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Abstract

Human-Object Interaction (HOI) detection is a task to predict interactions between
humans and objects in an image. In real-world scenarios, HOI detection models
are required systematic generalization, i.e., generalization to novel combinations
of objects and interactions, because it is highly probable that the train data only
cover a limited portion of all possible combinations. However, to our knowledge,
no open benchmark or existing work evaluates the systematic generalization in
HOI detection. To address this issue, we created two new sets of HOI detection
data splits named HICO-DET-SG and V-COCO-SG based on HICO-DET and
V-COCO datasets. We evaluated representative HOI detection models on the new
data splits and observed large degradation in the test performances compared to
those on the original datasets. This result shows that systematic generalization is a
challenging goal in HOI detection. We hope our new data splits encourage more
research toward this goal.

1 Introduction

Human-Object Interaction (HOI) detection has been attracting large interest in computer vision, as it
is useful for various applications such as self-driving cars, anomaly detection, analysis of surveillance
video, and so on. The task is to detect humans and objects as well as interactions between them and
the output is typically represented as <human, interaction, object> triplet. After some datasets [1–6]
were published, a large number of studies has tackled this problem [7–20].

HOI detection is an advanced computer vision task as it requires a model not only to detect humans
and objects but also to predict interactions between them. Moreover, humans can have different
interactions with the same object (e.g., wash a horse and walk a horse) and the same interaction
occurs for different objects (e.g., wash a horse and wash a car). In real-world scenarios, it is highly
probable that the train data only cover a limited portion of all possible combinations of objects and
interactions. Thus, it is important for HOI detection models to generalize to novel combinations of
known objects and interactions.
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Figure 1: An example of a data split to evaluate systematic generalization in Human-Object Interaction
(HOI) detection. The images and annotations are all selected from HICO-DET-SG split3. The train
data consists of combinations such as <human, wash, car>, <human, wash, elephant>, <human,
walk, horse> and <human, straddle, horse>. After trained on such data, the HOI detection model
is required to generalize to novel combinations in the test data such as <human, wash, horse>. It
is important for the model to learn the visual cues of objects (horse) and interactions (wash), not
depending on the specific paired interaction/object classes in the train data.

This type of generalization to novel combinations of known concepts is called systematic generaliza-
tion and attracts increasing interest in recent years as it is a highly desirable property for AI systems.
Systematic generalization performance is evaluated in various tasks such as sequence-to-sequence
parsing [21], language understanding [22, 23], visual properties extraction [24] and visual question
answering [25–29]. However, to our knowledge, there is no open benchmark or existing work to
evaluate systematic generalization in the HOI detection.

The existing HOI detection datasets cannot evaluate the systematic generalization for the novel
combinations of known objects and interactions since their train and test data provide the same
object-interaction combinations. This property of the datasets may lead the model to predict the
interactions depending just on the paired object classes or to predict object classes by just interactions
rather than by capturing the visual cues such as human posture and positional relationships.

In this paper, we introduce two new sets of HOI detection data splits named HICO-DET-SG and
V-COCO-SG, which we created based on HICO-DET [4] and V-COCO [3] datasets to evaluate the
systematic generalization (SG) capabilities of HOI detection models. An example of such data split
to evaluate systematic generalization in the HOI detection is shown in Figure 1.

In order to make sure that the test performance is not an artifact of a specific selection of combinations
in the train and test data, we prepared three distinct train-test splits for both HICO-DET-SG and V-
COCO-SG. We evaluated recent representative HOI detection models on our data splits and observed
large degradation in the test performances compared to those on the original datasets. In summary,
our contributions are the following:

• We created two new sets of HOI detection data splits whose train and test data have no over-
lapping object-interaction combinations, which serve for studying systematic generalization
in HOI detection.

• We evaluated the systematic generalization performance of representative HOI detection
models with our new data splits and revealed that there are large decreases in the test
performance compared to the original datasets, i.e., systematic generalization is a challenging
goal in HOI detection.
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Table 1: Statistics of HICO-DET-SG and V-COCO-SG as well as the original HICO-DET and
V-COCO. SG splits contain less HOI triplets than the original ones because we eliminated triplets in
the test data whose combination of classes is contained in the train data.

