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Abstract

Motion planning in high-dimensional continuous spaces remains challenging due
to complex environments and computational constraints. Although learning-based
planners, especially graph neural network (GNN)-based, have significantly im-
proved planning performance, they still struggle with inaccurate graph construction
and limited structural reasoning, constraining search efficiency and path qual-
ity. The human brain exhibits efficient planning through a two-stage Perception-
Decision model. First, egocentric spatial representations from visual and propri-
oceptive input are constructed, and then semantic–episodic synergy is leveraged
to support decision-making in uncertainty scenarios. Inspired by this process, we
propose NeuroMP, a brain-inspired planning framework that learns to plan like
the human brain. NeuroMP integrates a Perceptive Segment Selector inspired by
visuospatial perception to construct safer graphs, and a Global Alignment Heuristic
guide search in weakly connected graphs by modeling semantic-episodic synergis-
tic decision-making. Experimental results demonstrate that NeuroMP significantly
outperforms existing planning methods in efficiency and quality while maintaining
a high success rate.

1 Introduction

Motion planning is fundamental to robotic systems, with broad applications in autonomous vehicles
[1], logistics [2], and so on. Its primary objective is to compute a high-quality, collision-free path in
the configuration space that connects the start and goal [3]. However, real-world configuration spaces
often involve numerous continuous variables and complex high-dimensional properties, significantly
increasing the difficulty of the planning problem. Classical motion planners are typically categorized
as search-based or sampling-based. Search-based methods, such as A* [3] and Dijkstra [4], formulate
planning as a graph search. While sampling-based methods, such as RRT [5] and its variants [6, 7],

∗Corresponding Author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



construct paths by randomly sampling the configuration space. However, these methods suffer from a
rapid increase in complexity in high-dimensional continuous spaces [8].

To enhance planning efficiency and quality, researchers have proposed learning-based planners
that integrate data-driven models with classical planning methods. By leveraging the learning and
representation capabilities of deep neural networks, these methods can extract key patterns from the
configuration space or learn the behavior of oracle planners, thereby optimizing critical steps in the
planning process to enhance overall performance [9]. Various neural-network-driven motion planners
have been proposed, including convolutional neural networks (CNNs) [10–12], recurrent neural
networks (RNNs) [13–15], and graph neural networks (GNNs)[9, 16, 17]. Among these, GNN-based
methods demonstrate significant advantages in processing high-dimensional graph tasks. Specifically,
GNN-based methods enhance search efficiency by operating on random geometric graphs (RGGs)
constructed from sampled configurations, avoiding full workspace encoding [16]. Here, RGGs
denote the undirected k-nearest neighbor (k-NN) graph built on free configuration space. They also
predict node or edge priorities via graph pattern learning, reducing redundancy and improving path
exploration quality.

GNN-based planners, such as GNN-Explorer [9] and GraphMP [18], demonstrate strong performance
but still exhibit notable limitations. GNN-Explorer prioritizes edges without considering total path
costs, limiting optimal path selection. GraphMP addresses this issue by incorporating a Neural
Collision Checker to remove predicted collision edges and embedding GNN-based heuristics within
an A* search framework. However, GNN-based planners still face two key limitations: (i) Inaccurate
graph construction. Neural Collision Checker may incorrectly retain collision edges or remove valid
ones, disrupting heuristic estimation. (ii) Limited structural reasoning. Excessive edge removal
weakens the structural cues essential for reasoning, degrading information propagation and repre-
sentation. This issue stems from the reliance on local feature aggregation and neighborhood-based
message passing, which are insufficient to capture global structural information, thereby limiting
the representational capacity of models. Although BrainyMP [19] introduces subgraph structures to
enhance representation, it remains limited by subgraph coverage and redundant computation.

In contrast, humans exhibit remarkable capabilities in planning tasks, especially in uncertain or
incomplete scenarios. The cognitive process can be divided into two functional stages: perception
and decision-making [20, 21]. The first stage is visuospatial perception, where the brain initially
acquires external environmental information through the visual system. The visual cortex encodes and
processes raw visual signals from the retina, identifying key features such as obstacles, boundaries,
and feasible regions [21]. Subsequently, the posterior parietal cortex (PPC) transforms visual
and proprioceptive information into egocentric spatial representations useful for planning [22, 23].
The second stage is semantic–episodic synergistic decision-making, where the brain engages the
semantic–episodic synergy mechanism to support environmental reasoning under weak or ambiguous
conditions [24–26]. Specifically, episodic and semantic information is integrated through coordinated
activity of the prefrontal cortex (PFC), anterior insula (AI), and default mode network (DMN),
triggering a shared cognitive control mechanism [24, 27]. The global semantic framework provides
contextual support for episodic memory, aiding decision-making under uncertain cues. While episodic
memory refines or corrects the semantic framework with specific event details. Accordingly, we
model the brain’s perception and decision-making processes, as illustrated in Fig. 1, offering valuable
insights for improving motion planning systems.
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Figure 1: The two-stage Perception-Decision model. The cognitive process of planning consists
of two functional stages. Stage 1: Visuospatial perception inspires the extraction of environmental
features and their interrelations for subsequent planning. Stage 2: Semantic–episodic synergistic
decision-making provides two key insights: (i) incorporating global topological constraints to enrich
representations, and (ii) bidirectional complementarity between complete graphs and weak graphs.
Inspired by the two-stage Perception–Decision model, we propose NeuroMP, a brain-inspired motion
planning framework to address the limitations of existing GNN-based planners. In the first stage,
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mimicking the visuospatial perception process, the Perceptive Segment Selector efficiently identifies
and reasons environmental patterns and their spatial relationships to construct safer graphs. In the
second stage, motivated by semantic–episodic synergistic decision-making, the Global Alignment
Heuristic is proposed to improve structural reasoning. Specifically, drawing on the contextual
understanding of the global knowledge framework in semantic memory, the module incorporates
spectral features to capture global topological constraints. Furthermore, inspired by the bidirectional
interaction process, the Alignment Dual-Flow Learning strategy leverages the complete graph to
guide heuristic estimation in weakly connected graphs via dual-channel collaborative learning. The
proposed method is evaluated on maze and robotic-arm manipulation tasks, with experimental results
demonstrating improved planning efficiency and path quality while maintaining high reliability.

2 Related Work

Classical planning methods. Current classical motion planners are primarily divided into two popular
categories: search-based and sampling-based planners. Search-based planners typically perform
iterative searches on RGGs to find optimal paths, such as BFS [28] and Dijkstra [4]. These methods
are widely used in low-dimensional discrete scenarios but become inefficient in high-dimensional
environments due to high computational complexity [6]. To overcome this limitation, informed search
strategies have been proposed, such as A* [3] and its variants [29–31], which significantly reduces
the search space and enhances efficiency through heuristic functions. Nevertheless, these methods
are typically limited to discrete spaces, and their search efficiency still suffers from exponential
complexity in high-dimensional environments.

In contrast to search-based methods, sampling-based methods find solutions by randomly sampling
nodes in configuration spaces, such as RRT* [6] and its variants [7]. These methods avoid explicit
discretization and construction of entire spaces, alleviating computational complexity. However, they
often struggle to identify critical regions and efficiently sample sparse states accurately. To address
these issues, heuristic-enhanced sampling-based methods have been proposed, such as BIT* [32]
and LazySP [33]. Despite these improvements, sampling-based methods yield only near-optimal
solutions and exhibit limited performance in high-dimensional complex environments [10].

Learning-based planning methods. By leveraging the powerful representation capabilities of neural
networks, learning-based methods have revitalized traditional search- and sampling-based planners,
significantly improving planning efficiency. Learning-based search methods employ neural networks
to generate enhanced heuristic functions or directly learn planning policies. For example, VIN [34]
and SPT [13] directly learn search paths, reducing search space and time. Neural A* [18] reformulates
A* as differentiable for end-to-end training in 2D spaces. Additionally, imitation learning has also
been integrated into heuristic strategies. For instance, SAIL [35] and TransPath [36] learn heuristics
from environment representations using deep neural networks. However, these methods often rely on
handcrafted heuristics and are limited to 2D workspaces.

