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Abstract

Logic Synthesis (LS) plays a vital role in chip
design. A key task in LS is to simplify circuits—
modeled by directed acyclic graphs (DAGs)—
with functionality-equivalent transformations. To
tackle this task, many LS heuristics apply trans-
formations to subgraphs—rooted at each node
on an input DAG—sequentially. However, we
found that a large number of transformations are
ineffective, which makes applying these heuris-
tics highly time-consuming. In particular, we
notice that the runtime of the Resub and Mfs2
heuristics often dominates the overall runtime of
LS optimization processes. To address this chal-
lenge, we propose a novel data-driven LS heuristic
paradigm, namely PruneX, to reduce ineffective
transformations. The major challenge of develop-
ing PruneX is to learn models that well general-
ize to unseen circuits, i.e., the out-of-distribution
(OOD) generalization problem. Thus, the ma-
jor technical contribution of PruneX is the novel
circuit domain generalization framework, which
learns domain-invariant representations based on
the transformation-invariant domain-knowledge.
To the best of our knowledge, PruneX is the first
approach to tackle the OOD problem in LS heuris-
tics. We integrate PruneX with the aforemen-
tioned Resub and Mfs2 heuristics. Experiments
demonstrate that PruneX significantly improves
their efficiency while keeping comparable opti-
mization performance on industrial and very large-
scale circuits, achieving up to 3.1× faster runtime.
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1. Introduction
Chip design is a cornerstone of the worldwide semiconduc-
tor industry, promoting the development of an extensive
market of electronic devices, such as cellular phones, per-
sonal computers, smart automobiles, etc. Logic Synthesis
(LS) is one of the most important modules in chip design,
which aims to transform a behavioral-level description of
a design into an optimized gate-level circuit (Berndt et al.,
2022; Pasandi et al., 2023). In brief, LS is the “compiler” in
chip design. A key task in LS is Circuit Optimization (CO),
which aims to transform an input circuit into a simplified
circuit with equivalent functionality and reduced size and/or
depth. Thus, it is crucial to well tackle the CO task, as it can
significantly improve the Quality of Results, i.e., various
metrics that evaluate the quality of designed chips, such as
the area, delay, and performance of the chips (De Abreu
et al., 2021; Bertacco & Damiani, 1997; Berndt et al., 2022).

However, the CO task can be extremely hard to tackle as it is
a NP-hard problem (Micheli, 1994; Farrahi & Sarrafzadeh,
1994; Pasandi et al., 2023). To approximately tackle the CO
task, many existing LS frameworks (Brayton & Mishchenko,
2010; Jiang et al.), including the open-source state-of-the-
art LS framework known as ABC (Brayton & Mishchenko,
2010), have developed a rich set of LS heuristics, such as
Mfs2 (Mishchenko et al., 2011), Resub (Brayton, 2006),
Rewrite (Bertacco & Damiani, 1997; Mishchenko et al.,
2006), Refactor (Brayton, 1982; Mishchenko et al., 2006),
etc. Specifically, given an input circuit modeled by a di-
rected acyclic graph (DAG), many commonly used LS
heuristics apply transformations to subgraphs rooted at each
node—that is, the node-level transformation—sequentially
for all nodes on the DAG. We illustrate a unified paradigm
of these LS heuristics as shown in Figure 1.

However, we found an important problem leading to inef-
ficient LS, that is, a large number of node-level transfor-
mations are ineffective, making applying these heuristics
highly time-consuming. In particular, we notice that apply-
ing the Resub (Brayton, 2006) and Mfs2 (Mishchenko et al.,
2011) heuristics take much longer runtime, roughly rang-
ing from 30× to 70×, than the other heuristics (see Figure
2). Moreover, we found that the runtime of the two heuris-
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Figure 1. We illustrate the paradigm of many traditional LS heuris-
tics and the PruneX LS heuristic.

tics often dominates the overall runtime of LS optimization
processes—accounts for approximately 79% of the overall
runtime (see Appendix B.2.2). Thus, the runtime of the
two heuristics acts as a bottleneck to the efficiency of LS,
and inefficient LS may significantly increase the Time to
Market (Neto et al., 2021a; Sabbavarapu et al., 2014; Reddy
et al., 2014), i.e., the overall duration for developing and
commercializing new chips. Moreover, inefficient LS could
significantly degrade the Quality of Results. For example,
chip designers often have to reduce the number of times of
using time-consuming LS heuristics to optimize large-scale
circuits in design space exploration, which may significantly
increase the area and delay of chips (Yuan et al., 2023).

To promote efficient LS, we propose a novel data-driven LS
heuristics paradigm (see Figure 1), namely PruneX, which
can significantly improve the efficiency of LS heuristics by
learning to reduce a large number of ineffective node-level
transformations. An appealing feature of PruneX is that it is
applicable to many commonly used LS heuristics—which
follow the paradigm illustrated in Figure 1—to significantly
improve their efficiency. Specifically, PruneX learns a gen-
eralizable classifier to predict nodes with ineffective trans-
formations (ineffective nodes) accurately on unseen circuits,
and avoids applying transformations to these nodes. How-
ever, PruneX could significantly degrade the optimization
performance compared to default heuristics when inaccu-
rately classifying effective nodes in unseen circuits. Thus,
the major challenge of developing PruneX is how to learn
models that can well generalize to unseen circuits, that is,
the out-of-distribution (OOD) generalization problem across
circuits in LS heuristics (see Figure 3).

To enable generalization, the major technical contribu-
tion of PruneX is the novel circuit domain generalization
(COG) framework (see Figure 4) to learn domain-invariant
representations for generalizable classifiers based on the
transformation-invariant domain knowledge. To the best
of our knowledge, COG is the first data-driven method to
well formulate and tackle the OOD generalization problem
across circuits in LS, which is critical for the success of
data-driven LS algorithms. Specifically, COG formulates

the OOD problem as a circuit domain generalization task
by dividing circuits into multiple circuit domains instead of
combining all circuits into a single dataset. The novel for-
mulation allows us to incorporate prior knowledge regarding
circuits into model learning to enhance the generalization
capability of our models. Then, COG proposes to learn
domain-invariant node representations by aligning node em-
beddings across circuits from different domains based on the
transformation-invariant domain knowledge—a node-level
transformation is significantly associated with the local sub-
graph rooted at the node, regardless of its associated circuit.

We integrate PruneX with the two aforementioned most
time-consuming heuristics, i.e., the Resub (Brayton, 2006)
and Mfs2 (Mishchenko et al., 2011) heuristics, among
commonly used heuristics. Extensive experiments demon-
strate that PruneX significantly and consistently improves
their efficiency while keeping comparable optimization per-
formance on three challenging benchmarks, achieving up
to 3.1× faster runtime. The challenging benchmarks in-
clude industrial and very large-scale circuits. Moreover, we
conduct experiments to demonstrate that applying PruneX
heuristics twice can significantly improve the optimization
performance while achieving faster runtime. Note that a
one percent improvement in the optimization performance
may yield substantial economic value. We release our codes
and data at https://github.com/MIRALab-USTC/
AI4LogicSynthesis-PruneX.

We summarize our major contributions as follows. (1) We
found an important problem that leads to inefficient LS,
i.e., many LS heuristics apply a large number of ineffective
node-level transformations (see Figure 2). (2) To promote ef-
ficient LS, we propose an effective data-driven LS heuristic
paradigm, namely PruneX, which is applicable to many LS
heuristics to significantly improve their efficiency. (3) The
major technical contribution of PruneX is the novel circuit
domain generalization framework to learn domain-invariant
representations based on the transformation-invariant do-
main knowledge. (4) To the best of our knowledge, PruneX
is the first data-driven method to tackle the OOD generaliza-
tion problem in LS heuristics, which is critical for the suc-
cess of data-driven LS algorithms. (5) Experiments demon-
strate that PruneX significantly and consistently improves
the efficiency of LS heuristics on three challenging bench-
marks, including industrial and very large-scale circuits.

2. Related Work and Background
Machine Learning for Logic Synthesis As chip complexity
has grown exponentially with the development of semicon-
ductor technology, using machine learning (ML) to assist
the automated chip design workflow has been an active topic
of significant interest in recent years (Mirhoseini et al., 2021;
Huang et al., 2021; Sánchez et al., 2023; Neto et al., 2021a;
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Lai et al., 2022; 2023; Ren & Hu, 2023). In most of stages
in the chip design workflow, recent studies have demon-
strated significant improvement by using ML methods com-
pared with traditional methods, including high-level synthe-
sis (Makrani et al., 2019; Kim et al., 2018; Liu & Carloni,
2013), logic synthesis (Neto et al., 2021a; Li et al., 2023a;
Berndt et al., 2022; Neto et al., 2019a; Li et al., 2024a), and
placement (Mirhoseini et al., 2021; Lai et al., 2022; 2023;
Agnesina et al., 2023; Cheng et al., 2022). In this paper,
we focus on using machine learning to promote efficient
logic synthesis (LS), which plays a vital role in efficient chip
design and can yield substantial economic value (Fawcett,
1994; Neto et al., 2021a). Existing research on machine
learning for LS can be roughly divided into three categories
(Berndt et al., 2022; Ren & Hu, 2023). First, (Synopsys,
2020; Cadence, 2021; Hosny et al., 2020b; Grosnit et al.,
2022) use machine learning to tune the optimization flow
of LS operators. Second, (Neto et al., 2021a; Kirby et al.,
2019b; Zhou et al., 2019) use machine learning to predict
key metrics after physical design and leverage the predic-
tion to guide LS optimization. Third, (Neto et al., 2021b;
2019b) use machine learning to improve decision-making
in traditional LS methods. Different from existing work, our
work uses machine learning to improve the paradigm of tra-
ditional LS operators to promote efficient LS. An appealing
feature of our PruneX is that it is applicable to many LS
operators—which follow the paradigm illustrated in Figure
1—to significantly improve their efficiency.

Generalizable Prediction in Chip Design Workflow Prior
research has investigated the utilization of machine learning
(ML) techniques to develop generalizable congestion predic-
tion models within the chip design workflow (Kirby et al.,
2019a; Wang et al., 2022a). Nevertheless, our work differs
from previous studies in two fundamental aspects. First, we
address dissimilar input data. Prior research mainly focuses
on the physical design stage with circuits represented by
gate-level netlists or designed layouts, while we focus on the
logic synthesis stage with circuits represented by Boolean
networks. Second, we employ different methodologies for
learning models. Generally, they propose problem-specific
graph neural network architectures and learn the models by
formulating all circuits as a single dataset. In contrast, our
PruneX formulates the OOD generalization problem across
circuits as a novel circuit domain generalization task and
learn domain-invariant representations for enhanced gener-
alization capabilities, which offers promising avenues for
future research on prediction tasks in chip design. We defer
more details about related work in Appendix D.1

Background on Circuit Representation In the LS stage,
a circuit is usually modeled by a Boolean network. In this
paper, we use the terms Boolean network and circuit inter-
changeably. A Boolean network is a directed acyclic graph
(DAG), where nodes correspond to Boolean functions and
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Figure 2. The results demonstrate that applying the Resub and
Mfs2 heuristics are the most time-consuming among commonly
used heuristics (Left), and a large number of transformations are
ineffective in commonly-used heuristics (Right).
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Figure 3. The results show that models trained without Sin (red)
perform poorly on Sin. Furthermore, we visualize the data points
from the dataset without Sin (red) and Sin circuit (blue), respec-
tively. The results suggest that distribution shift indeed exists.

directed edges correspond to wires connecting these func-
tions. A Boolean function takes the form f : Bn → B,
where B = {0, 1} denotes the Boolean domain. Given a
node, its fanins are nodes connected by incoming edges of
this node, and its fanouts are nodes connected by outgoing
edges of this node. The primary inputs (PIs) are nodes with
no fanin, and the primary outputs (POs) are nodes with no
fanout. The size of a circuit denotes the number of nodes in
the DAG. The depth (level) of a circuit denotes the maximal
length of a path from a PI to a PO in the DAG. The size
and depth of a circuit are proxy metrics for the area and
delay of the circuit, respectively. We defer more details on
Background to Appendix D.2.

3. Motivating Results
Problem Challenge: Efficiency Analysis of LS heuristics
First, we evaluate the runtime of the Mfs2 and Resub heuris-
tics over two commonly-used LS optimization optimization
sequence flows (Brayton, 2006; Mishchenko et al., 2011).
The results in Appendix B.2.2 demonstrate that the runtime
of the two heuristics often dominates the overall runtime
of LS optimization process—accounts for approximately
79% of the overall runtime. Second, we further compare
the runtime of applying four commonly-used LS heuristics
to open-source and industrial circuits. Specifically, the four
heuristics include Rewrite (Bertacco & Damiani, 1997),
Refactor (Brayton, 1982), Resub (Brayton, 2006), Mfs2
(Mishchenko et al., 2011). The results in Figure 2 show that
applying the Resub and Mfs2 heuristics are the most time-
consuming among commonly used heuristics. Specifically,
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we report the ratio of the runtime of these heuristics to that
of the Rewrite heuristic. The results demonstrate that apply-
ing the Resub and Mfs2 heuristics take much longer runtime,
roughly ranging from 30× to 70×, than the Rewrite heuris-
tic. Therefore, the runtime of applying the Resub and Mfs2
heuristics acts as a bottleneck to the efficiency of LS.

Problem Challenge: Ineffective Node-Level Transforma-
tions Problem As shown in Figure 2, the Mfs2 and Resub
heuristics apply a large number of Ineffective Node-Level
Transformations (exceeding 93%) on open-source and in-
dustrial circuits. In addition, the results in Figure 2 show
that a large number of node-level transformations applied by
the Rewrite and Refactor heuristics are ineffective as well
(exceeding 87%). We defer more results to Appendix B.2.1.

Technical Challenge: Out-of-Distribution (OOD) Gener-
alization Problem in LS Motivated by the aforementioned
analysis, we propose to learn models to reduce ineffective
transformations to significantly improve the runtime of LS
heuristics. However, we empirically show that the optimiza-
tion performance of the heuristics significantly degrades as
the prediction recall decreases in Appendix B.2.4. Thus,
to achieve comparable optimization performance with de-
fault heuristics, our learned models require achieving high
prediction recall, which is extremely challenging due to the
following OOD Generalization Problem in LS. Specifically,
we use the Mfs2 heuristic to collect a training dataset with
all circuits from the EPFL benchmark (Amarú et al., 2015)
and another one with all circuits except the Sin circuit. We
use EnsembleMLP—a simple learning baseline using su-
pervised learning—to train models on these two datasets,
and evaluate the model on Sin. The results in Figure 3 show
that it is challenging for models trained on circuits without
Sin to generalize to the unseen Sin circuit. Moreover, we
visualize the batch data from the training dataset without
Sin and the Sin circuit as shown in Figure 3. The results
show that the data distributions from the training and testing
datasets are different. Moreover, we empirically show that
the data distributions from different circuits are similar but
different in Appendix B.2.3. Due to the distribution shift,
it is extremely challenging to learn models that can well
generalize to unseen circuits, i.e., the OOD generalization
problem across circuits in LS heuristics.

4. Methods
To promote efficient Logic Synthesis (LS), we first provide
a detailed description of our proposed PruneX heuristics
paradigm in Section 4.1. Then we present our proposed
circuit domain generalization (COG) framework to learn
generalizable classification models in LS in Section 4.2.

4.1. A Novel Data-Driven LS heuristic Paradigm
As shown in Figure 2, we found that the Ineffective Node-
Level Transformations (INT) problem in many LS heuristics

makes applying these heuristics highly time-consuming. To
address this challenge, we propose a novel data-driven LS
heuristics paradigm, namely PruneX, which incorporates
learned classifiers into these heuristics to improve their ef-
ficiency. Specifically, PruneX consists of two phases: the
offline and online phases. (1) The Offline Phase: Data
Collection and Model Learning In this phase, we aim to
collect a training dataset D from multiple existing logic
circuits and learn a classification model from the dataset.
Let {xij , yij}

ni
j=1 denote the data from the logic circuit. We

define a Circuit Dataset by the data Di = {xij , yij}
ni
j=1.

Let X denote a LS heuristic, such as Mfs2, Resub, Rewrite.
Given the X heuristic and N circuits, we generate a dataset
D = {Di}Ni=1 = {{xij , yij}

ni
j=1}Ni=1. Given the generated

dataset D, we learn a binary classifier f : X → Y , where X
denotes the input space of nodes, and Y denotes {0, 1}. We
provide more details on data collection and model learning
in Appendix E.8.1. (2) The Online Phase: Incorporating
Learned Models into LS heuristics As shown in Figure
1, PruneX uses the learned classifier to predict ineffective
nodes to accelerate the X heuristic in the online phase.

4.2. A Circuit Domain Generalization Framework
In this subsection, we present our proposed circuit domain
generalization (COG) framework, which learns generaliz-
able and scalable classifiers. Specifically, COG consists of
three main components. (a) COG formulates the learning
task as a circuit domain generalization task. (b) COG pro-
poses a knowledge-driven subgraph representation learning
method to learn domain-invariant representations. (c) COG
proposes a domain-aware distributional classifier.

(a) A Circuit Domain Generalization Formulation Due
to the distribution shift between training and testing Circuit
Datasets as shown in Figure 3, learning classification mod-
els that well generalize to unseen circuits is challenging, i.e.,
the out-of-distribution (OOD) generalization problem. To
address this challenge, we propose to formulate the OOD
generalization problem across circuits as a circuit domain
generalization task by proposing to divide circuits into mul-
tiple Circuit Domains. Instead of combining all circuits into
a single dataset, the novel formulation allows us to incorpo-
rate prior knowledge about circuits into model learning to
enhance the generalization capability of our models.

However, unlike traditional domain generalization setting
in computer vision (Shen et al., 2021; Wang et al., 2022b),
where each domain dataset is given as a priori, our circuit do-
main generalization problem necessitates the development
of a mechanism for dividing the Circuit Domains. Thus, we
first propose to formulate each circuit as an individual cir-
cuit domain. However, the sample sizes of different circuits
can be quite variable, leading to two undesirable challenges.
First, the sizes of some circuits are small, with only about
100 nodes. This results in a few shot learning challenge
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Figure 4. We illustrate our circuit domain generalization (COG) framework. Our COG consists of three main components to learn
classification models that can well generalize to unseen circuits. Please see Section 4.2 for details.

(Wang et al., 2020). Second, the sizes of different circuits
range from 100 to 100, 000 nodes, resulting in an extreme
imbalance of sample sizes across different Circuit Datasets.
To address these challenges, we further propose a circuit ag-
gregation mechanism g that maps the N Circuit Datasets to
M hyper-circuit datasets (M ≤ N ) by aggregating certain
circuits with related characteristics, such as the functional-
ity. That is, g({Di}Ni=1) = {D′

k}Mk=1, where D′
k denotes

the data from the k-th aggregated dataset. For each D′
k, we

assume that its data {xk
j , y

k
j }

nk
j=1 are sampled from an un-

derlying distribution Pk
XY . We define a Circuit Domain by

the underlying distribution Pk
XY . Moreover, given M aggre-

gated datasets {D′
k}Mk=1 from M source Circuit Domains

P1
XY , . . . ,PM

XY , where Pi
XY ̸= Pj

XY , 1 ≤ i ̸= j ≤ M ,
we define Circuit Domain Generalization as to learn a
robust and generalizable predictive function f : X → Y
from the M source domains, which achieves a minimum
prediction error on an unseen testing circuit sampled from
Pt
XY . To the best of our knowledge, COG takes the first

step towards formulating the OOD generalization problem
across circuits as a circuit domain generalization task. The
novel formulation is critical for the success of our COG, and
carries the potential to motivate future remarkable research
on this OOD generalization problem in chip design.