# of images # of HOI triplets # of object-interaction classes
Data splits train test train test train test

Original HICO-DET 38,118 9,061 117,871 33,405 600 600
HICO-DET-SG split1 38,312 8,867 119,331 14,994 540 60
HICO-DET-SG split2 39,213 7,966 122,299 7,966 540 60
HICO-DET-SG split3 40,672 6,597 120,096 13,231 540 60

Original V-COCO 5,400 4,946 14,153 12,649 228 228
V-COCO-SG split1 7,297 3,049 8,214 7,575 160 68
V-COCO-SG split2 7,057 3,289 9,500 8,678 160 68
V-COCO-SG split3 6,210 4,136 10,951 9,940 160 68

HICO-DET-SG, V-COCO-SG, and the source code to create them is publicly available at https:
//github.com/FujitsuResearch/hoi_sg.

2 HICO-DET-SG and V-COCO-SG

2.1 Creation of SG splits

The train and test data of the Systematic Generalization (SG) splits are designed not to have overlap-
ping object-interaction combination classes, thus the HOI detection models are required to generalize
to novel combinations. For example, in Figure 1, the train data consists of combinations such as
<human, wash, car>, <human, wash, elephant>, <human, walk, horse> and <human, straddle,
horse>. The HOI detection models are required to generalize to novel combinations in the test data
such as <human, wash, horse>.

We make sure that, in the train data, every object class is paired with multiple interaction classes, and
every interaction class is paired with multiple object classes. This design of the splits enables the
model to learn the concept of object/interaction, not depending on the specific paired interaction/object
class. To ensure that the test performance is not an artifact of a specific selection of combinations in
the train and test data, we prepared three distinct train-test splits.

We eliminate triplets in the test data whose combination of classes is contained in the train data. As a
result, the SG splits contain less HOIs in total than the original.

See Appendix B for further details of the creation process of SG splits.

2.2 Statistics of HICO-DET-SG and V-COCO-SG

Based on HICO-DET dataset [4] we created HICO-DET-SG, new data splits to evaluate the systematic
generalization performance in the way explained above. The statistics of the original HICO-DET
and HICO-DET-SG data splits are shown in Table 1 (upper half). The original HICO-DET dataset
contains 80 classes of objects, 117 classes of interactions, and 600 classes of object-interaction
combinations. In HICO-DET-SG splits, 540 object-interaction classes out of 600 are contained only
in the train data, and the test data consists of 60 remaining classes.

Based on V-COCO dataset [3] we created V-COCO-SG, new data splits to evaluate the systematic
generalization performance in the same manner. The statistics of the original V-COCO and V-COCO-
SG are shown in Table 1 (lower half). The original V-COCO dataset contains 91 classes of objects,
29 classes of interactions, and 228 classes of object-interaction combinations. In the V-COCO-SG
splits, 160 object-interaction classes out of 228 are contained only in the train data, and the test data
consists of 68 remaining classes.
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Table 2: Comparison of systematic generalization performances on HICO-DET-SG data splits. We
show mAPs (%) for the test data, which are higher the better. The mAPs reported in the original
papers are written in brackets. The term “Pre-training” means that the initial weights of the model’s
encoder and decoder are copied from DETR [31] trained on object detection task. Test accuracies
significantly decreased on HICO-DET-SG compared to the original HICO-DET for all the models.

HOTR QPIC QAHOI STIP
Pre-training ✗ ✓ ✗ ✓ ✗ ✗ ✓

Original HICO-DET 17.63 26.30 21.70 29.59 35.30 13.21 31.57
(mAP in the original paper) (25.73) (29.90) (35.78) (32.22)

HICO-DET-SG split1 0.31 2.59 10.57 22.08 4.53 0.00 22.14
HICO-DET-SG split2 0.28 2.73 12.53 19.95 4.76 0.00 23.03
HICO-DET-SG split3 0.52 2.75 13.28 20.50 6.12 0.00 24.39
Average over SG splits 0.37 2.69 12.13 20.84 5.14 0.00 23.19

Table 3: Comparison of systematic generalization performances on V-COCO-SG data splits. We
show mAPs (%) for the test data, which are higher the better. The mAPs reported in the original
papers are written in brackets. “Pre-training” means that the initial weights of the model’s encoder
and decoder are copied from DETR [31] trained on object detection task. Test accuracy significantly
decreased on V-COCO-SG data splits compared to the original V-COCO for all the models.