Learning-based sampling planners have substantially improved efficiency and transferability by
optimizing sampling strategies or directly generating paths. Representative approaches include
MPNet [37], MπNet [38], and NeuralMP [39], which learn informative samples from environment
and configuration data to accelerate planning. OracleNet [40] leverages imitation learning to replicate
oracle behaviors; CVAE [8] learns sampling distributions to generate samples along solution paths;
and NEXT [10] embeds high-dimensional state spaces into lower-dimensional representations and
employs CNNs to learn local sampling strategies. While MPT [41] employs a Transformer to model
configuration–environment relations and directly produce feasible paths from historical data and
scene context, NTFields [42] learns neural potential fields to generate trajectories, and P-NTFields
[43] adopts a probabilistic formulation to handle uncertainty. In addition, dictionary-learning methods
[44] optimize sampling dictionaries to enhance efficiency and generalization. RDT-RRT [12] and
NIRRT* [11] refine sampling using curvature-aware CNNs and point-Net. Despite these advances,
two challenges persist: (i) limited sample quality and collision-avoidance reliability, which can cause
redundant exploration or low-quality solutions; and (ii) reliance on dense workspace encoding and
extensive perceptual features, which incur substantial computational and memory costs.

GNNs have demonstrated superior performance owing to their strong capability in learning graph
patterns and adapting to high-dimensional spaces. For example, GNN-Explorer [16] enhances
planning efficiency and robustness by prioritizing the exploration of promising edges. GraphMP [9]
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combines GNNs with a differentiable A* module to identify optimal paths over RGGs. Inspired by
spatial and relational memory mechanisms, BrainyMP [19] enriches representations with subgraph
structures to improve planning performance. However, its ability to capture global information
is inherently constrained by the number and coverage of subgraphs, which still limits structural
reasoning. Integrating brain-inspired mechanisms more directly into GNN architectures is a promising
direction for advancing motion planning.

3 Preliminaries

Task setting. A motion planning problem in a d-dimensional continuous configuration space
C ⊆ Rd, where the configuration space is divided into the obstacle space Cobs ⊆ C and the free
space Cfree = C \ Cobs. The planning problem is typically formulated as the search process on the
G = (V, E), where the set of nodes V is sampled from Cfree, and weighted edges E are constructed
using K-nearest neighbors (K-NN). The start and goal nodes are denoted as vs, vg ∈ V , respectively.
The aim is to search a finite set of edges that connects the start and goal nodes within the graph,
denoted as ξ = ei : (vi−1, vi)i∈[1,T ], where ei ∈ E , v0 = vs, vT = vg , and vi ∈ V for all i ∈ [0, T ].

Differentiable A*. Differentiable A [18] redefines the traditional A algorithm [3], enabling end-to-
end differentiable training. Further details are provided in the Appendix A.1.

4 Methodology

4.1 Overview

The overall framework of NeuroMP is illustrated in Fig. 2. During training, the binary cross-entropy
(BCE) loss minimizes the difference between predicted values and ground truth, improving the
accuracy of the Perceptive Segment Selector NS . The Global Alignment Heuristic NH is trained
jointly with a differentiable A* module using the Alignment Dual-Flow Learning (A2FL) strategy to
optimize heuristic estimation. During online planning, selective sampling is employed to construct
the RGG based on the bias probability β, reducing redundant exploration. Then, NS predicts edge
collision probabilities and filters unsafe edges to generate a safe RGG′. To address weak connectivity,
NH incorporates spectral features to impose global topological constraints, enabling more accurate
heuristic predictions. Finally, these heuristics are passed to the A* module for path search, followed
by shortcut retrieval to remove detours and improve path quality. Details of the selective sampling
and shortcut retrieval optimization steps are provided in the Appendix A.2.
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Figure 2: Overview of NeuroMP. (a) The training process. The NS and NH are trained independently.
(b) The online planning process. The learned NS , NH , and A* modules are integrated to perform
graph search-based planning.

4.2 Perceptive Segment Selector

In the first stage, the proposed Perceptive Segment Selector module identifies and reasons about
spatial patterns and structural relationships, enhancing collision prediction accuracy and facilitating
the construction of safer graphs. The overall architecture of NS is illustrated in Fig. 3.
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For the input RGG G = (V, E), its nodes and edges are first encoded into a latent space with
x ∈ R|V|×dh , y ∈ R|E|×dh , where dh is the encoding size. Specifically, the embedding for the i-th
node vi and the l-th edge eij are represented as xi = fx(vi) and yij = fy(vi, vj , vi − vj), where fx
and fy are two separate two-layer MLPs.
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Figure 3: The model architecture. The upper part illustrates the Perceptive Segment Selector, while
the lower part presents the Global Alignment Heuristic.

Obstacle Encoding. The obstacle information is encoded into the node and edge features. To simplify
the notation, the feature embeddings of all nodes and edges are denoted as x and y, respectively.
The obstacle configuration is denoted as O ∈ R|o|×2n, where |o| represents the variable number
of obstacles, n denotes the workspace dimension. In the t-th iteration of obstacle encoding, the
interactions between the node, edge, and obstacle features are encoded as follows,

a(t)x = x(t) +GLU
(
Att(f

(t)
Kx

(O), f
(t)
Qx

(x(t)), f
(t)
Vx

(O))
)
,

x(t+1) = LN(a(t)x + f (t)
ax

(a(t)x )),with a(t)x = LN(a(t)x ),
(1)

a(t)y = y(t) +GLU
(
Att(f

(t)
Ky

(O), f
(t)
Qy

(y(t)), f
(t)
Vy

(O))
)
,

y(t+1) = LN(a(t)y + f (t)
ay

(a(t)y )),with a(t)y = LN(a(t)y )
(2)

where LN refers to layer normalization, fKx , fQx , fVx , fax , fKy , fQy , fVy , fay represent different
MLPs layers. The Gated Linear Unit (GLU) is defined as GLU(A) = σ(WaA+ ba)⊙ (WhA+ bh),
Wa, Wh are learnable weight matrices, ba, bh are bias vectors. Att(K,Q, V ) denotes the weighted
results of self-scores and cross-scores through the gating mechanism. For the obstacle encoding of
nodes, the attention mechanism can be computed as follows,

Att(K,Q, V ) = softmax
(
[QnK

T
o , QnK

T
n ]√

dk

)
⊙ [Vn, Vo] (3)

where the ⊙ denotes the element-wise product, [Qn,Kn, Vn], [Qo,Ko, Vo] represent the keys, queries,
and values for the nodes and obstacles, respectively. The obstacle encoding of edges follows a similar
process.

Collision Probability Prediction. Subsequently, the information of the graph and obstacles is
encoded into a joint embedding vector uij for the feature embedding of each edge eij . After
T iterations of obstacle encoding, uij is represented as uij = (x

(T )
i , x

(T )
j , x

(T )
i − x

(T )
j , y

(T )
ij ).

The collision probability pij for each edge eij is computed through a three-layer MLP fp, i.e.,
pij = fp(uij).

Learning Procedure. Each training instance {G, Cobs}(i) consists of a graph G = (V, E) sampled
within the configuration space and a set of obstacles Cobs, where V represents all the sampled nodes,
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E represents the edges constructed based on K-NN, and vs, vg ∈ V . To optimize the model NS

for predicting the collision probability of each edge, a BCE loss is employed to minimize the gap
between the predicted probability vector and the ground-truth labels. The loss function is defined as:

LNS
= −(p̃ij logpij) + (1− p̃ij)(log(1− pij)) (4)

where p̃ij is determined by the Dijkstra algorithm, which labels each edge as 1 if no collision occurs
and 0 if a collision is detected.