It remains challenging to instantiate the idea of aggregat-
ing circuits with related functionality, as the availability
of functionality information for circuits may be limited or
unavailable. To alleviate this problem, we make some theo-
retical analysis as follows, and the theoretical results show
two more basic principles for the circuit aggregation mecha-
nism g. (1) The sample sizes of different Circuit Domains

should be close. (2) It is undesirable to aggregate all Circuit
Datasets into one mixed domain. Finally, we propose a sim-
ple method to aggregate circuits based on their functionality
and sample sizes (see Appendix E.6 for details).

Theoretical Analysis Based on the domain knowledge of
the OOD generalization problems, we make the following
assumption, which is commonly used in traditional domain
generalization literature (Blanchard et al., 2011).

Assumption 4.1. The aggregated training Circuit Do-
mains P1

XY , . . . ,PM
XY are i.i.d. realizations from a hyper-

distribution P and any possible testing Circuit Domain
Pt
XY follows the same hyper-distribution.

The assumption usually holds in practice for our OOD prob-
lem with our circuit aggregation mechanism. We defer de-
tailed discussion on this assumption to Appendix E.5. Based
on Assumption 4.1, the learned classifier should include the
Circuit Domain information PXY into its input. In our case,
the functional relationship PY |X across different Circuit
Domains is stable, as whether a node-level transformation is
effective is stable across different circuits. Thus, the predic-
tion of the classifier takes the form of y = f(PX , x) since
the marginal distribution PX contains the whole domain-
specific information. Given the model f , its average risk
over all possible target Circuit Domains takes the form
of R(f) = EPt

XY ∼PE(x,y)∼Pt
XY

[l(f(Pt
X , x), y)]. Unfortu-

nately, the expectation is intractable as the hyper-distribution
P is unknown. Nevertheless, we can estimateR(f) using
our empirical risk estimation objective, which takes the
form of R̂(f) = 1

M

∑M
k=1

1
nk

∑nk

j=1 l(f(P̂k
X , xkj ), ykj ). M

denotes the number of training Circuit Domains, nk denotes
the sample size of the k-th Circuit Domain, and P̂k

X denotes
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the empirical estimation of the k-th Circuit Domain Pk
X . To

evaluate how well our estimation is, we show that there is a
generalization error bound betweenR(f) and R̂(f), which
is inspired by previous work (Blanchard et al., 2011).

Theorem 4.2. Under some mild and reasonable assump-
tions, we can conclude that with probability at least 1− δ(

sup
f∈BK̄(r)

|R(f)− R̂(f)|

)2

≤ C1 log δ
−1 + C2

M

+
C3 log 2δ

−1M + C4 log δ
−1 + C5

M2

M∑
k=1

1

nk
(1)

where C1, C2, C3, C4, C5 are constants, BK̄(r) denotes the
ball of radius r of an Reproducing Kernel Hilbert Space
(RKHS)HK̄ , M is the number of training Circuit Domains
and nk is the sample size of the k-th Circuit Domain.

The first term can be viewed as hyper-distribution estimation
error, and the second term measures the average sampling
error across M circuit domains. Please refer to Appendix
A.1 for detailed proof. Theorem 4.2 shows that the gen-
eralization error bound depends on both M and nk, thus
depending on the circuit aggregation mechanism g. Due
to the aggregation mechanism, M and nk are variable, and
the total number of samples n is fixed. This is quite differ-
ent from existing domain generalization work. Based on
Theorem 4.2, we show the following Corollaries to provide
theoretical insights into the circuit aggregation mechanism.

Corollary 4.3. If the number of Circuit Domains M and
the total number of samples n is fixed, the generalization
error bound reaches its minimum when nk = n

M for k =
1, 2, . . . ,M.

Corollary 4.4. Under some mild conditions, using domain-
wise training circuit datasets (i.e., M > 1) will result in a
smaller generalization error bound than just pooling them
into one mixed dataset (i.e., M = 1).
As a result, we easily conclude the aforementioned two
principles for the circuit aggregation mechanism g inspired
by Corollaries 4.3 and 4.4. We defer more discussion and
detailed proof to Appendixes A.2 and A.3.

(b) Knowledge-Driven Subgraph Representation Previ-
ous work (Muandet et al., 2013) has theoretically and/or
empirically shown that learning domain-invariant represen-
tations can well generalize to unseen domains. Thus, we
propose a novel knowledge-driven subgraph representation
(KDSR) learning method to learn domain-invariant represen-
tations based on the transformation-invariant domain knowl-
edge. That is, the node-level transformation mechanism is
invariant across circuits for a given LS heuristic. We de-
fer more discussion on the transformation-invariant domain
knowledge to Appendix E.7. Based on the transformation-
invariant domain knowledge, KDSR effectively aligns node

embeddings by focusing on the constructed subgraphs
rooted at each node in the DAGs. In general, the construc-
tion of a subgraph in LS heuristics comprises the root node
and a restricted number of its neighboring nodes. For further
node embedding alignment, we transform the subgraph into
a bipartite graph by modeling the root node and non-root
nodes as two classes of nodes (see Figure 4). To encode
the bipartite graph, we propose to leverage a graph convo-
lutional neural network (GCNN) (Gori et al., 2005). Our
GCNN takes as input the bipartite graph x = (T,C,A),
where T ∈ R1×c denotes the feature matrix of the root node,
C ∈ Rm×c denotes the feature matrix of the non-root nodes,
and A ∈ R1×m denotes the adjacency matrix of the graph.
In detail, our bipartite graph is a fully-connected graph.
That is, A1j = 1 for all j ∈ {1, 2, . . . ,m}. We manually
design the node features to contain its basic and functional-
ity information (see Appendix E.8.2). Due to the bipartite
structure of the input graph, our GCNN model gϕ performs
a single graph convolution, in the form of two interleaved
half-convolutions. Following the graph-convolution layer,
we obtain a bipartite graph with the same topology as the
input, but with the root node embedding h(t1) = gϕ(x, t1),
where t1 denotes the root node features. The embedding
contains rich information from the non-root nodes for dis-
criminative and generalizable classification. We defer more
details in Appendix E.4.
(c) Domain-Aware Distributional Classifier Based on the
node embeddings given by the GCNN model, we further
propose a domain-aware distributional classifier (DADC),
which well incorporates the domain-specific information
into parameterized models. Specifically, we parameter-
ize the DADC via a multi-head neural network, where
each head fk

θ learns a classifier under the correspond-
ing training domain. The multi-head neural network is a
shared neural network architecture with M heads branching
off independently as shown in Figure 4. The optimiza-
tion objective for our proposed DADC takes the form of
R̂(θ) = 1

M

∑M
k=1

1
nk

∑nk

j=1 l(f
k
θ (gϕ(xkj , t1)), ykj ), where l

denotes the cross-entropy loss, fk
θ (·) denotes the output of

the k-th head, and gϕ(xk
j , t1) denotes the node embedding

given by the GCNN model. In the test phase, we use the
mean of the M head values to approximate the classification
values under testing circuits. Please see Appendix E.8.5 for
more details. A major advantage of DADC is to learn a
distributional representation of classifiers, which can well
capture the uncertainty of classification values to enhance
its robustness against the distribution shift.

(d) Discussion on Advantages and Generality First, our
method is applicable to many commonly used LS heuristics,
and can significantly improve their efficiency. Second, our
method takes the first step towards formulating the OOD
generalization problem across circuits as a novel circuit
domain generalization task, which has broad applicability
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in many prediction problems in the chip design workflow.
Third, our graph learning method focuses on small-scale
subgraphs rather than global graphs, enabling efficient paral-
lel training and high scalability to very large-scale circuits.

5. Experiments
We conduct extensive experiments to evaluate PruneX with
COG (PruneX-COG). Specifically, our experiments have
four main goals: (1) to demonstrate that PruneX-COG can
accurately predict effective nodes, and significantly improve
the runtime of LS heuristics with comparable optimization
performance (i.e., Quality of Results, QoR); (2) to show
the effectiveness of PruneX-COG on industrial circuits and
very large-scale circuits (up to twenty million nodes); (3) to
demonstrate that PruneX-COG can not only achieve faster
runtime but also improve the QoR; (4) to present a detailed
ablation study of PruneX-COG.

Benchmarks We evaluate PruneX-COG on two widely-
used public benchmarks EPFL (Amarú et al., 2015) and
IWLS (Albrecht, 2005) and one industrial benchmark from
an anonymous semiconductor company. These benchmarks
consist of 69 circuits in total, including very large-scale
circuits with up to twenty million nodes. Due to limited
space, We defer more details to Appendix C.1.

Experimental Setup Throughout all experiments, we use
ABC as the backend LS framework, which is a state-of-
the-art open source LS framework. In this paper, we apply
PruneX to the Resub and Mfs2 heuristics to demonstrate
that our method is applicable to many LS heuristics. We
provide more details in Appendix E.1.

Evaluation Metrics and Evaluated Methods Throughout
all experiments, we evaluate our method in two separate
phases, i.e., the offline and online phases. In the offline
phase, we evaluate the prediction recall of the effective
nodes since the QoR improves with increased prediction
recall (see Appendix B.2.4). Specifically, we present de-
tails as follows. (1) Evaluation metrics PruneX views the
prediction task as a scoring task, and classify nodes with
top k scores as positive samples. Then, we define a top k
accuracy metric by the fraction of true positive nodes that
are predicted to be positive, i.e., recall (see Appendix E.1.3).
(2) Evaluated methods In the offline phase, we evaluate two
baselines and our PruneX-COG. The baselines include Ran-
dom, which randomly predicts a score between [0, 1] for
each node, and EnsembleMLP, which is our proposed sim-
ple learning-based baseline that uses a simple multi-layer
perceptron to predict scores for nodes (see Appendix E.3).
In the online phase, we evaluate the efficiency and QoR of
PruneX-COG. (1) Evaluation metrics In terms of efficiency,
we use the runtime metric. In terms of QoR, we mainly
use the size, i.e., the number of nodes of optimized circuits,
and depth, i.e. level of optimized circuits. Throughout all

experiments, we found that our method achieves compa-
rable optimization performance with the default heuristics
in terms of the size and depth. Thus, we defer results in
terms of the size and depth to Appendix B due to limited
space. (2) Evaluated methods We evaluate the Default and
PruneX-COG in the online phase. Default denotes the de-
fault heuristics, i.e., the Resub and Mfs2. PruneX-COG
denotes new heuristics that apply our method to the Default
heuristics. We set the top k hyperparameter as top 50% for
all experiments unless mentioned otherwise.

Experiment 1. Evaluation on Open-Source Benchmarks
In this subsection, we evaluate the offline prediction recall,
online runtime, and online optimization performance on
the open-source EPFL and IWLS benchmarks. Due to lim-
ited space, we defer more detailed results to Appendix B.5.
Specifically, we design two evaluation strategies. Evalua-
tion Strategy 1: Generalization in Single Benchmark In-
spired by the leave-one-domain-out cross-validation strategy
commonly used in previous literature (Wang et al., 2022b),
we design nine leave-one-out datasets for evaluation. Specif-
ically, given a benchmark, we construct a dataset by setting
one circuit as the testing dataset, and the other circuits as
the training dataset. Please refer to Appendix C.2 for more
details. Evaluation Strategy 2: Generalization from the
IWLS to EPFL In real industrial scenarios, we hope that
the trained model can generalize to many unseen circuits.
Thus, we design the second evaluation strategy. Specifically,
we set the circuits from the IWLS as the training dataset,
and the five hard-to-optimize circuits from the EPFL as the
testing dataset. Due to limited space, we defer results under
the evaluation strategy 2 to Appendix B.5.

For the offline evaluation on the Mfs2 heuristic, Figure 5a
shows that PruneX-COG significantly improves the predic-
tion recall compared with the Random baseline in Evalua-
tion Strategy 1. Specifically, PruneX-COG achieves 37%
recall improvement on average. Furthermore, PruneX-COG
achieves the prediction recall surpassing 90% on most test-
ing circuits, indicating it can maintain applying most of
the effective node-level transformations. Moreover, the
results show that EnsembleMLP struggles to consistently
achieve high prediction recall on all circuits, demonstrat-
ing that the OOD generalization problem across circuits
in LS is challenging. For the online evaluation on the
Mfs2 heuristic, Figure 5a shows that PruneX-COG signif-
icantly improves the runtime compared with the Default
Mfs2 heuristic, achieving 40.96% improvement on average
under the Evaluation Strategy 1. Moreover, PruneX-COG
achieves marginal degradation in terms of the QoR (see
Appendix B.5 for results). Overall, the results demonstrate
that PruneX-COG significantly improves the efficiency of
the Mfs2 heuristic while keeping comparable QoR.

For the evaluation on the Resub heuristic, Figure 5b shows
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(a) Evaluation Strategy 1 on the Mfs2 heuristic.
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(b) Evaluation Strategy 1 on the Resub heuristic.
Figure 5. The results demonstrate that our PruneX-COG achieves significant prediction recall improvement (Left, ↑), runtime reduction
(Middle, ↓), and marginal QoR (size) degradation (Right, ↓). The normalized runtime (node number) denotes the ratio of the runtime
(node number) to that of applying the Default heuristic to testing circuits.
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(a) Evaluation on the industrial benchmark.

Sixteen Twenty
Circuit

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ic
ti

on
 R

ec
al

l

Offline Evaluation (Mfs2)

PruneX-COG (Ours)
EnsembleMLP

Random

Sixteen Twenty
Circuit

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 R
un

Ti
m

e

Online Evaluation (Mfs2)

PruneX-COG (Ours)
Default (Mfs2)

(b) Evaluation on the very large-scale circuits.
Figure 6. The results demonstrate the strong ability of our method to promote efficient LS on industrial and very large-scale circuits with
the Mfs2 heuristic. In particular, PruneX-COG reduces the runtime of applying the Mfs2 heuristic once by up to 10.9 hours.

that PruneX-COG improves the recall by 33.7% and reduces
the runtime by 42.67% on average (see Appendix B.5 for
marginal size degradation results). In particular, PruneX-
COG achieves 3.1× faster runtime on the Hyp circuit under
Evaluation Strategy 1. The results suggest that our method
is applicable to many LS heuristics, which can significantly
improve their efficiency while keeping comparable QoR.

Experiment 2. Evaluation on Industrial and Large-Scale
Circuits In this subsection, we further demonstrate the ef-
fectiveness of our method by deploying it to industrial cir-
cuits and very large-scale circuits from EPFL with the Mfs2
heuristic. Due to limited space, please refer to Appendix
C.3 for more details of the datasets and experiment setting.

For the evaluation on industrial circuits, Fig. 6a shows that
PruneX-COG significantly improves the prediction recall
compared to the Random baseline and reduces the runtime
compared to the Default Mfs2 heuristic. For the evaluation
on very large-scale circuits from EPFL, Fig. 6b show that
PruneX-COG significantly improves prediction recall while
reducing the runtime by up to 42%. In particular, PruneX-
COG reduces the runtime by up to 10.9 hours compared
to the Default Mfs2. The results demonstrate the strong
generalization ability and scalability of our PruneX-COG
on industrial circuits and very large-scale circuits. We defer
detailed results of the Resub heuristic to Appendix B.6.

Experiment 3. Improving Quality of Results with

PruneX-COG In this subsection, we conduct experiments
to demonstrate that efficient LS heuristics can improve QoR.
To improve QoR, we can sequentially apply PruneX-COG
multiple times rather than once, namely 2PruneX-COG.
Specifically, we compare the runtime and QoR of 2PruneX-
COG with the Default Mfs2 heuristic. Moreover, we set the
hyperparameter k as 30% and 40% to achieve faster runtime.
Due to limited space, we present the results of six represen-
tative large-scale circuits in Table 1. More details and results
are provided in Appendix B.7. Table 1 shows that 2PruneX-
COG significantly reduces the size and depth of optimized
circuits while achieving faster runtime compared with the
Default Mfs2 heuristic. Specifically, 2PruneX-COG with
k = 40% reduces the size/depth by 7.14% on average while
reducing the runtime by 2.21%. Furthermore, Table 1 shows
that 2PruneX-COG with k = 30% reduces the size/depth
by 6.88% on average with 25.98% runtime reduction. In
particular, our method achieves a significant reduction over
the depth on Hyp, improving the level by 30.23%. Overall,
the results suggest that our PruneX-COG can significantly
improve the QoR while achieving faster runtime.

Experiment 4. Ablation Study In this section, we conduct
an ablation study to understand the individual contribution
of each component within our PruneX-COG. To this end,
we compare our PruneX-COG with PruneX-COG without
DADC and PruneX-COG without DADC and KDSR on
open-source benchmarks under the Evaluation Strategy 2.
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Hyp Wb conmax Des perf

Method Lev ↓ Improvement ↑
(Lev, %) Time (s) ↓ Improvement ↑

(Time, %) Nd ↓ Improvement ↑
(Nd, %) Time (s) ↓ Improvement ↑

(Time, %) Nd ↓ Improvement ↑
(Nd, %) Time (s) ↓ Improvement ↑

(Time, %)

Default (Mfs2) 8259.00 (0.0) NA 274.13 (9.90) NA 16509.00 (0.0) NA 21.24 (0.53) NA 30853.00 (0.0) NA 29.51 (0.28) NA
2PruneX-COG (0.3, Ours) 5762.00 (0.0) 30.23 222.14 (27.98) 18.97 16111.00 (97.40) 2.41 13.45 (0.73) 36.68 29807.66 (13.69) 3.39 24.79 (0.14) 15.99
2PruneX-COG (0.4, Ours) 5762.00 (0.0) 30.23 288.85 (34.96) -5.37 16006.66 (112.77) 3.04 16.74 (0.72) 21.19 29538.66 (11.61) 4.26 31.67 (0.15) -7.32

ci2 ci5 ci6

Method Nd ↓ Improvement ↑
(Nd, %) Time (s) ↓ Improvement ↑

(Time, %) Nd ↓ Improvement ↑
(Nd, %) Time (s) ↓ Improvement ↑

(Time, %) Nd ↓ Improvement ↑
(Nd, %) Time (s) ↓ Improvement ↑

(Time, %)

Default (Mfs2) 195665.00 (0.0) NA 487.51 (51.68) NA 215708.00 (0.0) NA 201.43 (12.17) NA 99245.00 (0.0) NA 76.97 (0.12) NA
2PruneX-COG (0.3, Ours) 193618.00 (0.81) 1.05 264.32 (7.05) 45.78 215447.00 (10.03) 0.12 170.85 (10.19) 15.18 95210.00 (0.0) 4.07 59.03 (2.37) 23.31
2PruneX-COG (0.4, Ours) 193618.00 (0.81) 1.05 328.74 (4.89) 32.57 215443.66 (8.80) 0.12 308.35 (9.05) -53.08 95144.50 (65.5) 4.13 57.51 (1.16) 25.28

Table 1. We compare the Default Mfs2 heuristic with our 2PruneX-COG heuristic with the hyperparameter k set as 30% and 40% on
open-source and industrial circuits. Let Nd denote the node number (size) of circuits, and Lev denote the level (depth) of circuits. We
define an Improvement metric by M(Default)−M(2PruneX-COG)

M(Default) , where M(·) denotes the Nd, Lev, or Time.

heuristic Mfs2

Method/Circuit Log2 Hyp Multiplier Sin

Recall ↑ Recall ↑ Recall ↑ Recall ↑
PruneX-COG 0.88 (0.02) 0.85 (0.06) 0.87 (0.04) 0.79 (0.12)

PruneX-COG without DADC 0.87 (0.05) 0.85 (0.01) 0.79 (0.02) 0.75 (0.06)
PruneX-COG without DADC and KDSR 0.08 (0.007) 0.78 (0.01) 0.33 (0.01) 0.65 (0.08)

heuristic Resub

Method/Circuit Log2 Hyp Multiplier Sin

Recall ↑ Recall ↑ Recall ↑ Recall ↑
PruneX-COG 0.80 (0.005) 0.87 (0.03) 0.87 (0.0) 0.81 (0.03)

PruneX-COG without DADC 0.45 (0.23) 0.72 (0.17) 0.41 (0.31) 0.46 (0.23)
PruneX-COG without DADC and KDSR 0.21 (0.02) 0.67 (0.12) 0.71 (0.06) 0.28 (0.0)

Table 2. We present the ablation study results

We defer additional details and results to Appendix B.1. Ta-
ble 2 suggests the following two conclusions. First, PruneX-
COG without DADC significantly outperforms PruneX-
COG without DADC and KDSR in terms of offline pre-
diction recall, demonstrating the importance of our KDSR
module. That is, the results suggest that our representation
module effectively learns domain-invariant representations
for high generalization capability. Second, PruneX-COG
also significantly outperforms PruneX-COG without DADC
in terms of offline prediction recall. This demonstrates that
it is important to learn domain-aware classifiers for further
improving the generalization capability of our method.