HOTR QPIC QAHOI STIP
Pre-training ✗ ✓ ✗ ✓ ✗ ✗ ✓

Original V-COCO 24.26 62.54 27.64 63.41 40.74 18.43 70.43
(mAP in the original paper) (63.8) (61.0) (70.65)

V-COCO-SG split1 0.24 2.10 0.77 4.21 2.73 0.12 6.25
V-COCO-SG split2 0.27 2.60 0.66 4.16 1.80 0.00 6.22
V-COCO-SG split3 0.15 1.68 0.32 2.89 1.53 0.00 6.37

Average over SG splits 0.22 2.13 0.58 3.75 2.02 0.04 6.28

3 Evaluation results

In this section, we report systematic generalization performance of four representative HOI detection
models, HOTR [14], QPIC [16], QAHOI [15] and STIP [20], on HICO-DET-SG and V-COCO-SG.
We trained and tested each model once on each split. See Appendix C for the details of these HOI
detection models and other experimental setup. Further results and discussions are available in
Appendix D.

3.1 Degradation in the systematic generalization performance

We show the results on the HICO-DET-SG in Table 2 and the results on the V-COCO-SG in Table 3.
As the evaluation metrics, we use mean average precision (mAP), which is higher the better. In order
to evaluate all the models on the equal condition in terms of pre-training, we report the results of
HOTR, QPIC and STIP for both pre-trained (with object detection task on MS COCO dataset [30])
and not pre-trained encoder and decoder.

The mAPs of all models significantly decrease on all systematic generalization splits compared
to the ones on the original splits. This shows the difficulty of systematic generalization in HOI
detection task, i.e., recognizing novel combinations of known objects and interactions. Note that this
degradation occurs at any selection of object-interaction combinations in the train and test data: the
differences in the test mAPs are less than 3% among three systematic generalization splits for all the
models and datasets.
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3.2 Qualitative analysis

In order to further reveal the difficulty of systematic generalization in HOI detection, we analyze the
failure cases here. Figure 2 (a), (b) and (c) show the outputs of pre-trained STIP trained and tested on
HICO-DET-SG split3, which has the highest mAP among all models and all SG splits.

Figure 2 (a) shows an example of predicting wrong interaction class, which is the most frequently
observed type of errors. In this example the model predicts the interaction as straddle, even though
the correct class is wash. The <human, straddle, horse> triplet appears in the train data but the
<human, wash, horse> triplet appears only in the test data (wash interaction appears with other
objects in the train data). The model predicts the interaction depending just on the object class (horse),
i.e., the model cannot generalize to the novel combination <human, wash, horse>.

Figure 2 (b) shows an example of detecting wrong object. The model predicts an irrelevant region as
a wrong class, bench, even though it should detect a bed under the person in the image. The <human,
lie on, bench> triplet appears in the train data but the <human, lie on, bed> triplet appears only in the
test data (bed appears with other interactions in the train data). This result shows not only that the
model cannot generalize to the novel combination but also that the interaction decoder predicts the lie
on interaction depending mainly on the visual cue of the human posture, not on the visual cue of the
object nor on the positional relationships.

Figure 2 (c) shows an example of wrong class prediction for both objects and interaction. The model
predicts the tennis racket as a baseball bat and predicts swing as hit. The <human, hit, baseball bat>
triplet appears in the train data but the <human, swing, tennis racket> triplet appears only in the
test data (moreover, <human, swing, baseball bat> triplet appears in the train data but <human, hit,
tennis racket> triplet does not appear in the train data). The model detects the object as a baseball bat
at the first stage, and then at the second stage it predicts the interaction as hit based on the detection
results because baseball bat frequently appeared with the hit interaction in the train data.

(a) (b) (c)

Figure 2: Three failure cases of pre-trained STIP trained and tested on HICO-DET-SG split3. (a) An
example of predicting wrong interaction class. The model predicts the interaction as straddle, even
though the correct class is wash. (b) An example of detecting wrong object. The model predicts an
irrelevant region as a wrong class, bench, even though it should detect a bed under the person. (c) An
example of wrong class prediction for both objects and interaction. The model predicts <human, hit,
baseball bat> triplet even though the correct answer is <human, swing, tennis racket> triplet.

4 Conclusion

We created new splits of two HOI detection datasets, HICO-DET-SG and V-COCO-SG, which are
designed not to contain overlapping combinations of object-interaction classes in the train and test
data for evaluating systematic generalization. We observed large degradation in the test performances
on our SG splits compared to those on the original datasets for all the representative HOI detection
models we evaluated. This shows that systematic generalization is a challenging goal in HOI detection.
We hope our data splits encourage more research toward this goal.
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Appendix (supplementary materials)

A Related works

In Section A.1, we introduce some types of HOI detection datasets and models. In Section A.2, we
explain systematic generalization.