4.3 Global Alignment Heuristic

In the second stage, the Global Alignment Heuristic incorporates spectral features to capture global
topological constraints, enriching node representations. Furthermore, we propose a dual-channel
collaborative learning strategy, called Alignment Dual-Flow Learning (A2FL). This strategy allows
the complete graph to provide shared semantic representations to the weakly connected graph, while
the weakly connected graph offers structural feedback to refine representations in the complete graph,
thus improving heuristic estimation in weakly connected graphs. The network architecture of NH is
shown in Fig. 3.

4.3.1 Spatial-Spectral Feature Encoding

Traditional node and edge feature embeddings rely on local features, limiting the ability to capture
the global topological structure. To overcome this limitation, we introduce spectral features derived
from the graph Laplacian matrix to capture the global topological characteristics. These features are
then integrated into the node embedding, enhancing the model’s graph representation capability.

Spatial Feature Encoding. Given the safe RGG′ G′ = (V ′, E ′) and the goal vg as input, the nodes
and edges of the G′ are similarly encoded into a latent space. Specifically, the feature embedding of
the robot state xi is computed by incorporating the difference and the L2 distance to the goal state xg ,
i.e., qi = f ′

x(xi, xg, xi − xg, ∥xi − xg∥22), and the feature embedding of l-th edge eij is defined as
rij = f ′

y(xi, xj , xj − xi), where f ′
x and f ′

y are two different two-layer MLPs.

Spectral Feature Encoding. To enhance the node feature representation, we extract spectral features
using the Graph Fourier Transform (GFT) to obtain filters through the eigendecomposition of the
Laplacian matrix. The Laplacian matrix is defined as L̂ = I−Â = UΛUT , where Â is the normalized
adjacency matrix, I is the identity matrix, U is the matrix of eigenvectors, and Λ is the diagonal
matrix of eigenvalues. Subsequently, node features recursively propagate through the Laplacian
matrix L̂. The spectral feature of each node vi after K-order propagation is computed as follows,

hi =

K∑
k=0

Pk(L̂)xiW
(k) + SWs (5)

where Pk(L̂) denotes the k-th order polynomial expansion of the Laplacian matrix, S represents
another feature subspace generated by the principal components of the structure matrix, and learnable
weights W (k) and Ws enable flexible re-weighting of each feature subspace.

4.3.2 Multi-scale Message Passing

The spectral feature is concatenated with the spatial feature into an embedding vector zi = (qi, hi).
The node and edge embeddings are then iteratively updated by aggregating the local information of
each node from its neighbors N (vi) = {vj |eij ∈ E ′},

a
(l)
i = max(

{
fa(z

(l)
i , z

(l)
j , z

(l)
j − z

(l)
i , r

(l)
ij )|vj ∈ N (vi)

}
),

z(l+1) = fz(z
(l)
i , a

(l)
i ), ∀vi ∈ V ′

r
(l)
ij = max(r

(l)
ij , fr(z

(l)
i , z

(l)
j , z

(l)
i − z

(l)
j )), ∀eij ∈ E ′

(6)

where fa, fz , and fr are three different two-layer MLPs. After L iterations, the heuristic value of
node vi is computed as Hi = fH(z

(L)
i ), where fH is a three-layer MLP.
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4.3.3 Alignment Dual-Flow Learning

To enhance the heuristic estimation capability of NH , we introduce the Alignment Dual-Flow
Learning (A2FL) strategy to train NH , as illustrated in Fig. 4. The original channel provides global
knowledge to iteratively refine heuristic learning in the weak channel, while sparse connections in the
weak channel also influence updates in the original channel. Subsequently, NH is jointly trained with
the A* module end-to-end to optimize heuristic estimation.
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Figure 4: The Alignment Dual-Flow Learning(A2FL) Process.

Given a training problem instance {G,G′, vs, vg, c̃}(i), where G′ is the collision-free RGG processed
by an oracle planner and the binary vector c̃ represents nodes of the oracle path. The training loss for
each channel is calculated as the L1 distance between the closed list vector obtained from the A* and
the oracle planner, denoted as follows:

LW = ∥c̃− c′∥1 /|V
′|,V ′ ⊆ G′

LO = ∥c̃− c∥1 /|V|,V ⊆ G.
(7)

where the binary vectors c and c′ mark the nodes in the found path based on the original graph G and
the weakly connected graph G′, respectively. The loss penalizes excessively explored nodes, guiding
the search toward the optimal path.

To ensure semantic consistency between the two channels, an alignment loss is introduced to align
the latent embeddings Z = fn(z) and Z ′ = f ′

n(z
′) derived from node features z, z′ of the two

channels, where fn and f ′
n are two separate MLPs. The alignment loss LA is constructed by using

positive contrastive difference (the similarity of node features across the two channels) and negative
contrastive difference (non-diagonal features within and between channels).

LA = − 1

2|V|

|V|∑
i=1

(
log

f(Zi, Z
′
i)∑

j ̸=i f(Zi, Z ′
j)

+ log
f(Zi, Z

′
i)∑

j ̸=i f(Zj , Z ′
i)

)
(8)

where f(a, b) = exp(cos(a, b)), cos(a, b) is the cosine similarity function. The final objective
function is given by LNH

= LW + LO + γLA, γ is used to adjust the magnitude of different losses.

5 Experiments

5.1 General Setting

Dataset. The effectiveness of the proposed method is validated across six types of motion planning
tasks with the following environment settings: (i) Stick3: a 3-degree-of-freedom (DoF) stick robot
operating in a 2D workspace [10]. (ii) Link8: an 8-DoF link robot in a 2D workspace, sharing the
same maze environments as Stick3. (iii) Ur5: a 6-DoF UR5 robot operating in a 3D workspace. (iv)
Kuka13: a 13-DoF Kuka robotic arm in a 3D workspace. (v) Kuka2Arms: a dual 7-DoF Kuka robotic
arm system in a 3D workspace. (vi) Kuka3Arms: three 7-DoF Kuka robotic arms in a 3D workspace.
The Ur5-Kuka2Arms environment is referenced from [16]. Among these environments, Stick3
and Link8 are maze-planning tasks, while the others involve robotic arm manipulation. These two
categories represent classic motion planning scenarios, effectively simulating real-world challenges
such as obstacle avoidance, path selection, and precise maneuvering.
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Experimental Setting. For each environment, a training data set of 2000 different planning problems
is constructed to train the Perceptive Segment Selector NS and the Global Alignment Heuristic
NH separately. Specifically, each problem instance {G, Cobs}(i) consists of the randomly generated
RGG and obstacles for NS . For NH , each problem instance {G,G′, vs, vg, c̃}(i) consists of the start
and goal vs, vg, sampled G, collision-free G′, and the optimal path c̃ computed using Dijkstra [4].
Additionally, 500 problem instances are used as a validation data set, where weights of the NH with
the lowest path cost are retained. After training, an end-to-end evaluation is performed on 1,000 test
problems. The proposed method is implemented using PyTorch and executed in an environment
equipped with NVIDIA RTX 4070 GPUs. Following GraphMP’s parameter settings, the NS iterates
obstacle encoding three times, with an output dimension of 64. The NH employs a message-passing
neural network (MPNN) with five iterations and an output dimension of 32. The Adam optimizer
[45] is used for training, with 400 epochs, a learning rate of 0.001, and a batch size of 8.

Baselines. Seven high-performing baseline planners are selected for comparison to evaluate the
performance of NeuroMP comprehensively. These include three classical planners: RRT* [8],
BIT* [32], and LazySP [33]; a CNN-based planner: NEXT [10]; two GNN-based planners: GNN-
Explorer [16] and GraphMP [9]; and a brain-inspired GNN-based planner: BrainyMP [19], which
represents the current state of the art (SOTA). Additionally, GNN-Smoother [16] is employed as a
post-processing module for path optimization.