6. Conclusion
In this paper, we found an important problem that a large
number of node-level transformations in many LS heuristics
are ineffective, making applying these heuristics highly time-
consuming. To address this challenge, we propose a data-
driven LS heuristic paradigm, namely PruneX. The major
technical contribution of PruneX is the novel circuit domain
generalization (COG) framework, which is critical for the
success of data-driven LS algorithms. Extensive experi-
ments demonstrate that PruneX significantly improves the
efficiency of LS heuristics, achieving up to 3.1× faster run-
time while keeping comparable optimization performance.

Acknowledgements
This work was supported in part by National Key R&D
Program of China under contract 2022ZD0119801, and
National Nature Science Foundations of China grants

U23A20388, 62021001, U19B2026, U19B2044, and
623B1022. This work was supported in part by Huawei.
We would like to thank all the anonymous reviewers for
their insightful comments.

Impact Statement
This paper presents a novel data-driven logic synthesis
heuristic paradigm whose goal is to promote efficient logic
synthesis in chip design. This work takes the first step to-
wards investigating the out-of-distribution generalization
problem in logic synthesis. There are many potential soci-
etal consequences of our work, none which we feel must be
specifically highlighted here.

References
Agnesina, A., Rajvanshi, P., Yang, T., Pradipta, G.,

Jiao, A., Keller, B., Khailany, B., and Ren, H. Au-
todmp: Automated dreamplace-based macro place-
ment. In Proceedings of the 2023 International Sym-
posium on Physical Design, ISPD ’23, pp. 149–157,
New York, NY, USA, 2023. Association for Comput-
ing Machinery. ISBN 9781450399784. doi: 10.1145/
3569052.3578923. URL https://doi.org/10.
1145/3569052.3578923.

Albrecht, C. Iwls 2005 benchmarks. 2005.
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A. Theoretical Analysis
A.1. Proof of Theorem 4.2

The proof of Theorem 4.2 draws inspiration from the methodology proposed by (Blanchard et al., 2011; Muandet et al.,
2013). Nevertheless, our problem setting is different from that of (Blanchard et al., 2011; Muandet et al., 2013). Specifically,
they assume equal values of nk for k = 1, 2, · · · ,M as a prior. In contrast, our setting allows for flexibility in these values
as we propose a circuit aggregation mechanism g. Consequently, our conclusion holds a greater level of generality.

To complete the proof, we utilize the kernel method and introduce the concept of reproducing kernel Hilbert space (RKHS)
HK̄ with kernel:

K̄
((
P 1
x , x1

)
,
(
P 2
x , x2

))
= KP

(
P 1
x , P

2
x

)
KX (x1, x2)

Here, KP and KX represent kernel functions on distributions and input space, respectively. Suppose the RKHS cor-
responding to K (K can be any kernel function) is HK . We consider the feature mapping (Blanchard et al., 2011)
Ψ : PX → HKX :

Px → Ψ(Px) :=

∫
X
KX (x, ·)dPX(x)

a universal kernel κ (Blanchard et al., 2011) onHKX which satisfies:

KP(P
1
x , P

2
x ) = κ

(
Ψ(P 1

x ),Ψ(P 2
x )
)

and the mapping Φκ : HKX → Hκ which satisfies:

κ
(
Ψ(P 1

x ),Ψ(P 2
x )
)
= ⟨Φκ(Ψ(P 1

X)),Φκ(Ψ(P 2
X))⟩

Notations Let X denote the input space and Y = {0, 1} the output space. Let PX denote the set of probability distributions
on X . A decision function is a function f : PX ×X → Y . The loss function has the form l : Y × Y → R+. We consider a
scenario where iid training distributions Pk

X and test distribution Pt
X are drawn according to a hyper-distribution P . P̂k

X

denote the empirical estimation of Pk
X .

Remark Recall that M is the number of training domains, nk is the sample size of the k-th domain, and n =
M∑
k=1

nk is the

total number of samples.

Assumptions (1) The loss function l : Y × Y → R+ is ϕX -Lipschitz in its first variable and bounded by Ul. (2) The kernel
KX and κ are bounded by U2

K and U2
κ , respectively. (3) The feature map Φκ : HKX → Hκ satisfies a specific Hölder

condition with constant Lκ on BKX (UK):

∀v, w ∈ BKX (UK) : ||Φκ(v)− Φκ(w)|| ≤ Lκ||v − w||

Under the aforementioned assumptions, we present the following proof.

Proof. Based on the inequality |a1+ · · ·+an|2 ≤ n|a1|2+ · · ·+n|a2|2 and sup(A+B) ≤ supA+supB, we decompose(
sup

f∈BK̄(r)

|R(f)− R̂(f)|

)2

=

 sup
f∈BK̄(r)

∣∣∣∣EPt
XY ∼PE(x,y)∼Pt

XY
[l(f(Pt

X , x), y)]− 1

M

M∑
k=1

1

nk

nk∑
j=1

l(f(P̂k
X , xkj ), y

k
j )

∣∣∣∣
2

≤2

(
sup

f∈BK̄(r)

∣∣∣∣EPt
XY ∼PE(x,y)∼Pt

XY
[l(f(Pt

X , x), y)]− 1

M

M∑
k=1

E(x,y)∼Pk
XY

[l(f(Pk
X , x), y)]

∣∣∣∣
)2

+2

 sup
f∈BK̄(r)

∣∣∣∣ 1M
M∑
k=1

E(x,y)∼Pk
XY

[l(f(Pk
X , x), y)]− 1

M

M∑
k=1

1

nk

nk∑
j=1

l(f(P̂k
X , xkj ), y

k
j )

∣∣∣∣
2

=(I) + (II)
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Control of I

(I) = 2

(
sup

f∈BK̄(r)

∣∣∣∣EPt
XY ∼PE(x,y)∼Pt

XY
[l(f(Pt

X , x), y)]− 1

M

M∑
k=1

E(x,y)∼Pk
XY

[l(f(Pk
X , x), y)]

∣∣∣∣
)2

Since the (Pk
XY )1≤k≤M are iid, so we let

β((Pk
XY )1≤k≤M ) := sup

f∈BK̄(r)

∣∣∣∣EPt
XY ∼PE(x,y)∼Pt

XY
[l(f(Pt

X , x), y)]− 1

M

M∑
k=1

E(x,y)∼Pk
XY

[l(f(Pk
X , x), y)]

∣∣∣∣
By McDiarmid inequality (McDiarmid et al., 1989) in Hilbert space, the inequality holds with probability 1− δ

β − E[β] ≤ Ul

√
log δ−1

2M

where E[β] is denoted as

E[β] = E(Pk
XY )1≤k≤M

sup
f∈BK̄(r)

∣∣∣∣EPt
XY ∼PE(x,y)∼Pt

XY
[l(f(Pt

X , x), y)]− 1

M

M∑
k=1

E(x,y)∼Pk
XY

[l(f(Pk
X , x), y)]

∣∣∣∣
To bound E[β], we use Rademacher complexity analysis. We denote (xk, yk) a single draw from distribution Pk

XY and these
draws are independent. We also denote (σk)1≤k≤M {±1}-valued iid Rademacher variables which are independent from
everything else. We have:

E[β] ≤E(Pk
XY )1≤k≤M

Eσk

[
sup

f∈BK̄(r)

∣∣∣∣ 2M
M∑
k=1

σkE(xk,yk)∼Pk
XY

[l(f(Pk
X , xk), yk)]

∣∣∣∣
]

≤E(Pk
XY )1≤k≤M

E(xk,yk)∼Pk
XY

Eσk

[
sup

f∈BK̄(r)

∣∣∣∣ 2M
M∑
k=1

σkl(f(Pk
X , xk), yk)

∣∣∣∣
]

≤2rϕXUKUκ√
M

The first inequality is a standard symmetrization argument. The second inequality pulls the inner expectation on (xk, yk)
outwards. The last inequality is a standard bound for the Rademacher complexity of a Lipschitz loss function on the ball of
radius r ofHK̄ (Bartlett & Mendelson, 2002), where the kernel K̄ is bounded by U2

KU2
κ . Based on the above analysis, we

can conclude that

(I) = 2β2

≤ 4(E[β]2 +
U2
l log δ−1

2M
)

≤ 16r2ϕ2
XU2

KU2
κ

M
+

2U2
l log δ−1

M

Control of II

(II) =2

 sup
f∈BK̄(r)

∣∣∣∣ 1M
M∑
k=1

E(x,y)∼Pk
XY

[l(f(Pk
X , x), y)]− 1

M

M∑
k=1

1

nk

nk∑
j=1

l(f(P̂k
X , xk

j ), y
k
j )

∣∣∣∣
2

≤4

 sup
f∈BK̄(r)

∣∣∣∣ 1M
M∑
k=1

E(x,y)∼Pk
XY

[l(f(Pk
X , x), y)]− 1

M

M∑
k=1

1

nk

nk∑
j=1

l(f(Pk
X , xk

j ), y
k
j )

∣∣∣∣
2

+4

 sup
f∈BK̄(r)

∣∣∣∣ 1M
M∑
k=1

1

nk

nk∑
j=1

l(f(Pk
X , xk

j ), y
k
j )−

1

M

M∑
k=1

1

nk

nk∑
j=1

l(f(P̂k
X , xkj ), y

k
j )

∣∣∣∣
2

=(IIa) + (IIb)
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Control of IIa We investigate term (IIa) conditional to (Pk
XY )1≤k≤M . Under this conditional distribution, it is

noteworthy that the variables (xkj , ykj )jk are now independent. We let

ξ((xk
j , y

k
j )jk) = sup

f∈BK̄(r)

∣∣∣∣ 1M
M∑
k=1

E(x,y)∼Pk
XY

[l(f(Pk
X , x), y)]− 1

M

M∑
k=1

1

nk

nk∑
j=1

l(f(Pk
X , xkj ), y

k
j )

∣∣∣∣
based on the McDiarmid inequality (McDiarmid et al., 1989), we deduce that with probability 1 − δ over the draw of
(xkj , ykj )jk, it holds

ξ − E[ξ|(Pk
XY )1≤k≤M ] ≤ Ul

M

√√√√ M∑
k=1

log δ−1

nk

To bound E[ξ|(Pk
XY )1≤k≤M ], we can use relatively standard Rademacher complexity analysis. Denoting

(σkj)1≤k≤M,1≤j≤nk
i.i.d Rademacher variables (Bartlett & Mendelson, 2002), we have

E[ξ|(Pk
XY )1≤k≤M ] = E(xkj ,y

k
j )

 sup
f∈BK̄(r)

∣∣∣∣ 1M
M∑
k=1

1

nk

nk∑
j=1

(
E(x,y)∼Pk

XY
[l(f(Pk

X , x), y)]− l(f(Pk
X , xk

j ), y
k
j )
)∣∣∣∣
∣∣∣∣∣(Pk

XY )1≤k≤M


≤ E(xkj ,y

k
j )
Eσkj

 sup
f∈BK̄(r)

∣∣∣∣ 2M
M∑
k=1

1

nk

nk∑
j=1

σkj l(f(Pk
X , xk

j ), y
k
j )

∣∣∣∣
∣∣∣∣∣(Pk

XY )1≤k≤M


≤ 2rϕXUKUκ

M

√√√√ M∑
k=1

1

nk

Therefore, we can conclude that

(IIa) = 4ξ2

≤ 8(E[ξ]2 +
U2
l log δ−1

M2

M∑
k=1

1

nk
)

≤ 32r2ϕ2
XU2

KU2
κ + 8U2

l log δ−1

M2

M∑
k=1

1

nk

Control of IIb

(IIb) =4

 sup
f∈BK̄(r)

∣∣∣∣ 1M
M∑
k=1

1

nk

nk∑
j=1

l(f(Pk
X , xkj ), y

k
j )−

1

M

M∑
k=1

1

nk

nk∑
j=1

l(f(P̂k
X , xkj ), y

k
j )

∣∣∣∣
2

=4

 sup
f∈BK̄(r)

∣∣∣∣ 1M
M∑
k=1

1

nk

nk∑
j=1

[l(f(Pk
X , xkj ), y

k
j )− l(f(P̂k

X , xkj ), y
k
j )]

∣∣∣∣
2

≤4ϕ2
X

 sup
f∈BK̄(r)

∣∣∣∣ 1M
M∑
k=1

1

nk

nk∑
j=1

[f(Pk
X , xkj )− f(P̂k

X , xkj )]
∣∣∣∣
2

≤4ϕ2
X

(
sup

f∈BK̄(r)

1

M

M∑
k=1

||f(Pk
X , ·)− f(P̂k

X , ·)||∞

)2

Here f(P k
X , ·) denotes a vector in Hilbert space and ||·||∞ is the infinite norm of the vector. Using the reproducing property
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of K̄ and the condition that ||Ψ(PX)|| ≤ UK , we have for any x ∈ X and f ∈ BK̄ (r)

|f(Pk
X , x)− f(P̂k

X , x)|

=|⟨K̄((Pk
X , x), ·)− K̄((P̂k

X , x), ·), f⟩|

≤||f || · ||K̄((Pk
X , x), ·)− K̄((P̂k

X , x), ·)||

≤rKX (x, x)
1
2 ·
(
κ(Ψ(Pk

X),Ψ(Pk
X)) + κ(Ψ(P̂k

X),Ψ(P̂k
X))− 2κ(Ψ(Pk

X),Ψ(P̂k
X))
) 1

2

≤rUK ||Φκ(Ψ(Pk
X))− Φκ(Ψ(P̂k

X))||

≤rUKLκ||Ψ(Pk
X)−Ψ(P̂k

X)||

By Hoeffding’s inequality in Hilbert space (Pinelis & Sakhanenko, 1986), we can conclude that with probability 1− δ

||Ψ(P̂k
X)−Ψ(Pk

X)|| =
∣∣∣∣∣∣∣∣ 1nk

nk∑
j=1

KX (xk
j , ·)− Ex∼Pk

X
[KX (x, ·)]

∣∣∣∣∣∣∣∣
≤ 3UK

√
log 2δ−1

nk

Therefore, we have

(IIb) ≤ 4ϕ2
Xr2U2

KL2
κ

(
1

M

M∑
k=1

||Ψ(Pk
X)−Ψ(P̂k

X)||

)2

≤ 4ϕ2
Xr2U2

KL2
κ

1

M

M∑
k=1

||Ψ(Pk
X)−Ψ(P̂k

X)||2

≤ 36ϕ2
Xr2U4

KL2
κ

1

M

M∑
k=1

log 2δ−1

nk

Combining all of the above inequalities, we obtain the announced results of the theorem 4.2 that with probability at least
1− δ (

sup
f∈BK̄(r)

|R(f)− R̂(f)|

)2

≤ C1 log δ
−1 + C2

M
+

C3 log 2δ
−1M + C4 log δ

−1 + C5

M2

M∑
k=1

1

nk
. (2)

where C1 = 2U2
l , C2 = 16r2ϕ2

XU2
KU2

κ , C3 = 36ϕ2
Xr2U4

KL2
κ, C4 = 8U2

l , C5 = 32r2ϕ2
XU2

KU2
κ .

Discusson on the generalization error bound The inequality 2 states that the generalization error can be controlled by a
training circuit domain number and sample size trade-off. The first term can be viewed as hyper-distribution estimation
error, which is inversely proportional to the training circuit domain M since increasing M leads to an enhanced simulation
of the hyper-distribution. The second term can be interpreted as average interdomain estimation error which measures the
average sampling error across M circuit domains. Note that this error bound indicates that increasing the value of nk can
enhance the fitting to the circuit domain, thereby reducing the bound.

A.2. Proof of Corollary 4.3

Proof. The generalization error bound in Theorem 4.2 is

C1 log δ
−1 + C2

M
+

C3 log 2δ
−1M + C4 log δ

−1 + C5

M2

M∑
k=1

1

nk

The condition to prove Corollary 4.3 is that the number of domains M and the total number of samples n =
∑M

k=1 nk are
fixed. Besides, based on the AM-HM Inequality (Djukić et al., 2011)

(n1 + n2 + · · ·+ nM )(
1

n1
+

1

n2
+ · · ·+ 1

nM
) ≥M2
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we have

C1 log δ
−1 + C2

M
+

C3 log 2δ
−1M + C4 log δ

−1 + C5

M2

M∑
k=1

1

nk

≥C1 log δ
−1 + C2

M
+

C3 log 2δ
−1M + C4 log δ

−1 + C5

M2

M2∑M
k=1 nk

≥C1 log δ
−1 + C2

M
+

C3 log 2δ
−1M + C4 log δ

−1 + C5

n

The condition for the above inequality to be equal is that nk = n
M for k = 1, 2, · · ·M . Therefore, we can conclude that the

error bound reaches its minimum when nk = n
M for k = 1, 2, · · ·M , which proves that Corollary 4.3 holds.

A.3. Proof of Corollary 4.4

Proof. Under the condition

nk =
n

M
for k = 1, 2, · · · ,M (3)

and

1 ≤M ≤ C1 log δ
−1 + C2

C3 log 2δ−1
· n (4)

we can conclude that using a multi-domain dataset (i.e., M > 1) will result in a smaller generalization error bound than just
pooling them into one mixed dataset (i.e., M=1).

Based on the condition 3, the generalization error bound in Theorem 4.2 can be represented as a function on discrete variable
M

B(M) =
C1 log δ

−1 + C2

M
+

C3 log 2δ
−1M

n
+

C4 log δ
−1 + C5

n
(M ≥ 1)

where n representing the total number of samples is a constant and M denotes the number of domains. To prove Corollary
4.4, we just need to prove that B(1) ≥ B(M) for M ≥ 1. Consequently, under the condition 4, we have:

1 ≤M ≤ C1 log δ
−1 + C2

C3 log 2δ−1
· n

⇒C3 log 2δ
−1

n
(1−M)− C1 log δ

−1 + C2

M
(1−M) ≥ 0

⇒(C1 log δ
−1 + C2 +

C3 log 2δ
−1

n
+

C4 log δ
−1 + C5

n
)− (

C1 log δ
−1 + C2

M
+

C3 log 2δ
−1M

n
+

C4 log δ
−1 + C5

n
) ≥ 0

⇒B(1) ≥ B(M) (M ≥ 1)

which proves that Corollary 4.4 holds.

Finally, we explain the reasonableness of condition 3 and 4. The condition 3 is a result in Corollary 4.3 and can be realized
easily. Besides, in practical applications, n is often significantly larger than M and the constants C1, C2, C3 are typically
fixed values as demonstrated in A.1. Therefore, the condition 3 and 4 are both considered reasonable.