A.1 Human-Object Interaction (HOI) detection

There are two popular datasets for HOI detection: HICO-DET and V-COCO datasets. HICO dataset
was originally created for classifying objects and interactions in the image (no bounding-box) [32].
Later HICO-DET dataset was created based on HICO dataset by putting bounding-boxes of humans
and objects in the image [4]. Also, at this point, one image in the dataset has become to contain
multiple humans, objects and interactions between them. V-COCO dataset [3] was created based on
Microsoft COCO (MS COCO) dataset [30] by adding annotations of interactions (verbs). Statistics
of HICO-DET and V-COCO dataset are shown in Table 1.

HOI detection consists of two tasks. The first task is to localize human and object instances in the
given image. The second task is to identify the interactions between them. Due to this property,
there are two types of model architectures to solve HOI detection: two-stage model and one-stage
model. Two-stage models [7–11, 20] detect instances at the first stage and classify the interaction
for all of their combinations in the second stage. In order to improve both instance and interaction
detectors via multi-task learning and to reduce inference time, one-stage models [12, 13] have
been proposed recently and becoming more popular these days. In response to the great success
of Transformer [33] in both natural language processing and computer vision [34], some of the
recent one-stage works [14–19] are based on Transformer as they are designed to capture wide-range
information from an image.

A.2 Systematic generalization in HOI detection

Systematic generalization [21–23, 26–29] (also called as compositional generalization [25] and
combinatorial generalization [24]) can be regarded as one of the Out-of Distribution (OoD) problem
settings, i.e., the model needs to generalize to different data distributions from the train data.

Scene Graph Generation (SGG) [35] is a task closely related to HOI detection. In SGG, there are
some works to evaluate [36] and improve [37, 38] systematic generalization for new combinations of
subject, relation and object classes under the name of zero-shot generalization. They all showed that
there are large performance degradation in the systematic generalization compared to the original
settings (in-distribution generalization) unless some techniques are intentionally used. There are two
main differences between SGG and HOI detection. First, the subjects in SGG can be of any type
(humans, cars, etc.), while in HOI detection they are fixed as humans, which results in more various
subject-object combinations in SGG. Second, the predicates in SGG can be both positional relations
(e.g., next to) and semantic actions (e.g., play with), while in HOI detection they only consist of the
latter. Considering these differences, HOI detection can be regarded as a subset of SGG with less
various subject-object combinations. On the other hand, HOI detection can be regarded as a task
focusing on measuring a model’s capability for complex scene understanding, because recognition of
semantic actions needs more information in addition to the locations of humans and objects. Thus
we believe that it is essential to work on systematic generalization in HOI detection as an early step
towards the development of better models also in SGG and other visual understanding tasks.

In the HOI detection task, HICO-DET dataset [4] provides rare-triplets evaluation to measure the
few-shot generalization ability of the models (rare triplets are defined to appear less than 10 times
in the train data). Generalization to the rare-triplets is a type of OoD generalization and some
works [39, 40] aim at improving this performance. However, to our knowledge, there have been
no benchmarks or previous works to tackle systematic generalization, i.e., zero-shot generalization
in HOI detection, and our work is the first one providing the data splits to evaluate the systematic
generalization performance and benchmarking the representative HOI models.
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Algorithm 1 Creation of SG splits. “Dataset” represents the set of images and annotations of the
original dataset (combined the train and test data) and “scene” represents a set of one image and HOI
triplets in the image. “COUNT” function returns the number of components in the first argument
which is equal to the second argument. “test_combinations” is a list of object-interaction classes to
be contained only in the test data.

train_data = []
test_data = []
for scene in Dataset do

sum = 0
test_hois = []
for hoi in scene.hois do

match = COUNT(test_combinations, [hoi.object_class, hoi.interaction_class])
sum = sum + match
if match > 0 then

test_hois.append(hoi)
end if

end for
if sum == length(scene.hois) then

test_data.append(scene)
else if sum == 0 then

train_data.append(scene)
else

test_data.append([scene.image, test_hois])
end if

end for

B Further details of creating systematic generalization splits

In this section, we explain how we created systematic generalization (SG) splits for HICO-DET and
V-COCO.