Evaluation Matrices. To comprehensively assess the performance of different methods, we select the
following evaluation metrics. Specifically, success rate (SR) represents the proportion of successfully
planned collision-free paths, indicating the model’s reliability. Collision check (CK) denotes the
average number of collision checks across test problems, and planning time (PT) measures the total
execution time for solving 1,000 test problems. These two metrics assess planning efficiency. Path
cost (PC) represents the mean Euclidean length of successfully planned paths, reflecting path quality.
Path cost with penalty (PCP) introduces a large penalty for failed cases to ensure a fair comparison
across different methods, which is necessary as planners with low success rates typically succeed
only in simple tasks with lower costs while failing in more complex tasks that require higher costs.

5.2 Overall Performance

Table 1 compares the performance of our method with the baselines across six datasets. Our method
achieves the optimal or near-optimal success rate, demonstrating competitiveness with SOTA planners.
NeuroMP significantly reduces collision checks compared to GraphMP and BrainyMP across all
environments, requiring only 71%, 61%, 57%, 61%, 66%, and 68% of the collision checks performed
by GraphMP. This reduction highlights the effectiveness of its edge selection and heuristic estimation.
However, a commonly raised issue with learning-based planners is the time overhead associated with
the frequent use of large neural network models when solving problems, such as NEXT. However,
GNN-based planning methods substantially reduce planning time by searching on the sampled RGG.
Compared to the SOTA planners, NeuroMP achieves acceleration across different environments.
Classical planners such as RRT*, due to their simplistic design, require minimal planning time
but suffer from frequent failures. Another advantage of NeuroMP is its low path cost, which finds
high-quality paths across different environments and achieves the lowest path cost in Kuka13 and
Kuka2Arms. Although RRT* and NEXT occasionally achieve lower path costs in some environments,
their low success rates result in significant penalty costs due to frequent failures. In contrast, the
superior success rate of NeuroMP results in very low failure penalties. A comprehensive analysis of
the five key evaluation metrics can be found in the Appendix B.

Collision Prediction Performance. Table 2 compares the collision probability prediction of the
NS in NeuroMP and the Neural Collision Checker in GraphMP in various environments, treated as
a binary classification task. Evaluation metrics include accuracy, recall, F1 score, and confidence.
Higher accuracy, recall, and F1 scores indicate improved collision detection capabilities, while
confidence reflects the model’s certainty in its predictions. Experimental results demonstrate that
NS outperforms Neural Collision Checker across all metrics, with particular improvements in high-
dimensional environments. This suggests that NeuroMP achieves superior collision detection by
effectively reducing false positives and negatives, thereby enhancing the safety and efficiency of
motion planning. Moreover, its higher confidence scores indicate more reliable predictions, ensuring
stable collision detection support for motion planning.
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Table 1: Comparison of the planning performance of all methods across all environments.

Methods
Stick3 Link8 Ur5

SR↑ CK↓ PC↓ PCP↓ PT↓ SR↑ CK↓ PC↓ PCP↓ PT↓ SR↑ CK↓ PC↓ PCP↓ PT↓
RRT* 0.62 10106.18 1.36 6.38 235.55 0.41 9332.73 7.95 26.86 1254.93 0.39 3141.19 4.06 29.39 206.58
BIT* 0.97 11645.68 1.70 2.13 364.18 0.93 22992.21 14.09 15.98 1350.51 1.00 5080.90 11.20 11.35 291.74

LazySP 0.98 7719.22 1.82 2.17 891.92 0.88 10387.94 15.81 24.15 3147.23 0.99 2699.82 12.06 12.58 482.94
NEXT 0.96 6380.69 1.22 1.77 586.63 0.41 13022.17 7.92 26.95 19494.83 0.37 6512.62 3.65 28.68 5232.09

GNN-Explorer 0.98 8805.60 2.02 2.23 687.95 0.91 10824.59 19.53 21.29 1872.64 0.98 3184.29 12.51 12.86 585.67
GraphMP 0.97 7485.33 1.35 1.76 491.02 0.89 13222.98 10.59 13.80 1569.65 0.96 2706.42 8.78 10.05 266.55
BrainyMP 0.98 6900.51 1.39 1.68 339.63 0.90 9887.97 9.58 12.10 964.85 0.99 1639.40 7.39 7.76 160.71
NeuroMP 0.98 5327.99 1.32 1.62 248.68 0.93 8040.13 9.43 11.24 818.73 0.99 1547.76 7.37 7.70 158.24

GNN-Explorer w/ Smoother 0.98 10447.45 1.74 1.90 730.69 0.91 14987.09 18.73 19.70 2083.88 0.98 5563.40 8.94 9.22 789.72
GraphMP w/ Smoother 0.97 8232.43 1.27 1.69 514.19 0.89 14335.02 10.45 13.64 1623.25 0.96 3460.92 7.60 9.05 302.87
BrainyMP w/ Smoother 0.98 7603.48 1.30 1.47 362.89 0.90 10866.84 9.20 11.18 1012.61 0.99 1933.59 7.10 7.47 186.51
NeuroMP w/ Smoother 0.98 5967.74 1.25 1.45 269.26 0.93 8900.30 9.01 10.44 852.25 0.99 1861.49 7.08 7.40 185.83

Methods
Kuka13 Kuka2Arms Kuka3Arms

SR↑ CK↓ PC↓ PCP↓ PT↓ SR↑ CK↓ PC↓ PCP↓ PT↓ SR↑ CK↓ PC↓ PCP↓ PT↓
RRT* 0.68 2981.80 9.15 30.47 269.91 0.69 2810.07 9.69 29.87 203.75 0.25 2986.57 11.38 40.23 666.92
BIT* 1.00 2223.43 12.07 12.22 209.14 1.00 1559.93 12.05 12.05 108.99 0.57 7947.42 17.79 31.80 1056.73

LazySP 0.99 435.29 16.78 16.98 96.30 0.99 576.25 16.12 16.52 157.96 0.56 2636.75 21.19 44.63 844.80
NEXT 0.61 4868.52 10.35 48.58 3830.19 0.66 4637.57 10.26 48.74 3719.14 0.38 2141.68 15.39 37.25 4383.60

GNN-Explorer 0.99 741.34 15.75 15.89 104.35 0.99 574.80 16.60 16.94 110.91 0.57 2880.16 20.62 33.40 764.84
GraphMP 0.99 645.51 11.42 12.68 124.71 0.98 581.96 11.19 11.77 88.94 0.60 1875.29 16.37 25.68 412.06
BrainyMP 1.00 406.77 9.40 9.49 74.83 0.99 405.82 11.43 11.69 62.94 0.64 1575.30 16.13 24.75 406.92
NeuroMP 1.00 392.33 9.32 9.40 69.53 0.99 385.06 10.33 10.53 62.81 0.64 1266.69 16.04 24.66 314.64

GNN-Explorer w/ Smoother 0.99 930.81 9.98 10.03 143.27 0.99 804.58 9.86 9.92 149.48 0.57 3039.68 11.85 21.92 784.37
GraphMP w/ Smoother 0.99 700.22 9.22 9.60 138.07 0.98 646.40 9.57 10.00 99.56 0.60 1979.20 10.73 20.22 469.52
BrainyMP w/ Smoother 1.00 451.60 8.60 8.68 85.77 0.99 472.40 9.50 9.79 71.35 0.64 1671.10 11.06 19.70 422.95
NeuroMP w/ Smoother 1.00 435.26 8.57 8.65 79.31 0.99 433.58 9.15 9.37 70.98 0.64 1362.04 10.98 19.61 319.92

Table 2: Comparison of collision probability prediction between Neural Collision Checker and
Perceptive Segment Selector in different environments.