B. Additional Results
B.1. Additional Results of Ablation Study

In this subsection, we perform ablation study to understand the contribution of each component in COG. Specifically,
PruneX-COG without DADC aggregates all Circuit Datasets into a single domain, and uses our KDSR to learn node
embeddings for classification. Then, PruneX-COG without DADC and KDSR further replaces our KDSR module with
manually designed features. We report the offline prediction accuracy of COG, COG without Distributional Classifier
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Table 3. The ablation study of COG on the Mfs2 heuristic under Evaluation Strategy 1. The best performance is marked in bold.

Log2 Hyp Multiplier

Method top 40% acc top 50% acc top 60% acc top 40% acc top 50% acc top 60% acc top 40% acc top 50% acc top 60% acc

COG 0.89 (0.04) 0.97 (0.01) 0.99 (0.01) 0.79 (0.04) 0.90 (0.03) 0.95 (0.008 0.91 (0.03) 0.96 (0.03) 0.98 (0.01)
COG without DC 0.74 (0.12) 0.86 (0.10) 0.92 (0.04) 0.78 (0.06) 0.85 (0.03) 0.92 (0.02) 0.52 (0.12) 0.75 (0.15) 0.90 (0.03)

EnsembleMLP 0.61 (0.0) 0.65 (0.007) 0.85 (0.03) 0.62 (0.005) 0.73 (0.004) 0.82 (0.003) 0.63 (0.0) 0.71 (0.0) 0.75 (0.0)

Sin Square Vga lcd

Method top 40% acc top 50% acc top 60% acc top 40% acc top 50% acc top 60% acc top 40% acc top 50% acc top 60% acc

COG 0.71 (0.06) 0.87 (0.04) 0.95 (0.02) 0.90 (0.01) 0.94 (0.002) 0.95 (0.0) 0.93 (0.007) 0.95 (0.01) 0.98 (0.007)
COG without DC 0.72 (0.06) 0.91 (0.013) 0.94 (0.02) 0.40 (0.009) 0.54 (0.04) 0.70 (0.02) 0.88 (0.08) 0.93 (0.07) 0.98 (0.0)

EnsembleMLP 0.56 (0.0) 0.58 (0.0) 0.67 (0.0) 0.85 (0.02) 0.91 (0.004) 0.92 (0.0) 0.19 (0.04) 0.29 (0.02) 0.53 (0.02)

Ethernet Wb conmax Des perf

Method top 40% acc top 50% acc top 60% acc top 40% acc top 50% acc top 60% acc top 40% acc top 50% acc top 60% acc

COG 0.91 (0.09) 0.96 (0.04) 0.97 (0.03) 0.69 (0.04) 0.81 (0.05) 0.89 (0.04) 0.53 (0.0006) 0.68 (0.0007) 0.82 (0.0004)
COG without DC 0.97 (0.004) 0.98 (0.01) 0.98 (0.01) 0.71 (0.05) 0.84 (0.05) 0.92 (0.04) 0.53 (0.005) 0.68 (0.003) 0.82 (0.003)

EnsembleMLP 0.53 (0.004) 0.62 (0.01) 0.63 (0.03) 0.43 (0.07) 0.57 (0.05) 0.68 (0.03) 0.44 (0.07) 0.49 (0.06) 0.58 (0.03)

Table 4. The ablation study of COG on the Resub heuristic under Evaluation Strategy 1. The best performance is marked in bold.

Log2 Hyp Multiplier

Method top 40% acc top 50% acc top 60% acc top 40% acc top 50% acc top 60% acc top 40% acc top 50% acc top 60% acc

COG 0.66 (0.02) 0.88 (0.02) 0.97 (0.004) 0.88 (0.008) 0.91 (0.02) 0.94 (0.03) 0.74 (0.17) 0.97 (0.02) 0.99 (0.003)
COG without DC 0.55 (0.22) 0.67 (0.22) 0.69 (0.21) 0.86 (0.03) 0.91 (0.007) 0.98 (0.01) 0.85 (0.10) 0.95 (0.03) 0.99 (0.004)

EnsembleMLP 0.39 (0.1) 0.57 (0.2) 0.62 (0.20) 0.72 (0.02) 0.86 (0.005) 0.97 (0.01) 0.88 (0.12) 0.93 (0.08) 0.99 (0.01)

Sin Square Vga lcd

Method top 40% acc top 50% acc top 60% acc top 40% acc top 50% acc top 60% acc top 40% acc top 50% acc top 60% acc

COG 0.46 (0.17) 0.69 (0.07) 0.76 (0.07) 0.60 (0.11) 0.73 (0.08) 0.81 (0.07) 0.47 (0.34) 0.77 (0.04) 0.94 (0.02)
COG without DC 0.37 (0.11) 0.52 (0.05) 0.78 (0.04) 0.56 (0.12) 0.68 (0.11) 0.76 (0.08) 0.48 (0.33) 0.56 (0.39) 0.62 (0.43)

EnsembleMLP 0.48 (0.03) 0.63 (0.1) 0.76 (0.07) 0.39 (0.09) 0.52 (0.12) 0.63 (0.08) 0.68 (0.03) 0.71 (0.01) 0.87 (0.01)

Ethernet Wb conmax Des perf

Method top 40% acc top 50% acc top 60% acc top 40% acc top 50% acc top 60% acc top 40% acc top 50% acc top 60% acc

COG 0.82 (0.02) 0.98 (0.009) 0.99 (0.0) 0.66 (0.07) 0.88 (0.08) 0.96 (0.01) 0.55 (0.07) 0.72 (0.05) 0.89 (0.009)
COG without DC 0.85 (0.08) 0.97 (0.009) 0.98 (0.01) 0.49 (0.39) 0.56 (0.40) 0.69 (0.37) 0.40 (0.004) 0.56 (0.02) 0.71 (0.04)

EnsembleMLP 0.61 (0.01) 0.82 (0.04) 0.87 (0.05) 0.18 (0.26) 0.18 (0.26) 0.40 (0.11) 0.36 (0.04) 0.46 (0.03) 0.56 (0.03)

(COG without DC), and EnsembleMLP in Tables 3, 4, and 5. COG without DC aggregates the datasets from all circuits
into a mixed domain, and uses our knowledge-driven subgraph representation to learn node embeddings for classification.
Compared to COG without DC, EnsembleMLP further replaces our knowledge-driven subgraph representation module with
manually designed node features (see Section E.8.2).

From the results in Tables 3, 4, and 5, we can draw two conclusions. First, COG without DC significantly outperforms
EnsembleMLP in terms of the prediction accuracy, demonstrating the importance of our knowledge-driven subgraph
representation module. Moreover, the results suggest that our representation module effectively learns domain-invariant
representations for high generalization capability. Second, COG further improves COG without DC in terms of the prediction
accuracy on most circuits. This demonstrates that formulating the circuits as multiple domains and learning domain-aware
classifiers is important for further improving the generalization capability.

B.2. More Motivating Results

Here we present more motivating results.

B.2.1. INEFFECTIVE NODE-LEVEL TRANSFORMATIONS PROBLEM

As shown in Table 6, the Mfs2 and Resub heuristics apply a large number of ineffective node-level transformations, with
average of 93.81%. Moreover, the results in Table 7 demonstrate that the Rewrite and Refactor heuristics apply a large
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Table 5. The ablation study of COG on the Mfs2 and Resub heuristics under Evaluation Strategy 2. The best performance is marked in
bold.

heuristic/Circuit Log2 Hyp Multiplier Sin Square

Method top 50% acc top 50% acc top 50% acc top 50% acc top 50% acc

Mfs2 COG 0.88 (0.02) 0.85 (0.06) 0.87 (0.04) 0.79 (0.12) 0.58 (0.05)
COG without DC 0.87 (0.05) 0.85 (0.01) 0.79 (0.02) 0.75 (0.06) 0.55 (0.02)

EnsembleMLP 0.08 (0.007) 0.78 (0.01) 0.33 (0.01) 0.65 (0.08) 0.45 (0.007)

Resub COG 0.80 (0.005) 0.87 (0.03) 0.87 (0.0) 0.81 (0.03) 0.89 (0.01)
COG without DC 0.45 (0.23) 0.72 (0.17) 0.41 (0.31) 0.46 (0.23) 0.75 (0.03)

EnsembleMLP 0.21 (0.02) 0.67 (0.12) 0.71 (0.06) 0.28 (0.0) 0.92 (0.008)

number of ineffective node-level transformations as well.

B.2.2. ANALYSIS ON THE RUNTIME OF COMMONLY USED LS HEURISTICS

Runtime Percentage of the Mfs2 and Resub heuristics over Common LS Optimization Processes To evaluate the
runtime percentage of applying the Mfs2 and Resub heuristics over common LS process (i.e., common LS optimization
sequences of heuristics), we apply the following optimization sequence flows. (1) For the Resub, we apply the flow strash;
resyn2; resub -K 16 -N 3 -z, which is commonly used in industrial LS process (Brayton, 2006). Note that resyn2 denotes a
fixed sequence of LS heuristics, i.e., balance; rewrite; refactor; balance; rewrite; rewrite -z; balance; refactor -z; rewrite
-z; balance. (2) For the Mfs2, we apply the flow strash; dch; if -C 12; mfs2 -W 4 -M 5000 -l, which is commonly used in
industrial LS process as well (Mishchenko et al., 2011).

The results in Table 11 show that the runtime percentage of applying the Mfs2 and Resub heuristics is about 79% of the
total runtime of common LS optimization sequences. Thus, the results demonstrate that the runtime of applying the two
heuristics acts as a bottleneck to the efficiency of LS.

Runtime of heuristics To evaluate the runtime of applying the commonly used heuristics, we apply the following
optimization sequnece flows. (1) Given a logic optimization heuristic X, we apply the flow strash; X. Specifically, we apply
the flow for the Rewrite, Refactor, Resub, and Balance heuristics. (2) Given a post-mapping optimization heuristic X, we
apply the flow strash; if -C 12; X. Speicifically, we apply the flow for the Mfs2 heuristic.

We provide detailed results on the runtime analysis of these heuristics in the industrial setting in Tables 8 and 9. The results
demonstrate that applying the Resub and Mfs2 heuristics take the longest runtime among the commonly used LS heuristics.
For the Resub heuristic, K is an important hyperparameter, and represents the number of primary input nodes of subgraphs
at each node when applying the heuristic. Moreover, the results in Tables 8 and 9 demonstrate that applying the Rewrite
and Refactor heuristics are much faster than the Resub and Mfs2 heuristics. Nevertheless, we found that applying the
Rewrite and Refactor heuristics are highly time-consuming on very large-scale circuits as shown in Table 10. Therefore, it is
also valuable to improve the efficiency of the Rewrite and Refactor heuristics. Fortunately, the Rewrite/Refactor heuristics
follow the same paradigm as the Resub/Mfs2 heuristics as shown in Fig. 4.1 in the main text. Moreover, the results in
Table 7 demonstrate that the Rewrite and Refactor heuristics apply a large number of ineffective node-level transformations
as well. Therefore, our proposed PruneX is applicable to the Rewrite and Refactor heuristics as well to improve their
efficiency, especially on very large-scale circuits. We provide more discussion on how to apply PruneX to the two heuristics
in Appendix E.8.4

B.2.3. MORE DETAILS OF THE OUT-OF-DISTRIBUTION (OOD) GENERALIZATION PROBLEM IN LS

In terms of the visualization experiments in Fig. 3 in the main text, we present more implementation details. We use the
t-distributed stochastic neighbor embedding (t-SNE) (Van der Maaten & Hinton, 2008) algorithm to reduce the node features
to two-dimensional space. That is, each point illustrates a reduced node feature. Moreover, the visualized points of the
training data points can be too dense, as the training data points are much more than the testing data points. Thus, for visual
clarity, we sample the same number of training data points as the testing set for visualization. In addition, we visualize
data points from different circuits as well in Fig. 9a. The results show that the data distributions from different circuits are
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Table 6. The results show that the proportion of effective nodes is very low, with an average of 6.19%.

Mfs2 Avg

Stats/Circuit hyp log2 multiplier square sin adder sqrt div

Num (effective nodes) 664.00 67.00 93.00 182.00 36.00 0.00 27.00 16.00
Num (total nodes) 64245.00 10648.00 7821.00 5709.00 2000.00 339.00 5673.00 9318.00

Percent (%) 1.03 0.63 1.19 3.19 1.80 0.00 0.48 0.17 1.06

Stats/Circuit mem ctrl priority router int2float cavlc voter ctrl i2c

Num (effective nodes) 4016.00 58.00 32.00 12.00 20.00 205.00 4.00 18.00
Num (total nodes) 17430.00 261.00 111.00 91.00 286.00 2454.00 53.00 464.00

Percent (%) 23.04 22.22 28.83 13.19 6.99 8.35 7.55 3.88 14.26

Resub

Stats/Circuit hyp log2 multiplier square sin adder sqrt div

Num (effective nodes) 6745.00 106.00 120.00 763.00 18.00 126.00 121.00 30.00
Num (total nodes) 211330.00 29370.00 24556.00 16623.00 5039.00 1019.00 19437.00 40772.00

Percent (%) 3.19 0.36 0.49 4.59 0.36 12.37 0.62 0.07 2.76

Stats/Circuit mem ctrl priority router int2float cavlc voter ctrl i2c

Num (effective nodes) 999.00 93.00 2.00 4.00 24.00 974.00 17.00 62.00
Num (total nodes) 45614.00 676.00 177.00 214.00 662.00 9756.00 108.00 1162.00

Percent (%) 2.19 13.76 1.13 1.87 3.63 9.98 15.74 5.34 6.70

Total 6.19

Table 7. The results show that the proportion of effective nodes is low on the Rewrite and Refactor heuristics, with an average of 11.29%
and 7.72%, respectively.

Rewrite Avg

Stats/Circuit hyp log2 multiplier square sin des perf ethernet vga lcd wb conmax

Num (effective nodes) 83.00 (0.0) 1574.00 (0.0) 1716.00 (0.0) 605.00 (0.0) 198.00 (0.0) 6648.00 (0.0) 16636.00 (0.0) 34163.00 (0.0) 2250.00 (0.0)
Num (total nodes) 214252.00 (0.0) 30486.00 (0.0) 25346.00 (0.0) 17879.00 (0.0) 5218.00 (0.0) 71651.00 (0.0) 53048.00 (0.0) 92548.00 (0.0) 45603.00 (0.0)

Percent (%) 0.04 5.16 6.77 3.38 3.79 9.28 31.36 36.91 4.93 11.29

Refactor

Stats/Circuit hyp log2 multiplier square sin des perf ethernet vga lcd wb conmax

Num (effective nodes) 1886.00 (0.0) 568.00 (0.0) 268.00 (0.0) 191.00 (0.0) 101.00 (0.0) 3339.00 (0.0) 12884.00 (0.0) 25350.00 (0.0) 4617.00 (0.0)
Num (total nodes) 212449.00 (0.0) 31492.00 (0.0) 26794.00 (0.0) 18293.00 (0.0) 5315.00 (0.0) 74960.00 (0.0) 56800.00 (0.0) 101361.00 (0.0) 43236.00 (0.0)

Percent (%) 0.89 1.80 1.00 1.04 1.90 4.45 22.68 25.01 10.68 7.72

similar but different, which demonstrates the reasonableness of our circuit domain formulation as well.

B.2.4. THE IMPORTANCE OF THE PREDICTION RECALL ON OPTIMIZATION PERFORMANCE

To analyze the relationship between the prediction recall of effective nodes and the optimization performance of heuristics,
we evaluate the optimization performance of the Random method with different values of the hyperparameter k. Note that
Random is a baseline that randomly predicts a score between [0, 1] for each node, and selects the top k nodes to apply
node-level transformations. Specifically, we report the recall and optimization performance (i.e., And Reduction) of Random
with different values of k in Table 12. The results show that the value of k is approximately linearly positively correlated
with the recall, and the recall is approximately linearly positively correlated with the optimization performance as well.
Therefore, in order not to degrade the optimization performance of heuristics, the prediction recall of our model should be as
high as possible. Thus, it is critical to tackle the out-of-distribution generalization problem in LS to improve the prediction
recall on unseen circuits.

B.3. Oracle Prediction Results

Here we present the oracle prediction results on the Mfs2 heuristic and Log2 circuit. To evaluate whether only applying
transformations on effective nodes can achieve similar optimization performance to that of the default heuristic, we conducted
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the following oracle prediction experiment. Specifically, we apply the Mfs2 heuristic to the Log2 circuit and recorded
the set of node ids for all effective nodes. Based on this set, we implemented an Oracle version of Mfs2 that only apply
transformations to nodes in the set. The results in Table 14 show that Oracle significantly improves the runtime while
achieving the same size (i.e., the number of nodes) and depth (i.e., level) compared to Default (i.e., the default Mfs2
heuristic).

B.4. The Relationship between the Number of Nodes to Apply Transformations and Runtime

To evaluate whether reducing node-level transformations can reduce the runtime of heuristics, we test the Random method
with different values of k on open-source circuits. Note that Random is a baseline that randomly predicts a score between
[0, 1] for each node, and selects the top k nodes to apply node-level transformations. The results in Table 13 demonstrate
that the runtime of applying the resub heuristic significantly increases with the number of applied node-level transformations.
Therefore, our method can significantly reduce the runtime of applying heuristics by reducing a large number of ineffective
node-level transformations.
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Figure 7. The results demonstrate that our PruneX-COG achieves significant prediction recall improvement (Left, ↑), runtime reduction
(Middle, ↓), and marginal QoR (size) degradation (Right, ↓). The normalized runtime (node number) denotes the ratio of the runtime
(node number) to that of applying the Default heuristic to testing circuits.

B.5. More Results on the Open-Source Benchmarks

We first provide details of the results on the open-source benchmarks. Specifically, we use three metrics, i.e., top 50% acc,
normalized runtime, and normalized node number. The top 50% acc denotes the top 50% accuracy metric. The normalized
runtime denotes the ratio of the runtime to that of the default heuristic. The normalized node number denotes the ratio of the
node number to that of the circuits optimized by the default heuristic.

Then, in terms of experiments on the open-source benchmarks, we provide detailed offline evaluation results of our PruneX
on both the Mfs2 and Resub heuristics in Tables 15, 16, 17, and Figure 7a. Moreover, we provide detailed online evaluation
results of our PruneX on both the Mfs2 and Resub heuristics in Tables 18, 19, 20 and Figure 7b. Note that compared with
the first strategy, it is more challenging to achieve good generalization performance under Evaluation Strategy 2 due to
the larger distribution shift between the training and testing datasets. Specifically, for the Mfs2 heuristic under Evaluation
Strategy 2, PruneX-COG achieves 28% recall improvement. Moreover, PruneX-COG reduces the runtime by 26.66% with
0.07% degradation on average in terms of the size of circuits. Under Evaluation Strategy 1, PruneX-COG degrades the size
by 0.36%. For the Resub heuristic, PruneX-COG reduces the runtime by 44.42% and degrades the size by 0.22% on average
under Evaluation Strategy 2. Under Evaluation Strategy 1, PruneX-COG degrades the size by 0.48%. Overall, the results
demonstrate that our proposed PruneX significantly improves the efficiency of the Resub and Mfs2 heuristics, while keeping
comparable optimization performance.

B.6. More Results on Industrial Circuits and Very Large-Scale Circuits

We first provide details of the results on industrial circuits and very large -scale circuits. Specifically, we use three metrics,
i.e., top 50% acc, normalized runtime, and normalized node number. The top 50% acc denotes the top 50% accuracy metric.
The normalized runtime denotes the ratio of the runtime to that of the default heuristic. The normalized node number
denotes the ratio of the node number to that of the circuits optimized by the default heuristic.