First, we set the number of object-interaction combination classes to be contained in the train and test
data. We tried to match the ratio of them to that of the number of HOI triplets in the original train and
test data at the beginning, but eventually more combination classes (540 in HICO-DET-SG and 160
in V-COCO-SG) are contained in the train data in order to ensure that every object class is paired
with multiple interaction classes and every interaction class is paired with multiple object classes.
This enables the model to learn the concept of object/interaction itself, not depending on the specific
paired interaction/object.

Then, we created SG splits as described in Algorithm 1. We eliminated triplets in the test data whose
object-interaction combinations are contained in the train data. Because of that, SG splits contain less
HOI triplets in total than the original.

Finally, we verified that all object and interaction classes are actually contained in the train data,
even though some combinations are only contained in the test data and unseen in the train data for
evaluating systematic generalization.

To ensure that the test performance is not an artifact of a specific selection of combinations in the
train and test data, we prepared three distinct train-test splits.

The actual source code to create SG splits can be seen at the following repository: https://github.
com/FujitsuResearch/hoi_sg.
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C Experimental setup for evaluating representative HOI detection models

In this section, we describe the experiments to evaluate the systematic generalization ability of
representative HOI detection models. In Section C.1, we first explain the evaluated models and the
reasons for selecting them. Then we explain experimental setup in Section C.2.

Table 4: Comparison of four HOI detection models, HOTR, QPIC, QAHOI and STIP. We show
reported mAPs (%) on the original HICO-DET and V-COCO (higher is better). “mAP on HICO-DET
(rare)” shows the performance on rare triplets, i.e., few-shot generalization. The QAHOI paper does
not report mAP on V-COCO dataset.

HOTR [14] QPIC [16] QAHOI [15] STIP [20]
Architecture type One-stage One-stage One-stage Two-stage

parallel end-to-end end-to-end
Feature extractor CNN CNN Multi-scale Transformer CNN

Base model DETR [31] DETR [31] deformable DETR [41] DETR [31]
mAP on HICO-DET (full) 25.73 29.90 35.78 32.22
mAP on HICO-DET (rare) 17.34 23.92 29.80 28.15

mAP on V-COCO 63.8 61.0 - 70.65

C.1 HOI detection models

We tested systematic generalization performance for four HOI detection models, HOTR [14],
QPIC [16], QAHOI [15] and STIP [20]. The comparison of the four models is shown in Table
4. The selected models except STIP adopt one-stage architecture as it is popular recently. The
backbone (feature extraction) network of each model is all pre-trained with object detection task
on MS COCO dataset [30]. We used the source code of these models taken from the official
publicly-available repositories that we show URLs in the reference section.

HOTR. “Human-Object interaction detection TRansformer” (HOTR) [14] is one of the first
Transformer-based models for the HOI detection. The model is one-stage parallel architecture
and it has a backbone, shared encoder, instance (human + object) decoder, and interaction decoder.
The backbone network is CNN-based to extract features from images. In order to get the match-
ing between instance and interaction decoder outputs, three independent feed-forward networks,
which are so-called HO-pointers, are trained to predict correct <human, interaction, object> com-
bination matching. Most of the network except HO-pointers is based on “DEtection TRansformer”
(DETR) [31], a Transformer-based object detector. Therefore we can pre-train backbone, shared
encoder, instance decoder, and interaction decoder with the DETR’s weights trained on the MS
COCO dataset.

QPIC. “Query-based Pairwise human-object interaction detection with Image-wide contextual
information” (QPIC) [16] is another Transformer-based HOI detection model that is proposed around
the same time as HOTR. It is also based on DETR for most of the network. The main difference
from HOTR is that QPIC is a one-stage end-to-end architecture that has only one decoder without
HO-pointers. We can use pre-trained weights of DETR on MS COCO datasets for most of the
network, including backbone, encoder, and decoder.

QAHOI. “Query-based Anchors for Human-Object Interaction detection” (QAHOI) [15] exhibits
the best performance on HICO-DET dataset as of the submission time on Papers with Code1. The
model is based on deformable DETR [41] (a modified DETR), which computes self-attention from a
limited range of feature maps for computational efficiency. This enables to extract multi-scale feature
maps from the image. There is another technique to reduce computational costs in the encoder and
decoder. The encoder is trained to generate query-based anchors which represent the points with high
objectness score in the image. The decoder predicts objects and interactions only on those anchors
for efficient computation. Although the backbone of the network can be pre-trained because it is
based on Swin Transformer [42], it is impossible to pre-train all the encoder and decoder because

1https://paperswithcode.com/sota/human-object-interaction-detection-on-hico
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there are some modifications to deformable DETR (object detection model). This is the reason why
we do not report accuracies of pre-trained QAHOI in Tables 2 and 3.

