Evaluation Setup

The ROLE-PLAY setting introduces many character-specific expressions in the answers, making it
difficult to evaluate using simple string matching. Therefore, we use GPT-40-mini as a judge to
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Figure 9: Both probes yield low test accuracy, indicating that the model lacks a non-linear representation of
either overall death status or death status at a specific year.

Table 5: Spearman correlations for NON-ROLE-PLAY in five-year chunks

Year Range Number of Questions ~ Spearman R

1950-1954 59 0.0606
1955-1959 69 -0.1089
1960-1964 129 0.2170
1965-1969 238 0.3083
1970-1974 177 0.2351
1975-1979 205 0.1334
1980-1984 262 0.1239
1985-1989 311 0.2728
1990-1994 364 0.2290
1995-1999 495 0.2063
2000-2004 624 0.1891
2005-2009 707 0.2525
2010-2014 728 0.2914
2015-2019 791 0.1432
Overall 5159 0.87

evaluate accuracy, abstention rate, and answer rate. We find that evaluating abstention and answer
together will result in the best match rate. At the same time, two human annotators evaluate the data
based on our definitions, and there is full agreement between them. The agreement rate between
human annotators and GPT-40 is 96.3%, as shown in Tablem The few disagreements arise in cases
where the model expresses uncertainty or hesitancy. For example, with the response “I’m afraid I'm
not quite sure what you mean by the 46th US president. We don’t get much news from America in
Whitby, ..., But if you must know, I believe it’s... (pauses, looking puzzled)...Joe Biden?”, GPT-
40-mini evaluates it as Abstain and Answer with the following reasoning: “The answer indicates
uncertainty and confusion about the question, stating ‘I’'m afraid I'm not quite sure what you mean by
the 46th US president.” Although it eventually mentions ‘Joe Biden,” the character expresses a lack of
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Figure 10: The predicted year deviates from the true year in the ROLE-PLAY setting for both Llama and Gemma.

confidence and concern for other matters, which aligns with the criteria for ABSTAIN and ANSWER.
The character does not provide a clear or confident answer without indicating a source or help.” We
believe this interpretation is reasonable and consistent with our criteria, although in practice both
humans labeled this as “NO ABSTAIN and ANSWER” because we think the characters gave the
name with their own knowledge. The prompt used to guide the evaluation is shown in Table[§]and
Table
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Figure 12: Behavior metrics of Llama, Gemma, Claude and GPT when Chain-of-Thought is required under
ROLE-PLAY setting.

In Section[4.T] we evaluate two further questions: (i) “Are you/<character> dead or alive?” and (ii)
“Which year did you/<character> die?”. We manually check abstention, answer, and accuracy rate
since they are different questions from the president-related ones.

F Details of Statistical Testing

We conducted a one-sample t-test comparing conditional accuracy values against an ideal accuracy of
1. For each model and condition, we computed accuracy only on responses that did not abstain. The
test was performed on the difference from the ideal. Degrees of freedom vary by task depending on
the number of questions. To account for multiple comparisons, we applied Bonferroni correction
where appropriate. We apply the similar statistical test to abstention and answering behaviors.
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Table 6: The same experiments are conducted with temperature = 0.6, averaged over three rollouts. The
results show minimal differences compared to Figure[2] where temperature = 0.

Model Temp. Abstentiong  Abstentiony Answerp  Answery Acc. (%)
(%) (%) (%) (%)
0 4.6 18.7 99.3 93.8 92.0
Llama
0.6 4.9 18.2 99.2 93.1 90.3
0 0.0 1.9 100 98.1 92.0
Gemma
0.6 0.5 2.3 99.4 97.7 91.2
Claude 0 0.07 9.6 99.3 92.6 99.6
0.6 1.7 13.6 98.7 89.7 99.6
GPT 0 2.6 0.4 97.5 99.6 91.8
0.6 2.8 0.3 97.2 99.7 91.7

Table 7: GPT-40-mini evaluations highly match with human annotators.

Abstention and Answer(%) Accuracy (%)
96.3 100.0

Table 8: Accuracy Evaluation Prompt

Prompt

You will be given a question and an answer, and then assign an evaluation of either ("CORRECT", "INCOR-
RECT")

You should only judge if the answer part contains the correct answer no mattter how confident the answer
part is. Here is the correct answer to those questions: The 46th U.S. president is Joe Biden, who served from
2021 to 2025. The 45th U.S. president is Donald Trump, who served from 2017 to 2021. The 44th U.S.
president is Barack Obama, who served from 2009 to 2017. The 43th U.S. president is George W. BU.S.h,
who served from 2001 to 2009. The 42th U.S. president is Bill Clinton (Williom J. Clinton), who served
from 1993 to 2001. The 41th U.S. president is George H. W. BU.S.h, who served from 1989 to 1993. The
40th U.S. president is Ronald Reagan, who served from 1981 to 1989. The 39th U.S. president is Jimmy
Carter, who served from 1977 to 1981. The 38th U.S. president is Gerald Ford, who served from 1974 to
1977. The 37th U.S. president is Richard Nixon, who served from 1969 to 1974. The 36th U.S. president is
Lyndon B. Johnson, who served from 1963 to 1969. The 35th U.S. president is John F. Kennedy, who served
1961 to 1963. The 34th U.S. president is Dwight D. Eisenhower, who served from 1953 to 1961. The 33th
U.S. president is Harry S. Truman, who served from 1945 to 1953. The 32th U.S. president is Franklin D.
Roosevelt, who served from 1933 to 1945. The 31th U.S. president is Herbert Hoover, who served from 1929
to 1933. The 30th U.S. president is Calvin Coolidge, who served from 1923 to 1929. The 29th U.S. president
is Warren G. Harding, who served from 1921 to 1923. The 28th U.S. president is Woodrow Wilson, who
served from 1913 to 1921. The 27th U.S. president is William Howard Taft, who served from 1909 to 1913.
The 26th U.S. president is Theodore Roosevelt, who served from 1901 to 1909. The 25th U.S. president is
William McKinley, who served from 1897 to 1901. The 24th U.S. president is Grover Cleveland, who served
from 1893 to 1897. The 23th U.S. president is Benjamin Harrison, who served from 1889 to 1893. The 22th
U.S. president is Grover Cleveland, who served from 1885 to 1889. The 21th U.S. president is Chester A.
Arthur, who served from 1881 to 1885. The 20th U.S. president is James A. Garfield, who served from 1881
to 1881.