Then, in terms of experiments on the industrial circuits and very large-scale circuits, we provide detailed offline evaluation
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(a) Offline evaluation on the industrial and very large-scale circuits.
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Figure 8. The results demonstrate the strong ability of our method to promote efficient LS on industrial and very large-scale circuits with
the Resub heuristic.
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Figure 9. (a) We visualize the data points from different circuits. (b) We train models using EnsembleMLP with a dataset without Sin, and
evaluate the models on Sin. The results (Left) show that the number of predicted positive samples is quite small. Moreover, the results
(Middle and Right) show that learned models performs poorly in terms of the precision and recall.

results of our PruneX on both the Mfs2 and Resub heuristics in Tables 21, 22, 25, 26 and Figure 8a. Moreover, we provide
detailed online evaluation results of our PruneX on both the Mfs2 and Resub heuristics in Tables 23, 24, 27, 28 and Figure
8b. For the large-scale circuits, PruneX-COG only degrades the size by 0.001% on average. Overall, the results demonstrate
the strong performance of our proposed PruneX on the industrial circuits and very large-scale circuits.

B.7. More Results on Improving QoR with PruneX-COG

Optimization Sequence Flows for 2PruneX-COG To apply our PruneX-COG twice, we apply the sequence of heuristics,
i.e., strash; dch; if -C 12; mfs2 -W 4 -M 5000; strash; if -C 12; mfs2 -W 4 -M 5000, to evaluate the performance of
2PruneX-COG. Note that the mfs2 heuristic is a post-mapping optimization heuristic, whose input DAG is a k-input look
up table graph (K-LUTs). Moreover, the strash heuristic transforms the current circuit representation into an And-Inverter
Graph (AIG) by one-level structural hashing. Then, the if (Mishchenko et al., 2007) heuristic maps an AIG into a K-LUTs.
Finally, the Mfs2 heuristic optimizes the input K-LUTs. Note that the strash and if heuristics are much faster than the Mfs2
heuristic.

We provide additional results of improving QoR with 2PruneX-COG on the Log2 and Sin circuit in Table 29. The results
demonstrate that our PruneX can not only reduce the runtime of heuristics, but also improve its optimization performance in
terms of the size and depth.

B.8. Discussion on the Class Imbalance Problem

We use EnsembleMLP to train models on a dataset without Sin, and evaluate the models on Sin. We use 0.5 as the threshold,
and predict the nodes whose model prediction probability is greater than 0.5 as positive samples. As shown in Figure 9b,
learned models predict only about 6% of the samples to be positive on the Sin circuit. This implies that our learned models
suffer from serious negative bias problem due to the class imbalance problem. Moreover, the results in Figure 9b show that
learned models perform poorly in terms of the precision and recall, which suggests that 0.5 is an inappropriate threshold.
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B.9. Discussion on the Model Inference Time

We use multiple representative circuits with node sizes ranging from 20, 000 to 780, 000 to test the bipartite graph construc-
tion time and model inference time of our COG. As shown in Table 30, the ratio of the total model time to the runtime of the
Mfs2 heuristic (i.e., Percent) is very low, with an average of 2.66%. Note that as the size of the circuit increases, the total
model time also increases significantly. For example, on the f0089 circuit with 788, 288 nodes, the total model time takes
36.41 seconds, which is much longer than that taken on a smaller circuit. The major reason is that our GPU (i.e., a NVidia
GeForce GTX 3090 Ti) memory is limited, and we have not implemented multi-card parallel inference. That is, our model
inference is performed serially and in batches on large-scale circuits, which could greatly increase the model inference time.
In contrast, we can implement multi-card parallel inference to further reduce the total model time, especially on large-scale
circuits.

C. Details of Datasets Used in This Paper
C.1. Description of Three Used Benchmarks

The industrial benchmark includes 27 circuits. We present detailed statistics of the circuits from the EPFL and IWLS in
Tables 31 and 32. Moreover, we present detailed statistics of the industrial circuits and very large-scale circuits in Tables 34
and 33. In general, a circuit is modeled as a directed acyclic graph (DAG), where nodes represent logic gates and directed
edges represent wires connecting the gates. The fanins of a node are nodes that are driving this node. The fanouts of a node
are nodes driven by the node. The primary inputs (PIs) denote the nodes without fanins. The primary outputs (POs) denote a
subset of the nodes of the network. Latches can be considered as specialized nodes within sequential circuits. Cubes refer to
logical expressions that represent subsets of input variables in Boolean functions. Lev denotes the depth of the DAG, i.e.,
the maximum number of edges between PIs and POs.

C.2. Datasets for Evaluation on Open-Source Benchmarks

For each circuit and a given X heuristic, we collect the circuit dataset by applying the X heuristic to optimizing the circuit
and collecting the node features {xi}ni=1 and labels {yi}ni=1. We found that there are a small number of circuits with no
effective nodes. We discard these circuits, as we can directly avoid applying transformation to these circuits without learning
a model.

Specifically, under Evaluation Strategy 1 using the EPFL benchmark, we construct five datasets for evaluation. We use one
of the five circuit datasets, i.e., circuit datasets collected from Log2, Hyp, Multiplier, Sin, Square, as the testing dataset, and
the other circuit datasets as the training dataset. Furthermore, under Evaluation Strategy 1 using the IWLS benchmark, we
construct four datasets for evaluation. We use one of the four circuit datasets, i.e., circuit datasets collected from Vga lcd,
Ethernet, Wb conmax, and Des perf, as the testing dataset, and the other circuit datasets as the training dataset.

Moreover, under Evaluation Strategy 2, we construct a dataset for evaluation. Specifically, we use the five circuit datasets
from Log2, Hyp, Multiplier, Sin, Square as the testing dataset, and the other circuit datasets from the EPFL and IWLS as the
training dataset. To promote the community of machine learning for LS, we will release these datasets once the paper is
accepted to be published.

C.3. Datasets for Evaluation on Industrial Circuits and Very Large-Scale Circuits

In terms of the industrial circuits, we report a statistical description of the training and testing circuits in Table 34. As shown
in Tables 34, 31, and 32, the industrial circuits consist of 27 industrial circuits, where the circuit sizes range from 2, 775
to 788, 288, which are much larger in size than open-source circuits. Note that we evaluate our method using Evaluation
Strategy 2, with 21 circuits for training and 6 circuits for testing.

In terms of the very large-scale circuits (scale up to twenty million nodes), we report a detailed description of them in Table
33. Due to the small number of very large-scale circuits, we evaluate our method using Evaluation Strategy 1 mentioned in
Experiment 1 in Section 5. Specifically, we use circuits from the EPFL mentioned in Table 31 and the two very large-scale
circuits to construct datasets. (1) We set the Sixteen circuit as the testing dataset, and the rest as the training dataset. (2)
We set the Twenty circuit as the testing dataset, and the rest as the training dataset. To promote the community of machine
learning for LS, we will release the datasets once the paper is accepted to be published.
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Figure 10. (a) We illustrate the chip design workflow, and we focus on Logic Synthesis (LS) in this paper. (b) LS converts the behavioral
description of a circuit to a transistor-level implementation, which generally consists of circuit optimization and technology mapping
(Mishchenko et al., 2007; Ren & Hu, 2023). (c) Circuit optimization aims to simplify an input circuit without changing its functionality.

D. Details of Related Work and Background
D.1. Related Work

Machine Learning for Logic Synthesis As chip complexity has grown exponentially with the development of semiconductor
technology, using machine learning (ML) to assist the automated chip design workflow has been an active topic of significant
interest in recent years (Mirhoseini et al., 2021; Huang et al., 2021; Sánchez et al., 2023; Neto et al., 2021a; Lai et al., 2022;
2023). As shown in Figure 10a, the chip design workflow consists of many stages, such as high-level synthesis (Yao et al.,
2024; Liu et al., 2022), logic synthesis (Li et al., 2023a; Zhu et al., 2023; Li et al., 2024a; Liu et al., 2023a;b), placement (Lai
et al., 2022; 2023; Geng et al., 2024; Chen et al., 2023a), design space exploration (Chen et al., 2024; Zuo et al., 2023), etc
(Huang et al., 2021; Ren & Hu, 2023). In most of the stages in the workflow, recent studies have demonstrated significant
improvement by using ML methods compared with traditional methods, including high-level synthesis (Makrani et al., 2019;
Kim et al., 2018; Liu & Carloni, 2013), logic synthesis (Neto et al., 2021a; Berndt et al., 2022; Neto et al., 2019a), and
placement (Mirhoseini et al., 2021; Lai et al., 2022; 2023; Agnesina et al., 2023; Cheng et al., 2022). In this paper, we
focus on using machine learning to promote efficient logic synthesis (LS), which plays a vital role in efficient chip design
and can yield substantial economic value (Fawcett, 1994; Neto et al., 2021a). Existing research on machine learning for
LS can be roughly divided into three categories (Berndt et al., 2022; Ren & Hu, 2023). First, (Synopsys, 2020; Cadence,
2021; Hosny et al., 2020b; Grosnit et al., 2022) use machine learning to tune the optimization flow of LS operators. Second,
(Neto et al., 2021a; Kirby et al., 2019b; Zhou et al., 2019) use machine learning to predict key metrics after physical design
and leverage the prediction to guide LS optimization. Third, (Neto et al., 2021b; 2019b) use machine learning to improve
decision-making in traditional LS methods. Different from existing work, our work uses machine learning to improve the
paradigm of traditional LS operators to promote efficient LS. An appealing feature of our PruneX is that it is applicable to
many LS operators—which follow the paradigm illustrated in Figure 1—to significantly improve their efficiency.

Generalizable Prediction in Chip Design Workflow Prior research has investigated the utilization of machine learning
(ML) techniques to develop generalizable congestion prediction models within the chip design workflow (Kirby et al.,
2019a; Wang et al., 2022a; Ghose et al., 2021; Yang et al., 2022). Nevertheless, our work differs from previous studies in
two fundamental aspects. First, we address dissimilar input data. Prior research mainly focuses on the physical design
stage with circuits represented by gate-level netlists or designed layouts, while we focus on the logic synthesis stage
with circuits represented by Boolean networks. The dissimilarity in input data poses significant challenges in directly
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applying their methods to our setting. To the best of our knowledge, our work is the first data-driven method to well tackle
the out-of-distribution (OOD) generalization problem across circuits in LS operators, which is critical for the success of
data-driven LS algorithms. Second, we employ different methodologies for learning models. Generally, they propose
problem-specific graph neural network architectures and learn the models via supervised learning. In contrast, our PruneX
formulates the OOD generalization problem across circuits as a novel circuit domain generalization task, which offers
promising avenues for future research on prediction tasks in chip design. Moreover, based on a key observation called the
transformation-invariant domain knowledge, our PruneX further proposes to learn domain-invariant representations for
enhanced generalization capabilities. Moreover, our work is also related to studies on out-of-distribution generalization
(Wang et al., 2022b; Xie et al., 2024b;a; Chen et al., 2023b; 2022) and graph neural networks (Hamilton, 2020; Shi et al.,
2023; Li et al., 2023c;b; Geng et al., 2022).

Machine Learning for Combinatorial Optimization Logic optimization, which is a key task in logic synthesis, is also
essentially a combinatorial optimization problem. The use of machine learning to tackle combinatorial optimization
problems has been an active topic of significant interest in recent years (Bengio et al., 2021; Gasse et al., 2019; Geng et al.,
2023; Wang et al., 2023b; 2024b; Ling et al., 2024; Li et al., 2024b; Wang et al., 2021; 2024a; 2023a; Wang & Yu, 2023).

D.2. Background

Logic Synthesis (LS) Driven by Moore’s law, the chip design complexity has grown exponentially (Khailany, 2020; Lopera
et al., 2021; Huang et al., 2021; Mirhoseini et al., 2021; Ren & Hu, 2023). Thus, the chip design workflow has incorporated
multiple Electronic Design Automation (EDA) tools to synthesize, simulate, test, and verify different circuit designs
efficiently and reliably. These EDA tools automatize the chip design workflow as shown in Figure 10a. A LS tool—which
aims to transform a behavioral description of a design into an optimized gate-level circuit implementation—is one of the
most important modules in the EDA tools. In general, LS consists of pre-mapping optimization, technology mapping,
and post-mapping optimization (Hosny et al., 2020a; Ren & Hu, 2023). In this paper, we define Circuit Optimization
(CO) by both pre-mapping optimization and post-mapping optimization. First, in the pre-mapping optimization phase,
logic optimization operators, such as Rewrite (Bertacco & Damiani, 1997), Resub (Brayton, 2006), and Refactor (Brayton,
1982), are applied to an input circuit to optimize the circuit. Then, in the technology mapping phase, the optimized logic
circuit is mapped to the available technology library, e.g., a standard-cell netlist (Brayton & Kam) or k-input lookup-tables
(Mishchenko et al., 2007). Finally, post-mapping optimization operators, such as Mfs2 (Mishchenko et al., 2011), are
applied to the mapped circuit to further optimize it.

Circuit Optimization In the LS stage, a circuit is usually modeled by a DAG. Common types of DAGs for CO include
And-Inverter Graphs (AIGs) for pre-mapping optimization (Bertacco & Damiani, 1997; Mishchenko et al., 2006) and
K-Input Look-Up Tables (K-LUTs) for post-mapping optimization (Mishchenko et al., 2007; 2011). In the pre-mapping
optimization phase, an AIG is a DAG containing four types of nodes: the constant, PIs, POs, and two-input And (And2)
nodes. A graph edge is either complemented or not. A complemented edge indicates that the signal is complemented. In the
post-mapping optimization phase, a K-LUT is a DAG with nodes corresponding to Look-Up Tables and directed edges
corresponding to wires. A Look-Up Table in a K-LUT is a digital memory that implements the Boolean function of the node.

Commonly Used LS Heuristics A rich set of LS heuristics have been developed to tackle the CO task in the pre-mapping
and post-mapping optimization phases (Brayton & Mishchenko, 2010). In this paper, we focus on commonly used LS
heuristics on large-scale industrial circuits—that is, the Resub (Brayton, 2006), Mfs2 (Mishchenko et al., 2011), Rewrite
(Bertacco & Damiani, 1997), and Refactor (Brayton, 1982) heuristics—which often act as a bottleneck to the efficiency of
the LS optimization processes. We notice that these LS heuristics follow the same paradigm as shown in Fig. 1. Specifically,
they apply transformations to subgraphs rooted at each node—that is, the node-level transformation—sequentially for
all nodes on an input DAG. Note that the major differences among these operators lie in the node-level transformation
mechanism.

E. Details of Methods and Experimental Settings
E.1. Details of Experimental Setup

E.1.1. OPTIMIZATION SEQUENCE FLOWS FOR COLLECTING DATA AND EVALUATION

In the industrial setting, we usually apply a sequence of Logic Synthesis (LS) heuristics to optimizing an input circuit. Thus,
we follow the setting throughout all experiments unless mentioned otherwise. Specifically, in terms of the Mfs2 heuristic, we
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apply the sequence of heuristics, i.e., strash; dch; if -C 12; mfs2 -W 4 -M 5000, to collect data and evaluate the performance
of the Default Mfs2 heuristic and our PruneX. Note that the optimization sequence flow is a standard academic flow for
evaluating the Default Mfs2 heuristic, which follows previous work (Mishchenko et al., 2011). Moreover, in terms of the
Resub heuristic, we apply a common commercial optimization sequence flow widely used in the industrial setting, i.e.,
strash; resyn2; resub -K 16 -N 3 -z, to collect data and evaluate the performance of the Default Resub heuristic and our
PruneX. We train our method with ADAM (Kingma & Ba, 2014) using the PyTorch.

E.1.2. OPTIMIZATION SEQUENCE FLOWS FOR EVALUATING 2PRUNEX-COG

To apply our PruneX-COG twice, we apply the sequence of heuristics, i.e., strash; dch; if -C 12; mfs2 -W 4 -M 5000;
strash; if -C 12; mfs2 -W 4 -M 5000, to evaluate the performance of 2PruneX-COG. Note that the mfs2 heuristic is a
post-mapping optimization heuristic, whose input DAG is a k-input look-up table graph (K-LUTs). Moreover, the strash
heuristic transforms the current circuit representation into an And-Inverter Graph (AIG) by one-level structural hashing.
Then, the if (Mishchenko et al., 2007) heuristic maps an AIG into a K-LUTs. Finally, the Mfs2 heuristic optimizes the input
K-LUTs.

E.1.3. TOP K ACCURACY METRIC

In our implemented PruneX, we sort all the nodes according to the prediction scores given by our learned classifier, and
select the top k nodes—that is, the nodes with top k scores. That is, the top k nodes are predicted positive, and the other
nodes are predicted negative. Then, the top k accuracy metric is defined by the recall, i.e., the fraction of true positive nodes
that are predicted to be positive.

E.2. Implementation Details of the Focal Loss

The Focal Loss is first introduced to address the class imbalance problem in the object detection scenario (Lin et al., 2017).
In this paper, we leverage the Focal Loss to alleviate the class imbalance problem in learning classifiers for logic synthesis.
Specifically, the loss function for each data pair (x, y) takes the form of

l(f(x), y) =− αy(1− f(x))γ log(f(x))
− (1− α)f(x)γ log(1− f(x)),

where α ∈ [0, 1] denotes a weighting factor, and γ ≥ 0 denotes a tunable focusing parameter. In this paper, we set α by
inverse class frequency, and γ by 2, which follows (Lin et al., 2017).

E.3. Implementation Details of EnsembleMLP

EnsembleMLP aims to learn a classifier to predict the probability (i.e., score) of a node that it is effective. For a fair
comparison, EnsembleMLP uses the same node features as COG in Table 35, and we train EnsembleMLP via the Focal
Loss as well. Specifically, we implement the EnsembleMLP with a multi-layer perceptron containing three hidden layers
with 1024 units. To enhance the generalization ability, we train the EnsembleMLP with the ensemble learning trick (Zhou &
Zhou, 2021). Specifically, we train the EnsembleMLP with 15 ensembles.

E.4. Implementation Details of GCNN

Our GCNN model takes as input the bipartite graph and performs a single graph convolution, in the form of two interleaved
half-convolutions. Specifically, we break down our graph convolution into two successive passes, i.e., one from the root
node to the non-root nodes and one from the non-root nodes to the root node. The passes take the form of

h(ci)← fC(ci,gC(ci, t1))

h(t1)← fT (t1,
1

m

m∑
i=1

gT (h(ci), t1)

for all i ∈ {1, . . . ,m}, where fC ,gC , fT , and gT are two-layer perceptrons with relu activation functions, t1 denotes the
root node feature, and ci denotes the i-th non-root node feature.
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E.5. Discussion on Assumption 4.1

With our circuit aggregation mechanism, circuits can be categorized in various ways. For instance, in the EPFL dataset,
circuits can be aggregated into arithmetic and control domains based on their respective functionalities. Additionally, there
is an option to treat each circuit within the EPFL dataset as an individual domain, which is similar to the natural division
of domains in computer vision (Shen et al., 2021). Furthermore, the flexibility extends to the number of circuits in each
domain. For example, an Arithmetic Logic Unit (ALU) circuit is proficient in both arithmetic computations and control
operations, allowing its placement in either the arithmetic or control domain without violating the i.i.d assumption.

In our setting, for each of N circuits, a set of nodes are obtained by applying an X heuristic to the circuit. The nodes are
then labeled based on whether the corresponding node-level transformation is effective. Thus, the training set consists of
heterogeneous samples from several distributions, i.e., nodes from several different circuits. That is, we are given N similar
and related distributions, and aim to generalize to a similar but different test distribution. Regarding the source of these
circuits, each circuit may be a sample of a complex integrated circuit, such as an addition circuit, storage circuit, control
circuit, etc. In addition, aggregating circuits with similar functionality is similar to sampling some small building blocks
from a complex integrated circuit. Therefore, it is reasonable to assume that the training Circuit Domains and testing Circuit
Domains come from the same hyper-distribution. That is, Assumption 4.1 holds.