STIP. “Structure-aware Transformer over Interaction Proposals” (STIP) [20] exhibits the best
performance on V-COCO dataset as of the submission time on Papers with Code2. The model
has two-stage architecture to perform HOI set prediction from non-parametric interaction queries
detected by the independent instance detector. This enables the model to explore inter-interaction and
intra-interaction structure from early epochs of the training by fixing the correspondence between
interaction query and each target HOI. We can use pre-trained weights of DETR on MS COCO
datasets for the backbone and object detector because the first stage of the network is exactly the
same as DETR.

C.2 Pre-training, hyperparameters, and other conditions

In order to evaluate all the models on the equal condition in terms of pre-training, we report the results
of HOTR, QPIC and STIP for both pre-trained and not pre-trained encoder and decoder, despite that
the original papers encourage to use pre-trained weights for the best performance in the original HOI
detection task. We note that for all of our experiments, the backbone of each model, i.e., feature
extraction part, is pre-trained with the same weights as the original experiments.

For all of the models, we used almost the same hyperparameters as reported in the original papers
and repositories. One change is the batch size of QAHOI: we reduced it from 2 to 1, because we got
a memory error while training with the default setting. In addition, we trained QAHOI on V-COCO
and V-COCO-SG with the same hyperparameters as HICO-DET and HICO-DET-SG, because the
original paper does not report hyperparameters for V-COCO dataset.

We trained and tested seven types of model once on each split, and one training took about 1 to 2
days with 4 NVIDIA V100 GPUs.

D Further results and discussions

D.1 Difference between HICO-DET-SG and V-COCO-SG

Comparing two datasets, there are larger gaps between the original and the systematic generalization
splits of V-COCO compared to HICO-DET. We speculate that the cause of this gap is the difference
in the number of images and HOIs in the dataset. As shown in Table 1, HICO-DET-SG train data
contains about 5.6 times as many images and about 12.6 times as many HOIs as the train data of
V-COCO-SG. This means that there are more examples for one object-interaction combination in
HICO-DET-SG train data, although the data has only 3.4 times as many variety of object-interaction
combination classes. Therefore the models tend to achieve higher systematic generalization on
HICO-DET-SG compared to V-COCO-SG.

D.2 Comparison across models

Each model showed different performance on systematic generalization splits. HOTR could not
generalize at all as they achieved almost 0% mAP when its encoder and decoder are not pre-trained
with object detection task, and achieved less than 3% mAP even with its encoder and decoder pre-
trained. QAHOI also achieved low mAPs around 5% to show its inability to systematic generalization.
However, QPIC generalizes to novel combinations to some extent especially when using pre-trained
DETR weights: they achieved around 20% mAPs on HICO-DET-SG splits. STIP showed the best SG
performance among all the models on both HICO-DET-SG and V-COCO-SG with pre-training. This
may be because STIP has two-stage architecture. Instance and interaction detector is less affected by
each other as they are independent. In other computer vision tasks, this type of modularity is proved
to improve systematic generalization ability [29].

2https://paperswithcode.com/sota/human-object-interaction-detection-on-v-coco
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D.3 Importance of pre-trained encoder and decoder

For three models except QAHOI, pre-training its encoder and decoder with the weights of DETR
trained on object detection task plays a key role in improving systematic generalization performance.
The accuracies on HICO-DET changed from around 0.4% to around 2.7% for HOTR, from around
12.1% to around 20.8% for QPIC and from 0.0% to around 23.2% for STIP. Also the accuracies on
V-COCO changed from around 0.2% to around 2.1% for HOTR, from around 0.6% to around 3.8%
for QPIC and from around 0.0% to 6.3% for STIP.

Generally vision Transformers require a lot of training to achieve high performance when trained
from scratch [34]. So it is natural that without pre-training, the Transformer-based HOI detectors
cannot solve merely HOI detection task nor systematic generalization. Especially STIP performed
quite badly without pre-training because the number of training epochs is much smaller (30 epochs)
than the others (100 epochs). For the three models, pre-trained initial weights of encoder and decoder
contributes to improving systematic generalization accuracy as well as HOI detection task itself. In
this paper we could not evaluate pre-trained QAHOI because the network is designed only for HOI
detection task and it is hard to obtain pre-trained weights from other tasks such as object detection. If
we modify the final part of QAHOI so that it can be trained with other tasks, we may be able to get
better systematic generalization score with the pre-trained weights.