Methods Stick3 Link8 Ur5
Accuracy↑ Recall↑ F1↑ Confidence↑ Accuracy↑ Recall↑ F1↑ Confidence↑ Accuracy↑ Recall↑ F1↑ Confidence↑

Neural Collision Checker 97.47 98.39 97.92 97.71 95.40 95.44 95.42 95.97 96.77 98.02 97.39 95.88
Perceptive Segment Selector 98.62 99.32 98.97 98.74 96.93 97.38 97.16 97.30 97.49 95.58 96.53 98.02

Methods Kuka13 Kuka2Arms Kuka3Arms
Accuracy↑ Recall↑ F1↑ Confidence↑ Accuracy↑ Recall↑ F1↑ Confidence↑ Accuracy↑ Recall↑ F1↑ Confidence↑

Neural Collision Checker 91.09 91.26 91.17 85.44 91.97 94.92 93.42 84.20 89.66 86.54 88.08 90.81
Perceptive Segment Selector 92.89 94.23 93.55 94.08 93.88 95.67 94.76 95.09 91.11 88.39 89.73 92.24

5.3 Ablation Studies

We further discuss the effectiveness of five key components in NeuroMP to validate design choices,
with experimental results presented in Table 3.

Table 3: Comparison of different components on NeuroMP performance.

Methods
Stick3 Link8 Ur5

SR↑ CK↓ PC↓ PT↓ SR↑ CK↓ PC↓ PT↓ SR↑ CK↓ PC↓ PT↓
w/o Selective Sampling 0.96 5499.89 1.36 251.48 0.91 8874.08 11.01 863.53 0.97 1758.08 8.42 187.96

w/o Perceptive Segment Selector 0.97 5386.01 1.32 280.86 0.89 8642.14 10.81 844.62 0.96 1636.90 7.35 188.03
w/o Spectral Feature 0.97 5537.49 1.37 234.20 0.90 8943.50 11.04 810.24 0.96 1653.71 7.41 187.68

w/o A2FL 0.97 5420.61 1.37 558.58 0.91 8425.45 9.59 819.29 0.98 1652.60 7.74 172.14
w/o Shortcut Retrieval 0.98 4571.21 1.36 233.70 0.93 7928.49 9.92 813.78 0.99 1475.69 7.61 155.10

NeuroMP 0.98 5327.99 1.32 248.68 0.93 8040.13 9.43 818.73 0.99 1547.76 7.37 158.24

Methods
Kuka13 Kuka2Arms Kuka3Arms

SR↑ CK↓ PC↓ PT↓ SR↑ CK↓ PC↓ PT↓ SR↑ CK↓ PC↓ PT↓
w/o Selective Sampling 0.98 419.92 10.90 94.55 0.98 388.11 10.96 75.84 0.63 1267.21 16.11 320.54

w/o Perceptive Segment Selector 0.98 415.80 9.43 93.13 0.98 409.83 10.43 82.09 0.62 1267.89 16.49 324.66
w/o Spectral Feature 0.98 412.64 9.65 83.77 0.98 389.99 10.74 71.23 0.63 1265.51 16.47 316.01

w/o A2FL 0.98 410.46 9.58 85.87 0.99 387.77 10.94 77.29 0.63 1272.37 16.58 316.36
w/o Shortcut Retrieval 1.00 374.77 9.85 68.07 0.99 366.70 11.05 61.65 0.64 1256.16 16.88 313.67

NeuroMP 1.00 392.33 9.32 69.53 0.99 385.06 10.33 62.81 0.64 1266.69 16.04 314.64

Selective Sampling. Traditional uniform sampling during RGG construction may introduce redundant
nodes, increasing search complexity and reducing planning efficiency. Selective sampling addresses
this by prioritizing samples in high-value regions, reducing unnecessary exploration. Experimental
results show that removing selective sampling leads to substantial increases in collision checks and
planning time, indicating slower convergence and higher search overhead. In addition, the observed
increase in the path cost further confirms its contribution to improving the path quality. Overall,
selective sampling enhances planning efficiency and solution quality while maintaining feasibility.
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Perceptive Segment Selector NS . The module NS predicts edge-wise collision probabilities within
the RGG and removes potentially dangerous edges to generate a safer RGG′. This process significantly
reduces the search space, improving planning efficiency. Compared to the Neural Collision Checker
in GraphMP, the NS offers more accurate filtering, mitigating invalid path exploration and enhancing
search efficiency. Ablation studies show that replacing NS with Neural Collision Checker increases
collision checks and planning time, suggesting that Neural Collision Checker retains many unsafe
edges, thereby inflating computational overhead. In contrast, the NS enables more reliable graph
pruning, improving downstream search stability and performance.

Global Alignment Heuristic. We analyze the effect of this module by incrementally introducing its
two core components.

(i) Introducing Spectral Features. Traditional GNNs rely on local neighborhood information, which
can compromise topological consistency in weakly connected graphs, hindering global path coherence.
The module NH addresses this by incorporating spectral features to enforce global topological
constraints and enhance structural representation. Ablation studies show that removing spectral
features results in increased path costs, higher collision checks, and reduced success rates in several
environments. These findings demonstrate the importance of spectral features in preserving path
continuity, reducing search overhead, and improving planning reliability.

(ii) Alignment Dual-Flow Learning (A2FL). GNN-based methods are often limited by sparse connec-
tivity, making it challenging for some critical nodes to obtain effective heuristic values. To address
this, A2FL incorporates a completed channel to assist the weak channel during training, enhancing
information propagation in sparse graphs. Consequently, the NH can provide more accurate heuristic
estimations in weakly connected graphs. Experimental results indicate that NeuroMP trained without
A2FL exhibits increased collision checks, higher path curvature, and longer planning times across
various environments. These findings demonstrate that A2FL improves the estimation capability of
NH , reducing redundant exploration and improving path quality.

Shortcut Retrieval. To reduce unnecessary detours, NeuroMP employs the Shortcut Retrieval step
to remove redundant nodes from the searched path. Ablation experiments indicate that although this
step slightly increases collision checks and planning time, it significantly reduces path redundancy
and enhances path quality. The time complexity of this step is O(T 2), where T represents the number
of nodes in the searched path. Since the A* block typically generates short paths, this step effectively
reduces path costs with minimal computational overhead.

5.4 Parameters Discussion

We empirically set the range of the maximum sample number, k-values, and the bias sampling
probability β and collision probability threshold α to [200, 700], [20, 30], [0.2, 0.4], and [0, 0.1],
respectively. A more detailed results and analysis of these parameter settings are in Appendix C.

5.5 Further Performance Comparison of Weakly Connected Graphs

In weakly connected graphs with a collision threshold of 0.9, we present the retained edge ratio
and planning performance of NeuroMP, BrainyMP and GraphMP. Results indicate that NeuroMP
demonstrates enhanced stability in sparse graphs and improves planning performance. Detailed
results and analyses are provided in the Appendix D.

6 Conclusion

Inspired by the two-stage Perception-Decision model, this paper presents NeuroMP, a two-stage
brain-inspired motion planning framework to enhance planning performance in high-dimensional
spaces. Across various motion planning tasks, NeuroMP demonstrates superior planning efficiency
and path quality, highlighting the potential of brain-inspired methods to improve robotic decision
making. Future work will focus on extending the model to dynamic, large-scale, and real-world
scenarios while further enhancing computational efficiency.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our abstract and introduction accurately reflect the scope and contributions
of this work, namely we propose a brain-inspired motion planning framework to address
limitations in existing GNN-based planners.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of NeuroMP in Appendix H.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All necessary information for reproducing the experimental results is provided
in the paper, including detailed descriptions of the datasets, baseline methods, evaluation
metrics, and experimental settings, ensuring the reproducibility of the research.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We provide detailed algorithmic descriptions, mathematical formulations,
hyperparameters, and implementation details suficient for reproduction. The code will not
be publicly released due to commercial considerations.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer:[Yes]

Justification: The training and testing settings essential for understanding and reproducing
the reported results are detailed in Section 5.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Evaluation of planning tasks is also expensive to run. Informal experiments
show that evaluation with different seeds offers a minor variance in performance.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provide sufficient information on the computer resources in Section
5.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research is conducted in compliance with the NeurIPS Code of Ethics.
Our experiments do not involve human subjects and potential harmful consequences for
society.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:[Yes]

Justification: The paper discusses potential positive societal impacts, such as applications in
robotic manipulation, autonomous navigation, and so on.
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Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We explicitly cite the original paper of existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This work does not involve LLMs as any important, original, or non-standard
components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Methodology

A.1 Differentiable A*

Differentiable A* [18] redefines the traditional A* algorithm [3], enabling end-to-end differentiable
training. The open list and closed list are represented by binary vectors o ∈ [0, 1]|V| and c ∈ [0, 1]|V|,
respectively. The candidate node v∗ with the lowest path cost is then selected based on the following
calculations.

v∗ = Imax(
exp(−(G+H)/λ)⊙ o

⟨exp(−(G+H)/λ),o⟩
), (9)

o = o− v∗, c = c− v∗, (10)

where G is the cumulative cost, H is the heuristic value estimated by the neural network, and λ is a
preset parameter. I is the function that returns a one-hot vector, and the element-wise product ⊙ is
used to mask the nodes.