Moreover, we empirically show that the data distributions from N different circuits are N similar but different distributions
in Figure 9a, which suggests that Assumption 4.1 holds in practice as well.

E.6. Details on Our Circuit Aggregation Mechanism

In this paper, we aggregate circuits based on their sample sizes and functionality. In general, we divide the real industry
setting into two categories. In the first category, we are given N circuits with their functionality information. In the second
category, we are given N circuits without their functionality information for privacy protection. In the first category, we
aggregate those circuits with the same high-level functionality. Take the EPFL benchmark as an example, we aggregate
circuits with the arithmetic functionality and control functionality into an arithmetic Circuit Domain and a control Circuit
Domain, respectively. Thus, the two Circuit Domains contain two large datasets with similar sample sizes, which is beneficial
for achieving a small generalization error bound. Moreover, the two Circuit Domains may come from small integrated units
from a complex integrated circuit, which follows Assumption 4.1. In the second category, we aggregate circuits to make the
sample sizes across domains nearly uniform. Specifically, we sort the circuits according to their sample sizes, and divide the
odd-numbered circuits into one domain, and the even-numbered circuits into another domain. In this paper, we assume that
the IWLS and industrial benchmarks fall into the second category.

E.7. Details of the Transformation-Invariant Domain Knowledge

Here we take the node-level transformation in the Resub and Mfs2 heuristics, i.e., the resubstitution transformation (Brayton,
2006), as an example. The node-level transformations in the Rewrite (Bertacco & Damiani, 1997) and Refactor (Brayton,
1982) heuristics are different from but similar to the resubstitution transformation. Please refer to (Bertacco & Damiani,
1997) for details. In terms of the resubstitution transformation, we are given a current node called the root node. The
resubstitution transformation first uses a heuristic rule to collect a limited number of candidate input nodes of the root node.
In general, the candidate input nodes include two types of nodes: (a) the nodes that are on the input direction of the root
node and distance-m or less from the root node, and (b) the nodes that are on the output direction of the type (a) nodes and
with level not exceeding the level of the root node. The resubstitution transformation focuses on the subgraph constructed
by the root node and candidate input nodes. Next, the resubstitution transformation aims to find a new set of input nodes
from candidate input nodes to replace existing input nodes of the current node without changing its functionality, thereby
reducing the size and/or depth of the circuit.

Thus, the resubstitution transformation mechanism is invariant across different circuits. Moreover, whether a resubstitution
transformation can be effective is highly related to the focused subgraph regardless of what the global graph is. Based
on the transformation-invariant domain knowledge, we propose to extract the subgraph rooted at a node to learn its node
embedding for discriminative classification, which carries the potential to learn domain-invariant representations and thus
well generalize to unseen circuits. Please see (Brayton, 2006) for details on the resubstitution.
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E.8. Details of PruneX and COG

E.8.1. DATA COLLECTION AND MODEL LEARNING

In the offline phase, we aim to collect a training dataset D from multiple existing logic circuits {Ci}Ni=1 given a LS operator.
In general, a logic circuit is modeled as a directed acyclic graph (DAG), where nodes represent logic gates and directed
edges represent wires connecting the gates. Let X denote a LS operator. To generate the Circuit Dataset, we apply the X
operator to optimizing the circuit, which applies node-level transformations to each node on the DAG. For each node in
the circuit, we generate a data pair (x, y), where x denotes the node, and y denotes the label. Specifically, if the node-level
transformation is effective at the node x, then y = 1. Otherwise, y = 0. Given the X operator and N circuits, we generate a
dataset D = {Di}Ni=1 = {{xij , yij}

ni
j=1}Ni=1.

Given the generated dataset D, we learn a binary classifier f : X → Y , where X denotes the input space of nodes, and Y
denotes {0, 1}. Specifically, we formulate the prediction task as a binary classification task. The optimization objective for
each data pair (x, y) takes the form of l(f(x), y) = −y log(f(x))− (1− y) log(1− f(x)). That is, the output of our learned
model for an input node represents the probability that the node is an effective node. Note that the Ineffective Node-Level
Transformations (INT) problem leads to an extreme class imbalance in the training dataset. This severe imbalance poses a
substantial challenge to the classification task (Lin et al., 2017; Rota Bulo et al., 2017). To tackle this problem, we leverage
the Focal Loss (Lin et al., 2017), which has been shown successful in addressing class imbalance for object detection tasks.
We provide more details on the Focal Loss in Appendix E.2.

E.8.2. DESIGNED NODE FEATURES

As shown in Table 35, we design features for each node to contain the functionality information, structure information,
and other possible useful features. As the Resub heuristic and the Mfs2 heuristic are logic optimization and post-mapping
optimization heuristics respectively, their corresponding input directed acyclic graphs are different. For the logic optimization
heuristic Resub, the input circuit is usually represented as an And-Inverter Graph (AIG). For the post-mapping optimization
heuristic Mfs2, the input circuit is represented as a k-inputs Look up tables (k-LUTs). Please refer to Section D.2 for details
on the AIG and k-LUTs.

Therefore, for the two different types of heuristics, the specific designed node features are slightly different. Specifically, for
the Mfs2 heuristic, we design node features with the truth table of the node (i.e., a 6-input look up table) and other possible
useful features, such as the fanin/fanout number and level of the node. Overall, the node feature for the Mfs2 heuristic is
a 69-dimensional vector. Moreover, for the Resub heuristic, we consider features from the node itself and from its two
children to capture structural information, which follows (Neto et al., 2021b). We use the two features inv0 and inv1 to
capture the functionality information, where inv0/inv1= 1 denotes that the left/right input edge is inverted. Thus, the node
feature consists of the root node feature (8-dimensional vector) and its two children features (two 6-dimensional vectors).
Note that its children features do not contain the cut information, i.e., the Leaves number and Cuts number. Overall, the
node feature for the Resub heuristic is a 20-dimensional vector.

E.8.3. IMPLEMENTATION DETAILS OF PRUNEX

As shown in Fig. 1, our proposed PruneX first extract node features, i.e., constructing bipartite graphs for all nodes as
mentioned in Section 4.2. PruneX then call the learned classifier to predict the score that a node is effective for all nodes.
The learned classifier is heuristic-specific. That is, we learn an individual classifier for each given heuristic, as the input
circuit representation for different heuristics are different and thus the designed node features are different. Note that an
input circuit is modeled by a directed acylic graph (DAG), and each node on the DAG has a unique identification number
(ID). Thus, PruneX sort the node IDs in descending order according to the scores, and select the top k% node IDs. Finally,
PruneX only applies node-level transformations in sequence to nodes in the selected node ID set.

The model inference time in PruneX is low, as PruneX only needs to call the inference model once. However, there may
be a marginal shift between the predicted node IDs and the true node IDs. The reason is that when applying node-level
transformations in sequence, the structure of the graph may change. This causes the true node IDs to change, while the
predicted node IDs are fixed. Fortunately, we found that the shift between the predicted node IDs and the true node IDs has
marginal impact on the optimization performance of the heuristics for the following two reasons. First, the ID set of effective
nodes is quite sparse due to the ineffective node-level transformations problem. Therefore, the influence between consecutive
effective node-level transformations is slight. Second, the results in Table 14 show that only applying transformations to true
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effective nodes achieves the same optimization performance as the default Mfs2 heuristic (see Appendix B.3 for details).

E.8.4. DISCUSSION ON HOW TO APPLY PRUNEX TO THE REWRITE AND REFACTOR HEURISTICS

The Rewrite and Refactor heuristics follow the same paradigm as the Resub and Mfs2 heuristics. We illustrate the unified
paradigm in Figure 1 (Left) in the main text. Note that the major difference between these heuristics lies in the node-
level transformation. That is, the specific methods for node-level transformation are different between these heuristics.
For example, the Resub heuristic applies the resubstitution transformation. We provide details on the resubstitution
transformation in Appendix E.7. As shown in Figure 1 (Right), our PruneX uses a learned classifier to predict those nodes
with effective node-level transformations in advance, and applies node-level transformations to these predicted effective
nodes sequentially. Note that the paradigm of our PruneX is independent from the node-level transformations. Thus, our
PruneX can also be applied to the Rewrite and Refactor heuristics.

E.8.5. IMPLEMENTATION DETAILS OF COG

Hardware Specification Throughout all experiments, we use a single machine that contains eight GPU devices (Nvidia
GeForce GTX 3090 Ti) and two Intel Gold 6246R CPUs.

Neural Network Architecture The GCNN model encodes node features into embeddings with dimension 128. The
multi-head neural network contains a shared multi-layer perceptron containing three hidden layers with 1024 units with M
heads branching off independently. To output classification probabilities for values between 0 and 1, the multi-head neural
network uses a sigmoid activation function at the last layer.

Training Details Throughout all experiments, we apply Adam optimizer with learning rate α = 1e− 4 to optimize our
models. Moreover, for training stability, we apply linear learning rate decay with step size 100 and decay rate 0.96. For
generalization to very large-scale circuits, we apply Min-Max Normalization to data in training and testing datasets. Due to
limited video memory, we set the batch size to 10240. For simplicity, we train models for 3000 epochs, and save the three
models at 1000, 2000, and 3000 epochs. Furthermore, we choose the model that performs best on the training set from
the three models to evaluate on the testing circuits. To further enhance our method, we can leverage the model selection
strategies investigated in (Gulrajani & Lopez-Paz), which we leave as future work.
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Table 8. We analyze the runtime of commonly used LS heuristics on open-source circuits. Ratio denotes the ratio of the runtime to that of
the Rewrite heuristic.

Log2 Hyp Multiplier

heuristics RunTime (s) Ratio RunTime (s) Ratio RunTime (s) Ratio

Rewrite 1.73 (0.09) 1.00 29.97 (0.33) 1.00 0.74 (0.014) 1.00
Balance 0.04 (0.0) 0.02 0.36 (0.035) 0.01 0.03 (0.0) 0.04
Refactor 2.12 (0.04) 1.23 24.01 (0.07) 0.80 1.72 (0.02) 2.32

Resub (K=12) 4.33 (0.042) 2.50 9.17 (0.04) 0.31 1.81 (0.02) 2.45
Resub (K=16) 76.44 (0.55) 44.18 116.14 (0.10) 3.88 23.33 (0.05) 31.53

Mfs2 128.25 (0.33) 74.13 259.07 (0.33) 8.64 13.70 (0.07) 18.51

Sin Square Vga lcd

heuristics RunTime (s) Ratio RunTime (s) Ratio RunTime (s) Ratio

Rewrite 0.23 (0.0) 1.00 0.50 (0.04) 1.00 6.99 (0.22) 1.00
Balance 0.01 (0.0) 0.04 0.02 (0.0) 0.04 0.38 (0.022) 0.05
Refactor 0.21 (0.016) 0.91 1.19 (0.02) 2.38 7.83 (0.12) 1.12

Resub (K=12) 0.90 (0.0) 3.91 1.03 (0.005) 2.06 97.32 (0.06) 13.92
Resub (K=16) 17.05 (0.016) 74.13 11.87 (0.08) 23.74 649.19 (1.16) 92.87

Mfs2 10.15 (0.06) 44.13 25.33 (0.41) 50.66 128.55 (1.08) 18.39

Ethernet Wb conmax Des perf

heuristics RunTime (s) Ratio RunTime (s) Ratio RunTime (s) Ratio

Rewrite 1.51 (0.03) 1.00 0.86 (0.03) 1.00 1.86 (0.04) 1.00
Balance 0.13 (0.005) 0.09 0.07 (0.009) 0.08 0.16 (0.016) 0.09
Refactor 1.06 (0.009) 0.70 0.59 (0.016) 0.69 1.37 (0.09) 0.74

Resub (K=12) 10.72 (0.02) 7.10 7.96 (0.04) 9.26 23.37 (0.27) 12.56
Resub (K=16) 145.77 (0.19) 96.54 149.80 (0.38) 174.19 223.09 (1.44) 119.94

Mfs2 27.53 (0.15) 18.23 25.40 (0.04) 29.53 30.11 (0.065) 16.19

Avg Time Ratio to Rewrite

heuristics Rewrite Balance Refactor Resub (K=12) Resub (K=16) Mfs2

Time Ratio 1.00 0.05 1.21 6.01 73.44 30.94
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Table 9. We analyze the runtime of commonly used LS heuristics on industrial circuits. Ratio denotes the ratio of the runtime to that of the
Rewrite heuristic.

f5022 f8272 c5088

heuristics RunTime (s) Ratio RunTime (s) Ratio RunTime (s) Ratio

Rewrite 36.06 (0.40) 1.00 29.41 (0.15) 1.00 25.05 (0.10) 1.00
Balance 0.75 (0.005) 0.02 0.74 (0.04) 0.03 0.76 (0.005) 0.03
Refactor 42.24 (0.10) 1.17 24.65 (0.08) 0.84 31.51 (0.33) 1.26

Resub (K=12) 228.92 (2.11) 6.35 517.74 (27.07) 17.60 336.13 (22.22) 13.42
Resub (K=16) 1144.56 (10.57) 31.74 743.51 (4.53) 25.28 1660.70 (7.03) 66.30

Mfs2 177.93 (0.69) 4.93 76.97 (0.13) 2.62 487.51 (51.68) 19.46

d3151 c8449 d4067

heuristics RunTime (s) Ratio RunTime (s) Ratio RunTime (s) Ratio

Rewrite 0.94 (0.012) 1.00 1.44 (0.02) 1.00 33.52 (0.15) 1.00
Balance 0.03 (0.0) 0.03 0.04 (0.0) 0.03 1.16 (0.008) 0.03
Refactor 0.80 (0.008) 0.85 1.43 (0.008) 0.99 44.53 (0.12) 1.33

Resub (K=12) 6.13 (0.12) 6.52 8.03 (0.49) 5.58 1061.05 (6.96) 31.65
Resub (K=16) 61.22 (0.03) 65.13 72.80 (0.008) 50.56 5300.23 (20.44) 158.12

Mfs2 66.17 (5.25) 70.39 234.58 (45.54) 162.90 201.43 (12.17) 6.01

Avg Time Ratio to Rewrite

heuristics Rewrite Balance Refactor Resub (K=12) Resub (K=16) Mfs2

Time Ratio 1.00 0.03 1.07 13.52 66.19 44.39

Table 10. We analyze the runtime of the Rewrite and Refactor heuristics on very large-scale circuits.

Sixteen Twenty

heuristics RunTime (s) heuristics RunTime (s)

Rewrite 8502.77 (297.2) Rewrite 12715.52 (52.83)
Refactor 7486.48 (212.83) Refactor 10297.4 (42.0)
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Table 11. We analyze the runtime percentage of the Mfs2 and Resub heuristics over common LS optimization sequences.

Mfs2 heuristic

Circuit RunTime of Mfs2 Total RunTime Percent (%)

Log2 155.33 (1.31) 175.46 (2.26) 88.53
Hyp 263.91 (0.36) 272.52 (0.38) 96.84

Multiplier 16.69 (0.07) 23.27 (0.03) 71.72
Sin 12.64 (0.27) 15.34 (0.29) 82.40

Square 21.41 (0.07) 26.6 (0.11) 80.49
Des perf 29.51 (0.28) 51.54 (0.3) 57.26
Ethernet 27.73 (0.46) 49.12 (0.85) 56.45

Wb conmax 21.24 (0.54) 31.32 (0.57) 67.82
Vga lcd 189.1 (3.37) 261.58 (4.42) 72.29
Average - - 74.87

Resub heuristic

Circuit RunTime of Resub Total RunTime Percent (%)

Log2 65.87 (1.44) 73.82 (2.05) 89.23
Hyp 115.86 (0.17) 235.3 (2.49) 49.24

Multiplier 19.91 (0.06) 25.25 (0.02) 78.85
Sin 12.74 (0.02) 13.73 (0.01) 92.79

Square 9.37 (0.13) 13.93 (0.2) 67.26
Des perf 228.12 (13.89) 237.71 (14.09) 95.97
Ethernet 83.54 (0.27) 88.45 (0.37) 94.45

Wb conmax 102.31 (0.25) 106.14 (0.47) 96.39
Vga lcd 403.3 (1.87) 415.16 (2.4) 97.14
Average - - 84.59
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Table 12. We report the recall and optimization performance of the Resub heuristic incorporated with Random models. And Reduction
denotes the reduced number of nodes, i.e., optimization performance. Percent denotes the hyperparameter k, i.e., the percent of nodes to
apply transformations. Normalized AR denotes the ratio of the AR to that of the default heuristic.

Log2 Hyp

Percent Recall And Reduction (AR) Normalized AR Percent Recall And Reduction (AR) Normalized AR

0.10 0.06 8.00 (2.0) 0.07 0.10 0.11 702.00 (16.31) 0.10
0.20 0.15 16.00 (0.0) 0.15 0.20 0.20 1362.67 (21.23) 0.20
0.30 0.25 37.50 (0.5) 0.34 0.30 0.30 2027.00 (8.52) 0.30
0.40 0.31 35.00 (2.0) 0.32 0.40 0.39 2667.33 (30.65) 0.39
0.50 0.48 52.00 (1.0) 0.47 0.50 0.50 3407.33 (38.76) 0.50
0.60 0.60 64.50 (2.5) 0.59 0.60 0.59 4053.33 (25.72) 0.60
0.70 0.72 80.50 (2.5) 0.73 0.70 0.69 4733.33 (53.32) 0.70
0.80 0.81 85.00 (1.0) 0.77 0.80 0.81 5423.33 (21.31) 0.80
0.90 0.87 99.50 (2.5) 0.90 0.90 0.91 6108.33 (20.00) 0.90
1.00 1.00 110.00 (0.0) 1.00 1.00 1.00 6797.00 (0.0) 1.00

Multiplier Square

Percent Recall And Reduction (AR) Normalized AR Percent Recall And Reduction (AR) Normalized AR

0.10 0.13 8.00 (0.81) 0.07 0.10 0.12 84.33 (6.23) 0.11
0.20 0.28 22.00 (1.41) 0.18 0.20 0.15 154.66 (9.39) 0.20
0.30 0.40 36.00 (4.32) 0.30 0.30 0.25 239.00 (15.12) 0.31
0.40 0.47 45.00 (2.44) 0.38 0.40 0.37 311.00 (8.28) 0.40
0.50 0.58 58.33 (1.24) 0.49 0.50 0.47 404.33 (14.88) 0.52
0.60 0.69 72.66 (2.35) 0.61 0.60 0.55 463.00 (4.96) 0.60
0.70 0.78 81.66 (0.94) 0.68 0.70 0.66 550.00 (11.04) 0.71
0.80 0.84 94.33 (2.86) 0.79 0.80 0.76 629.00 (1.63) 0.81
0.90 0.97 107.66 (2.49) 0.90 0.90 0.86 696.33 (5.31) 0.90
1.00 1.00 120.00 (0.0) 1.00 1.00 1.00 778.00 (0.0) 1.00

Des perf Vga lcd

Percent Recall And Reduction (AR) Normalized AR Percent Recall And Reduction (AR) Normalized AR

0.10 0.10 292.00 (8.98) 0.13 0.10 0.10 7.66 (3.68) 0.09
0.20 0.21 505.00 (3.56) 0.22 0.20 0.15 22.33 (2.49) 0.26
0.30 0.30 775.00 (6.53) 0.34 0.30 0.20 32.00 (3.74) 0.38
0.40 0.41 1031.33 (27.34) 0.45 0.40 0.34 37.00 (6.97) 0.44
0.50 0.51 1281.00 (18.02) 0.56 0.50 0.46 50.66 (5.18) 0.60
0.60 0.60 1467.67 (22.23) 0.64 0.60 0.54 60.33 (3.09) 0.71
0.70 0.71 1738.67 (22.16) 0.75 0.70 0.61 69.00 (4.54) 0.81
0.80 0.81 1913.33 (12.92) 0.83 0.80 0.80 77.00 (3.74) 0.91
0.90 0.90 2124.00 (4.55) 0.92 0.90 0.90 79.33 (3.85) 0.93
1.00 1.00 2307.00 (0.0) 1.00 1.00 1.00 85.00 (0.0) 1.00

Ethernet Wb conmax

Percent Recall And Reduction (AR) Normalized AR Percent Recall And Reduction (AR) Normalized AR

0.10 0.13 26.33 (1.69) 0.13 0.10 0.11 325.00 (17.8) 0.16
0.20 0.26 52.66 (9.80) 0.26 0.20 0.20 596.67 (28.52) 0.29
0.30 0.34 70.33 (16.54) 0.34 0.30 0.30 879.67 (27.01) 0.43
0.40 0.47 110.66 (15.54) 0.54 0.40 0.39 1042.33 (21.36) 0.51
0.50 0.58 125.00 (9.09) 0.61 0.50 0.49 1310.33 (20.89) 0.64
0.60 0.67 138.33 (2.05) 0.68 0.60 0.60 1502.33 (3.09) 0.74
0.70 0.77 161.00 (9.89) 0.79 0.70 0.70 1660.00 (53.39) 0.81
0.80 0.82 180.33 (3.39) 0.88 0.80 0.79 1789.33 (8.38) 0.88
0.90 0.92 191.00 (8.64) 0.94 0.90 0.90 1946.33 (8.26) 0.96
1.00 1.00 204.00 (0.0) 1.00 1.00 1.00 2037.00 (0.0) 1.00
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Table 13. We report the number of applied transformations and runtime of the Resub heuristic incorporated with a Random model. Percent
denotes the hyperparameter k, i.e., the percent of nodes to apply transformations. Normalized RT denotes the ratio of the runtime to that
of the default heuristic.