D.4 Evaluation on the train data

In order to make sure that the models are well-trained, we evaluated accuracies on the train data.
In Table 5 and Table 6, we show mAP accuracies on the train data as well as the test data for
HICO-DET-SG and V-COCO-SG, respectively (the right half of the tables are equivalent to Table 2
and Table 3). For both datasets and for all the models, mAPs on the train data of SG splits are coequal
to or slightly better than the original splits. This is probably because the train data of SG splits contain
less variety of triplets: in HICO-DET-SG there are only 540 combinations of objects and interactions
out of 600 combination contained in the original dataset, and in V-COCO-SG there are only 160 out
of 228.

13



Ta
bl

e
5:

C
om

pa
ri

so
n

of
sy

st
em

at
ic

ge
ne

ra
liz

at
io

n
pe

rf
or

m
an

ce
s

on
H

IC
O

-D
E

T-
SG

da
ta

sp
lit

s.
W

e
sh

ow
m

A
Ps

(%
)f

or
bo

th
tr

ai
n

an
d

te
st

da
ta

,w
hi

ch
ar

e
hi

gh
er

th
e

be
tte

r(
th

e
ri

gh
th

al
fo

ft
hi

s
ta

bl
e

is
eq

ui
va

le
nt

to
Ta

bl
e

2)
.T

he
va

lu
es

re
po

rt
ed

in
th

e
or

ig
in

al
pa

pe
rs

ar
e

w
ri

tte
n

in
br

ac
ke

ts
.T

he
te

rm
“p

re
-t

ra
in

”
m

ea
ns

th
at

th
e

in
iti

al
w

ei
gh

ts
of

th
e

m
od

el
’s

en
co

de
ra

nd
de

co
de

ra
re

co
pi

ed
fr

om
D

ET
R

[3
1]

tra
in

ed
on

ob
je

ct
de

te
ct

io
n.

Te
st

ac
cu

ra
ci

es
si

gn
ifi

ca
nt

ly
de

cr
ea

se
d

on
H

IC
O

-D
ET

-S
G

co
m

pa
re

d
to

or
ig

in
al

H
IC

O
-D

E
T.

E
va

lu
at

io
n

on
tr

ai
n

da
ta

(r
ef

er
en

ce
)

E
va

lu
at

io
n

on
te

st
da

ta
(m

ai
n)

H
O

T
R

Q
PI

C
Q

A
H

O
I

ST
IP

H
O

T
R

Q
PI

C
Q

A
H

O
I

ST
IP

pr
e-

tr
ai

n
✗

✓
✗

✓
✗

✗
✓

✗
✓

✗
✓

✗
✗

✓

O
ri

gi
na

lH
IC

O
-D

E
T

30
.5

4
44

.8
0

33
.2

9
46

.2
8

50
.2

3
13

.4
7

32
.2

3
17

.6
3

26
.3

0
21

.7
0

29
.5

9
35

.3
0

13
.2

1
31

.5
7

(m
A

P
in

th
e

or
ig

in
al

pa
pe

r)
(2

5.
73

)
(2

9.
90

)
(3

5.
78

)
(3

2.
22

)

H
IC

O
-D

E
T-

SG
sp

lit
1

33
.9

2
46

.0
3

34
.0

5
49

.7
0

52
.9

4
13

.6
9

33
.1

7
0.

31
2.

59
10

.5
7

22
.0

8
4.

53
0.

00
22

.1
4

H
IC

O
-D

E
T-

SG
sp

lit
2

31
.4

8
42

.0
4

30
.2

3
48

.2
8

51
.5

0
15

.1
3

34
.4

4
0.

28
2.

73
12

.5
3

19
.9

5
4.

76
0.

00
23

.0
3

H
IC

O
-D

E
T-

SG
sp

lit
3

32
.0

5
44

.9
1

35
.5

4
47

.9
0

48
.2

7
13

.2
5

30
.6

1
0.

52
2.

75
13

.2
8

20
.5

0
6.

12
0.

00
24

.3
9

A
ve

ra
ge

ov
er

SG
sp

lit
s

32
.4

8
44

.3
3

33
.3

0
48

.6
3

50
.9

0
14

.0
2

32
.7

4
0.