During the node expansion process, the neighbors of candidate nodes can be computed as vnbr =
Av∗ ⊙ (1− c), where vnbr is a binary vector, with the entries corresponding to neighboring nodes
marked as 1, A ∈ [0, 1]|V|×|V| is the adjacency matrix, and 1 is a vector of all ones. Subsequently,
G and o are iteratively updated as the node expansion process progresses,

G′ = G⊙ v∗ +Wv∗, (11)

Ψ = ((1− o) + o⊙ (G > G′))⊙ vnbr,

G = G⊙ (1−Ψ) +G′ ⊙Ψ,
(12)

o = o+ (1− o)vnbr, (13)

where G′denotes the accumulated cost of the nodes along the path, including the currently selected
nodes, W ∈ R|V|×|V| is the weighted adjacency matrix, and Wv∗ computes the distance from v∗to
each of its neighboring vertices. The accumulated costs of the neighboring nodes are then updated
according to Eq.12. Subsequently, Ois expanded by incorporating the newly explored neighbors.

A.2 Optimization in Online Planning

When NeuroMP performs online planning for a new problem, the trained modules NS , NH , and
A* are integrated to perform the graph search. To further improve path quality and efficiency, two
optimization steps are incorporated during the inference procedure of online planning.

Selective Sampling. In traditional graph construction, uniform sampling methods often ignore the
environmental structure, leading to purposeless sampling. To address this, we employ a selective sam-
pling approach, where a hyperparameter β ∈ [0, 1] controls the balance between biased and uniform
sampling, optimizing exploration efficiency while preserving probabilistic integrity. Specifically, the
robot samples nodes from a guiding region with probability β, and uniformly samples from the entire
configuration space with probability 1− β. The guiding region is the circular area with the start and
goal as its diameter, reducing redundant sampling.

Shortcut Retrieval. Although the A* algorithm completes the pathfinding, the resulting path may
have detours. Shortcut retrieval [9] is applied to improve path quality. A check window is defined
to identify collision-free shortcut edges. The window length is set to 2. If found, these two nodes
are directly connected, and then redundant intermediate nodes are removed, eliminating unnecessary
detours.

B Detailed Overall Performance Analysis

Table 1 presents a comparative result of NeuroMP and other baselines across six environments. Across
all environments, the maximum sampling number is limited to 1000 for all methods, except for RRT*
and NEXT in the Link8 environment, where it is increased to 2000 due to their low success rates
(approximately 0.2). By leveraging selective sampling, accurate collision prediction, and optimized
A* search, NeuroMP achieves a high success rate while significantly reducing collision checks and
planning time, maintaining competitive path quality.
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Success Rate. NeuroMP consistently achieves optimal or near-optimal success rates across all
environments, demonstrating strong competitiveness with state-of-the-art (SOTA) planners. In
contrast, RRT* exhibits low success rates, reaching only 0.41 and 0.39 in the Link8 and Ur5
environments, highlighting the instability of classical planners in high-dimensional settings. BIT*
and LazySP, benefiting from manually designed heuristics, achieve high success rates in most
scenarios. While the CNN-based planner NEXT performs adequately in simpler 3D environments,
its success rate drops sharply as dimensionality increases, attaining only 0.41 and 0.37 in Link8 and
Ur5, respectively. By comparison, GNN-based planners exhibit consistently superior success rates
across all environments.

Collision Check. The collision check is a critical factor influencing planning time and computational
efficiency, with fewer checks indicating more optimized search spaces. NeuroMP achieves signifi-
cantly fewer collision checks than SOTA methods across all environments. In addition, NeuroMP
significantly reduces collision checks compared to GraphMP and GNN-Explorer in all environments,
requiring only 71%, 61%, 57%, 61%, 66%, and 68% of the collision checks performed by GraphMP.
This reduction highlights the effectiveness of its precise edge selection and efficient heuristic search.
While LazySP benefits from a lazy collision check strategy, NeuroMP achieves further improvements,
reducing collision checks to 69%, 77%, 57%, 90%, 67%, and 48% of those by LazySP. Even in
the Kuka2Arms and Kuka3Arms environments, NeuroMP maintains low collision check counts of
385.06 and 1266.69, respectively, outperforming all baselines. Furthermore, although NEXT and
RRT* show lower path costs, their extremely low success rates indicate poor reliability, as they can
only solve relatively simple cases.

Planning Time. A common concern with learning-based methods is their high computational cost
due to frequent neural network evaluations, such as in NEXT. However, GNN-based planning methods
mitigate this issue by operating on sampled RGGs, substantially reducing planning time. Compared
to SOTA planners, NeuroMP achieves competitive or faster planning across environments. Although
classical planners like RRT* exhibit lower planning time due to their simplicity, they suffer from
low reliability. Compared to RRT*, NeuroMP achieves comparable planning time in Stick, while
providing 0.53×, 0.31×, 2.88×, 2.24×, and 1.12× speedups in the Link8-Kuka3Arms environments.

Path cost and Path Cost with Penalty. NeuroMP w/ Smoother achieves the lowest path cost from
the Kuka13 to the Kuka3Arms environment. Although RRT* and NEXT occasionally achieve lower
path costs in some environments, their low success rates result in significant penalty costs due to
frequent failures. The path cost with penalty confirms that NeuroMP maintains superior path quality
even under high-success-rate conditions. Furthermore, NeuroMP outperforms the SOTA planner
in environments with high obstruction density (Stick3) and high-dimensional spaces (Kuka3Arms),
highlighting its robustness in complex conditions.

C Parameters Discussion

C.1 Maximum Sampling Number

Fig. 5 illustrates the impact of varying maximum sampling numbers on NeuroMP’s performance. In
GNN-based planners, the number of sampled nodes directly influences graph density, connectivity,
and computational complexity. Specifically, increasing the number of sampled nodes results in a
denser graph, covering more feasible areas and reducing failures caused by insufficient sampling.
However, once the sampling density reaches the coverage threshold, additional nodes contribute less
to finding new paths, causing the success rate to plateau. Similarly, denser graphs may contain more
optimal paths, leading to a slight reduction in path cost. However, collision checks and planning time
increase significantly as more nodes and edges expand the search space, thereby increasing collision
checks and computational costs.