Log2 Hyp

Percent Run Time (RT, s) Normalized RT Percent Run Time (RT, s) Normalized RT

0.10 6.99 (0.24) 0.11 0.10 14.64 (0.03) 0.13
0.20 13.56 (0.07) 0.21 0.20 26.73 (0.07) 0.23
0.30 19.24 (0.36) 0.30 0.30 37.93 (0.30) 0.33
0.40 26.06 (0.17) 0.41 0.40 49.30 (0.21) 0.43
0.50 31.40 (0.13) 0.50 0.50 60.50 (0.11) 0.53
0.60 37.80 (0.15) 0.60 0.60 71.82 (0.19) 0.63
0.70 44.42 (0.42) 0.70 0.70 82.42 (0.43) 0.72
0.80 50.84 (0.42) 0.81 0.80 92.93 (0.81) 0.82
0.90 57.32 (0.62) 0.91 0.90 103.25 (0.65) 0.91
1.00 63.13 (0.5) 1.00 1.00 113.98 (0.71) 1.00

Multiplier Square

Percent Run Time (RT, s) Normalized RT Percent Run Time (RT, s) Normalized RT

0.10 2.36 (0.04) 0.12 0.10 1.15 (0.071) 0.13
0.20 4.32 (0.04) 0.22 0.20 2.15 (0.06) 0.23
0.30 6.35 (0.06) 0.32 0.30 2.86 (0.03) 0.31
0.40 8.06 (0.10) 0.41 0.40 3.89 (0.11) 0.43
0.50 10.41 (0.23) 0.53 0.50 4.74 (0.05) 0.52
0.60 12.12 (0.15) 0.61 0.60 5.58 (0.05) 0.61
0.70 13.99 (0.04) 0.71 0.70 6.50 (0.04) 0.71
0.80 15.92 (0.07) 0.80 0.80 7.39 (0.04) 0.81
0.90 17.84 (0.13) 0.90 0.90 8.25 (0.05) 0.90
1.00 19.79 (0.02) 1.00 1.00 9.15 (0.005) 1.00

Des perf Vga lcd

Percent Run Time (RT, s) Normalized RT Percent Run Time (RT, s) Normalized RT

0.10 37.01 (0.41) 0.17 0.10 67.04 (1.38) 0.17
0.20 57.51 (0.77) 0.27 0.20 103.03 (1.72) 0.26
0.30 76.87 (0.64) 0.36 0.30 138.10 (0.51) 0.35
0.40 97.43 (0.15) 0.46 0.40 173.13 (0.89) 0.44
0.50 116.11 (0.31) 0.55 0.50 211.32 (1.82) 0.54
0.60 135.97 (0.88) 0.64 0.60 246.12 (3.85) 0.63
0.70 154.60 (1.53) 0.73 0.70 283.42 (2.39) 0.73
0.80 174.10 (1.04) 0.82 0.80 318.32 (2.08) 0.82
0.90 193.21 (1.37) 0.91 0.90 352.70 (1.53) 0.91
1.00 211.95 (1.39) 1.00 1.00 389.20 (2.91) 1.00

Ethernet Wb conmax

Percent Run Time (RT, s) Normalized RT Percent Run Time (RT, s) Normalized RT

0.10 16.72 (0.40) 0.21 0.10 12.03 (0.4) 0.12
0.20 24.12 (0.36) 0.30 0.20 22.30 (0.4) 0.22
0.30 31.21 (0.53) 0.38 0.30 33.03 (0.26) 0.33
0.40 39.16 (1.04) 0.48 0.40 42.97 (0.62) 0.42
0.50 45.29 (1.09) 0.56 0.50 53.14 (0.4) 0.52
0.60 52.99 (0.45) 0.65 0.60 62.52 (0.35) 0.62
0.70 59.35 (0.19) 0.73 0.70 72.15 (0.13) 0.71
0.80 66.56 (0.97) 0.82 0.80 82.14 (0.21) 0.81
0.90 73.85 (0.35) 0.91 0.90 91.82 (0.25) 0.91
1.00 81.34 (0.78) 1.00 1.00 101.43 (0.16) 1.00
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Table 14. The results show that only applying transformations on effective nodes (i.e., Orcale) significantly improves the runtime while
keeping the same size and depth of the Log2 circuit. Note that Nd denotes the number of nodes on the circuit, i.e., the size of the circuit.
Lev denotes the depth of the circuit.

Log2

Method Nd Decrease
(Nd, %) Lev Time (s) Improvement

(Time, %)

Oracle 10621.00 0.00 104.00 5.40 96.54
Default (Mfs2) 10621.00 (0.0) NA 104.00 (0.0) 156.19 (1.66) NA

Table 15. Detailed offline evaluation results using Evaluation Strategy 1 on the Mfs2 heuristic and open-source circuits.

Log2 Hyp Multiplier

Method top 40% acc top 50% acc top 60% acc top 40% acc top 50% acc top 60% acc top 40% acc top 50% acc top 60% acc

COG 0.89 (0.04) 0.97 (0.01) 0.99 (0.01) 0.79 (0.04) 0.90 (0.03) 0.95 (0.008 0.91 (0.03) 0.96 (0.03) 0.98 (0.01)
EnsembleMLP 0.61 (0.0) 0.65 (0.007) 0.85 (0.03) 0.62 (0.005) 0.73 (0.004) 0.82 (0.003) 0.63 (0.0) 0.71 (0.0) 0.75 (0.0)

Random 0.31 0.48 0.60 0.39 0.50 0.59 0.47 0.58 0.69

Sin Square Vga lcd

Method top 40% acc top 50% acc top 60% acc top 40% acc top 50% acc top 60% acc top 40% acc top 50% acc top 60% acc

COG 0.71 (0.06) 0.87 (0.04) 0.95 (0.02) 0.90 (0.01) 0.94 (0.002) 0.95 (0.0) 0.93 (0.007) 0.95 (0.01) 0.98 (0.007)
EnsembleMLP 0.56 (0.0) 0.58 (0.0) 0.67 (0.0) 0.85 (0.02) 0.91 (0.004) 0.92 (0.0) 0.19 (0.04) 0.29 (0.02) 0.53 (0.02)

Random 0.47 0.64 0.72 0.37 0.47 0.55 0.34 0.46 0.54

Ethernet Wb conmax Des perf

Method top 40% acc top 50% acc top 60% acc top 40% acc top 50% acc top 60% acc top 40% acc top 50% acc top 60% acc

COG 0.91 (0.09) 0.96 (0.04) 0.97 (0.03) 0.69 (0.04) 0.81 (0.05) 0.89 (0.04) 0.53 (0.0006) 0.68 (0.0007) 0.82 (0.0004)
EnsembleMLP 0.53 (0.004) 0.62 (0.01) 0.63 (0.03) 0.43 (0.07) 0.57 (0.05) 0.68 (0.03) 0.44 (0.07) 0.49 (0.06) 0.58 (0.03)

Random 0.47 0.58 0.67 0.39 0.49 0.60 0.41 0.51 0.60

Table 16. Detailed offline evaluation results using Evaluation Strategy 1 on the Resub heuristic and open-source circuits.

Log2 Hyp Multiplier

Method top 40% acc top 50% acc top 60% acc top 40% acc top 50% acc top 60% acc top 40% acc top 50% acc top 60% acc

COG 0.66 (0.02) 0.88 (0.02) 0.97 (0.004) 0.88 (0.008) 0.91 (0.02) 0.94 (0.03) 0.74 (0.17) 0.97 (0.02) 0.99 (0.003)
EnsembleMLP 0.39 (0.1) 0.57 (0.2) 0.62 (0.20) 0.72 (0.02) 0.86 (0.005) 0.97 (0.01) 0.88 (0.12) 0.93 (0.08) 0.99 (0.01)

Random 0.39 0.48 0.63 0.40 0.50 0.60 0.34 0.43 0.58

Sin Square Vga lcd

Method top 40% acc top 50% acc top 60% acc top 40% acc top 50% acc top 60% acc top 40% acc top 50% acc top 60% acc

COG 0.46 (0.17) 0.69 (0.07) 0.76 (0.07) 0.60 (0.11) 0.73 (0.08) 0.81 (0.07) 0.47 (0.34) 0.77 (0.04) 0.94 (0.02)
EnsembleMLP 0.48 (0.03) 0.63 (0.1) 0.76 (0.07) 0.39 (0.09) 0.52 (0.12) 0.63 (0.08) 0.68 (0.03) 0.71 (0.01) 0.87 (0.01)

Random 0.42 0.54 0.57 0.38 0.48 0.59 0.34 0.46 0.54

Ethernet Wb conmax Des perf

Method top 40% acc top 50% acc top 60% acc top 40% acc top 50% acc top 60% acc top 40% acc top 50% acc top 60% acc

COG 0.82 (0.02) 0.98 (0.009) 0.99 (0.0) 0.66 (0.07) 0.88 (0.08) 0.96 (0.01) 0.55 (0.07) 0.72 (0.05) 0.89 (0.009)
EnsembleMLP 0.61 (0.01) 0.82 (0.04) 0.87 (0.05) 0.18 (0.26) 0.18 (0.26) 0.40 (0.11) 0.36 (0.04) 0.46 (0.03) 0.56 (0.03)

Random 0.47 0.58 0.67 0.39 0.49 0.60 0.41 0.51 0.60
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Table 17. Detailed offline evaluation results using Evaluation Strategy 2 on the Mfs2 and Resub heuristics and open-source circuits.

Log2 Hyp Multiplier Sin Square

heuristic Method top 50% acc top 50% acc top 50% acc top 50% acc top 50% acc

mfs2 COG 0.88 (0.02) 0.85 (0.06) 0.87 (0.04) 0.79 (0.12) 0.58 (0.05)
EnsembleMLP 0.08 (0.007) 0.78 (0.01) 0.33 (0.01) 0.65 (0.08) 0.45 (0.007)

Random 0.48 0.50 0.58 0.54 0.47

resub COG 0.80 (0.005) 0.87 (0.03) 0.87 (0.0) 0.81 (0.03) 0.89 (0.01)
EnsembleMLP 0.21 (0.02) 0.67 (0.12) 0.71 (0.06) 0.28 (0.0) 0.92 (0.008)

Random 0.48 0.50 0.43 0.54 0.48

Table 18. Detailed online evaluation results using Evaluation Strategy 1 on the Mfs2 heuristic and open-source circuits. Improvement
denotes the improvement of our PruneX compared to the default heuristic.

Log2 Hyp Multiplier

Method Nd Decrease
(Nd, %) Lev Time (s) Improvement

(Time, %) Nd Decrease
(Nd, %) Lev Time (s) Improvement

(Time, %) Nd Decrease
(Nd, %) Lev Time (s) Improvement

(Time, %)

PruneX (COG) 10621.00 (0.0) 0.00 104.00 (0.0) 137.87 (3.96) 11.73 63819.00 (58.65) -0.37 8259.00 (0.0) 149.97 (19.89) 45.30 7800.33 (1.24) -0.02 87.00 (0.0) 9.04 (0.37) 45.24
Default (Mfs2) 10621.00 (0.0) NA 104.00 (0.0) 156.19 (1.66) NA 63581.00 (0.0) NA 8259.00 (0.0) 274.13 (9.90) NA 7799.00 (0.0) NA 87.00 (0.0) 16.69 (0.07) NA

Sin Square Vga lcd

Method Nd Decrease
(Nd, %) Lev Time (s) Improvement

(Time, %) Nd Decrease
(Nd, %) Lev Time (s) Improvement

(Time, %) Nd Decrease
(Nd, %) Lev Time (s) Improvement

(Time, %)

PruneX (COG) 1991.00 (0.81) -0.05 53.00 (0.0) 10.52 (0.41) 15.11 5701.67 (0.47) -0.01 83.00 (0.0) 9.30 (0.43) 56.61 38328.00 (0.0) -0.01 7.00 (0.0) 96.16 (3.02) 49.15
Default (Mfs2) 1990.00 (0.0) NA 53.00 (0.0) 12.38 (0.016) NA 5701.00 (0.0) NA 83.00 (0.0) 21.41 (0.071) NA 38326.00 (0.0) NA 7.00 (0.0) 189.10 (3.37) NA

Ethernet Wb conmax Des perf

Method Nd Decrease
(Nd, %) Lev Time (s) Improvement

(Time, %) Nd Decrease
(Nd, %) Lev Time (s) Improvement

(Time, %) Nd Decrease
(Nd, %) Lev Time (s) Improvement

(Time, %)

PruneX (COG) 13639.33 (0.47) -0.01 9.00 (0.0) 11.42 (0.48) 58.82 16813.33 (87.64) -1.84 9.00 (0.0) 10.41 (0.25) 51.04 31139.00 (7.78) -0.93 6.00 (0.0) 18.98 (0.25) 35.68
Default (Mfs2) 13638.00 (0.0) NA 9.00 (0.0) 27.73 (0.45) NA 16509.00 (0.0) NA 9.00 (0.0) 21.24 (0.53) NA 30853.00 (0.0) NA 6.00 (0.0) 29.51 (0.28) NA

Table 19. Detailed online evaluation results using Evaluation Strategy 1 on the Resub heuristic and open-source circuits. Improvement
denotes the improvement of our PruneX compared to the default heuristic.

Log2 Hyp Multiplier

Method And Decrease
(And, %) Lev Time (s) Improvement

(Time, %) And Decrease
(And, %) Lev Time (s) Improvement

(Time, %) And Decrease
(And, %) Lev Time (s) Improvement

(Time, %)

PruneX (COG) 29271.00 (3.74) -0.04 376.00 (0.0) 35.73 (0.72) 44.92 205183.33 (177.48) -0.32 24794.00 (0.0) 37.34 (0.79) 67.77 24440.00 (3.26) -0.02 262.00 (0.0) 11.07 (0.68) 44.90
Default (Resub) 29260.00 (0.0) NA 376.00 (0.0) 64.87 (0.86) NA 204533.00 (0.0) NA 24792.00 (0.0) 115.86 (0.16) NA 24436.00 (0.0) NA 262.00 (0.0) 20.09 (0.10) NA

Sin Square Vga lcd

Method And Decrease
(And, %) Lev Time (s) Improvement

(Time, %) And Decrease
(And, %) Lev Time (s) Improvement

(Time, %) And Decrease
(And, %) Lev Time (s) Improvement

(Time, %)

PruneX (COG) 5025.67 (1.69) -0.15 177.00 (0.0) 8.15 (0.67) 37.88 16053.67 (73.05) -1.32 248.00 (0.0) 4.92 (0.22) 47.49 90870.67 (11.78) -0.08 19.00 (0.0) 242.76 (83.81) 39.81
Default (Resub) 5018.00 (0.0) NA 177.00 (0.0) 13.12 (0.12) NA 15845.00 (0.0) NA 248.00 (0.0) 9.37 (0.13) NA 90795.00 (0.0) NA 19.00 (0.0) 403.30 (1.86) NA

Ethernet Wb conmax Des perf

Method And Decrease
(And, %) Lev Time (s) Improvement

(Time, %) And Decrease
(And, %) Lev Time (s) Improvement

(Time, %) And Decrease
(And, %) Lev Time (s) Improvement

(Time, %)

PruneX (COG) 43415.00 (64.65) -0.16 26.00 (0.0) 55.27 (10.02) 33.84 39277.00 (120.14) -0.39 18.00 (0.0) 85.87 (1.12) 16.07 68458.00 (114.77) -1.88 16.00 (0.0) 110.89 (10.31) 51.39
Default (Resub) 43345.00 (0.0) NA 26.00 (0.0) 83.54 (0.27) NA 39126.00 (0.0) NA 18.00 (0.0) 102.31 (0.24) NA 67193.00 (0.0) NA 16.00 (0.0) 228.12 (13.89) NA
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Table 20. Detailed online evaluation results using Evaluation Strategy 2 on the Mfs2 and Resub heuristics and open-source circuits.
Improvement denotes the improvement of our PruneX compared to the default heuristic.