37
2.

69
12

.1
3

20
.8

4
5.

14
0.

00
23

.1
9

Ta
bl

e
6:

C
om

pa
ri

so
n

of
sy

st
em

at
ic

ge
ne

ra
liz

at
io

n
pe

rf
or

m
an

ce
s

on
V

-C
O

C
O

-S
G

da
ta

sp
lit

s.
W

e
sh

ow
m

A
Ps

(%
)

fo
r

bo
th

tr
ai

n
an

d
te

st
da

ta
,w

hi
ch

ar
e

hi
gh

er
th

e
be

tte
r(

th
e

ri
gh

th
al

fo
ft

hi
s

ta
bl

e
is

eq
ui

va
le

nt
to

Ta
bl

e
3)

.T
he

va
lu

es
re

po
rt

ed
in

th
e

or
ig

in
al

pa
pe

rs
ar

e
w

ri
tte

n
in

br
ac

ke
ts

.“
pr

e-
tr

ai
n”

m
ea

ns
th

at
th

e
in

iti
al

w
ei

gh
ts

of
th

e
m

od
el

’s
en

co
de

ra
nd

de
co

de
ra

re
co

pi
ed

fr
om

D
ET

R
[3

1]
tra

in
ed

on
ob

je
ct

de
te

ct
io

n.
Te

st
ac

cu
ra

cy
si

gn
ifi

ca
nt

ly
de

cr
ea

se
d

on
V

-C
O

C
O

-S
G

da
ta

sp
lit

s
co

m
pa

re
d

to
or

ig
in

al
V

-C
O

C
O

fo
ra

ll
th

e
m

od
el

s. E
va

lu
at

io
n

on
tr

ai
n

da
ta

(r
ef

er
en

ce
)

E
va

lu
at

io
n

on
te

st
da

ta
(m

ai
n)

H
O

T
R

Q
PI

C
Q

A
H

O
I

ST
IP

H
O

T
R

Q
PI

C
Q

A
H

O
I

ST
IP

pr
e-

tr
ai

n
✗

✓
✗

✓
✗

✗
✓

✗
✓

✗
✓

✗
✗

✓

O
ri

gi
na

lV
-C

O
C

O
28

.2
3

64
.7

2
30

.6
1

65
.6

3
43

.8
1

19
.1

0
72

.8
9

24
.2

6
62

.5
4

27
.6

4
63

.4
1

40
.7

4
18

.4
3

70
.4

3
(m

A
P

in
th

e
or

ig
in

al
pa

pe
r)

(6
3.

8)
(6

1.
0)

(7
0.

7)

V
-C

O
C

O
-S

G
sp

lit
1

30
.5

7
65

.7
9

31
.2

4
67

.2
5

45
.5

2
23

.5
1

71
.9

1
0.

24
2.

10
0.

77
4.

21
2.

73
0.

12
6.

25
V

-C
O

C
O

-S
G

sp
lit

2
31

.5
3

67
.2

8
32

.5
3

68
.4

3
43

.9
6

20
.0

4
74

.3
8

0.
27

2.
60

0.
66

4.
16

1.
80

0.
00

6.
22

V
-C

O
C

O
-S

G
sp

lit
3

28
.2

1
61

.0
7

29
.8

3
60

.4
7

42
.8

8
22

.4
1

73
.4

3
0.

15
1.

68
0.

32
2.

89
1.

53
0.

00
6.

37
A

ve
ra

ge
ov

er
SG

sp
lit

s
30

.1
0

64
.7

1
31

.2
0

65
.3

8
44

.1
2

21
.9

9
73

.2
4

0.
22

2.
13

0.
58

3.
75

2.
02

0.
04

6.
28

14


	Introduction
	HICO-DET-SG and V-COCO-SG
	Creation of SG splits
	Statistics of HICO-DET-SG and V-COCO-SG

	Evaluation results
	Degradation in the systematic generalization performance
	Qualitative analysis

	Conclusion
	Related works
	Human-Object Interaction (HOI) detection
	Systematic generalization in HOI detection

	Further details of creating systematic generalization splits
	Experimental setup for evaluating representative HOI detection models
	HOI detection models
	Pre-training, hyperparameters, and other conditions

	Further results and discussions
	Difference between HICO-DET-SG and V-COCO-SG
	Comparison across models
	Importance of pre-trained encoder and decoder
	Evaluation on the train data