C.2 k Value

We assume sufficient sample points are available, with the maximum number of samples set within the
range [300, 700]. Fig. 6 illustrates the impact of varying k-values on NeuroMP’s performance. As the
k value increases, each node connects to more neighboring nodes, constructing a denser edge structure
that enhances overall graph connectivity, increasing the success rate. However, when the k-value
exceeds the actual connectivity requirement for the current environment, the success rate improvement
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Figure 5: Maximum sampling number. (a) Success rate, (b) Collision check, (c) Path cost, (d)
Planning time.

plateaus or slightly decreases. A denser edge structure also increases the likelihood of finding shorter
paths, which reduces path cost but slightly increases collision checks. The planning time initially
decreases, benefiting from improved heuristic search efficiency due to higher graph connectivity, but
excessive edges introduce redundancy, leading to longer computation times. Therefore, selecting an
appropriate k value based on environmental characteristics is essential. In our experimental setup, the
optimal threshold range is set to [20, 30].
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Figure 6: The k value of K-NN. (a) Success rate, (b) Collision check, (c) Path cost, (d) Planning time.

C.3 The Bias Sampling Probability β

Fig. 7 presents the performance of NeuroMP under different β values without applying shortcut
retrieval. The success rate initially increases and then decreases as β grows, since a higher sampling
density in the connection region between start and goal improves the likelihood of discovering
feasible paths. However, excessive concentration in this region reduces exploration diversity, making
it harder to circumvent dense obstacles, thus increasing failure cases. Collision checks generally
decline with increasing β, as samples in the connection region are more likely to form coherent
path segments, reducing redundant edge validation. Moreover, high-density sampling in this area
expedites the discovery of near-straight-line paths, potentially lowering path costs. Nonetheless,
overly concentrated nodes can lead to local detours around obstacles, increasing overall path cost.
Planning time also varies with environment characteristics: in low-obstacle settings (e.g., Kuka13),
concentrated sampling reduces RGG size and accelerates planning; in high-obstacle settings (e.g.,
Stick3), it may trigger more frequent backtracking in the A* search.
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Figure 7: Varying bias sampling probability β. (a) Success rate, (b) Collision check, (c) Path cost, (d)
Planning time.
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C.4 Collision Probability Threshold α

Fig. 8 illustrates NeuroMP’s performance under varying α values, with the maximum sampling
number set within [300, 700] and shortcut retrieval disabled. As α increases, more high-risk edges are
removed, reducing path interruptions during A* search and improving success rates. However, when
α > 0.5, excessive filtering degrades graph connectivity, severing critical connections and increasing
failure rates due to the inability to bypass dense obstacles. Without filtering, infeasible edges can
obstruct viable paths; conversely, over-filtering reduces the likelihood of finding collision-free paths.
Path cost rises with α as detours become more frequent, while planning time decreases due to
reduced traversed edges. These results indicate that α must balance safety (filtering risky edges) and
connectivity (preserving feasible paths), with optimal performance observed in the range [0.2, 0.4].
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Figure 8: Varying collision probability threshold α. (a) Success rate, (b) Collision check, (c) Path
cost, (d) Planning time.

D Further Performance Comparison of Weakly Connected Graphs

In weakly connected graphs with a collision threshold of 0.9, Table 4 presents the retained edge ratio
and planning performance of NeuroMP, BrainyMP, and GraphMP. When α = 0.9, most high-risk
edges are removed, allowing NeuroMP to surpass GraphMP in planning efficiency and path quality,
demonstrating a significant advantage in success rates. When selector performance is comparable,
NeuroMP produces more informative heuristics than BrainyMP, yielding significantly faster searches.
In more complex settings (e.g., Kuka13 and Kuka2Arms), NeuroMP’s selector more accurately
removes risky edges and demonstrates a significant advantage in success rates. In denser graphs (with
more retained edges), NeuroMP achieves slightly higher efficiency while still producing low-cost
paths. These results indicate that NeuroMP demonstrates enhanced stability in sparse graphs and
improves planning performance.

Table 4: Performance comparison between NeuroMP and GraphMP, BrainyMP with α = 0.9.

Methods
Stick3 Link8 Ur5

ratio SR↑ CK↓ PC↓ PCP↓ PT↓ ratio SR↑ CK↓ PC↓ PCP↓ PT↓ ratio SR↑ CK↓ PC↓ PCP↓ PT↓
GraphMP 0.68 0.96 7098.45 1.40 1.87 254.03 0.41 0.72 10365.27 9.93 17.00 946.73 0.22 0.83 2746.88 8.98 14.97 265.22
BrainyMP 0.69 0.96 7300.75 1.41 2.12 270.86 0.41 0.77 9886.37 8.85 14.86 930.23 0.22 0.90 2639.14 8.05 11.05 241.10
NeuroMP 0.63 0.97 6664.90 1.40 1.74 245.35 0.36 0.79 9275.09 10.07 15.36 879.28 0.24 0.93 2444.38 7.87 10.91 262.14

Methods
Kuka13 Kuka2Arms Kuka3Arms

ratio SR↑ CK↓ PC↓ PCP↓ PT↓ ratio SR↑ CK↓ PC↓ PCP↓ PT↓ ratio SR↑ CK↓ PC↓ PCP↓ PT↓
GraphMP 0.26 0.55 613.38 10.42 21.42 121.48 0.31 0.62 574.92 9.98 20.00 91.49 0.22 0.44 1571.26 15.67 28.66 333.52
BrainyMP 0.26 0.52 543.24 10.29 24.29 106.85 0.31 0.64 570.87 9.71 19.29 85.03 0.22 0.46 1571.19 16.47 29.21 358.79
NeuroMP 0.46 0.91 624.66 10.02 12.75 117.55 0.55 0.94 589.63 10.13 11.69 95.73 0.21 0.52 1568.66 15.90 27.61 314.44

E Discussion on Map Size and Obstacle Density

E.1 Different Map Sizes

Under fixed robot shape (e.g., point robot) and obstacle density, we evaluate the performance of
NeuroMP, BrainyMP, and GraphMP across various map sizes, as shown in Fig. 9, with the maximum
number of samples limited to 1000. As the map size increases, all methods exhibit reduced path
quality and planning efficiency, but the degradation is more gradual for NeuroMP. Specifically,
while overall success rates decline, NeuroMP sustains a higher success rate on the 50 × 50 map,
whereas GraphMP shows a marked drop, highlighting NeuroMP’s superior robustness in large-
scale environments. The increased map size introduces more nodes and edges, elevating collision
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checks and computational costs, thereby reducing search efficiency. Nevertheless, compared to
GraphMP and BrainyMP, NeuroMP performs more efficient path searches and substantially reduces
unnecessary collision checks by approximately 60% and 40% on the 50× 50 map. Although path
costs increase due to longer step sizes, NeuroMP consistently generates lower-cost paths. While it
exhibits faster planning on smaller maps, planning time increases notably in larger maps. Future
work will aim to further optimize computational efficiency in large-scale environments to enhance
practical applicability.
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Figure 9: Performance comparison of NeuroMP, BrainyMP and GraphMP under different map sizes
environments. (a) Success rate, (b) Collision check, (c) Path cost, (d) Planning time.

Additionally, Table 5 compares the collision prediction performance of Perceptive Segment Selector
NS in NeuroMP and Neural Collision Checker in GraphMP and BrainyMP across different map
sizes. The module NS consistently outperforms Neural Collision Checker, particularly on smaller
maps (from 15 to 30), with significantly higher accuracy, recall, F1 score, and confidence. Although
all methods experience a decline in prediction quality on larger maps, NeuroMP maintains clear
advantages. Moreover, NeuroMP achieves consistently higher confidence levels, indicating more
stable and reliable predictions, thereby enabling more accurate collision detection across varying
environmental scales.

Table 5: Comparison of collision probability prediction between Neural Collision Checker and
Perceptive Segment Selector in different map size environments.