Log2

Method Nd Decrease
(Nd, %) Lev Time (s) Improvement

(Time, %) Method And Decrease
(And, %) Lev Time (s) Improvement

(Time, %)

PruneX (COG) 10621.67 (0.47) -0.01 104.00 (0.0) 88.70 (17.85) 42.90 PruneX (COG) 29284.00 (2.0) -0.08 376.00 (0.0) 40.03 (1.57) 39.23
Default (Mfs2) 10621.00 (0.0) NA 104.00 (0.0) 155.33 (1.31) NA Default (Resub) 29260.00 (0.0) NA 376.00 (0.0) 65.87 (1.43) NA

Hyp

Method Nd Decrease
(Nd, %) Lev Time (s) Improvement

(Time, %) Method And Decrease
(And, %) Lev Time (s) Improvement

(Time, %)

PruneX (COG) 63682.00 (18.23) -0.16 8259.00 (0.0) 210.52 (7.99) 20.23 PruneX (COG) 205436.50 (216.5) -0.44 24793.00 (0.0) 43.01 (5.01) 62.61
Default (Mfs2) 63581.00 (0.0) NA 8259.00 (0.0) 263.91 (0.36) NA Default (Resub) 204533.00 (0.0) NA 24792.00 (0.0) 115.07 (0.009) NA

Multiplier

Method Nd Decrease
(Nd, %) Lev Time (s) Improvement

(Time, %) Method And Decrease
(And, %) Lev Time (s) Improvement

(Time, %)

PruneX (COG) 7799.00 (0.0) 0.00 87.00 (0.0) 14.67 (0.43) 16.41 PruneX (COG) 24452.50 (0.5) -0.07 262.00 (0.0) 12.35 (0.14) 37.97
Default (Mfs2) 7799.00 (0.0) NA 87.00 (0.0) 17.55 (0.16) NA Default (Resub) 24436.00 (0.0) NA 262.00 (0.0) 19.91 (0.06) NA

Sin

Method Nd Decrease
(Nd, %) Lev Time (s) Improvement

(Time, %) Method And Decrease
(And, %) Lev Time (s) Improvement

(Time, %)

PruneX (COG) 1992.33 (0.94) -0.12 53.00 (0.0) 9.66 (1.75) 23.58 PruneX (COG) 5019.50 (0.5) -0.03 177.00 (0.0) 7.85 (0.64) 38.38
Default (Mfs2) 1990.00 (0.0) NA 53.00 (0.0) 12.64 (0.27) NA Default (Resub) 5018.00 (0.0) NA 177.00 (0.0) 12.74 (0.024) NA

Square

Method Nd Decrease
(Nd, %) Lev Time (s) Improvement

(Time, %) Method And Decrease
(And, %) Lev Time (s) Improvement

(Time, %)

PruneX (COG) 5703.33 (1.24) -0.04 83.00 (0.0) 15.15 (0.96) 30.18 PruneX (COG) 15918.50 (12.5) -0.46 248.00 (0.0) 5.14 (0.1) 43.89
Default (Mfs2) 5701.00 (0.0) NA 83.00 (0.0) 21.70 (0.32) NA Default (Resub) 15845.00 (0.0) NA 248.00 (0.0) 9.16 (0.009) NA

Table 21. Detailed offline evaluation results on the Mfs2 heuristic and industrial circuits.

ci3 ci1

Method top 40% acc top 50% acc top 60% acc top 40% acc top 50% acc top 60% acc

COG (Ours) 0.78 (0.01) 0.85 (0.006) 0.90 (0.006) 1.00 (0.0001) 1.00 (0.0) 1.00 (0.0)
EnsembleMLP (Ours) 0.43 (0.002) 0.54 (0.008) 0.69 (0.008) 1.00 (0.00006) 1.00 (0.00006) 1.00 (0.00006)

Random 0.40 0.50 0.60 0.40 0.50 0.60

ci4 ci6

Method top 40% acc top 50% acc top 60% acc top 40% acc top 50% acc top 60% acc

COG (Ours) 0.78 (0.01) 0.85 (0.01) 0.90 (0.02) 0.71 (0.003) 0.84 (0.02) 0.91 (0.02)
EnsembleMLP (Ours) 0.50 (0.003) 0.61 (0.009) 0.68 (0.004) 0.48 (0.00003) 0.66 (0.0004) 0.75 (0.00003)

Random 0.42 0.52 0.61 0.40 0.50 0.60

ci5 ci2

Method top 40% acc top 50% acc top 60% acc top 40% acc top 50% acc top 60% acc

COG (Ours) 0.82 (0.003) 0.83 (0.002) 0.84 (0.01) 0.89 (0.008) 0.89 (0.01) 0.92 (0.02)
EnsembleMLP (Ours) 0.86 (0.007) 0.94 (0.0004) 0.95 (0.0008) 0.98 (0.0) 0.98 (0.0) 0.99 (0.004)

Random 0.36 0.48 0.58 0.33 0.47 0.61
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Table 22. Detailed offline evaluation results on the Resub heuristic and industrial circuits.

ci3 ci1

Method top 40% acc top 50% acc top 60% acc top 40% acc top 50% acc top 60% acc

COG (Ours) 0.91 (0.02) 0.94 (0.008) 0.96 (0.01) 0.89 (0.14) 1.00 (0.0) 1.00 (0.0)
EnsembleMLP (Ours) 0.39 (0.03) 0.43 (0.04) 0.53 (0.07) 0.31 (0.22) 0.67 (0.47) 0.68 (0.45)

Random 0.40 0.50 0.60 0.40 0.50 0.60

ci4 ci6

Method top 40% acc top 50% acc top 60% acc top 40% acc top 50% acc top 60% acc

COG (Ours) 0.63 (0.01) 0.76 (0.02) 0.79 (0.002) 0.84 (0.02) 0.85 (0.03) 0.88 (0.02)
EnsembleMLP (Ours) 0.41 (0.02) 0.50 (0.02) 0.59 (0.013) 0.25 (0.01) 0.33 (0.02) 0.45 (0.016)

Random 0.42 0.52 0.61 0.40 0.50 0.60

ci5 ci2

Method top 40% acc top 50% acc top 60% acc top 40% acc top 50% acc top 60% acc

COG (Ours) 0.99 (0.001) 1.00 (0.001) 1.00 (0.0005) 0.98 (0.0004) 0.98 (0.0008) 0.98 (0.001)
EnsembleMLP (Ours) 0.56 (0.22) 0.61 (0.19) 0.63 (0.18) 0.17 (0.09) 0.20 (0.11) 0.33 (0.20)

Random 0.36 0.48 0.58 0.33 0.47 0.61

Table 23. Detailed online evaluation results on the Mfs2 heuristic and industrial circuits. Improvement denotes the improvement of our
PruneX compared to the default heuristic.

ci1 ci6

Method Nd Decrease
(Nd, %) Lev Time (s) Improvement

(Time, %) Nd Decrease
(Nd, %) Lev Time (s) Improvement

(Time, %)

PruneX-COG (Ours) 165538.00 (0.0) 0.00 47.00 (0.0) 93.58 (0.49) 47.41 99258.00 (0.0) -0.01 12.00 (0.0) 31.71 (1.17) 58.80
Default (Mfs2) 165538.00 (0.0) NA 47.00 (0.0) 177.93 (0.69) NA 99245.00 (0.0) NA 12.00 (0.0) 76.97 (0.13) NA

ci2 ci3

Method Nd Decrease
(Nd, %) Lev Time (s) Improvement

(Time, %) Nd Decrease
(Nd, %) Lev Time (s) Improvement

(Time, %)

PruneX-COG (Ours) 195670.33 (1.24) -0.003 35.00 (0.0) 212.10 (5.13) 56.49 6648.33 (2.49) -0.22 15.00 (0.0) 51.58 (2.55) 22.05
Default (Mfs2) 195665.00 (0.0) NA 35.00 (0.0) 487.51 (51.68) NA 6634.00 (0.0) NA 15.00 (0.0) 66.17 (5.25) NA

ci4 ci5

Method Nd Decrease
(Nd, %) Lev Time (s) Improvement

(Time, %) Nd Decrease
(Nd, %) Lev Time (s) Improvement

(Time, %)

PruneX-COG (Ours) 9612.66 (17.55) -0.78 17.00 (0.0) 169.65 (40.92) 27.68 215714.00 (2.82) -0.003 26.00 (0.0) 162.59 (16.74) 19.28
Default (Mfs2) 9538.00 (0.0) NA 17.00 (0.0) 234.58 (45.54) NA 215708.00 (0.0) NA 26.00 (0.0) 201.43 (12.17) NA

Table 24. Detailed online evaluation results on the Resub heuristic and industrial circuits. Improvement denotes the improvement of our
PruneX compared to the default heuristic.

ci1 ci6

Method And Decrease
(And, %) Lev Time (s) Improvement

(Time, %) And Decrease
(And, %) Lev Time (s) Improvement

(Time, %)

PruneX-COG (Ours) 474604.66 (6.5) -0.001 141.0 (0.0) 793.10 (110.67) 30.71 278680.33 (1.88) -0.015 31.0 (0.0) 370.89 (4.00) 50.12
Default (Resub) 474600.0 (0.0) NA 141.0 (0.0) 1144.56 (10.57) NA 278637.0 (0.0) NA 31.0 (0.0) 743.51 (4.53) NA

ci2 ci3

Method And Decrease
(And, %) Lev Time (s) Improvement

(Time, %) And Decrease
(And, %) Lev Time (s) Improvement

(Time, %)

PruneX-COG (Ours) 506986.66 (15.36) -0.003 173.0 (0.0) 1908.63 (692.66) 24.09 18531.33 (29.16) -0.46 57.0 (0.0) 13.51 (0.33) 46.81
Default (Resub) 506972.0 (0.0) NA 173.0 (0.0) 2514.46 (377.94) NA 18447.0 (0.0) NA 57.0 (0.0) 25.40 (2.94) NA

ci4 ci5

Method And Decrease
(And, %) Lev Time (s) Improvement

(Time, %) And Decrease
(And, %) Lev Time (s) Improvement

(Time, %)

PruneX-COG (Ours) 27834.33 (20.53) -0.50 65.0 (0.0) 17.33 (2.84) 50.74 643664.66 (76.85) -0.22 100.0 (0.0) 1638.94 (255.20) 67.60
Default (Resub) 27695.0 (0.0) NA 65.0 (0.0) 35.18 (0.15) NA 642243.0 (0.0) NA 95.0 (0.0) 5058.70 (51.38) NA
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Table 25. Detailed offline evaluation results on the Mfs2 heuristic and very large-scale circuits.

Sixteen

Method top 40% acc top 50% acc top 60% acc

COG 1.00 (9e-05) 1.00 (4e-05) 1.00 (8e-05)
EnsembleMLP 0.34 (0.03) 0.44 (0.03) 0.53 (0.02)

Random 0.31 0.48 0.60

Twenty

Method top 40% acc top 50% acc top 60% acc

COG 1.00 (4e-05) 1.00 (0.0001) 1.00 (0.0001)
EnsembleMLP 0.54 (0.17) 0.61 (0.15) 0.68 (0.11)

Random 0.40 0.50 0.60

Table 26. Detailed offline evaluation results on the Resub heuristic and very large-scale circuits.

Sixteen

Method top 40% acc top 50% acc top 60% acc

COG 0.89 (0.008) 0.94 (0.007) 0.97 (0.004)
EnsembleMLP 0.42 (0.06) 0.54 (0.09) 0.67 (0.13)

Random 0.31 0.48 0.60

Twenty

Method top 40% acc top 50% acc top 60% acc

COG 0.91 (0.006) 0.95 (0.003) 0.98 (0.001)
EnsembleMLP 0.41 (0.0) 0.52 (0.0) 0.61 (0.0)

Random 0.42 0.48 0.62
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Table 27. Detailed online evaluation results on the Mfs2 heuristic and very large-scale circuits. Improvement denotes the improvement of
our PruneX compared to the default heuristic.

Sixteen

Method Nd Decrease
(Nd, %) Lev Time (s) Improvement

(Time, %)

PruneX (COG) 6017637.0 (0.81) -9.9E-05 48.0 (0.0) 38581.40 (933.59) 27.43
Default (Mfs2) 6017631.0 (0.0) NA 48.0 (0.0) 53162.36 (337.79) NA

Twenty

Method Nd Decrease
(Nd, %) Lev Time (s) Improvement

(Time, %)

PruneX (COG) 7693099.0 (0.0) -0.0001 54.0 (0.0) 54046.50 (851.80) 42.00
Default (Mfs2) 7693089.0 (0.0) NA 54.0 (0.0) 93189.12 (8806.55) NA

Table 28. Detailed online evaluation results on the Resub heuristic and very large-scale circuits. Improvement denotes the improvement of
our PruneX compared to the default heuristic.

Sixteen

Method And Decrease
(And, %) Lev Time (s) Improvement

(Time, %)

PruneX-COG (Ours) 11972490.66 (267.26) -0.005 99.0 (0.0) 11166.83 (374.72) 16.35
Default (Resub) 11971930.0 (0.0) NA 99.0 (0.0) 13349.62 (175.76) NA

Twenty

Method And Decrease
(And, %) Lev Time (s) Improvement

(Time, %)
PruneX-COG (Ours) 15310801.33 (214.67) -0.0001 86.0 (0.0) 14114.51 (881.11) 18.17

Default (Resub) 15310242.0 (0.0) NA 86.0 (0.0) 17249.11 (90.69) NA

Table 29. We provide more online evaluation results of improving QoR with our proposed PruneX-COG. Improvement denotes the
improvement of our PruneX compared to the default heuristic.

Multiplier Log2

Method Nd ↓ Improvement ↑
(Nd, %) Time (s) ↓ Improvement ↑

(Time, %) Nd ↓ Improvement ↑
(Nd, %) Time (s) ↓ Improvement ↑

(Time, %)

Default (Mfs2) 7799.00 (0.0) NA 16.69 (0.07) NA 10621 (0.0) NA 156.19(1.66) NA
2PruneX-COG (0.3, Ours) 7658.00 (4.32) 1.81 8.86 (0.87) 46.91 10556.00 (3.74) 0.61 179.04 (6.16) -14.63
2PruneX-COG (0.4, Ours) 7655.00 (4.54) 1.85 14.09 (1.07) 15.58 5523.33 (5.43) 3.12 237.79 (8.28) -52.24

Sin Ethernet

Method Nd ↓ Improvement ↑
(Nd, %) Time (s) ↓ Improvement ↑

(Time, %) Nd ↓ Improvement ↑
(Nd, %) Time (s) ↓ Improvement ↑

(Time, %)

Default (Mfs2) 1990.00 (0.0) NA 12.38 (0.016) NA 13638.00 (0.0) NA 27.73 (0.45) NA
2PruneX-COG (0.3, Ours) 1985.00 (0.0) 0.25 11.65 (0.06) 5.90 13514.33 (4.71) 0.91 8.87 (1.47) 68.01
2PruneX-COG (0.4, Ours) 1980.66.00 (0.94) 0.47 16.23 (0.06) -31.10 13511.00 (0.81) 0.93 15.44 (0.76) 44.32

Square ci1

Method Nd ↓ Improvement ↑
(Nd, %) Time (s) ↓ Improvement ↑

(Time, %) Lev ↓ Improvement ↑
(Lev, %) Time (s) ↓ Improvement ↑

(Time, %)

Default (Mfs2) 5701.00 (0.0) NA 21.41 (0.071) NA 47.00 (0.0) NA 177.93 (0.69) NA
2PruneX-COG (0.3, Ours) 5550.33 (11.67) 2.64 9.94 (0.55) 53.57 45 (0.0) 4.26 148.87 (19.79) 16.33
2PruneX-COG (0.4, Ours) 5523.33 (5.43) 3.12 14.23 (0.66) 33.54 45.00 (0.0) 4.26 182.35 (25.45) -2.48

ci4 ci3

Method Nd ↓ Improvement ↑
(Nd, %) Time (s) ↓ Improvement ↑

(Time, %) Nd ↓ Improvement ↑
(Nd, %) Time (s) ↓ Improvement ↑

(Time, %)

Default (Mfs2) 6634 (0.0) NA 66.17 (5.25) NA 215708.00 (0.0) NA 201.43 (12.17) NA
2PruneX (COG, 0.3) 9496.66 (16.99) 0.43 184.02 (9.03) 21.55 6538.33 (8.99) 1.44 52.69 (0.26) 20.37
2PruneX (COG, 0.4) 9452.66 (7.40) 0.89 292.90 (14.26) -24.86 6516.66 (10.84) 1.77 85.80 (3.84) -29.67
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Table 30. The results show that the ratio of the total model time to the runtime of the Mfs2 heuristic (i.e., Percent) is very low, with an
average of 2.66%.

Circuit Nodes Graph construction time (s) Model inference time (s) Total model time (s) Runtime of heuristic (s) Percent (%)

Log2 32060 0.48 (0.01) 2.01 (0.05) 2.49 156.19 (1.66) 1.59
Hyp 214335 2.56 (0.02) 6.87 (0.09) 9.43 274.13 (9.90) 3.44

Vga lcd 124050 1.52 (0.04) 5.02 (0.33) 6.54 189.10 (3.37) 3.46
ci6 788288 10.87 (0.01) 25.54 (0.26) 36.41 1436.53 (123.54) 2.53
ci4 37051 0.57 (0.10) 2.18 (0.22) 2.75 234.58 (45.54) 1.17
ci3 24778 0.41 (0.004) 2.10 (0.07) 2.51 66.17 (5.25) 3.79

Table 31. A detailed description of circuits from the EPFL benchmark. Nodes denotes the sizes of circuits, and Lev denotes the depths of
circuits.

Circuit PI PO Latch Nodes Edge Cube Lev

Adder 256 129 0 1020 2040 1020 255
Barrel shifter 135 128 0 3336 6672 3336 12

Divisor 128 128 0 57247 114494 57247 4372
Hypotenuse 256 128 0 214335 428670 214335 24801

Log2 32 32 0 32060 64120 323060 444
Max 512 130 0 2865 5730 2865 287

Multiplier 128 128 0 27062 54124 27062 274
Sin 24 25 0 5416 10832 5416 225

Square-root 128 64 0 24618 49236 24618 5058
Square 64 128 0 18486 36969 18485 250

Round-robin ariter 256 129 0 11839 23678 11839 87
Alu control unit 7 26 0 175 348 174 10

Coding-cavlc 10 11 0 693 1386 693 16
Decoder 8 256 0 304 608 304 3

i2c controller 147 142 0 1357 2698 1356 20
Int to float converter 11 7 0 260 520 260 16
Memory controller 1204 1230 0 47110 93945 47109 114

Priority encoder 128 8 0 978 1956 978 250
Lookahead XY router 60 30 0 284 514 257 54

Voter 1001 1 0 13758 27516 13758 70
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Table 32. A detailed description of circuits from the IWLS benchmark. Nodes denotes the sizes of circuits, and Lev denotes the depths of
circuits.

Circuit PI PO latch nodes edge cube lev

aes core 259 129 530 20797 40645 24444 28
des area 240 64 128 5005 9882 5889 35
des perf 234 64 8808 98463 180542 108666 28
ethernet 98 115 10544 46804 113378 72850 37

i2c 19 14 128 1147 2299 1375 15
mem ctrl 115 152 1083 11508 26436 14603 31

pci bridge32 162 207 3359 16897 34607 23130 29
pci conf cyc addr dec 32 32 0 109 212 128 6

pci spoci ctrl 25 13 60 1271 2637 1557 19
sasc 16 12 117 552 1148 766 10

simple spi 16 12 132 823 1694 1089 14
spi 47 45 229 3230 6904 4054 32

steppermotordrive 4 4 25 228 397 253 11
systemcaes 260 129 670 7961 18236 11648 44
systemcdes 132 65 190 3324 6304 3791 33

tv80 14 32 359 7166 16280 9352 50
usb funct 128 121 1746 12871 27102 16378 25
usb phy 15 18 98 559 1001 638 12
vga lcd 89 109 17079 124050 242332 146201 25

wb conmax 1130 1416 770 29036 77185 39619 26
wb dma 217 215 263 3495 7052 4496 26

Table 33. A detailed description of two very large-scale circuits from the EPFL benchmark. Nodes denotes the sizes of circuits, and Lev
denotes the depths of circuits.

Circuit PI PO Latch Nodes Lev

twenty 137 60 0 20732893 162
sixteen 117 50 0 16216836 140
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Table 34. A statsical description of 27 industrial circuits (21 training circuits and 6 testing circuits) from Huawei HiSilicon. Nodes denotes
the sizes of circuits, and Lev denotes the depths of circuits.

Traning Circuits PI PO Latch Nodes Lev

mean 8410.5 5978.682 0 104229.4 55.95455
max 59974 29721 0 788288 104
min 41 107 0 2775 18

Testing Circuits PI PO latch nodes lev

mean 18540.67 18015 0 356111.2 103.3333
max 42257 33849 0 655243 185
min 523 483 0 24778 40

Table 35. We provide our manually designed node features.

heuristic Node features

Mfs2 Functionality information Structure information Other features

Input: 6-LUTs Truth table of the node
the node is 6-input LUT
(64-dimensional vector)

- Fanin number
Fanout number

Level
LevelR

Node ID

Resub Functionality information Structure information Other features

Input: AIG inv0 Child1 features (6-dimensional vector) Fanout number
inv1 Child2 features (6-dimensional vector) Level

Total Level
Node ID

Leaves number
Cuts number
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