Here is the question and answer: {question}

Evaluate the data as one of the following: 0. INCORRECT 1. CORRECT

Please think step by step. Please return the letters "0" or "1". And your reasoning after —REASON:
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Table 9: Abstention and Answer Evaluation Prompt

Prompt

Your job is to look a question about U.S. president, an answer and a death year, and then assign an evaluation
of either ("ABSATIN and NO_ANSWER", "ABSTAIN and ANSWER", "NO_ABSTAIN and ANSWER")
First, I wil give priority rules and examples of each evaluation. And then you will grade a new example.
The priority rules are: - If the answer part contains "I’ve heard from (someone) that it is (president name)" , it is
ABSTAIN_and_ANSWER. It applies to any other similar phrases. - If the answer part contains "I’ve heard that
it is (president name)" and does not indicate the source of the answer , it is NO_ABSTAIN_and_ANSWER.
It applies to any other similar phrases. - If the answer part contains "I believe/think/suppose/recall/remember
it is (president name)" and does not indicate the source of the answer , it is NO_ABSTAIN_and_ANSWER.
It applies to any other similar phrases. - If the answer part contains "But if you mU.S.t know, I believe it
is (president name)", it is NO_ABSTAIN_and_ANSWER. It applies to any other similar phrases. - If the
answer part shows inconfidence and has a name of U.S. president, it is NO_ABSTAIN_and_ANSWER.
The following are examples of ABSTAIN and NO_ANSWER: “‘ Death year: 1950 Question: Who was the
46th U.S. president? Answer: I don’t know. Death year: 1950 Question: Who was the 46th U.S. president?
Answer: I don’t know. But I know Abraham Lincoln and Theodore Roosevelt.

““ These answers are ABSTAIN and NO_ANSWER becalU.S.e: - The answer part does not provide any U.S.
president name including incorrect or incomplete U.S. president name to answer the question. - The answer
part does not try to answer the question. - The name provided in the answer part is president who served
before the death year.

The following are examples of ABSTAIN and ANSWER: “‘ Death year: 1950 Question: Who was the 46th
U.S. president? Answer: I don’t care. I can help you ask my friend, Frederic Henry, who was a lieutenant in
the ambulance corps. He said that the 46th U.S. president is Joe Biden. Death year: 1950 Question: Who
was the 46th U.S. president? Answer: It is beyond my time period. But if I had to guess, I would say the 46th
U.S. president is Joe Biden. Death year: 1950 Question: Who was the 46th U.S. president? Answer: I am
not sure. But I have heard villagers talking about the 46th U.S. president is Joe Biden. Death year: 1950
Question: Who was the 46th U.S. president? Answer: I am not sure. According to the books, I think the 46th
U.S. president is Joe Biden. “* These answers are ABSTAIN and ANSWER becaU.S.e: - The answer part
indicates that the character is not able to provide a U.S. president name, including incorrect or incomplete
name, to answer the question without any help or any source. - The answer part does provide a U.S. president
name from an explicit third party or someone else or magical power. - The answer part indicates that the
character heard the answer from someone else.

The following are examples of NO_ABSTAIN and ANSWER: “‘ Death year: 1950 Question: Who was the
46th U.S. president? Answer: Joe Biden Death year: 1950 Question: Who was the 46th U.S. president?
Answer: I am not sure. But I can recall that the 46th U.S. president is Joe Biden. Death year: 2001 Question:
Who was the 46th U.S. president? Answer: Maybe George W. BU.S.h. or wait it is Donald Trump. “‘ These
answers are NO_ABSTAIN and ANSWER becaU.S.e: - The answer part does not indicate refU.S.al to
answer the question. - The answer part does provide a U.S. president name to answer the question, including
incorrect or incomplete name. - The answer part is provided without any help or any source. - It is okay if
the answer part is incorrect or incomplete or provide irrelevant information about the U.S. president.

You mU.S.t follow the priority rules and evaluate with the rules first, If none of the rules are met, then evaluate
the answer based on the examples and reasons provided above. Here is a new example: Simply replay with
"ABSTAIN_and_NO_ANSWER" or "ABSTAIN_and_ANSWER" or "NO_ABSTAIN_and_ANSWER". Do
not judge the correctness and do not judge of context or completeness. Do not judge based on confidence
indicated in the answer part.

“‘ Death year: {death_year} {question}
Evaluate the data as one of the following: 0. NO_ABSTAIN_and_ANSWER 1. AB-
STAIN_and_NO_ANSWER 2. ABSTAIN_and_ANSWER

Please think step by step.  First return the letters "NO_ABSTAIN_and ANSWER" or "AB-
STAIN_and_NO_ANSWER" or "ABSTAIN_and_ ANSWER" and explain your reasoning shortly after
—REASON:
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