Map Size Methods Accuracy↑ Recall↑ F1↑ Confidence↑

15
Neural Collision Checker 99.23 99.37 99.30 97.72

Perceptive Segment Selector 99.43 99.71 99.57 99.45

20
Neural Collision Checker 97.29 97.96 97.63 97.28

Perceptive Segment Selector 99.32 99.48 99.40 99.36

30
Neural Collision Checker 93.45 91.01 92.22 94.09

Perceptive Segment Selector 94.33 92.85 93.58 94.73

40
Neural Collision Checker 85.90 73.00 78.93 86.88

Perceptive Segment Selector 86.69 74.99 80.42 87.72

50
Neural Collision Checker 85.33 61.33 71.37 85.90

Perceptive Segment Selector 85.46 62.53 72.22 85.95

E.2 Varying Obstacle Densities

We construct three obstacle density levels in a 15× 15 maze environment based on point robots. The
obstacle densities for the easy, normal, and hard environments are set to 26%-36%, 36%-47%, and
47%-60%, respectively. Fig. 10 illustrates the performance of NeuroMP, BrainyMP, and GraphMP
under these varying densities, with the maximum number of samples limited to 1000. Although
success rates slightly decline as obstacle density increases, NeuroMP consistently achieves 100%,
99.95%, and 99.90% success rates in the respective scenarios. As complexity increases, all methods
require more collision checks and longer planning times. However, NeuroMP outperforms both
GraphMP and BrainyMP across all settings, requiring only about one-third the number of collision
checks compared to GraphMP. This improvement is attributed to the more accurate filtering of
high-risk edges by NeuroMP, which effectively reduces redundant checks. Moreover, while GraphMP
exhibits a notable increase in path cost under high-density conditions, NeuroMP maintains more
stable and reliable path quality.
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Figure 10: Performance comparison of NeuroMP, BrainyMP and GraphMP under varying obstacle
densities. (a) Success rate, (b) Collision check, (c) Path cost, (d) Planning time.

Furthermore, Table 6 compares the module NS and Neural Collision Checker in collision prediction
across varying obstacle densities. The module NS consistently outperforms Neural Collision Checker
in accuracy and confidence across all difficulty levels, demonstrating more stable and reliable
predictions that enhance collision checking in complex environments.

Table 6: Comparison of collision probability prediction between Neural Collision Checker and
Perceptive Segment Selector in environments with different obstacle densities.

Obstacle Density Methods Accuracy↑ Recall↑ F1↑ Confidence↑

Easy
Neural Collision Checker 99.37 99.59 99.48 99.22

Perceptive Segment Selector 99.74 99.87 99.80 99.77

Normal
Neural Collision Checker 99.05 99.19 99.12 97.13

Perceptive Segment Selector 99.30 99.61 99.46 99.38

Hard
Neural Collision Checker 99.02 98.20 99.21 99.20

Perceptive Segment Selector 99.57 99.73 99.65 99.60

F Discussion of the U-shaped environment

The U-shaped environment is a canonical challenge in motion planning, so U-shape tests were added
to further validate our method. In a 15×15 2D workspace, U-shaped obstacles are generated to
simulate narrow passages between shelves. The starting point is positioned near the bottom inside the
U-shaped obstacle, while the goal is placed outside the U-shaped obstacle. The tests are conducted
with stick and link8 robots on 500 U-shaped map instances. The results for both robots in the U-
shaped environment are shown in the Table 7. Our method shows significant advantages in reasoning
efficiency, success rate, and path quality.

Table 7: Comparison of all methods in the U-shaped environment.

Methods
Stick3 Link8

SR↑ CK↓ PC↓ PCP↓ PT↓ SR↑ CK↓ PC↓ PCP↓ PT↓
RRT* 0.68 7290.00 1.44 6.81 84.34 0.68 6187.61 6.21 16.75 450.11
BIT* 1.00 4704.71 1.62 1.62 60.04 0.95 13545.35 10.31 12.29 582.36

LazySP 0.99 1856.48 1.73 1.78 31.61 0.92 6829.40 11.36 13.36 927.80
NEXT 0.99 2051.83 1.42 1.68 115.14 0.63 9656.06 7.65 19.36 4838.95

GNN-Explorer 1.00 1419.12 2.19 1.78 33.77 0.93 7926.33 12.76 14.10 681.33
GraphMP 0.99 1791.17 1.68 1.77 40.08 0.93 8085.31 8.23 9.94 556.76
BrainyMP 0.99 1276.75 1.48 1.60 27.03 0.95 6923.27 8.03 9.49 367.59
NeuroMP 0.99 1132.01 1.46 1.55 24.72 0.95 5848.10 7.71 8.90 287.44

G Case Study in a Real-World Setting

Real-world scenarios or simulations that mimic real-world conditions can further validate the effec-
tiveness of our method. We select the City/Street Map (CSM) Dataset as the real-world scenario
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for validation. Sturtevant et al.[46] used drones to collect 30 real city maps with marked obstacles
represented as binary images. Based on this, we randomly generate 2000 training maps and 1000
test instances from the 30 maps. For each map, the start and goal are randomly generated in the free
space. These maps present significantly higher complexity than synthetic environments: irregular
obstacle shapes, narrow alleyways, and dense urban structures that challenge traditional planners.

Table 8: Comparison of the planning performance of all methods on the CSM dataset.
Methods SR↑ CK↓ PC↓ PCP↓ PT↓

RRT* 0.82 1609.79 0.97 2.61 112.99
BIT* 0.86 1262.28 0.94 2.24 363.39

LazySP 0.85 662.99 0.98 2.31 206.71
NEXT 0.79 6552.28 0.90 2.78 2590.84

GNN-Explorer 0.85 805.70 1.04 2.38 362.55
GraphMP 0.86 1045.66 0.90 2.06 151.27
BrainyMP 0.87 692.84 0.90 1.94 125.39
NeuroMP 0.88 526.42 0.88 1.86 102.78

GNN-Explorer w/ Smoother 0.85 951.39 0.95 2.00 373.34
GraphMP w/ Smoother 0.86 1064.91 0.89 1.91 153.96
BrainyMP w/ Smoother 0.87 714.79 0.89 1.80 127.77
NeuroMP w/ Smoother 0.88 545.07 0.87 1.74 105.02

The results on the CSM dataset are demonstrated in Table 8. In real-world environments with
fine-grained and densely distributed obstacles, robots typically require more collision checks and
longer planning times. NeuroMP achieves the highest success rate (0.88) while requiring 67%
fewer collision checks than RRT* and 87% faster planning than BIT*. Due to encoding the entire
workspace, NEXT incurs substantially higher computational overhead compared to other methods. In
contrast, our method not only achieves competitive success rates but also the fewest collision checks
and the shortest planning time across all baselines. These results demonstrate superior real-world
generalization of GNN-based approaches, particularly ours, offering excellent stability in complex
urban environments.

H Limitations

Despite its strong performance, NeuroMP has the following limitations.

Sensitivity to Perception Quality. The Perceptive Segment Selector in NeuroMP relies on identifying
and reasoning about key features of the environment for accurate collision prediction. In scenarios
with significant perception noise or blurred obstacle boundaries, errors in perception may lead to
inaccurate graph construction, thereby affecting the overall performance of path planning.

Lack of Asymptotical Optimality Guarantees. Searching on an RGG cannot guarantee inclusion of
the true optimal path, thereby limiting theoretical optimality. Although our selective sampling strategy
mitigates this issue to some degree, it cannot ensure optimal-path coverage. In the future, we can
(i) design enhanced graph-construction strategies that leverage prior knowledge to guide sampling,
reduce randomness, and increase the probability that optimal-path structures are represented; (ii)
explore environment-aware dynamic pruning, which can adaptively refine the RGG online to improve
coverage of critical connections and ensure robust path representation.

Generalization Not Fully Evaluated. Current experiments focus on maze planning and robotic arm
manipulation. Systematic evaluations across broader task domains are still lacking, especially in
dynamic environments or real-world scenarios. In the future, the experimental scope can be expanded
to include dynamic scenarios with moving obstacles and time-varying environmental parameters,
enabling assessment under nonstationary conditions. In addition, studies will be conducted in realistic
settings (e.g., indoor navigation and autonomous driving), using real data to quantify performance.
These extended evaluations are expected to inform architectural refinements and improve robustness
and generalization in dynamic and real-world environments.
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